Aula 31.1 Conteúdo: Fundamentos da Geometria: Ponto, Reta e Plano. FORTALECENDO SABERES CONTEÚDO E HABILIDADES DINÂMICA LOCAL INTERATIVA MATEMÁTICA

Tamanho: px
Começar a partir da página:

Download "Aula 31.1 Conteúdo: Fundamentos da Geometria: Ponto, Reta e Plano. FORTALECENDO SABERES CONTEÚDO E HABILIDADES DINÂMICA LOCAL INTERATIVA MATEMÁTICA"

Transcrição

1

2 CONTEÚDO E HABILIDADES FORTALECENDO SABERES DESAFIO DO DIA Aula 31.1 Conteúdo: Fundamentos da Geometria: Ponto, Reta e Plano. 2

3 CONTEÚDO E HABILIDADES FORTALECENDO SABERES DESAFIO DO DIA Habilidades: Identificar principais figuras planas. 3

4 CONTEÚDO E HABILIDADES FORTALECENDO SABERES DESAFIO DO DIA A Geometria na Natureza Por meio da atenta observação do mundo natural que o cerca, o homem constatou que era possível descobrir uma grande variedade de formas. Algumas dessas, com regras e princípios de organização bem definidos, a ponto de torna-las mais regulares: a Forma Geométrica. 4

5 CONTEÚDO E HABILIDADES FORTALECENDO SABERES DESAFIO DO DIA Naturalmente, o homem, ao observar, estudar, imitar e copiar estas formas criou e desenvolveu uma nova área do conhecimento: a Geometria, que estuda as propriedades e as relações entre pontos, retas, curvas, superfícies e volumes no plano e no espaço. 5

6 CONTEÚDO E HABILIDADES FORTALECENDO SABERES DESAFIO DO DIA Agora vamos conhecer os fundamentos da Geometria Geometria é um ramo da Matemática que se ocupa do estudo das propriedades do espaço, tais como: pontos, planos, polígonos, retas, poliedros, curvas, superfícies, entre outros. Axioma - Evidência cuja comprovação é dispensável por ser óbvia; princípio evidente por si mesmo. 6

7 CONTEÚDO E HABILIDADES FORTALECENDO SABERES DESAFIO DO DIA Os axiomas da Geometria são: Ponto - podemos dizer que é a base de toda a Geometria Reta - é o prolongamento de um ponto, é a linha do horizonte; Plano - é o prolongamento de uma reta, a superfície de uma mesa; 7

8 CONTEÚDO E HABILIDADES FORTALECENDO SABERES DESAFIO DO DIA Representação na Matemática. Ponto - usa letras maiúsculas. Por exemplo: A, B, C, D, M, etc Reta - usa letras minúsculas. Por exemplo: a, b, c, d, r, s, t, etc Plano - usa letras do alfabeto grego. Por exemplo: α, β, γ, δ,... 8

9 CONTEÚDO E HABILIDADES FORTALECENDO SABERES DESAFIO DO DIA Geometria ou retas 9

10 CONTEÚDO E HABILIDADES FORTALECENDO SABERES DESAFIO DO DIA Figura Geométrica é um conjunto de pontos. Por exemplo: 10

11 CONTEÚDO E HABILIDADES FORTALECENDO SABERES DESAFIO DO DIA Figura Geométrica Plana é uma figura em que todos os seus pontos estão num mesmo plano quadrado circunferência retângulo 11

12 CONTEÚDO E HABILIDADES FORTALECENDO SABERES DESAFIO DO DIA Figura Geométrica Espacial é uma figura em que todos os seus pontos não pertencem a um mesmo plano. quadrado circunferência paralelepípedo 12

13 CONTEÚDO E HABILIDADES FORTALECENDO SABERES DESAFIO DO DIA Junte as quatro figuras e forme um triângulo e, depois, um quadrado

14 CONTEÚDO E HABILIDADES FORTALECENDO SABERES DESAFIO DO DIA Qual ideia - ponto, reta ou plano - você identifica ao observar: a. a cabeça de um alfinete; b. O piso da sua sala de aula; c. Uma corda de violão bem esticada; d. um grão de areia; e. um campo de futebol. 14

15 CONTEÚDO E HABILIDADES FORTALECENDO SABERES DESAFIO DO DIA RESPOSTA DO DESAFIO DO DIA 15

16 A A A Geometria Plana ou 2D (Bidimensional) retas paralelas r s s s r retas transversais r retas perpendiculares 16

17 A A Sabemos que os fundamentos da Geometria Plana são: o ponto, a reta e o plano. A partir desses fundamentos, originam-se as retas (paralelas, perpendiculares, transversais) e, 17

18 A A Quando duas retas têm uma mesma origem, surgem duas semirretas que formam um ângulo entre si. 18

19 A A Ao deslocarmos uma reta conforme vimos no vídeo no início da nossa aula obtemos um plano. 19

20 A A Este, por sua vez, pode assumir várias formas, assim como, por exemplo; triângulos... TRIÂNGULOS 20

21 A A Paralelogramo, quadrado, retângulo e losango PARALELOGRAMO RETÂNGULO QUADRADO LOSANGO 21

22 A A Trapézios, dentre outros TRAPÉZIOS 22

23 A A Por outro lado, quando temos um ponto central e, ao seu redor, vários pontos com a mesma distância em relação ao centro, obtemos uma circunferência (cuja área delimitada por ela forma um círculo). CÍRCULO (CINZA) CIRCUNFERÊNCIA (COR VERMELHA) 23

24 A A Quais afirmações abaixo são verdadeiras? a. um quadrado é uma figura geométrica plana b. um cubo é uma figura geométrica plana c. um paralelepípedo é uma figura plana d. um retângulo é uma figura geométrica plana 24

25 A A Geometria Espacial ou 3D (tridimensional) Esta surge quando juntamos vários planos lado a lado, por exemplo: O Cubo formado por faces em forma de quadrados; 25

26 A A O Tetraedro formado por faces em forma de triângulo; 26

27 A A O Prisma faces maiores em formato de retângulo e, duas faces laterais em forma de triângulo. Podendo ter outras variações; 27

28 A A O Paralelepípedo com base quadrada ou retangular e faces em formato de retângulo; 28

29 A A Responda: a. Um disco lembra uma figura geométrica plana ou espacial? b. Uma bola de futebol lembra uma figura geométrica plana ou espacial? c. Uma folha de caderno lembra uma figura geométrica plana ou espacial? d. Uma caixa de sapatos lembra uma figura geométrica plana ou espacial? 29

Geometria Analítica. Geometria Analítica 28/08/2012

Geometria Analítica. Geometria Analítica 28/08/2012 Prof. Luiz Antonio do Nascimento luiz.anascimento@sp.senac.br www.lnascimento.com.br Conjuntos Propriedades das operações de adição e multiplicação: Propriedade comutativa: Adição a + b = b + a Multiplicação

Leia mais

Adriana da Silva Santi Coord. Pedagógica de Matemática SMED - Abril/2015

Adriana da Silva Santi Coord. Pedagógica de Matemática SMED - Abril/2015 GEOMETRIA Adriana da Silva Santi Coord. Pedagógica de Matemática SMED - Abril/2015 O MATERIAL COMO SUPORTE DO PENSAMENTO Muita gente usa o material na sala de aula como se a Geometria estivesse no material.

Leia mais

Exercícios de Matemática Geometria Analítica

Exercícios de Matemática Geometria Analítica Eercícios de Matemática Geometria Analítica. (UFRGS) Considere um sistema cartesiano ortogonal e o ponto P(. ) de intersecção das duas diagonais de um losango. Se a equação da reta que contém uma das diagonais

Leia mais

Cubo, prismas, cilindro

Cubo, prismas, cilindro A UUL AL A Cubo, prismas, cilindro Qual é a quantidade de espaço que um sólido ocupa? Esta é uma das principais questões quando estudamos as figuras espaciais. Para respondê-la, a geometria compara esse

Leia mais

MATEMÁTICA PLANEJAMENTO 4º BIMESTRE º B - 11 Anos

MATEMÁTICA PLANEJAMENTO 4º BIMESTRE º B - 11 Anos PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 4º

Leia mais

MATEMÁTICA PLANEJAMENTO 2º BIMESTRE º B - 11 Anos

MATEMÁTICA PLANEJAMENTO 2º BIMESTRE º B - 11 Anos PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 2º

Leia mais

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO 2011-2012 Sólidos Geométricos NOME: Nº TURMA: Polígonos Um polígono é uma figura geométrica plana limitada por uma linha fechada.

Leia mais

MATEMÁTICA PLANEJAMENTO 3º BIMESTRE º B - 11 Anos

MATEMÁTICA PLANEJAMENTO 3º BIMESTRE º B - 11 Anos PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 3º

Leia mais

Comentários e Exemplos sobre os Temas e seus Descritores da Matriz de Matemática de 4ª Série Fundamental

Comentários e Exemplos sobre os Temas e seus Descritores da Matriz de Matemática de 4ª Série Fundamental Comentários e Exemplos sobre os Temas e seus Descritores da Matriz de de 4ª Série Fundamental TEMA I ESPAÇO E FORMA A compreensão do espaço com suas dimensões e formas de constituição são elementos necessários

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições MATEMÁTICA A - 1o Ano N o s Complexos - Conjuntos e condições Exercícios de exames e testes intermédios 1. Na figura ao lado, está representado, no plano complexo, um quadrado cujo centro coincide com

Leia mais

Metas Curriculares do Ensino Básico Matemática 3.º Ciclo. António Bivar Carlos Grosso Filipe Oliveira Maria Clementina Timóteo

Metas Curriculares do Ensino Básico Matemática 3.º Ciclo. António Bivar Carlos Grosso Filipe Oliveira Maria Clementina Timóteo Metas Curriculares do Ensino Básico Matemática 3.º Ciclo António Bivar Carlos Grosso Filipe Oliveira Maria Clementina Timóteo Geometria e Medida 3.º ciclo Grandes temas: 1. Continuação do estudo dos polígonos

Leia mais

Professor Alexandre Assis. Lista de exercícios de Geometria

Professor Alexandre Assis. Lista de exercícios de Geometria 1. A figura representa três círculos idênticos no interior do triângulo retângulo isósceles ABC. 3. Observando a figura a seguir, determine (em cm): a) o valor de x. b) a medida do segmento AN, sabendo

Leia mais

Gabarito Final com Distribuição dos Pontos - Questão 1. (1 ponto) Assim, Logo,. Daí,. (2 pontos) Portanto, Agora, como é uma P.G. com e razão, temos:

Gabarito Final com Distribuição dos Pontos - Questão 1. (1 ponto) Assim, Logo,. Daí,. (2 pontos) Portanto, Agora, como é uma P.G. com e razão, temos: PROCESSO SELETIVO 009- Gabarito Final com Distribuição dos Pontos - Questão 1 A) De acordo com o enunciado, temos a P.A. 4. Assim, de razão r= e soma igual a () Logo,. () Daí,. Portanto, ( pontos) Agora,

Leia mais

GEOMETRIA. sólidos geométricos, regiões planas e contornos PRISMAS SÓLIDOS GEOMÉTRICOS REGIÕES PLANAS CONTORNOS

GEOMETRIA. sólidos geométricos, regiões planas e contornos PRISMAS SÓLIDOS GEOMÉTRICOS REGIÕES PLANAS CONTORNOS PRISMAS Os prismas são sólidos geométricos muito utilizados na construção civil e indústria. PRISMAS base Os poliedros representados a seguir são denominados prismas. face lateral base Nesses prismas,

Leia mais

SUPERINTENDÊNCIA DE ACOMPANHAMENTO DOS PROGRAMAS INSTITUCIONAIS NÚCLEO DE ORIENTAÇÃO PEDAGÓGICA GERÊNCIA DE DESENVOLVIMENTO CURRICULAR

SUPERINTENDÊNCIA DE ACOMPANHAMENTO DOS PROGRAMAS INSTITUCIONAIS NÚCLEO DE ORIENTAÇÃO PEDAGÓGICA GERÊNCIA DE DESENVOLVIMENTO CURRICULAR SUPERINTENDÊNCIA DE ACOMPANHAMENTO DOS PROGRAMAS INSTITUCIONAIS NÚCLEO DE ORIENTAÇÃO PEDAGÓGICA GERÊNCIA DE DESENVOLVIMENTO CURRICULAR 2ª AVALIAÇÃO DIAGNÓSTICA DO 8º ANO DO ENSINO FUNDAMENTAL 2012 MATEMÁTICA

Leia mais

Exercícios de testes intermédios

Exercícios de testes intermédios Exercícios de testes intermédios 1. Qual das expressões seguintes designa um número real positivo, para qualquer x pertencente 3 ao intervalo,? (A) sin x cos x (B) cos x tan x tan x sin x sin x tan x Teste

Leia mais

Definição A figura geométrica formada pela reunião de todos os segmentos de reta paralelos à reta r, com uma extremidade num ponto do círculo R e a

Definição A figura geométrica formada pela reunião de todos os segmentos de reta paralelos à reta r, com uma extremidade num ponto do círculo R e a CILINDRO Definição A figura geométrica formada pela reunião de todos os segmentos de reta paralelos à reta r, com uma extremidade num ponto do círculo R e a outra no plano, denomina-se cilindro circular.

Leia mais

Geometria Euclidiana Espacial e Introdução à Geometria Descritiva

Geometria Euclidiana Espacial e Introdução à Geometria Descritiva UNIVERSIDDE ESTDUL PULIST DEPRTMENTO DE MTEMÁTIC Geometria Euclidiana Espacial e Introdução à Geometria Descritiva Material em preparação!! Última atualização: 28.04.2008 Luciana F. Martins e Neuza K.

Leia mais

1ª Aula. Introdução à Geometria Plana GEOMETRIA. 3- Ângulos Consecutivos: 1- Conceitos Primitivos: a) Ponto A. b) Reta c) Semi-reta

1ª Aula. Introdução à Geometria Plana GEOMETRIA. 3- Ângulos Consecutivos: 1- Conceitos Primitivos: a) Ponto A. b) Reta c) Semi-reta 1ª Aula 3- Ângulos Consecutivos: Introdução à Geometria Plana 1- Conceitos Primitivos: a) Ponto A Na figura, os ângulos AÔB e BÔC são consecutivos, portanto AÔC=AÔB+AÔC b) Reta c) Semi-reta d) Segmento

Leia mais

CÁLCULO DE ÁREA DAS FIGURAS PLANAS. Professor: Marcelo Silva. Natal-RN, agosto de 2013

CÁLCULO DE ÁREA DAS FIGURAS PLANAS. Professor: Marcelo Silva. Natal-RN, agosto de 2013 CÁLCULO DE ÁREA DAS FIGURAS PLANAS Professor: Marcelo Silva Natal-RN, agosto de 013 ÁREA A reunião de um polígono com sua região interior é denominada superfície do polígono. A medida da superfície é expressa

Leia mais

2º ANO Reconhecer e utilizar características do sistema de numeração decimal, tais como agrupamentos e trocas na base 10 e princípio do valor posicion

2º ANO Reconhecer e utilizar características do sistema de numeração decimal, tais como agrupamentos e trocas na base 10 e princípio do valor posicion PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO DESCRITORES DE MATEMÁTICA PROVA - 3º BIMESTRE 2011 2º ANO Reconhecer e utilizar

Leia mais

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE Professor: João Carmo DEFINIÇÃO Triângulo ou trilátero é um polígono de três lados. Observações: a) O triângulo não possui diagonais;

Leia mais

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V):

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V): EXERCÍCIOS DE FIXAÇÃO GEOMETRIA SÓLIDA ÁREAS E VOLUMES DE PRISMAS, CILINDROS E CONES 2 a SÉRIE ENSINO MÉDIO 2011 ==========================================================================================

Leia mais

BARALHO São usados dois baralhos, JOGO DOS POLIEDROS, de 54 cartas cada, já inclusos os curingas.

BARALHO São usados dois baralhos, JOGO DOS POLIEDROS, de 54 cartas cada, já inclusos os curingas. OFICINA: JOGO DOS POLIEDROS INTRODUÇÃO Para proporcionar um ensino compatível com as exigências da sociedade contemporânea são necessárias mudanças nas formas de ensinar. Estas mudanças implicam no repensar

Leia mais

Exercícios de Matemática Poliedros

Exercícios de Matemática Poliedros Exercícios de Matemática Poliedros 3. (Unitau) Se dobrarmos convenientemente as linhas tracejadas das figuras a seguir, obteremos três modelos de figuras espaciais cujos nomes são: 1. (Uerj) O poliedro

Leia mais

FIGURAS PLANAS E O CÁLCULO DE ÁREAS

FIGURAS PLANAS E O CÁLCULO DE ÁREAS unifmu Nome: Professor: Ricardo Luís de Souza Curso de Design Matemática Aplicada Atividade Exploratória III Turma: Data: FIGURAS PLANAS E O CÁLCULO DE ÁREAS Objetivo: Rever o conceito de área de figuras

Leia mais

Desenho Técnico. Prof. Aline Fernandes de Oliveira, Arquiteta Urbanista 2010

Desenho Técnico. Prof. Aline Fernandes de Oliveira, Arquiteta Urbanista 2010 de Oliveira, Arquiteta Urbanista 2010 O QUE VIMOS AULA PASSADA?? Traçados das projeções - VF Traçados das projeções - VS Traçados das projeções - VS Traçados das projeções - VS Traçados das projeções VLE

Leia mais

Figuras geométricas planas. Joyce Danielle. e espaciais

Figuras geométricas planas. Joyce Danielle. e espaciais Figuras geométricas planas Joyce Danielle e espaciais Figuras geométricas planas Joyce Danielle UNIVERSIDADE FEDERAL DE ALAGOAS 2 Apresentação Na geometria plana vamos então nos atentar ao método de cálculo

Leia mais

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE www.elitecampinas.com.br Fone: (19) -71 O ELITE RESOLVE IME 004 PORTUGUÊS/INGLÊS Você na elite das universidades! UNICAMP 004 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (19) 51-101 O ELITE

Leia mais

Autoria: Fernanda Maria Villela Reis Orientadora: Tereza G. Kirner Coordenador do Projeto: Claudio Kirner. Projeto AIPRA (Processo CNPq 559912/2010-2)

Autoria: Fernanda Maria Villela Reis Orientadora: Tereza G. Kirner Coordenador do Projeto: Claudio Kirner. Projeto AIPRA (Processo CNPq 559912/2010-2) Autoria: Fernanda Maria Villela Reis Orientadora: Tereza G. Kirner Coordenador do Projeto: Claudio Kirner 1 ÍNDICE Uma palavra inicial... 2 Instruções iniciais... 3 Retângulo... 5 Quadrado... 6 Triângulo...

Leia mais

Questão 2. Questão 1. Questão 3. Resposta. Resposta. Resposta

Questão 2. Questão 1. Questão 3. Resposta. Resposta. Resposta ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço a ela reservado. Não basta escrever apenas o resultado final: é necessário mostrar os cálculos ou o raciocínio utilizado. Questão Emumasalaháumalâmpada,umatelevisão

Leia mais

C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O. matemática. Calculando volume de sólidos geométricos. Elizabete Alves de Freitas

C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O. matemática. Calculando volume de sólidos geométricos. Elizabete Alves de Freitas C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O 06 matemática Calculando volume de sólidos geométricos Elizabete Alves de Freitas Governo Federal Ministério da Educação Projeto Gráfico

Leia mais

f, da, onde R é uma das regiões mostradas na

f, da, onde R é uma das regiões mostradas na Integrais Duplas em Coordenadas Polares Bibliografia básica: THOMAS, G. B. Cálculo. Vol. Capítulo 1. Item 1.3. STEWAT, J. Cálculo. Vol.. Capítulo 15. Item 15.4. Sabemos que o cálculo da área de uma região

Leia mais

Prova de Aferição de Matemática e Estudo do Meio Prova 26 2.º Ano de Escolaridade 2016

Prova de Aferição de Matemática e Estudo do Meio Prova 26 2.º Ano de Escolaridade 2016 Rubricas dos Professores Vigilantes A PREENCHER PELO ALUNO Nome completo Documento de identificação CC n.º ou BI n.º Emitido em (Localidade) Assinatura do Aluno Prova de Aferição de Matemática e Estudo

Leia mais

Agrupamento de Escolas O Rouxinol Escola Básica 2, 3 de Corroios Matemática 8ºAno: Translações. Translações

Agrupamento de Escolas O Rouxinol Escola Básica 2, 3 de Corroios Matemática 8ºAno: Translações. Translações Translações 1 Se reparares com atenção, podes observar que certos elementos se repetem periodicamente, numa determinada direcção e sentido. 2 Nos azulejos, por exemplo, podes observar essa repetição. 3

Leia mais

PLANIFICAÇÃO ANUAL: ANO LETIVO 2013/2014 DISCIPLINA DE MATEMÁTICA 7 º ANO

PLANIFICAÇÃO ANUAL: ANO LETIVO 2013/2014 DISCIPLINA DE MATEMÁTICA 7 º ANO DEPARTAMENTO DE MATEMÁTICA E TECNOLOGIAS ÁREA DISCIPLINAR DE MATEMÁTICA PLANIFICAÇÃO ANUAL: ANO LETIVO 2013/2014 DISCIPLINA DE MATEMÁTICA 7 º ANO CALENDARIZAÇÃO DO ANO LETIVO Período Início Fim Nº Semanas

Leia mais

Análise dos descritores da APR II 4ª série/5º ano Matemática

Análise dos descritores da APR II 4ª série/5º ano Matemática Análise dos descritores da APR II 4ª série/5º ano Matemática D10 Num problema, estabelecer trocas entre cédulas e moedas do sistema monetário brasileiro, em função de seus valores. O que é? Por meio deste

Leia mais

MATEMÁTICA - 3o ciclo Posição relativa de retas e planos (9 o ano)

MATEMÁTICA - 3o ciclo Posição relativa de retas e planos (9 o ano) MTMÁT - 3o ciclo Posição relativa de retas e planos (9 o ano) xercícios de provas nacionais e testes intermédios 1. Na figura ao lado, estão representados um cilindro e um prisma quadrangular regular [

Leia mais

MATEMÁTICA - 3o ciclo Isometrias (8 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Isometrias (8 o ano) Propostas de resolução MTMÁT - 3o ciclo sometrias (8 o ano) Propostas de resolução xercícios de provas nacionais e testes intermédios 1. omo a reflexão do ponto e eixo é o ponto a imagem do ponto pela translação associada ao

Leia mais

POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS

POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS 7º ANO POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS Ângulos e triângulos Nuno Marreiros Antes de começar O Alfabeto Grego O alfabeto utilizado para escrever a Língua grega teve o seu desenvolvimento por volta

Leia mais

Ficha Formativa de Matemática 7º Ano Tema 5 Figuras Geométricas

Ficha Formativa de Matemática 7º Ano Tema 5 Figuras Geométricas 1. Observa as linhas seguintes. 1.1. Identifica: a) as linhas poligonais; b) as linhas poligonais simples; c) as linhas poligonais fechadas. 1.2. Das linhas poligonais, identifica as que definem: a) polígonos

Leia mais

Teorema de Pitágoras: Encaixando e aprendendo

Teorema de Pitágoras: Encaixando e aprendendo Reforço escolar M ate mática Teorema de Pitágoras: Encaixando e aprendendo Dinâmica 7 9º ano 2º Bimestre Aluno DISCIPLINA Ano CAMPO CONCEITO Matemática Ensino Fundamental 9ª Geométrico Teorema de Pitágoras

Leia mais

GEOMETRIA DESCRITIVA A

GEOMETRIA DESCRITIVA A GEOMETRIA DESCRITIVA A 10.º Ano Sólidos I - Poliedros antónio de campos, 2010 GENERALIDADES - Sólidos O sólido geométrico é uma forma limitada por porções de superfícies, O sólido geométrico é uma forma

Leia mais

Adriana da Silva Santi Coord. Pedagógica de Matemática SMED - Maio/2015

Adriana da Silva Santi Coord. Pedagógica de Matemática SMED - Maio/2015 GEOMETRIA... Adriana da Silva Santi Coord. Pedagógica de Matemática SMED - Maio/2015 FIGURAS GEOMÉTRICAS PLANAS São representações das faces dos sólidos. Essas formas são chamadas de bidimensionais por

Leia mais

Sistemas de Projeções Cartográficas:

Sistemas de Projeções Cartográficas: Sistemas de Projeções Cartográficas: Todos os mapas são representações aproximadas da superfície terrestre. Isto ocorre porque não se pode passar de uma superfície curva para uma superfície plana sem que

Leia mais

Cálculo II - Cursão Exercício Extra n = 2 n = 3. Hiperesferas, hipercubos e hiperconfusões

Cálculo II - Cursão Exercício Extra n = 2 n = 3. Hiperesferas, hipercubos e hiperconfusões Cálculo II - Cursão - 9 Exercício Extra n = n = 3 n = 4? Hiperesferas, hipercubos e hiperconfusões Resumo As estranhas relações entre volumes e áreas de hiperesferas em diferentes dimensões é um problema

Leia mais

Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de 3 pontos.

Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de 3 pontos. Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de pontos. 1. (Ufpr 014) A figura abaixo apresenta o gráfico da reta r: y x + = 0 no plano

Leia mais

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano)

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) MTMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) xercícios de provas nacionais e testes intermédios 1. Na figura ao lado, estão representados um cilindro e um prisma quadrangular regular [ ] de bases []

Leia mais

Unidade. Educação Artística 161. I- Limpeza e organização com os materiais são requisitos básicos nesta disciplina.

Unidade. Educação Artística 161. I- Limpeza e organização com os materiais são requisitos básicos nesta disciplina. Unidade 1 2 Educação Artística 161 Unidade 1 I- Limpeza e organização com os materiais são requisitos básicos nesta disciplina. II- O lápis é o responsável direto pela boa qualidade do desenho. Classificamos

Leia mais

Escola E.B. 2,3 General Serpa Pinto Cinfães Proposta de resolução da ficha formativa nº /2013

Escola E.B. 2,3 General Serpa Pinto Cinfães Proposta de resolução da ficha formativa nº /2013 Escola E.B. 2,3 General Serpa Pinto Cinfães Proposta de resolução da ficha formativa nº 2-2012/2013 1. A figura ao lado representa o polígono da base de uma pirâmide. Indica, justificando: 1.1. o nome

Leia mais

PLANO DE TRABALHO MATEMÁTICA 5º ANO O TANGRAN

PLANO DE TRABALHO MATEMÁTICA 5º ANO O TANGRAN PLANO DE TRABALHO MATEMÁTICA 5º ANO O TANGRAN Coordenação Pedagógica de Matemática Piraquara Junho/2016 - Noção de ângulos. - Triângulos e quadriláteros. - Paralelismo e perpendicularismo. - Simetria.

Leia mais

QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE SUGESTÕES DE RESOLUÇÕES

QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE SUGESTÕES DE RESOLUÇÕES QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE QUESTÃO 01 SUGESTÕES DE RESOLUÇÕES Descritor 11 Resolver problema envolvendo o cálculo de perímetro de figuras planas. Os itens referentes a

Leia mais

Exercícios sobre Triângulo (Lei Angular, Congruência e Classificação)

Exercícios sobre Triângulo (Lei Angular, Congruência e Classificação) Exercícios sobre Triângulo (Lei Angular, Congruência e Classificação) 1. (Utfpr) Um triângulo isósceles tem dois lados congruentes (de medidas iguais) e o outro lado é chamado de base. Se em um triângulo

Leia mais

Aula 02 Introdução à Lógica. Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes

Aula 02 Introdução à Lógica. Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes Aula 02 Introdução à Lógica Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes Agenda da Aula Conceitos Iniciais sobre Lógica; Argumento; Inferência; Princípios. Contextualização: Situação

Leia mais

QUESTÕES DE CÁLCULO (2) = 2 ( ) = 1. O valor do limite L = lim se encontra no intervalo:

QUESTÕES DE CÁLCULO (2) = 2 ( ) = 1. O valor do limite L = lim se encontra no intervalo: 1. O valor do limite L = lim se encontra no intervalo: a) 0 L 1 b) 1 L c) L 3 d) 3 L 4 e) L 4. A função f(x) é continua em x= quando f() vale: = + 3 10 () = a) - b) -5 c) d) 5 e) 7 3. A derivada da função

Leia mais

PROVA RESOLVIDA DE MATEMÁTICA DA PETROBRAS/2011 TÉCNICO - Professor Joselias

PROVA RESOLVIDA DE MATEMÁTICA DA PETROBRAS/2011 TÉCNICO - Professor Joselias PROVA RESOLVIDA DE MATEMÁTICA DA PETROBRAS/2011 TÉCNICO - 1) O valor máximo da função de variável real f(x) = 4(1 + x)(6 x) é (A) 44 (B) 46 (C) 48 (D) 49 (E) 50 As raízes são x 1 = -1 e x 2 = 6. As coordenadas

Leia mais

Ficheiro de Matemática

Ficheiro de Matemática Prismas e Pirâmides Observa as seguintes tabelas, copia-as para o teu caderno (não precisas de desenhar os sólidos) e completa-as. O Sólido Certo Copia as seguintes frases para o teu caderno e tenta descobrir

Leia mais

Conteúdo programático por disciplina Matemática 6 o ano

Conteúdo programático por disciplina Matemática 6 o ano 60 Conteúdo programático por disciplina Matemática 6 o ano Caderno 1 UNIDADE 1 Significados das operações (adição e subtração) Capítulo 1 Números naturais O uso dos números naturais Seqüência dos números

Leia mais

1.1- Vamos começar com a planta baixa, na escala 1:20. Obs: passe a planta, com as medidas indicadas em uma folha separada, na escala 1:20.

1.1- Vamos começar com a planta baixa, na escala 1:20. Obs: passe a planta, com as medidas indicadas em uma folha separada, na escala 1:20. 1 PONTO DE FUGA 1.1- Vamos começar com a planta baixa, na escala 1:20. Obs: passe a planta, com as medidas indicadas em uma folha separada, na escala 1:20. 30 1.2- Coloque essa planta na parte de cima

Leia mais

Plano Curricular de Matemática 5ºAno - 2º Ciclo

Plano Curricular de Matemática 5ºAno - 2º Ciclo Plano Curricular de Matemática 5ºAno - 2º Ciclo Domínio Conteúdos Metas Nº de Tempos Previstos Numeros e Operações Números racionais não negativos (Educação Financeira) - Cidadania - Simplificação de frações;

Leia mais

4. Jogos com dados de cores correspondentes àquelas dos Blocos Lógicos

4. Jogos com dados de cores correspondentes àquelas dos Blocos Lógicos 4. Jogos com dados de cores correspondentes àquelas dos Blocos Lógicos Prepare um dado com três cores em suas faces (azul, amarelo e vermelho), sendo que cada cor deve aparecer duas vezes; Com as peças

Leia mais

Dado um triângulo eqüilátero, cujo lado mede 6 cm, calcule: a) o raio da circunferência circunscrita; b) a medida do apótema.

Dado um triângulo eqüilátero, cujo lado mede 6 cm, calcule: a) o raio da circunferência circunscrita; b) a medida do apótema. EXERÍIO OMPLEMENTRES - MTEMÁTI - 1ª SÉRIE - ENSINO MÉDIO - ª ETP ============================================================================================== 01- ssunto: Função Logarítmica Determine

Leia mais

NOTAÇÕES MATEMÁTICAS UTILIZADAS

NOTAÇÕES MATEMÁTICAS UTILIZADAS Prova de MTMÁTI - Modelo R R R + R + R R Q Q Z Z + Z N N f(x) f(a) log a sen α cos α tg α cotg α cossec α x n! NOTÇÕS MTMÁTIS UTILIZS - conjunto dos números reais - conjunto dos números reais não nulos

Leia mais

Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-2015

Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-2015 Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-015 1. (Ufsj 013) Um triângulo isósceles inscrito em um círculo de raio igual a 8 cm possui um lado que mede

Leia mais

Aula 3: Paradoxos, Topologia, Geometria e Diversão. Atividade 1: Alguns paradoxos matemáticos. O paradoxo da linha que se anula.

Aula 3: Paradoxos, Topologia, Geometria e Diversão. Atividade 1: Alguns paradoxos matemáticos. O paradoxo da linha que se anula. Aula 3: Paradoxos, Topologia, Geometria e Diversão Nesta aula, trabalharemos mais com atividades manuais. Traremos algumas atividades envolvendo paradoxos matemáticos, topologia e atividades de construção

Leia mais

DESENHO TÉCNICO ( AULA 03)

DESENHO TÉCNICO ( AULA 03) Sólidos Geométricos DESENHO TÉCNICO ( AULA 03) Você já sabe que todos os pontos de uma figura plana localizam-se no mesmo plano. Quando uma figura geométrica tem pontos situados em diferentes planos, temos

Leia mais

Inscrição e circunscrição de sólidos geométricos. Esfera e cubo Esfera e cilindro Esfera e cone reto Cilindro e cone reto

Inscrição e circunscrição de sólidos geométricos. Esfera e cubo Esfera e cilindro Esfera e cone reto Cilindro e cone reto Inscrição e circunscrição de sólidos geométricos Esfera e cubo Esfera e cilindro Esfera e cone reto Cilindro e cone reto Introdução Nosso último estudo em Geometria será destinado aos sólidos inscritos

Leia mais

é um círculo A tampa A face é um retângulo

é um círculo A tampa A face é um retângulo No cotidiano, estamos cercados de objetos que têm diferentes formas. Por exemplo, uma caixa de papelão: suas faces são retângulos, e a caixa é um paralelepípedo. Outro exemplo: uma lata de óleo tem a forma

Leia mais

A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos Â

A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos  A UA UL LA A lei dos senos Introdução Na Aula 4 vimos que a Lei dos co-senos é uma importante ferramenta matemática para o cálculo de medidas de lados e ângulos de triângulos quaisquer, isto é, de triângulos

Leia mais

Unicamp - 2 a Fase (17/01/2001)

Unicamp - 2 a Fase (17/01/2001) Unicamp - a Fase (17/01/001) Matemática 01. Três planos de telefonia celular são apresentados na tabela abaio: Plano Custo fio mensal Custo adicional por minuto A R$ 3,00 R$ 0,0 B R$ 0,00 R$ 0,80 C 0 R$

Leia mais

UFPR UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE MATEMÁTICA PET PROGRAMA DE EDUCAÇÃO TUTORIAL. Alexandre Kirilov

UFPR UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE MATEMÁTICA PET PROGRAMA DE EDUCAÇÃO TUTORIAL. Alexandre Kirilov UFPR UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE MATEMÁTICA PET PROGRAMA DE EDUCAÇÃO TUTORIAL Tutor: Editoração: Site: Alexandre Kirilov Bruno de Lessa Victor Bruno Suzuki Carolina de Almeida Santos

Leia mais

PROVA DE MATEMÁTICA CONCURSO DE ADMISSÃO 2012/2013 1º ANO DO ENSINO MÉDIO

PROVA DE MATEMÁTICA CONCURSO DE ADMISSÃO 2012/2013 1º ANO DO ENSINO MÉDIO CONCURSO DE ADMISSÃO 01/013 PROVA DE MATEMÁTICA 1º ANO DO ENSINO MÉDIO CONFERÊNCIA: Membro da CEOCP (Mat / 1º EM) Presidente da CEI Dir Ens CPOR / CMBH PÁGINA 1 RESPONDA AS QUESTÕES DE 1 A 0 E TRANSCREVA

Leia mais

Matéria: Matemática Assunto: Volume Prof. Dudan

Matéria: Matemática Assunto: Volume Prof. Dudan Matéria: Matemática Assunto: Volume Prof. Dudan Matemática VOLUME DEFINIÇÃO As medidas de volume possuem grande importância nas situações envolvendo capacidades de sólidos. Podemos definir volume como

Leia mais

MATEMÁTICA - 2 o ANO MÓDULO 01 PONTO, RETA E PLANO

MATEMÁTICA - 2 o ANO MÓDULO 01 PONTO, RETA E PLANO MATEMÁTICA - 2 o ANO MÓDULO 01 PONTO, RETA E PLANO r s A E B D C F α G H A B r r s r s α r P s s r α A α B C α P B r A α r α P α r P P α r A B r α A B r r r P α A B α A B F F α α=β α β = α = β α β α β

Leia mais

ESTRUTURA DOS SÓLIDOS CRISTALINOS. Mestranda: Marindia Decol

ESTRUTURA DOS SÓLIDOS CRISTALINOS. Mestranda: Marindia Decol ESTRUTURA DOS SÓLIDOS CRISTALINOS Mestranda: Marindia Decol Bibliografia Callister Jr., W. D. Ciência e engenharia de materiais: Uma introdução. LTC, 5ed., cap 3, 2002. Shackelford, J.F. Ciências dos Materiais,

Leia mais

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD.

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD. Questão Se Amélia der R$,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade do

Leia mais

ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 2013 RECUPERAÇÃO ESTUDOS INDENPENDENTES

ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 2013 RECUPERAÇÃO ESTUDOS INDENPENDENTES ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 2013 RECUPERAÇÃO ESTUDOS INDENPENDENTES Nome Nº Turma 3 EJAS Data / / Nota Disciplina Matemática Prof. Elaine e Naísa Valor 30 Instruções: TRABALHO DE

Leia mais

n! (n r)!r! P(A/B) = 1 q, 0 < q < 1

n! (n r)!r! P(A/B) = 1 q, 0 < q < 1 FORMULÁRIO DE MATEMÁTICA Análise Combinatória P n = n! = n A n,r = n! (n r)! Probabilidade número de resultados favoráveis a A P(A) = número de resultados possíveis Progressões aritméticas a n = a +(n

Leia mais

8º ANO Segmentos de reta incomensuráveis. Pontos irracionais da reta numérica. Nuno Marreiros Comensurável VS Incomensurável

8º ANO Segmentos de reta incomensuráveis. Pontos irracionais da reta numérica. Nuno Marreiros Comensurável VS Incomensurável NÚMEROS REAIS 8º ANO Segmentos de reta incomensuráveis. Pontos irracionais da reta numérica. Nuno Marreiros Comensurável VS Incomensurável A medida pode ser comparada com um padrão. A medida não pode ser

Leia mais

Meios transparentes Meios translúcidos Meios opacos

Meios transparentes Meios translúcidos Meios opacos ÓPTICA O que é luz? Definimos costumeiramente luz como sendo a faixa visível do espectro eletromagnético. A Óptica irá, portanto, estudar o comportamento da luz e os fenômenos que ocorrem com ela em diferentes

Leia mais

Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria III Equação do plano e equação da reta no espaço

Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria III Equação do plano e equação da reta no espaço Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria III Equação do plano e equação da reta no espaço º Ano Plano definido por um ponto e um vetor normal : um Seja A x um ponto

Leia mais

Cálculo a Várias Variáveis I - MAT Cronograma para P1: aulas teóricas (segundas e quartas)

Cálculo a Várias Variáveis I - MAT Cronograma para P1: aulas teóricas (segundas e quartas) Cálculo a Várias Variáveis I - MAT 116 014.1 Cronograma para P1: aulas teóricas (segundas e quartas) Aula 01 1 de fevereiro (quarta) Aula 0 17 de fevereiro (segunda) Aula 0 19 de fevereiro (quarta) Referências:

Leia mais

Aula 01 Introdução à Geometria Espacial Geometria Espacial

Aula 01 Introdução à Geometria Espacial Geometria Espacial Aula 01 Introdução à 1) Introdução à Geometria Plana Axioma São verdades matemáticas aceitas sem a necessidade de demonstração. 1 1.1) Axioma da Existência Existem infinitos pontos em uma reta (e fora

Leia mais

MATEMÁTICA - 3o ciclo Lugares geométricos (9 o ano)

MATEMÁTICA - 3o ciclo Lugares geométricos (9 o ano) MATEMÁTICA - 3o ciclo Lugares geométricos (9 o ano) Exercícios de provas nacionais e testes intermédios 1. Na figura ao lado, estão representados uma circunferência de centro no ponto C e os pontos T,

Leia mais

SEQUÊNCIA DIDÁTICA PODCAST ÁREA CIÊNCIAS DA NATUREZA I MATEMÁTICA - ENSINO FUNDAMENTAL E ENSINO MÉDIO

SEQUÊNCIA DIDÁTICA PODCAST ÁREA CIÊNCIAS DA NATUREZA I MATEMÁTICA - ENSINO FUNDAMENTAL E ENSINO MÉDIO SEQUÊNCIA DIDÁTICA PODCAST ÁREA CIÊNCIAS DA NATUREZA I MATEMÁTICA - ENSINO FUNDAMENTAL E ENSINO MÉDIO Título do Podcast Área Segmento Duração Geometria do Cotidiano Ciências da Natureza I Matemática Ensino

Leia mais

Planificação M a t e m á t i c a /

Planificação M a t e m á t i c a / AGRUPAMENTO DE ESCOLAS N.º 1 DE GONDOMAR ESCOLA EB 2,3 DE JOVIM E FOZ DO SOUSA Planificação M a t e m á t i c a 2 0 1 4 / 2 0 1 5 7 ọ Ano Tópico: Números 9 blocos Números e operações/ Números Simétrico

Leia mais

EMENTA ESCOLAR I Trimestre Ano 2016 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 2 ano do Ensino Médio

EMENTA ESCOLAR I Trimestre Ano 2016 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 2 ano do Ensino Médio EMENTA ESCOLAR I Trimestre Ano 2016 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 2 ano do Ensino Médio Datas 11/fevereiro 17/fevereiro 18/fevereiro Conteúdos Apresentação da ementa da

Leia mais

COLÉGIO VERITAS. SEGUE O CALENDÁRIO DE P1 DO 3º BIMESTRE 1ºANO 31/08 Português 01/09 Matemática 02/09 História / Inglês 03/09 Geografia 04/09 Ciências

COLÉGIO VERITAS. SEGUE O CALENDÁRIO DE P1 DO 3º BIMESTRE 1ºANO 31/08 Português 01/09 Matemática 02/09 História / Inglês 03/09 Geografia 04/09 Ciências 1ºANO 31/08 Português 01/09 Matemática 02/09 História / Inglês 03/09 Geografia 04/09 Ciências Leitura / Cons h / as, es, is, os, us / ar, er, ir, or, ur / Os dígrafos: rr, ss, ch, lh / s com som de z /

Leia mais

POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS

POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS 7º ANO POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS Polígonos Nuno Marreiros Antes de começar Não é possível pois uma circunferência não é formada por segmentos de reta. Nem tudo o que parece é Segmento de reta

Leia mais

Espera, espera, tive uma idéia e uma idéia não se deixa fugir.

Espera, espera, tive uma idéia e uma idéia não se deixa fugir. Nível 1 5ª e 6ª séries (6º e 7º anos) do Ensino Fundamental 2ª FSE 24 de outubro de 2009 Cole aqui a etiqueta com os dados do aluno. Parabéns pelo seu desempenho na 1ª Fase da OBMEP. É com grande satisfação

Leia mais

Relações Métricas Especiais

Relações Métricas Especiais Relações Métricas Especiais 7//04. (Fuvest 0-Adaptada) Define-se geometricamente a razão áurea do seguinte modo: O ponto C da figura abaixo divide o segmento AB na razão áurea quando os valores AC/AB e

Leia mais

Para simplificar a notação, também usamos denotar uma sequência usando apenas a imagem de :

Para simplificar a notação, também usamos denotar uma sequência usando apenas a imagem de : Sequências Uma sequência é uma função f de em, ou seja. Para todo número natural i associamos um número real por meio de uma determinada regra de formação. A sequencia pode ser denotada por: Ou, por meio

Leia mais

Unidade 2 Dilatação Térmica. Comportamento dos sólidos Dilatação Linear Dilatação Superficial Dilatação Volumétrica

Unidade 2 Dilatação Térmica. Comportamento dos sólidos Dilatação Linear Dilatação Superficial Dilatação Volumétrica Unidade 2 Dilatação Térmica Comportamento dos sólidos Dilatação Linear Dilatação Superficial Dilatação Volumétrica Comportamento dos sólidos De um modo geral, quando aumentamos a temperatura de um corpo

Leia mais

MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Equações de retas e planos

MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Equações de retas e planos MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Equações de retas e planos 1 Seja um número real. Considere, num referencial o.n., a reta e o plano definidos, respetivamente, por e Sabe-se

Leia mais

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE CURSO DE MATEMÁTICA BÁSICA Aula 01 Introdução a Geometria Plana Ângulos Potenciação Radiciação Introdução a Geometria Plana Introdução: No estudo da Geometria Plana, consideraremos três conceitos primitivos:

Leia mais

AULA - 05 GEOMETRIA DO TELHADO

AULA - 05 GEOMETRIA DO TELHADO Código da Disciplina CCE0047 AULA - 05 GEOMETRIA DO TELHADO e-mail: prof.clelia.fic@gmail.com Um telhado é constituído de duas ou mais faces inclinadas que são conhecidas por "águas". Linhas (retas) principais

Leia mais

CENTRO EDUCACIONAL SIGMA

CENTRO EDUCACIONAL SIGMA 5ºAno 1.5 MATEMÁTICA 4º período 8 de dezembro de 2015 Cuide da organização da sua prova. Escreva de forma legível. Fique atento à ortografia e elabore respostas claras. Tudo isso será considerado na correção.

Leia mais

Ficheiro de Matemática

Ficheiro de Matemática Adivinha quem somos nós! A partir das pistas, descobre qual o nome de cada um dos sólidos. Regista no teu caderno as conclusões a que chegaste. Planificações Suspeitas Descobri estas planificações suspeitas!

Leia mais

Ondas EM no Espaço Livre (Vácuo)

Ondas EM no Espaço Livre (Vácuo) Secretaria de Educação Profissional e Tecnológica Instituto Federal de Santa Catarina Campus São José Área de Telecomunicações ELM20704 Eletromagnetismo Professor: Bruno Fontana da Silva 2014-1 Ondas EM

Leia mais

Integrais Duplos e Triplos.

Integrais Duplos e Triplos. Capítulo 4 Integrais uplos e Triplos. 4.1 Integrais uplos xercício 4.1.1 Calcule os seguintes integrais. a. e. 1 1 e 1 2x+2 15xy + 1y 2 dy dx b. y x dx dy 4 x 2y) dy dx f. 4 1 π 6 2 π 2 x 1 6xy 3 + x )

Leia mais