GEOMETRIA DE POSIÇÃO OU GEOMETRIA EUCLIDIANA
|
|
- Luiza Carlos Leal
- 2 Há anos
- Visualizações:
Transcrição
1 GEOMETRIA DE POSIÇÃO OU GEOMETRIA EUCLIDIANA PONTO, RETA, PLANO E ESPAÇO; PROPOSIÇÕES GEOMÉTRICAS; POSIÇOES RELATIVAS POSIÇÕES RELATIVAS ENTRE PONTO E RETA POSIÇÕES RELATIVAS DE PONTO E PLANO POSIÇÕES RELATIVAS DE DUAS RETAS NO PLANO. DETERMINAÇÃO DE PLANOS; POSIÇÕES RELATIVAS DE UMA RETA E UM PLANO; POSIÇÕES RELATIVAS DE DOIS PLANOS NO ESPAÇO; PARALELISMO; PERPENDICULARIDADE.
2 GEOMETRIA EUCLIDIANA
3 HISTÓRIA
4 HISTÓRIA
5 PONTO, RETA E PLANO De maneira geral e frequente, a sistematização de um conhecimento pressupõe o estabelecimento de conceitos iniciais já configurados, muitas vezes abstratos, mais indispensáveis. Na Geometria, por exemplo, não é diferente. Aceitamos sem muita resistência as noções de ponto, retas e plano que se dispõem num grande palco chamado espaço. Esses elemenntos não possuem definição (são chamados conceitos primitivos) e representam a matéria-prima com a qual serão construídos os diversos conceitos geométricos.
6 PONTO Foi descrito por Euclides como aquilo que não tem partes. É aceito como um ente que não tem dimensão, nem massa e nem volume, sendo, portanto, adimensional. É, normalmente, representado por letras maiúsculas do nosso alfabeto.
7 RETA O conceito de reta é aceito como um ente unidimensional, cuja única dimensão é o comprimento. A reta é entendida como um ente sem espessura e sem fim e, normalmente, é representada por letras minúsculas do nosso alfabeto.
8 PLANO A ideia de plano está associada a um superfície plana, sem espessura e sem fronteiras. O plano é bidimensional, pois possui comprimento e largura, portanto admite duas retas perpendiculares. Geralmente, é representado por uma letra do alfabeto grego.
9 ESPAÇO Pode ser entendido como o conjunto de todos os pontos. É o mundo físico, tridimensional por admitir três retas perpendiculares duas a duas. Qualquer conjunto de pontos, como triângulo, cubo, pirâmide ou qualquer outra figura geométrica, é um subconjunto do espaço ou lugar geométrico do espaço.
10 PROPOSIÇÕES GEOMÉTRICAS Com base nos conceitos primitivos já estabelecidos, podemos enunciar proposições que podem ser divididas em duas categorias: Postulados ou axiomas: proposições que envolvem os elementos primitivos e que, mesmo não permitindo uma demonstração, são aceitos como verdadeiros. Teoremas: proposições que podem ser demonstradas com base em postulados anteriormente aceitos e/ou outros teoremas já demonstrados.
11 POSTULADOS
12 POSTULADOS
13 POSTULADOS
14 CURIOSIDADE
15 POSIÇÕES RELATIVAS
16 ARTE - MATEMÁTICA
17 POSIÇÕES RELATIVAS ENTRE PONTO E RETA
18 POSIÇÕES RELATIVAS DE PONTO E PLANO Dados um ponto P e um plano α, temos duas possibilidades:
19 POSIÇÕES RELATIVAS DE DUAS RETAS NO ESPAÇO Na figura abaixo, estão destacados um cubo e as retas, r, s e t, que contém algumas de suas arestas:
20 POSIÇÕES RELATIVAS DE DUAS RETAS NO ESPAÇO As retas r e s não intersectam e o plano que passa pelos pontos A, B, H e g contém as duas retas. Dizemos então, que as retas r e s são paralelas e coplanares. r s
21 POSIÇÕES RELATIVAS DE DUAS RETAS NO ESPAÇO Observe, agora, que as retas s e t se intersectam no ponto B e o plano que passa pelos pontos A, B, C e D as contém. Diremos, então, que as retas s e t são concorrentes e coplanares. s t
22 POSIÇÕES RELATIVAS DE DUAS RETAS NO ESPAÇO Finalmente, vamos analisar r e t. Da mesma forma que as retas r e s, elas não possuem ponto em comum, mas têm direções diferentes. Observe que não existe um plano comum às duas. Nesse caso, dizemos que r e t são não-coplanares ou reversas. r t
23 POSIÇÕES RELATIVAS DE DUAS RETAS NO ESPAÇO Podemos organizar as posições relativas entre duas retas no seguinte quadro:
24 POSIÇÕES RELATIVAS DE DUAS RETAS NO ESPAÇO
25 DETERMINAÇÃO DE PLANOS Você deve se lembrar que um postulados iniciais afirma que três pontos distintos não-colineares determinam um plano. Usamos a palavra determinar no sentido de indicar com precisão, ou seja, sabemos que por três pontos não alinhados temos um único plano passando. Com base no postulado anterior, vamos estudar outras três formas de determinar um plano.
26 DETERMINAÇÃO DE PLANOS O primeiro caso é um postulado e os outros três são teoremas.
27 POSIÇÕES RELATIVAS DE UMA RETA E UM PLANO A reta r não intersecta o plano γ. Por isso, dizemos que a reta r é paralela ao plano Já a reta t tem todos os seu pontos pertencentes ao plano γ. Como a reta e o plano são conjuntos de pontos, podemos dizer que a reta está contida no plano
28 POSIÇÕES RELATIVAS DE UMA RETA E UM PLANO Observe, agora, a reta s. A intersecção dela com plano g é o ponto P. Quando uma reta e um ponto possuem apenas um ponto em comum, dizemos que a reta é concorrente com o plano. Podemos afirmar também que a reta e o plano são secantes
29 POSIÇÕES RELATIVAS DE UMA RETA E UM PLANO
30 POSIÇÕES RELATIVAS DE UMA RETA E UM PLANO Se uma reta é concorrente a um plano em um ponto P e forma um ângulo reto com todas as retas do plano que passam por P, dizemos que ela é perpendicular ou ortogonal ao plano.
31 POSIÇÕES RELATIVAS DE DOIS PLANOS NO ESPAÇO Um bloco de madeira que tem o formato de um paralelepípedo foi cortado em duas partes iguais, por um plano diagonal, conforme ilustra a figura a seguir. O plano que passa pelos pontos A, B, C, e D não intersecta, por exemplo, o que passa por E, F, G e H. Podemos dizer, então, que os planos são paralelos. Observe o plano que passa pelos pontos B, D, H e F e o que passa pelos pontos B, C, G e F. A intersecção deles é a reta que passa pelos pontos B e F. Quando dois planos não são paralelos, são chamados concorrentes ou secantes e têm em comum uma reta.
32 POSIÇÕES RELATIVAS DE DOIS PLANOS NO ESPAÇO Conceito Dois planos são perpendiculares se, e somente se, um deles contém uma reta perpendicular ao outro. A figura anterior ilustra dois planos perpendiculares p e g; Planos perpendiculares são concorrentes e formam um ângulo reto. Neste conceitos, paredes e tetos de uma sala de aula são representações sempre disponíveis e ilustram a condição de perpendicularismo entre planos com rápida visualização.
33 PARALELISMO Já estudamos as posições relativas entre uma reta e um plano e entre dois planos. Vamos agora, analisar com mais detalhes alguns teoremas importantes. É evidente que, em muitos casos, a intuição é suficiente para a compreensão da proposição geométrica em questão. Com os conhecimentos adquiridos até então, você está em uma situação muito melhor para compreender a demonstração de uma teorema. Se uma proposição for clara e ficar bem entendida apenas com a leitura e um pouco de imaginação, excelente! Porém, se a intuição não der conta do recado, procure acompanhar a demonstração passo a passo, para que o entendimento seja completo.
34 TEOREMA 1 Se uma reta é paralela a um plano, então ela é paralela a uma reta desse plano. Demonstração: Vamos construir um plano π que contém a reta m e intersecta o plano β segundo a reta n.
35 TEOREMA 1 As retas m e n estão contidas no plano p, logo são coplanares e não possuem ponto em comum, pois, por hipóteses, a reta m é paralela ao plano b e a s está contida no plano b. Se m e n são coplanares e não têm ponto em comum, então elas são paralelas. Note que, para demonstrar esse teorema, utilizamos o método direto, também chamado de demonstração direta.
36 TEOREMA 2 Se uma reta não-contida em um plano é paralela a uma reta deste, então ela é paralela ao plano. Para demonstra o teorema, vamos estabelecer inicialmente as hipóteses e a tese. Demonstração: Se as retas r e s são paralelas, existe um plano β que contém r e s. Assim, a reta s está contida nos planos a e b. Logo, α β= s
37 TEOREMA 2 Vamos supor que a reta não é paralela ao planoα, Observe que, para portanto há um ponto P em comum comα (P α). Como P P r e P s, retas r e s são paralelas. r e r β, então P β. Mas se P β e P α, temos que P s e, dessa forma, o que é absurdo, já que, por hipótese, as Assim, a suposição é falsa e a reta r é paralela ao plano a. determinar o teorema, fizemos uma suposição e, utilizamos as hipóteses e consequências de tal suposição, chegamos a uma contradição. Esse método é conhecido como método de demonstração indireta, também chamado de demonstração por redução ao absurdo.
38 CONCEITO Uma condição necessária e suficiente para que uma reta, não contida em um plano, seja paralela a este é que ela seja paralela a uma reta desse plano.
39 TEOREMA 3 Se um plano contém duas retas concorrentes, paralelas a um outro plano, então esses planos são paralelos. Demonstração: Novamente, vamos utilizar o método de redução do absurdo. Suponha que exista uma reta t de modo que α β= t. Se s // β, s α eα β = t, então s //t; Por outro lado; Se r // β, r α eα β = t, então r // t.
40 TEOREMA 3 De onde se conclui que as retas r e s são paralelas à reta t. Tal afirmação é absurda, pois, por hipótese, r e s são concorrentes no ponto P e isso contraria o Postulado de Euclides. Portanto, os planos a e b não têm ponto em comum e são paralelos. Observe como ficaria a figura se a suposição fosse verdadeira: Uma condição necessária e suficiente para que dois planos sejam paralelos é que um deles contenha duas retas concorrentes, paralelas ao outro ao plano.
41 PERPENDICULARIDADE Vamos, agora, estudar alguns teoremas importantes sobre uma condição especial geométrica: a perpendicularidade, que é qualidade ou posição de perpendicular entre retas e planos no espaço
42 TEOREMA 4 Se uma reta é ortogonal a duas retas concorrentes de um plano, então ela é perpendicular (ortogonal) ao plano. Observe, por meio das figuras a seguir, as possibilidades para a situação descrita.
43 TEOREMA 4 Conceito: Se uma contém uma reta perpendicular a outro plano, então os planos são perpendiculares. Uma condição necessária e suficiente para que uma reta perpendicular a um plano é que ela seja ortogonal a duas retas concorrentes desse plano, no ponto de intersecção.
44 TEOREMA 5 Se dois planos são perpendiculares e uma reta contida em um deles for perpendicular à reta intersecção dos dois planos, então essa reta é perpendicular ao outro plano.
45 TEOREMA 5 Demonstração: Como α β, então o plano a contém uma reta t perpendicular ao plano β. Assim, essa reta é perpendicular à reta s. Por hipótese, a reta r, contida em α, é perpendicular à reta s e, portanto, r // t. Mas se r // t e t β, então r β. A demonstração feita desse último teorema é direta ou indireta. A demonstração foi direta, pois utilizamos as hipóteses numa sequência de raciocínio que não gerou uma contradição (absurdo).
46 TEOREMA 6 Se duas retas são reversas, existe uma única reta perpendicular a ambas. Novamente não vamos demonstrar com rigor esse teorema, pois se exigiriam alguns procedimentos que vão além do nosso propósito. Observe, com atenção, a ilustração a seguir que mostra duas retas reversas e a reta perpendicular comum. m e n são reversas v m v n Observe que m e n não necessariamente são ortogonais.
47 RESOLUÇÃO DE ATIVIDADES P. 28 exercício 1 P 30 exercícios 1 e 2 P. 32 exercícios 1 e 2 P. 35 exercício 1 P. 37 exercício 1
GEOMETRIA DE POSIÇÃO
GEOMETRIA DE POSIÇÃO 1- Conceitos primitivos 1.1- Ponto Não possui dimensão. Representado por letras maiúsculas. A B C 1.2 - Reta É unidimensional, possuindo comprimento infinito. Não possui largura ou
Conceitos Primitivos: são conceitos adotados sem definição.
Geometria Plana Geometria Espacial Conceitos Primitivos: são conceitos adotados sem definição. 1. Ponto P Características: Não possui dimensão Sua representação geométrica é indicada por letra maiúscula
Geometria Espacial Curso de Licenciatura em Matemática parte I. Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR
Geometria Espacial Curso de Licenciatura em Matemática parte I Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR - 2014 1 1. Conceitos Primitivos e Postulados L1. Noções 1. Conceitos primitivos:
Posições de Retas. Algumas definições sobre retas foram sistematizadas por Euclides, por volta de 300a.C.
Posições de Retas Introdução: Conceitos Primitivos Algumas definições sobre retas foram sistematizadas por Euclides, por volta de 300a.C. A partir dessas definições estabeleceram-se os termos geométricos
Aula 24 mtm B GEOMETRIA ESPACIAL
Aula 24 mtm B GEOMETRIA ESPACIAL Entes Geométricos Ponto A T Reta r s Plano Espaço y α z x Entes Geométricos Postulados ou Axiomas Teorema a 2 = b 2 + c 2 S i =180 Determinação de uma reta Posições relativas
GGM /11/2010 Dirce Uesu Pesco Geometria Espacial
GGM00161-06/11/2010 Turma M2 Dirce Uesu Pesco Geometria Espacial Postulados : - Por dois pontos distintos passa uma e somente uma reta - Três pontos não colineares determinam um único plano. - Qualquer
Geometria Espacial de Posição
Geometria Espacial de Posição Prof.: Paulo Cesar Costa www.pcdamatematica.com Noções primitivas POSTULADOS Postulados da existência Numa reta e fora dela existem infinitos pontos. Num plano e fora dele
Geometria Espacial Curso de Licenciatura em Matemática parte II. Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR
Geometria Espacial Curso de Licenciatura em Matemática parte II Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR - 2014 1. Paralelismo de Retas L20 Postulado das Paralelas ( de Euclides )
AULA Introdução a Geometria Es- 10 pacial: Pontos, Retas e Planos
AULA Introdução a Geometria Es- 10 pacial: Pontos, Retas e Planos 10.1 Introdução O ensino de Geometria para alunos do segundo ano do segundo grau faz o aluno se deparar com guras geométricas tridimensionais.
MATEMÁTICA MÓDULO 13 FUNDAMENTOS 1. INTRODUÇÃO 1.1. POSTULADOS PRINCIPAIS 1.2. DETERMINAÇÃO DO PLANO. Conceitos primitivos: ponto, reta e plano.
FUNDAMENTOS 1. INTRODUÇÃO Conceitos primitivos: ponto, reta e plano. 1.1. POSTULADOS PRINCIPAIS Dois pontos distintos determinam uma única reta que passa por eles. Três pontos não colineares determinam
Geometria Euclidiana Espacial e Introdução à Geometria Descritiva
UNIVERSIDDE ESTDUL PULIST DEPRTMENTO DE MTEMÁTIC Geometria Euclidiana Espacial e Introdução à Geometria Descritiva Material em preparação!! Última atualização: 28.04.2008 Luciana F. Martins e Neuza K.
4. Posições relativas entre uma reta e um plano
RESUMO GEOMETRIA DE POSIÇÃO OU EUCLIDIANA 1.Geometria de posição espacial Ponto, reta e plano são considerados noções primitivas na Geometria. Espaço é o conjunto de todos o pontos. Postulados são proposições
Axiomas da Geometria Diferencial: Incidência Axioma I 1 : Para todo ponto P e para todo ponto Q distinto de P, existe uma única reta l que passa por
GEOMETRIA ESPACIAL Axiomas da Geometria Diferencial: Incidência Axioma I 1 : Para todo ponto P e para todo ponto Q distinto de P, existe uma única reta l que passa por P e Q. Axioma I 2 : Toda reta possui
AULA Paralelismo e perpendicu- 11 larismo
AULA Paralelismo e perpendicu- 11 larismo 11.1 Introdução Nesta aula estudaremos as noções de paralelismo e perpendicularismo. Vamos assumir que o aluno tenha o conhecimento de todos os resultados concernentes
Posição Relativa. 1. Quatro pontos distintos e não coplanares determinam exatamente: (A) 1 plano (B) 2 planos (C) 3 planos (D) 4 planos (E) 5 planos.
SEI Ensina MILITAR Matemática Posição Relativa 1. Quatro pontos distintos e não coplanares determinam exatamente: (A) 1 plano (B) 2 planos (C) 3 planos (D) 4 planos (E) 5 planos. 2. Considere as seguintes
1. Quantos são os planos determinados por 4 pontos não coplanares?justifique.
Universidade Federal de Uberlândia Faculdade de Matemática Disciplina: Geometria euclidiana espacial (GMA010) Assunto: Paralelisno e Perpendicularismo; Distância e Ângulos no Espaço. Prof. Sato 1 a Lista
MATEMÁTICA MÓDULO 13 FUNDAMENTOS. Professor Matheus Secco
MATEMÁTICA Professor Matheus Secco MÓDULO 13 FUNDAMENTOS 1. FUNDAMENTOS Conceitos primitivos: ponto, reta e plano. Dois pontos distintos determinam uma única reta que pasa por eles.reta. Três pontos não
Geometria Descritiva 28/08/2012. Elementos Primitivos da Geometria
Geometria Descritiva Prof. Luiz Antonio do Nascimento ladnascimento@gmail.com www.lnascimento.com.br A Geometria, como qualquer outra ciência, fundamenta-se em observações e experiências para estabelecer
Geometria (euclidiana)
Geometria (euclidiana) Professor: jair.donadelli@ufabc.edu.br página da disciplina na web: http://professor.ufabc.edu.br/~jair.donadelli/geometria Professor: jair.donadelli@ufabc.edu.br MA13 Geometria
U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA!
1 U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA! http://ueedgartito.wordpress.com RESUMO DE GEOMETRIA ESPACIAL São conceitos primitivos ( e, portanto,
Geometria Analítica. Geometria Analítica Geometria É importante compreender a geometria, para dar resposta a questões como: 15/08/2012
Prof. Luiz Antonio do Nascimento luiz.anascimento@sp.senac.br www.lnascimento.com.br Geometria A Geometria é um ramo da matemática preocupado com questões de forma, tamanho e posição relativa de figuras
Desenho Computacional. Parte I
FACULDADE FUCAPI Desenho Computacional Parte I, M.Sc. Doutorando em Informática (UFAM) Mestre em Engenharia Elétrica (UFAM) Engenheiro de Telecomunicações (FUCAPI) Referências SILVA, Arlindo; RIBEIRO,
Soluções do Capítulo 8 (Volume 2)
Soluções do Capítulo 8 (Volume 2) 1. Não. Basta considerar duas retas concorrentes s e t em um plano perpendicular a uma reta r. As retas s e t são ambas ortogonais a r, mas não são paralelas entre si.
Um pouco de história. Ariane Piovezan Entringer. Geometria Euclidiana Plana - Introdução
Geometria Euclidiana Plana - Um pouco de história Prof a. Introdução Daremos início ao estudo axiomático da geometria estudada no ensino fundamental e médio, a Geometria Euclidiana Plana. Faremos uso do
Aula 31.1 Conteúdo: Fundamentos da Geometria: Ponto, Reta e Plano. FORTALECENDO SABERES CONTEÚDO E HABILIDADES DINÂMICA LOCAL INTERATIVA MATEMÁTICA
CONTEÚDO E HABILIDADES FORTALECENDO SABERES DESAFIO DO DIA Aula 31.1 Conteúdo: Fundamentos da Geometria: Ponto, Reta e Plano. 2 CONTEÚDO E HABILIDADES FORTALECENDO SABERES DESAFIO DO DIA Habilidades: Identificar
d) Por dois pontos distintos passa uma única reta
INTRODUÇÃO À GEOMETRIA Ponto, reta e plano Você já tem ideia intuitiva sobre ponto, reta e plano. Vejamos alguns exemplos: Um furo de agulha num papel dá ideia de ponto. Uma corda bem esticada dá ideia
CONSTRUÇÕES GEOMÉTRICAS FUNDAMENTAIS
UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA CONSTRUÇÕES GEOMÉTRICAS FUNDAMENTAIS 2 1 NOÇÕES DE GEOMETRIA PLANA 1.1 GEOMETRIA A necessidade de medir terras
Geometria de Posição. Conceitos primitivos. Prof. Jarbas
Geometria de Posição Conceitos primitivos Prof. Jarbas Conceitos primitivos A partir do mundo real, matemáticos da antiguidade, como Euclides (séc. III a.c.) estabeleceram entes com os quais construíram
Ângulos entre retas Retas e Planos Perpendiculares. Walcy Santos
Ângulos entre retas Retas e Planos Perpendiculares Walcy Santos Ângulo entre duas retas A idéia do ângulo entre duas retas será adaptado do conceito que temos na Geometria Plana. Se duas retas são concorrentes
2. Cada 3 pontos determinam um plano. Logo, há um total de. = 4 planos (que correspondem às faces do tetraedro cujos vértices são estes 4 pontos).
Soluções do apítulo 7 (Volume ) 1. Supondo que, neste trecho, tanto a ponte quanto a via férrea estejam em planos horizontais (sem rampa), temos as seguintes relações: α e β são paralelos; r está contida
Geometria. Uma breve introdução
Geometria Uma breve introdução Etimologia Geometria, em grego antigo γεωμετρία, geo- "terra", -metria "medida Origem (lazer ou necessidade?) Geometria Euclidiana Euclides de Alexandria, matemático grego
Retas e planos. Posições relativas
Retas e planos. Posições relativas Recordar Noção de Plano Se prolongares indefinidamente e em todas as direções o tampo do quadro, obténs um Plano. Como desenhar um plano é impossível, convencionou-se
Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que
Capítulo 11 1. Equações da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que AP = t AB Fig. 1: Reta r passando por A e B. Como o ponto
Material Teórico - Módulo de Geometria Espacial 1 - Fundamentos. Pontos, Retas e Planos - Parte 2. Terceiro Ano - Médio
Material Teórico - Módulo de Geometria Espacial 1 - Fundamentos Pontos, Retas e Planos - Parte 2 Terceiro no - Médio utor: Prof. ngelo Papa Neto Revisor: Prof. ntonio Caminha 1 Ângulo entre retas no espaço.
a) Falsa. Dois ou mais pontos podem ser coincidentes, por exemplo. b) Falsa. Os três pontos não podem ser colineares.
01 a) Falsa. Dois ou mais pontos podem ser coincidentes, por exemplo. b) Falsa. Os três pontos não podem ser colineares. c) Verdadeira. Três pontos distintos e não colineares sempre determinam um plano.
Resumo Geometria e medidas. Prismas e Cilindros Pirâmides e Cones Volume de uma pirâmide Volume da Esfera
Projeto Teia do Saber: Fundamentando uma Prática de Ensino de Matemática Utilização do Computador no Desenvolvimento do Conteúdo Matemática do Ensino Médio Geometria 16 de outubro de 2004 Um entendimento
Em todas as questões, está fixado um sistema ortogonal (O, i, j, k) com base ( i, j, k) positiva.
1 Em todas as questões, está fixado um sistema ortogonal (O, i, j, k) com base ( i, j, k) positiva a1q1: Sejam r uma reta, A e B dois pontos distintos não pertencentes a r Seja L o lugar geométrico dos
MATEMÁTICA 3 GEOMETRIA PLANA Professor Renato Madeira
MATEMÁTICA 3 GEOMETRIA PLANA Professor Renato Madeira MÓDULO 1 Fundamentos de Geometria Euclidiana Plana e Ângulos SUMÁRIO 1. Fundamentos 1.1. Postulados principais 1.2. Determinação do plano 1.3. Posições
Aula Distância entre duas retas paralelas no espaço. Definição 1. Exemplo 1
Aula 1 Sejam r 1 = P 1 + t v 1 t R} e r 2 = P 2 + t v 2 t R} duas retas no espaço. Se r 1 r 2, sabemos que r 1 e r 2 são concorrentes (isto é r 1 r 2 ) ou não se intersectam. Quando a segunda possibilidade
Geometria Euclideana Plana
Geometria Euclideana Plana A partir de agora, iremos iniciar nosso estudo axiomático da Geometria Euclidiana Plana. Vimos que os postulados de Euclides não são suficientes para demonstrar todos os resultados
Geometria Analítica. Geometria Analítica 28/08/2012
Prof. Luiz Antonio do Nascimento luiz.anascimento@sp.senac.br www.lnascimento.com.br Conjuntos Propriedades das operações de adição e multiplicação: Propriedade comutativa: Adição a + b = b + a Multiplicação
❷ Uma recta e um ponto exterior à recta definem um e um só plano.
Uma resolução da Ficha de Trabalho (10.º Ano) POSIÇÕES RELATIVAS, PERSPECTIVAS, CORTES. 1. FORMAS DE DEFINIR UM PLANO: ❶ Três pontos não colineares definem um e um só plano. ❷ Uma recta e um ponto exterior
1. Encontre as equações simétricas e paramétricas da reta que:
Universidade Federal de Uberlândia Faculdade de Matemática Disciplina : Geometria Analítica (GMA00) Assunto: retas; planos; interseções de retas e planos; posições relativas entre retas e planos; distância
ESTADO DE ALAGOAS UNIVERSIDADE ESTADUAL DE ALAGOAS - UNEAL PRÓ-REITORIA DE GRADUAÇÃO - PROGRAD Reitoria Arapiraca PLANO DE MONITORIA
PLANO DE MONITORIA CAMPUS: Campus III - Palmeira dos Índios CURSO: Matemática ANO LETIVO: 2017 PROFESSOR ORIENTADOR: ELIELSON MAGALHÃES LIMA DISCIPLINA: Geometria Euclidiana Espacial EXISTE DISCIPLINA
Pirâmides: Neste momento, continuaremos a estudar a geometria espacial dos sólidos geométricos, enfatizando agora as pirâmides.
Pirâmides: Neste momento, continuaremos a estudar a geometria espacial dos sólidos geométricos, enfatizando agora as pirâmides. A seguir, algumas representações de pirâmides: Essa forma espacial é bastante
Metas Curriculares do Ensino Básico Matemática 3.º Ciclo. António Bivar Carlos Grosso Filipe Oliveira Maria Clementina Timóteo
Metas Curriculares do Ensino Básico Matemática 3.º Ciclo António Bivar Carlos Grosso Filipe Oliveira Maria Clementina Timóteo Geometria e Medida 3.º ciclo Grandes temas: 1. Continuação do estudo dos polígonos
Aula 4 Colinearidade, coplanaridade e dependência linear
Aula 4 Colinearidade, coplanaridade e dependência linear MÓDULO 1 - AULA 4 Objetivos Compreender os conceitos de independência e dependência linear. Estabelecer condições para determinar quando uma coleção
Módulo de Geometria Espacial I - Fundamentos. Pontos, Retas e Planos. 3 ano/e.m.
Módulo de Geometria Espacial I - Fundamentos Pontos, Retas e Planos. 3 ano/e.m. Geometria Espacial I - Fundamentos Pontos, Retas e Planos. 1 Exercícios Introdutórios 2 Exercícios de Fixação Exercício 4.
2 a Lista de Exercícios de MAT2457 Escola Politécnica 1 o semestre de 2014
a Lista de Eercícios de MAT4 Escola Politécnica o semestre de 4. Determine u tal que u = e u é ortogonal a v = (,, ) e a w = (, 4, 6). Dos u s encontrados, qual é o que forma um ângulo agudo com o vetor
Figura disponível em: <http://soumaisenem.com.br/fisica/conhecimentos-basicos-e-fundamentais/grandezas-escalares-egrandezas-vetoriais>.
n. 7 VETORES vetor é um segmento orientado; são representações de forças, as quais incluem direção, sentido, intensidade e ponto de aplicação; o módulo, a direção e o sentido caracterizam um vetor: módulo
Tarefa nº_ 2.2. (A) Um ponto (B) Uma reta (C) Um plano (D) Nenhuma das anteriores
Tarefa nº_. MATEMÁTICA Geometria Nome: 11º Ano Data / / 1. Num referencial o.n. Oxyz, qual das seguintes condições define uma recta paralela ao eixo Oz? (A) x = y = 1 (C) z = 1 (B) (x, y, z) = (1,,0) +
REVISÃO Lista 11 Geometria Espacial. para área lateral, total, V para volume, d para diagonal, h para altura, r para raio, g para geratriz )
NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições (Nas fórmulas a seguir, vamos utilizar aqui REVISÃO Lista Geometria Espacial A B para área da base, para área lateral, total, V
EXERCÍCIOS COMPLEMENTARES
Questão 01) EXERCÍCIOS COMPLEMENTARES GEOMETRIA ESPACIAL PROF.: GILSON DUARTE d) Se e são perpendiculares entre-si, então é perpendicular a todas as retas contidas em. Todas as afirmações abaixo estão
PLANO DE ESTUDOS DE MATEMÁTICA 9.º ANO
DE MATEMÁTICA 9.º ANO Ano Letivo 2015 2016 PERFIL DO ALUNO No domínio dos Números e Operações, o aluno deve ser capaz de reconhecer propriedades da relação de ordem em, definir intervalos de números reais
Código da Disciplina CCE0985. Aula 3.
Código da Disciplina CCE0985 Aula 3 e-mail:clelia.monasterio@estacio.br http://cleliamonasterio.blogspot.com/ O que é geometria? Palavra de origem grega: GEO (terra) METRIA (medida). Há 5.000 anos, era
ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO. 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem.
ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO 1ª Ficha Informativa MATEMÁTICA - A 10º Ano 2012/2013 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem. Definição:
9.º Ano. Planificação Matemática 16/17. Escola Básica Integrada de Fragoso 9.º Ano
9.º Ano Planificação Matemática 1/17 Escola Básica Integrada de Fragoso 9.º Ano Funções, sequências e sucessões Álgebra Organização e tratamento de dados Domínio Subdomínio Conteúdos Objetivos gerais /
3.5 Posições relativas
3.5 Posições relativas Geometria Descritiva 2006/2007 Paralelismo Paralelismo de duas rectas É condição necessária e suficiente para que duas rectas, não de perfil, sejam paralelas que as suas projecções
Geometria Analítica. Estudo da Reta. Prof Marcelo Maraschin de Souza
Geometria Analítica Estudo da Reta Prof Marcelo Maraschin de Souza Reta Considere um ponto A(x 1, y 1, z 1 ) e um vetor não-nulo v = a, b, c. Só existe uma reta r que passa por A e tem a direção de v.
Lista 2 de Exercícios Geometria Analítica e Cálculo Vetorial
Lista 2 de Exercícios Geometria Analítica e Cálculo Vetorial 9 de abril de 2017 1. Dados os pontos R = (1, 2) e S = ( 2, 2) (a) Encontrar as coordenadas do vetor que tem origem no ponto R e o extremos
Aula 10 Produto interno, vetorial e misto -
MÓDULO 2 - AULA 10 Aula 10 Produto interno, vetorial e misto - Aplicações II Objetivos Estudar as posições relativas entre retas no espaço. Obter as expressões para calcular distância entre retas. Continuando
Ponto 1) Representação do Ponto
Ponto 1) Representação do Ponto Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Plano Cartesiano, sistemas de coordenadas: pontos e retas Na geometria
Lógica Proposicional Parte 3
Lógica Proposicional Parte 3 Nesta aula, vamos mostrar como usar os conhecimentos sobre regras de inferência para descobrir (ou inferir) novas proposições a partir de proposições dadas. Ilustraremos esse
DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA:
ANO LETIVO 2016/2017 DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (9º Ano) METAS CURRICULARES/CONTEÚDOS... 1º PERÍODO - (15 de setembro a 16 de dezembro) Metas Curriculares Conteúdos Aulas
Geometria Descritiva Básica (Versão preliminar)
Geometria Descritiva Básica (Versão preliminar) Prof. Carlos Kleber 5 de novembro de 2008 1 Introdução O universo é essencialmente tridimensonal. Mas nossa percepção é bidimensional: vemos o que está à
DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (9º Ano) METAS CURRICULARES/CONTEÚDOS ... 1º PERÍODO. Medidas de localização
ANO LETIVO 2017/2018... 1º PERÍODO DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (9º Ano) METAS CURRICULARES/CONTEÚDOS Metas Curriculares Conteúdos Aulas Previstas Medidas de localização
Escola Básica e Secundária da Graciosa. Matemática 9.º Ano Axiomatização das Teorias Matemáticas
Escola Básica e Secundária da Graciosa Matemática 9.º Ano Axiomatização das Teorias Matemáticas Proposição Expressão que traduz uma afirmação e à qual se pode associar um e um só dos valores verdadeiro
A respeito da soma dos ângulos internos e da soma dos ângulos externos de um quadrilátero, temos os seguintes resultados:
Quadriláteros Nesta aula vamos estudar os quadriláteros e os seus elementos: lados, ângulos internos, ângulos externos, diagonais, etc. Além disso, vamos definir e observar algumas propriedades importantes
Geometria Analítica II - Aula 4 82
Geometria Analítica II - Aula 4 8 IM-UFF K. Frensel - J. Delgado Aula 5 Esferas Iniciaremos o nosso estudo sobre superfícies com a esfera, que já nos é familiar. A esfera S de centro no ponto A e raio
MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON
MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON PROFJWPS@GMAIL.COM DEFINIÇÕES GEOMETRIA PLANA Ponto: Um elemento do espaço que define uma posição. Reta: Conjunto infinito de pontos. Dois pontos são
Teorema de Tales no plano
MA620 - Aula 3 p. 1/ Teorema de Tales no plano Teorema de Tales: (no plano) Se duas retas paralelas são cortadas por duas retas concorrentes, então as medidas dos segmentos correspondentes determinados
1 Segmentos orientados e vetores, adição e multiplicação
MAP2110 Modelagem e Matemática 1 o Semestre de 2007 Resumo 1 - Roteiro de estudos - 07/05/2007 Espaços vetoriais bi e tri-dimensionais (plano ou espaço bidimensional E 2, e espaço tridimensional E 3 )
Aula 7 Complementos. Exercício 1: Em um plano, por um ponto, existe e é única a reta perpendicular
MODULO 1 - AULA 7 Aula 7 Complementos Apresentamos esta aula em forma de Exercícios Resolvidos, mas são resultados importantes que foram omitidos na primeira aula que tratou de Conceitos Básicos. Exercício
Geometria Descritiva. Geometria Descritiva. Geometria Descritiva 14/08/2012. Definição:
Prof. Luiz Antonio do Nascimento ladnascimento@gmail.com www.lnascimento.com.br Origem: Criada para fins militares (projeto de fortes militares) para Napoleão Bonaparte pelo matemático francês Gaspar Monge.
UTILIZANDO O GEOGEBRA PARA CONSTRUÇÃO E EXPLORAÇÃO DE UM MODELO PLANO PARA A GEOMETRIA ELÍPTICA
UTILIZANDO O GEOGEBRA PARA CONSTRUÇÃO E EXPLORAÇÃO DE UM MODELO PLANO PARA A GEOMETRIA ELÍPTICA Valdeni Soliani Franco Luana Paula Goulart de Menezes vsfranco@uem.br ra61976@uem.br Universidade Estadual
Capítulo Coordenadas no Espaço. Seja E o espaço da Geometria Euclidiana tri-dimensional.
Capítulo 9 1. Coordenadas no Espaço Seja E o espaço da Geometria Euclidiana tri-dimensional. Um sistema de eixos ortogonais OXY Z em E consiste de três eixos ortogonais entre si OX, OY e OZ com a mesma
Sugestão: Use papel transparente para copiar as figuras e comparar os lados e os ângulos.
Você se lembra dos triângulos e quadriláteros do final da Aula 28? Eles estão reproduzidos na figura abaixo. Observe que a forma de cada triângulo, por exemplo, varia conforme aumentamos ou diminuímos
Datas das Avaliações. Média Final: (P1 + P2) /2
Professora: Lhaylla Crissaff E-mail para contato: Período Início: 20/03/2017 Término: 20/07/2017 Turma M2 terças e quintas de 9:00 às 11:00 Sala: IMG-205 Datas das Avaliações P1: 09/05/2017 P2: 29/06/2017
INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA 2ª SÉRIE DO ENSINO MÉDIO PROF. ILYDIO PEREIRA DE SÁ
INSTITUTO E PLIÇÃO FERNNO RORIGUES SILVEIR 2ª SÉRIE O ENSINO MÉIO PROF. ILYIO PEREIR E SÁ Geometria Espacial: Elementos iniciais de Geometria Espacial Introdução: Geometria espacial (euclidiana) funciona
Capítulo Aplicações do produto interno
Cálculo - Capítulo 1.4 - Aplicações do produto interno - versão 0/009 1 Capítulo 1.4 - Aplicações do produto interno 1.4.1 - Ortogonalidade entre vetores 1.3.3 - Ângulo entre vetores 1.4. - Projeção ortogonal
Volume de Sólidos. Principio de Cavalieri
Volume de Sólidos Principio de Cavalieri Volume Entenderemos por sólido qualquer um dos seguintes subconjuntos do espaço: cilindro, cone, esfera, poliedro (que iremos definir no próximo capítulo) ou qualquer
MULTIPLOS; DIVISORES; TRATAMENTO DA INFORMAÇÃO E GEOMETRIA PROFª GERLAINE ALVES
MULTIPLOS; DIVISORES; TRATAMENTO DA INFORMAÇÃO E GEOMETRIA PROFª GERLAINE ALVES MULTIPLOS E DIVISORES MULTIPLOS E DIVISORES MULTIPLOS E DIVISORES MULTIPLOS E DIVISORES MULTIPLOS E DIVISORES MULTIPLOS E
Sólidos Geométricos, Poliedros e Volume Prof. Lhaylla Crissaff
Sólidos Geométricos, Poliedros e Volume 2017.1 Prof. Lhaylla Crissaff www.professores.uff.br/lhaylla Sólidos Geométricos Prisma Pirâmide Cilindro Cone Esfera Prisma Ex.: P é um pentágono. Prisma Prisma
1.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente:
EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 2014 1ª. SÉRIE 1.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente: 2.-Ao fazer uma
Geometria Espacial Profº Driko
Geometria Espacial Profº Driko PRISMAS Sejam α e β dois planos paralelos distintos, uma reta r secante a esses planos e uma região poligonal convexa A1A2A3...An contida em α. Consideremos todos os segmentos
Bacharelado em Ciência e Tecnologia 2ª Lista de Exercícios - Geometria Analítica
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO DEPARTAMENTO DE CIÊNCIAS AMBIENTAIS Bacharelado em Ciência e Tecnologia ª Lista de Exercícios - Geometria Analítica 008. ) São dados os pontos
Geometria Descritiva Mudança de Planos Introdução
Mudança de Planos Introdução As projecções de uma figura só representam as suas verdadeiras grandezas se essa figura está contida num plano paralelo aos planos projectantes. Caso contrário as projecções
Uma introdução histórica 1
A U L A Uma introdução histórica Meta da aula Apresentar alguns problemas clássicos que motivaram as estruturas algébricas modernas que formam o conteúdo do curso de Álgebra II. objetivos Ao final desta
Metas/Objetivos Descritores/Conteúdos Aulas previstas
1º Período Apresentação Levar os alunos a descobrir conceitos essenciais ao programa da disciplina através da Metodologia de Resolução de Problemas. Despertar nos alunos a curiosidade, o prazer da aprendizagem
Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 3. Paralelogramos Especiais. Oitavo ano do Ensino Fundamental
aterial Teórico - ódulo Elementos ásicos de Geometria Plana - Parte 3 Paralelogramos Especiais Oitavo ano do Ensino Fundamental utor: Prof. Jocelino Sato Revisor: Prof. ntonio aminha. Neto Portal da OEP
Lembremos que um paralelogramo é um quadrilátero (figura geométrica com quatro lados) cujos lados opostos são paralelos.
Capítulo 5 Vetores no plano 1. Paralelogramos Lembremos que um paralelogramo é um quadrilátero (figura geométrica com quatro lados) cujos lados opostos são paralelos. Usando congruência de triângulos,
FAMEBLU Arquitetura e Urbanismo
FAMEBLU Arquitetura e Urbanismo Disciplina GEOMETRIA DESCRITIVA APLICADA A ARQUITETURA 1 Aula 2: Conceitos Básicos Sistemas de Projeção Método da Dupla Projeção de Monge Professor: Eng. Daniel Funchal,
Conceitos preliminares para geometria plana elementar
onceitos preliminares para geometria plana elementar Sadao Massago Maio de 2010 a Fevereiro de 2014 Sumário 1 Intuição não é dedução 1 2 Ideias e representações 2 3 Demonstração, teorema e similares 7
Profa. Andréa Cardoso UNIFAL-MG MATEMÁTICA-LICENCIATURA 2015/1
Profa. Andréa Cardoso UNIFAL-MG MATEMÁTICA-LICENCIATURA 2015/1 Aula 18: Euclides e Os Elementos 11/05/2015 2 Euclides século III a.c. Pouco se sabe sobre a personalidade de Euclides. Viveu provavelmente
GDC I AULA TEÓRICA 07
GDC I AULA TEÓRICA 07 Perspectiva linear de quadro plano: - Determinação de pontos de fuga de direcções de figuras planas contidas em orientações (dadas) ortogonais e oblíquas ao quadro. - O rebatimento
Revisão de Círculos. Geometria Básica Profa Lhaylla Crissaff
Revisão de Círculos Geometria Básica Profa Lhaylla Crissaff 2017.2 1 Definição Circunferência é uma figura geométrica formada por todos os pontos que estão a uma mesma distância de um ponto fixado no plano.
MMC, MDC, TRATAMENTO DA INFORMAÇÃO E GEOMETRIA. Profª Gerlaine Alves
MMC, MDC, TRATAMENTO DA INFORMAÇÃO E GEOMETRIA Profª Gerlaine Alves Múltiplos e Divisores Divisores: dizemos que um número é divisor do outro número quando a divisão for exata, ou seja, quando o resto
Posição relativa entre retas e círculos e distâncias
4 Posição relativa entre retas e círculos e distâncias Sumário 4.1 Distância de um ponto a uma reta.......... 2 4.2 Posição relativa de uma reta e um círculo no plano 4 4.3 Distância entre duas retas no
AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL. Documento(s) Orientador(es): Programa e Metas Curriculares
AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL Documento(s) Orientador(es): Programa e Metas Curriculares 3º CICLO MATEMÁTICA 9ºANO TEMAS/DOMÍNIOS CONTEÚDOS OBJETIVOS
Capítulo 2. Retas no plano. 1. Retas verticais e não-verticais. Definição 1
Capítulo 2 Retas no plano O objetivo desta aula é determinar a equação algébrica que representa uma reta no plano. Para isso, vamos analisar separadamente dois tipos de reta: reta vertical e reta não-vertical.