Redução de ruído e Interpolação
|
|
- Gabriel Henrique Lobo Gomes
- 1 Há anos
- Visualizações:
Transcrição
1 Redução de ruído e Interpolação 18 de Maio de 2010 Joana Nunes Nº Grupo 10 João Marques Nº Processamento Digital de Sinais Engenharia Biomédica 2º Semestre 2009/ Visualização do sinal data.mat Nesta primeira alínea pretende-se apenas carregar o ficheiro data.mat para o workspace para proceder à visualização do sinal. O sinal com que se irá trabalhar encontra-se representado na Figura 1. Figura 1. Sinal com gaps de informação Observa-se neste sinal que os pontos existentes não são igualmente espaçados, e que existem gaps onde não há amostras. Será objectivo deste trabalho tentar estimar a informação que falta, recorrendo ao método dos mínimos quadrados. %% Pergunta 1 load data; plot(t,x,'.'); 2. Aproximação por um polinómio de grau 4 Nesta alínea pretende-se implementar o método dos mínimos quadrados para aproximar os primeiros 30 valores da informação com gaps por um polinómio de grau 4. Para tal, note-se que o caso geral que se está a considerar é aproximar a nossa função por uma combinação linear de funções de base linearmente independentes. No caso desta alínea irão utilizar-se polinómios, mas em geral tem-se ( ) (1) 1
2 onde representa o erro que se tem em cada ponto. Note-se que se está a adoptar a convenção de soma de Einstein, para se ter uma notação menos pesada. Logo, existe uma soma implícita em. Agora, numa abordagem de mínimos quadrados pretende-se minimizar o erro quadrático, de acordo com a expressão ( ) ( ( )) (2) 0: Para minimizar esta função, toma-se a sua derivada em ordem a e iguala-se a ( ( ( )) ) (( ( )) ) ( ( )) ( ) ( ( )) ( ) ( ( )) ( ) ( ( ) ( ) ( )) ( ) ( ) ( ) (3) Escrevendo esta igualdade na forma matricial, obtém-se: sendo que equações lineares nos coeficientes : com. ( ). Rearranjando os termos, obtém-se um sistema de Concretizando agora para o caso de polinómios, ( ). O aparecimento do -1 é apenas pelo facto de se estar a considerar que os índices começam em 1, quando o polinómio de menor grau é de grau 0. Assim, implementou-se (5) computacionalmente para o caso de polinómios de grau 4. O resultado pode ser visto na Figura 2. (4) (5) 2
3 Figura 2. Fit polinomial de 4ª ordem para as primeiras 30 amostras do sinal. Observa-se claramente nesta imagem que o polinómio encontrado se adapta bastante bem, dentro das restrições impostas (grau é no máximo 4). Quando comparado com o resultado da função polyfit do MATLAB, devolve exactamente o mesmo output, o que atesta a qualidade da implementação realizada. Note-se a existência do termo de ambos os lados de (4). Apesar de parecer redundante, a verdade é que do ponto de vista numérico a presença desta matriz de ambos os lados é importante. Isto porque apresenta uma grande gama de valores (desde 1 até cerca de ), o que pode trazer erros na inversão desta matriz. A multiplicação pela transposta de ambos os lados traz alguma estabilidade ao sistema. Este facto é bastante mais evidente na alínea seguinte. %% Pergunta 2 tk=t(1:30); xk=x(1:30); B=min_square_poly(tk,xk,4); y=imagem_poly(tk,dt,4,b); 3. Aproximação por um polinómio de grau 11 Esta alínea é em tudo semelhante à anterior, diferindo apenas no grau do polinómio a utilizar, que é agora 11. Verifica-se que a aproximação é de facto melhor (do ponto de vista dos mínimos quadrados), sendo que o resultado se encontra na Figura 3. 3
4 Figura 3. Fit polinomial de 11ª ordem para as primeiras 30 amostras do sinal. Mais uma vez, quando se compara o resultado com o obtido através da função polyfit, verifica-se que são iguais. %% Pergunta 3 tk=t(1:30); xk=x(1:30); B=min_square_poly(tk,xk,11); y=imagem_poly(tk,dt,11,b); 4. Aproximação por splines Pretende-se agora obter uma aproximação para o problema dos mínimos quadrados utilizando não polinómios, mas um outro conjunto de funções de base, também linearmente independentes. Neste caso irão utilizar-se pulsos triangulares, com a forma ( ) { (6) Desta forma, basta apenas substituir em (5) este conjunto de funções de base. Os resultados obtidos encontram-se na Figura 4. 4
5 Figura 4. Fit por 11 splines para as primeiras 30 amostras do sinal. Analisando o resultado, verifica-se que é bastante semelhante ao obtido com o polinómio de grau 11. Verifica-se no entanto que o facto de as funções de base serem pulsos triangulares leva a uma maior irregularidade no comportamento da aproximação obtida. %% Pergunta 4 tk=t(1:30); xk=x(1:30); B=min_square_spline(tk,xk,10); y=imagem_spline(tk,dt,10,b); 5. Repetição das simulações anteriores para a sequência completa Nesta última alínea pretende-se aproximar a totalidade do sinal utilizando o método dos mínimos quadrados para polinómios (grau 4 e 11) e para splines (centradas em 0,1,,10). Os resultados podem ser vistos na Figura 5, Figura 6, e Figura 7. 5
6 Figura 5. Fit polinomial de 4ª ordem para todo o sinal. Figura 6. Fit polinomial de 11ª ordem para todo o sinal. Figura 7. Fit por 30 splines para todo o sinal. Analisando os resultados, estes são os esperados nos casos polinomiais, com aproximações válidas tendo em conta o grau escolhido. Quanto ao resultado da aproximação por splines, este é também bastante aproximado, excepto nos locais onde 6
7 não existe informação, e onde a solução vem nula. Não se pode avaliar a qualidade da solução nesta região, já que não havendo informação, a matriz com que se trabalha deixa de dar origem a um sistema determinado, passando a haver mais do que uma solução, o que leva a que o MATLAB devolva a solução com menor norma (com os coeficientes indeterminados iguais a 0). Na implementação desta última parte foi necessário retirar a multiplicação por de ambos os lados de (4), já que a sua utilização levava a que e deixassem de tomar valores numéricos, por perda de precisão por se trabalhar com matrizes singulares. %% Pergunta 5.1 tk=t; xk=x; B=min_square_poly(tk,xk,4); y=imagem_poly(tk,dt,4,b); %% Pergunta 5.2 tk=t; xk=x; B=min_square_poly(tk,xk,11); y=imagem_poly(tk,dt,11,b); %% Pergunta 5.3 tk=t; xk=x; B=min_square_spline(tk,xk,30); y=imagem_spline(tk,dt,30,b); 7
Exercícios de Matemática Computacional -Cap. 6 Interpolação e aproximação polinomial
Exercícios de Matemática Computacional -Cap. 6 Interpolação e aproximação polinomial.. Departamento de Matemática Universidade da Beira Interior Matemática Computacional - Capítulo 6 Questão 6.1 Questão
Capítulo 5 - Interpolação Polinomial
Capítulo 5 - Interpolação Polinomial Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil, Química e Gestão Industrial Carlos Balsa
Adérito Araújo. Gonçalo Pena. Adérito Araújo. Adérito Araújo. Gonçalo Pena. Método da Bissecção. Resolução dos exercícios 2.14, 2.15, 2.16 e 2.17.
1 2011-02-08 13:00 2h Capítulo 1 Aritmética computacional 1.1 Erros absolutos e relativos 1.2 O polinómio de Taylor Resolução do exercício 1.3 2 2011-02-08 15:00 1h30m As aulas laboratoriais só começam
x exp( t 2 )dt f(x) =
INTERPOLAÇÃO POLINOMIAL 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia Aproximação
Universidade de Coimbra Departamento de Engenharia Electrotecnica e Computadores Matemática Computacional
Ano Lectivo: 2007/2008 Sumários da turma Teórico-Prática [TP2]: Aula: 1 Data: 2008-02-12 Hora de Início: 15:00 Duração: 1h30m Apresentação da Unidade Curricular. Discussão de aspectos relacionados com
Métodos Numéricos Interpolação / Aproximação. Renato S. Silva, Regina C. Almeida
Métodos Numéricos Interpolação / Aproximação Renato S. Silva, Regina C. Almeida Interpolação / Aproximação situação: uma fábrica despeja dejetos no leito de um rio; objetivo: determinar a quantidade de
MÉTODOS NUMÉRICOS. ENGENHARIA ELECTRÓNICA INDUSTRIAL e de COMPUTADORES
UNIVERSIDADE DO MINHO MÉTODOS NUMÉRICOS ENGENHARIA ELECTRÓNICA INDUSTRIAL e de COMPUTADORES EXERCÍCIOS PRÁTICOS- 1 a parte Ano lectivo de 2004/2005 Exercícios práticos - CONUM Solução de uma equação não
Problemas de Processamento de Sinais Estruturas de Sistemas Discretos
Problemas de Processamento de Sinais Estruturas de Sistemas Discretos. Determine a função de transferência dos sistemas que se seguem. Mostre que têm os mesmos pólos. r cosθ r r cosθ r senθ r senθ r cosθ.
Módulo 2: Métodos Numéricos. Splines
Módulo 2: Métodos Numéricos Interpolação Splines 1. Interpolação Estimativa de uma grandeza com base em valores conhecidos em torno do ponto de estimativa. Procedimento: 1 Determinar uma função (normalmente
2. Aplicação do Matlab à Resolução de Problemas
2. Aplicação do Matlab à Resolução de Problemas Neste capítulo mostram-se as potencialidades do Matlab para resolver alguns problemas concretos. Destacam-se sobretudo as suas capacidades de cálculo numérico
Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA
Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Licenciaturas em Engenharia do Ambiente e Química 2 o Semestre de 2005/2006 Capítulo IV Aproximação de Funções 1 Interpolação Polinomial 1. Na tabela seguinte
étodos uméricos INTERPOLAÇÃO, EXTRAPOLAÇÃO, APROXIMAÇÃO E AJUSTE DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno
étodos uméricos INTERPOLAÇÃO, EXTRAPOLAÇÃO, APROXIMAÇÃO E AJUSTE DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA
MÉTODOS NUMÉRICOS. ENGENHARIA e GESTÃO INDUSTRIAL
UNIVERSIDADE DO MINHO MÉTODOS NUMÉRICOS ENGENHARIA e GESTÃO INDUSTRIAL EXERCÍCIOS PRÁTICOS Ano lectivo de 2005/2006 Métodos Numéricos - L.E.G.I. Exercícios práticos - CONUM Solução de uma equação não linear
Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu
Programação Não Linear Aula 7: Programação Não-Linear - Funções de Várias variáveis Vector Gradiente; Matriz Hessiana; Conveidade de Funções e de Conjuntos; Condições óptimas de funções irrestritas; Método
étodos uméricos ZEROS DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA
étodos uméricos ZEROS DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA
Notas em Álgebra Linear
Notas em Álgebra Linear 1 Pedro Rafael Lopes Fernandes Definições básicas Uma equação linear, nas variáveis é uma equação que pode ser escrita na forma: onde e os coeficientes são números reais ou complexos,
3.6 Erro de truncamento da interp. polinomial.
3 Interpolação 31 Polinômios interpoladores 32 Polinômios de Lagrange 33 Polinômios de Newton 34 Polinômios de Gregory-Newton 35 Escolha dos pontos para interpolação 36 Erro de truncamento da interp polinomial
Matrizes e sistemas de equações algébricas lineares
Capítulo 1 Matrizes e sistemas de equações algébricas lineares ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 1 / 37 Definições Equação linear Uma equação (algébrica)
Prof. MSc. David Roza José 1/26
1/26 Mínimos Quadrados Geral e Regressão Não Linear Objetivos: Implementar a regressão polinomial; Implementar regressão múltipla linear; Entender a formulação do modelo linear geral de mínimos quadrados;
Ajuste de mínimos quadrados
Capítulo 5 Ajuste de mínimos quadrados 5 Ajuste de mínimos quadrados polinomial No capítulo anterior estudamos como encontrar um polinômio de grau m que interpola um conjunto de n pontos {{x i, f i }}
Investigação Operacional
Métodos de Programação Linear: Gráfica, (Mestrado) Engenharia Industrial http://dps.uminho.pt/pessoais/zan - Escola de Engenharia Departamento de Produção e Sistemas 1 Representação Gráfica Considere o
Prof. MSc. David Roza José 1/33
1/33 Fórmulas de Integração Numérica Objetivos: Entender que as fórmulas de Newton-Cotes são baseadas na estratégia de substituir uma função complicada ou dados tabulados por um polinômio que seja fácil
étodos uméricos AJUSTE DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA
étodos uméricos AJUSTE DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA
3 a Lista para auto-avaliação (com um exercício resolvido)
Álgebra Linear Cursos: Engenharia Civil, Engenharia de Minas, Engenharia do Território 1 ō ano/1 ō Semestre 21/211 3 a Lista para auto-avaliação (com um exercício resolvido) 1. Indique a característica
CALIBRAÇÃO DE TERMOPARES ATRAVÉS DE SOFTWARE DE REGRESSÃO POLINOMIAL
CALIBRAÇÃO DE TERMOPARES ATRAVÉS DE SOFTWARE DE REGRESSÃO POLINOMIAL Autores: David Roza JOSÉ 1, Fernando Prando DACAS 2, Lucas BARP 2. 1 Mestre em Engenharia Mecânica, professor do Instituto Federal Catarinense
MATLAB Avançado. Melissa Weber Mendonça Universidade Federal de Santa Catarina. M. Weber Mendonça (UFSC) MATLAB Avançado 2011.
MATLAB Avançado Melissa Weber Mendonça 1 1 Universidade Federal de Santa Catarina 2011.2 M. Weber Mendonça (UFSC) MATLAB Avançado 2011.2 1 / 25 Referências a funções definidas inline Podemos usar funções
Processamento digital de imagens
Processamento digital de imagens Agostinho Brito Departamento de Engenharia da Computação e Automação Universidade Federal do Rio Grande do Norte 11 de novembro de 2016 Fluxo óptico Usado para estimar
Resolução de Sistemas Lineares. Ana Paula
Resolução de Sistemas Lineares Sumário 1 Introdução 2 Alguns Conceitos de Álgebra Linear 3 Sistemas Lineares 4 Métodos Computacionais 5 Sistemas Triangulares 6 Revisão Introdução Introdução Introdução
AJUSTE DE CURVAS PELO MÉTODO DOS QUADRADOS MÍNIMOS
AJUSTE DE CURVAS PELO MÉTODO DOS QUADRADOS MÍNIMOS Bruna Larissa Cecco 1 Angelo Fernando Fiori 2 Grazielli Vassoler 3 Resumo: Em muitos ramos da ciência, dados experimentais são utilizados para deduzir
Interpolação polinomial: Diferenças divididas de Newton
Interpolação polinomial: Diferenças divididas de Newton Marina Andretta ICMC-USP 16 de maio de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina Andretta (ICMC-USP) sme0500
Prof. MSc. David Roza José 1/43
1/43 Splines e Interpolação por Partes - B Objetivos: Verificar porque polinômios cúbicos são preferíveis a splines quadráticas e de alta ordem; Entender quais as condições implícitas do ajuste de um spline
Álgebra Linear e Geometria Anaĺıtica. Matrizes e Sistemas de Equações Lineares
universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 1 Matrizes e Sistemas de Equações Lineares Geometria anaĺıtica em R 3 [1 01]
étodos uméricos ZEROS DE FUNÇÕES DE UMA OU MAIS VARIÁVEIS Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA
étodos uméricos ZEROS DE FUNÇÕES DE UMA OU MAIS VARIÁVEIS Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO
Interpolação em imagens
Processamento de Imagens Médicas Interpolação em imagens Prof. Luiz Otavio Murta Jr. Informática Biomédica Depto. de Física e Matemática (FFCLRP/USP) 1 Principais Tópicos Introdução Método de interpolação
Matrizes e Determinantes
Aula 10 Matrizes e Determinantes Matrizes e Determinantes se originaram no final do século XVIII, na Alemanha e no Japão, com o intuito de ajudar na solução de sistemas lineares baseados em tabelas formadas
étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA
étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO
Aula 24. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil
Polinômios de Taylor Aula 24 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 08 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica Os polinômios
Matemática I. Capítulo 3 Matrizes e sistemas de equações lineares
Matemática I Capítulo 3 Matrizes e sistemas de equações lineares Objectivos Matrizes especiais e propriedades do produto de matrizes Matriz em escada de linhas Resolução de sistemas de equações lineares
Cálculo Diferencial e Integral 2 Formas Quadráticas
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral 2 Formas Quadráticas 1 Formas quadráticas Uma forma quadrática em R n é um polinómio do
étodos uméricos RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS (Continuação) Prof. Erivelton Geraldo Nepomuceno
étodos uméricos RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE
Métodos Numéricos. Turma CI-202-X. Josiney de Souza.
Métodos Numéricos Turma CI-202-X Josiney de Souza josineys@inf.ufpr.br Agenda do Dia Aula 20 (09/11/15) Interpolação: Introdução Características Interpolação Linear: Introdução Características Exercícios
Matemática e suas tecnologias
Matemática e suas tecnologias Fascículo 1 Módulo 1 Teoria dos conjuntos e conjuntos numéricos Noção de conjuntos Conjuntos numéricos Módulo 2 Funções Definindo função Lei e domínio Gráficos de funções
Resumo. Filtragem Adaptativa. Filtros adaptativos. Tarefas desempenhadas pelos filtros
Resumo Filtragem Adaptativa Luís Caldas de Oliveira lco@istutlpt Instituto Superior Técnico Sistemas de filtragem adaptativa Conceitos de filtragem adaptativa Filtro de Wiener Algoritmo steepest descent
ANÁLISE NUMÉRICA DO MÉTODO DE NEWTON PARA OBTENÇÃO DE ZEROS DE FUNÇÕES.
ANÁLISE NUMÉRICA DO MÉTODO DE NEWTON PARA OBTENÇÃO DE ZEROS DE FUNÇÕES. Edevilson Gomes Pereira PUCPR- edevilson.pereira@pucpr.b Viviana Cocco Mariani PUCPR- viviana.mariani@pucpr.br Resumo: Neste artigo
DEPARTAMENTO DE ESTATÍSTICA PLANO DE ENSINO FICHA N.º 1
DEPARTAMENTO DE ESTATÍSTICA PLANO DE ENSINO FICHA N.º 1 Departamento de Estatística Setor de Ciências Exatas Disciplina: Elementos Básicos para Estatística Código: CE065 Natureza: Semestral Carga Horária:
Derivadas Parciais. Copyright Cengage Learning. Todos os direitos reservados.
14 Derivadas Parciais Copyright Cengage Learning. Todos os direitos reservados. 14.2 Limites e Continuidade Copyright Cengage Learning. Todos os direitos reservados. Limites e Continuidade Vamos comparar
Álgebra Linear e Geometria Analítica
Álgebra Linear e Geometria Analítica Engenharia Electrotécnica Escola Superior de Tecnologia de Viseu wwwestvipvpt/paginaspessoais/lucas lucas@matestvipvpt 007/008 Álgebra Linear e Geometria Analítica
Algoritmos e Estruturas de Dados. Grupo 1
Licenciatura em Engenharia Electrotécnica e de Computadores Algoritmos e Estruturas de Dados Trabalho prático P1B 2003/04 2 o semestre Efectue as tarefas de programação descritas abaixo, usando a linguagem
ANÁLISE DE CONVERGÊNCIA UM QUADRO DE BICICLETA DO TIPO MOUNTAIN BIKE
ANÁLISE DE CONVERGÊNCIA UM QUADRO DE BICICLETA DO TIPO MOUNTAIN BIKE D. S. da Silva M. A. Melo L. F. L. de Vasconcelos davidsouza750@gmail.com matheus.melo1994@gmail.com vasconcelos.fl.leandro@gmail.com
Geometria Analítica e Álgebra Linear
UNIFEI - Universidade Federal de Itajubá campus Itabira Geometria Analítica e Álgebra Linear Parte 1 Matrizes 1 Introdução A teoria das equações lineares desempenha papel importante e motivador da álgebra
Programação de Conteúdos de Matemática SPE Ensino Médio REGULAR 2013
Programação de Conteúdos de Matemática SPE Ensino Médio REGULAR 2013 1ª série - volume 1 1. Conjuntos - Conceito de conjunto - Pertinência - Representação de um conjunto - Subconjuntos - União de conjuntos
Sistemas Lineares - Eliminação de Gauss
1-28 Sistemas Lineares - Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória, ES, Brasil 2-28
Prof. MSc. David Roza José 1/30
1/30 Autovalores e Autovetores Objetivos: Compreender a definição matemática de autovalores e autovetores; Compreender a interpretação física de autovalores e autovetores entro do contexto de sistemas
Controlo Em Espaço de Estados. Trabalho de Laboratório nº 1 Dinâmica no Espaço de Estados
Mestrado em Engenharia Electrotécnica e de Computadores Controlo Em Espaço de Estados 2010/11 Trabalho de Laboratório nº 1 Dinâmica no Espaço de Estados Objectivos Após realizar este trabalho, o aluno
NÍVEL BÁSICO CAPÍTULO II
UNIVERSIDADE FEDERAL DO PARÁ CENTRO TECNOLÓGICO DEPARTAMENTO DE ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO PROGRAMA DE EDUCAÇÃO TUTORIAL SEMANA DOS 40 ANOS DE ENGENHARIA ELÉTRICA NÍVEL BÁSICO CAPÍTULO II PROGRAMA
Profs. Alexandre Lima e Moraes Junior 1
Raciocínio Lógico-Quantitativo para Traumatizados Aula 07 Matrizes, Determinantes e Solução de Sistemas Lineares. Conteúdo 7. Matrizes, Determinantes e Solução de Sistemas Lineares...2 7.1. Matrizes...2
étodos uméricos SOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS ORDINÁRIOAS Prof. Erivelton Geraldo Nepomuceno
étodos uméricos SOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS ORDINÁRIOAS Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA
Figura : Monitoria. Monitoria Cálculo Numérico
Monitoria Cálculo Numérico 207-02 NOME Email Dia / Horário Local Ana Sofia Nunez de Abreu nunez.asofia@gmail.com Sex. 0-2h D- Luiz Eduardo Xavier luizeduardosxavier@gmail.com Ter, 5-7h Lab Rafael Mendes
Disciplina: Cálculo Numérico IPRJ/UERJ. Sílvia Mara da Costa Campos Victer. Aula 6 - Solução de Sistema de Equações Algébricas
Disciplina: Cálculo Numérico IPRJ/UERJ Sílvia Mara da Costa Campos Victer Aula 6 - Solução de Sistema de Equações Algébricas Métodos diretos: 1- Eliminação de Gauss com substituição recuada 2- Decomposição
Exercícios de MATEMÁTICA COMPUTACIONAL. 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares
Exercícios de MATEMÁTICA COMPUTACIONAL Mestrado Integrado em Engenharia Biomédica 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares 1. Considere a equação sin(x) e x = 0. a) Prove que
Exercício 1: Matriz identidade. Exercício 3: Exercício 2: Exemplo: Igualdade entre matrizes 13/05/2017. Obtenha a matriz, em que.
Conceito de matriz Matrizes Matrizes são tabelas retangulares utilizadas para organizar dados numéricos. Nas matrizes, cada número é chamado de elemento da matriz, as filas horizontais são chamadas linhas
Prof. MSc. David Roza José 1/27
1/27 Splines e Interpolação por Partes - A Objetivos: Compreender que splines minimizam oscilações ao ajustar polinômios de menor ordem a partições do domínio; Aprender a desenvolver um código para procurar
Análise e Processamento de Bio-Sinais. Mestrado Integrado em Engenharia Biomédica. Sinais e Sistemas. Licenciatura em Engenharia Física
Análise e Processamento de Bio-Sinais Mestrado Integrado em Engenharia Biomédica Licenciatura em Engenharia Física Faculdade de Ciências e Tecnologia Slide 1 Slide 1 Sobre Modelos para SLIT s Introdução
A. Equações não lineares
A. Equações não lineares 1. Localização de raízes. a) Verifique se as equações seguintes têm uma e uma só solução nos intervalos dados: i) (x - 2) 2 ln(x) = 0, em [1, 2] e [e, 4]. ii) 2 x cos(x) (x 2)
UNIVERSIDADE FEDERAL DO PARANÁ DISCIPLINA DE MÉTODOS NUMÉRICOS 2º SEMESTRE 2004 Professora Aurora T. R. Pozo 1ª LISTA DE EXERCÍCIOS
UNIVERSIDADE FEDERAL DO PARANÁ DISCIPLINA DE MÉTODOS NUMÉRICOS 2º SEMESTRE 2004 Professora Aurora T. R. Pozo 1ª LISTA DE EXERCÍCIOS Representação de Números Reais e Erros 1. Converta os seguintes números
Diogo Pinheiro Fernandes Pedrosa. Universidade Federal do Rio Grande do Norte Centro de Tecnologia. diogo
Interpolação Diogo Pinheiro Fernandes Pedrosa Universidade Federal do Rio Grande do Norte Centro de Tecnologia Departamento de Engenharia de Computação e Automação http://wwwdcaufrnbr/ diogo 1 Introdução
Métodos Numéricos. Turma CI-202-X. Josiney de Souza.
Métodos Numéricos Turma CI-202-X Josiney de Souza josineys@inf.ufpr.br Agenda do Dia Aula 15 (21/10/15) Sistemas Lineares Métodos Diretos: Regra de Cramer Método da Eliminação de Gauss (ou triangulação)
Interpolação polinomial: Polinômio de Lagrange
Interpolação polinomial: Polinômio de Lagrange Marina Andretta ICMC-USP 09 de maio de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina Andretta (ICMC-USP) sme0500 - cálculo
Lista de exercícios de MAT / II
1 Lista de exercícios de MAT 271-26 / II 1. Converta os seguintes números da forma decimal para a forma binária:x 1 = 37; x 2 = 2347; x 3 =, 75; x 4 =(sua matrícula)/1; x 5 =, 1217 2. Converta os seguintes
Universidade Federal do Rio Grande do Norte. Métodos Computacionais Marcelo Nogueira
Universidade Federal do Rio Grande do Norte Métodos Computacionais Marcelo Nogueira Sistemas Lineares Comuns na engenharia (calculo de estruturas, redes elétricas, solução de equações diferenciais) Forma
Resolução de sistemas de equações lineares: Método do Gradiente
Resolução de sistemas de equações lineares: Método do Gradiente Marina Andretta ICMC-USP 24 de março de 2015 Marina Andretta (ICMC-USP) sme0301 - Métodos Numéricos para Engenharia I 24 de março de 2015
LISTA DE EXERCÍCIOS 2017
CURSO LISTA DE EXERCÍCIOS 2017 DISCIPLINA ESTUDANTE PROFESSOR (A) DATA Questão 1) Um aluno registrou as notas bimestrais de algumas de suas disciplinas numa tabela. Ele observou que as entradas numéricas
Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA
Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Licenciaturas em Engenharia do Ambiente e Química 2 o Semestre de 25/26 Capítulo V Integração Numérica 1. Demonstre que na regra de integração do ponto médio
Resolução de Sistemas Lineares Prof. Isaias Lima 04/03/2015
Resolução de Sistemas Lineares Prof. Isaias Lima 04/03/2015 A situação mais comum envolve uma matriz quadrada de coeficientes A e um vetor coluna b no segundo membro da equação. 1) Matriz A não singular
étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA
étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO
TP062-Métodos Numéricos para Engenharia de Produção Introdução. Prof. Volmir Wilhelm Curitiba, Paraná, Brasil
TP062-Métodos Numéricos para Engenharia de Produção Introdução Prof. Volmir Wilhelm Curitiba, Paraná, Brasil TP062-Métodos Numéricos para Engenharia de Produção Ementa Matrizes. Sistemas lineares. Zeros
Algoritmos Numéricos 2 a edição
Algoritmos Numéricos 2 a edição Capítulo 2: Sistemas lineares c 2009 FFCf 2 2.1 Conceitos fundamentais 2.2 Sistemas triangulares 2.3 Eliminação de Gauss 2.4 Decomposição LU Capítulo 2: Sistemas lineares
Modelagem Computacional. Parte 3 2
Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Parte 3 2 Prof. Thiago Alves de Queiroz 2/2016 2 [Cap. 4] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning,
SISTEMAS LINEARES. Solução de um sistema linear: Dizemos que a sequência ou ênupla ordenada de números reais
SISTEMAS LINEARES Definições gerais Equação linear: Chamamos de equação linear, nas incógnitas x 1, x 2,..., x n, toda equação do tipo a 11 x 1 + a 12 x 2 + a 13 x 3 +... + a 1n x n = b. Os números a 11,
Aula 4: Gráficos lineares
Aula 4: Gráficos lineares 1 Introdução Um gráfico é uma curva que mostra a relação entre duas variáveis medidas. Quando, em um fenômeno físico, duas grandezas estão relacionadas entre si o gráfico dá uma
Tensores Cartesianos
Tensores Cartesianos Mecânica II Notas de apoio à disciplina de Mecânica II Vitor Leitão Departamento de Engenharia Civil e Arquitectura Instituto Superior Técnico Lisboa, 2011 vitor@civil.ist.utl.pt -
Sumário. 1 Sinais e sistemas no tempo discreto 1. 2 As transformadas z e de Fourier 79
Sumário 1 Sinais e sistemas no tempo discreto 1 1.1 Introdução 1 1.2 Sinais no tempo discreto 2 1.3 Sistemas no tempo discreto 7 1.3.1 Linearidade 8 1.3.2 Invariância no tempo 8 1.3.3 Causalidade 9 1.3.4
Métodos Numéricos I. A. Ismael F. Vaz. Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho
Métodos Numéricos I A. Ismael F. Vaz Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho.pt Engenharia Mecânica Ano lectivo 2007/2008 A. Ismael F. Vaz (UMinho)
Aula 2: Funções. Margarete Oliveira Domingues PGMET/INPE. Aula 2 p.1/57
Aula 2 p.1/57 Aula 2: Funções. Margarete Oliveira Domingues PGMET/INPE Definição e representação Aula 2 p.2/57 Aula 2 p.3/57 Função Definição: Uma função de um conjunto em um conjunto, é uma correspondência
Equações diferenciais ordinárias EQUAÇÕES DIFERENCIAIS ORDINÁRIAS
1 Sumário 1 Equações diferenciais ordinárias Métodos de Euler Exemplo de EDO linear: Método implícito Métodos multi-passo lineares Fórmulas de Adams-Bashforth Fórmulas de Adams-Moulton Fórmulas do tipo
ficha 1 matrizes e sistemas de equações lineares
Exercícios de Álgebra Linear ficha matrizes e sistemas de equações lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2/2
Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017
º Sábado - Matrizes - //7. Plano e Programa de Ensino. Definição de Matrizes. Exemplos. Definição de Ordem de Uma Matriz. Exemplos. Representação Matriz Genérica m x n 8. Matriz Linha 9. Exemplos. Matriz
Prof. MSc. David Roza José 1/39
1/39 Problemas de Valor Inicial Objetivos: Saber como implementar métodos de Runge-Kutta (RK) para uma única EDO: Quarta ordem. Saber como implementar métodos RK para sistemas de EDO s: Euler; Quarta ordem.
4 Análise da Volatilidade
4 Análise da Volatilidade 4.1 Metodologia da Regressão Uni-variada Esse estudo utilizou a volatilidade histórica dos ativos para descrever uma relação com a volatilidade futura por uma regressão uni-variada.
MÉTODO MATEMÁTICO PARA CALIBRAÇÃO DE SENSOR DO MEDIDOR DE PRESSÃO TIPO PIRANI MATHEMATICAL METHOD FOR SENSOR CALIBRATION OF PIRANI PRESSURE GAUGE
MÉTODO MATEMÁTICO PARA CALIBRAÇÃO DE SENSOR DO MEDIDOR DE PRESSÃO TIPO PIRANI MATHEMATICAL METHOD FOR SENSOR CALIBRATION OF PIRANI PRESSURE GAUGE Rafael Bueno de Moraes, Everson Martins, Caio Simon de
SC1 Sistemas de Controle 1. Cap. 2 - Estabilidade Prof. Tiago S Vítor
SC1 Sistemas de Controle 1 Cap. 2 - Estabilidade Prof. Tiago S Vítor Sumário 1. Introdução 2. Critério de Routh-Hurwitz 3. Critério de Routh-Hurwitz: Casos Especiais 4. Projeto de Estabilidade via Routh-Hurwitz
Roteiro para o Terceiro Laboratório de Cálculo Numérico /1
Roteiro para o Terceiro Laboratório de Cálculo Numérico - 2008/1 Prof. Dr. Waldeck Schützer June 23, 2008 DM/UFSCar Nesta terceira aula de laboratório, vamos utilizar o Octave para aproximar funções e
SME Cálculo Numérico. Lista de Exercícios: Gabarito
Exercícios de prova SME0300 - Cálculo Numérico Segundo semestre de 2012 Lista de Exercícios: Gabarito 1. Dentre os métodos que você estudou no curso para resolver sistemas lineares, qual é o mais adequado
Ficha de Exercícios nº 3
Nova School of Business and Economics Álgebra Linear Ficha de Exercícios nº 3 Transformações Lineares, Valores e Vectores Próprios e Formas Quadráticas 1 Qual das seguintes aplicações não é uma transformação
Interpolação polinomial
Quarto roteiro de exercícios no Scilab Cálculo Numérico Rodrigo Fresneda 8 de abril de 0 Guia para respostas: Entregue suas respostas às tarefas contidas no roteiro de cada uma das quatro atividades, incluindo
7 Formas Quadráticas
Nova School of Business and Economics Apontamentos Álgebra Linear 1 Definição Forma quadrática em variáveis Função polinomial, de grau, cuja expressão tem apenas termos de grau. Ex. 1: é uma forma quadrática
Revisão: Matrizes e Sistemas lineares. Parte 01
Revisão: Matrizes e Sistemas lineares Parte 01 Definição de matrizes; Tipos de matrizes; Operações com matrizes; Propriedades; Exemplos e exercícios. 1 Matrizes Definição: 2 Matrizes 3 Tipos de matrizes
Equações não lineares
DMPA IME UFRGS Cálculo Numérico Índice Raizes de polinômios 1 Raizes de polinômios 2 raizes de polinômios As equações não lineares constituídas por polinômios de grau n N com coeficientes complexos a n,a
1 Teoria dos Conjuntos O conceito de conjunto Conjunto e estrutura elemento, subconjunto operações...
Sumário Introdução.......................... 6 1 Teoria dos Conjuntos. 7 1.1 O conceito de conjunto........................... 7 1.2 Conjunto e estrutura............................ 11 1.3 elemento, subconjunto...........................
PLANO DE ENSINO IDENTIFICAÇÃO DA DISCIPLINA
1 PLANO DE ENSINO IDENTIFICAÇÃO DA DISCIPLINA Curso: CST em Sistemas de Telecomunicações, Tecnologia Nome da disciplina: Métodos Numéricos Código: INF065 Carga horária: 67 horas Semestre previsto: 3º Pré-requisito(s):