TEORIA MATEMÁTICA BÁSICA

Tamanho: px
Começar a partir da página:

Download "TEORIA MATEMÁTICA BÁSICA"

Transcrição

1 TEORIA MATEMÁTICA BÁSICA CRITÉRIOS DE DIVISIBILIDADE Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se efetuar a divisão. Essas regras são chamadas de critérios de divisibilidade. DIVISIBILIDADE POR 2 Um número natural é divisível por 2 quando ele termina em 0, ou 2, ou 4, ou 6, ou 8, ou seja, quando ele é par. Exemplos: 1) 5040 é divisível por 2, pois termina em 0. 2) 237 não é divisível por 2, pois não é um número par. DIVISIBILIDADE POR 3 Um número é divisível por 3 quando a soma dos valores absolutos dos seus algarismos for divisível por 3. Exemplo: 234 é divisível por 3, pois a soma de seus algarismos é igual a 2+3+4=9, e como 9 é divisível por 3, então 234 é divisível por 3. DIVISIBILIDADE POR 4 Um número é divisível por 4 quando termina em 00 ou quando o número formado pelos dois últimos algarismos da direita for divisível por 4. Exemplo: 1800 é divisível por 4, pois termina em é divisível por 4, pois 16 é divisível por é divisível por 4, pois 24 é divisível por não é divisível por 4, pois não termina em 00 e 50 não é divisível por 4. DIVISIBILIDADE POR 5 Um número natural é divisível por 5 quando ele termina em 0 ou 5. Exemplos: 1) 55 é divisível por 5, pois termina em 5. 2) 90 é divisível por 5, pois termina em 0. 3) 87 não é divisível por 5, pois não termina em 0 nem em 5. 1

2 DIVISIBILIDADE POR 6 Um número é divisível por 6 quando é divisível por 2 e por 3. Exemplos: 1) 312 é divisível por 6, porque é divisível por 2 (par) e por 3 (soma: 6). 2) 5214 é divisível por 6, porque é divisível por 2 (par) e por 3 (soma: 12). 3) 716 não é divisível por 6, (é divisível por 2, mas não é divisível por 3). 4) 3405 não é divisível por 6 (é divisível por 3, mas não é divisível por 2). DIVISIBILIDADE POR 8 Um número é divisível por 8 quando termina em 000, ou quando o número formado pelos três últimos algarismos da direita for divisível por 8. Exemplos: 1) 7000 é divisível por 8, pois termina em ) é divisível por 8, pois 104 é divisível por 8. 3) é divisível por 8, pois 112 é divisível por 8. 4) não é divisível por 8, pois 164 não é divisível por 8. DIVISIBILIDADE POR 9 Um número é divisível por 9 quando a soma dos valores absolutos dos seus algarismos for divisível por 9. Exemplo: 2871 é divisível por 9, pois a soma de seus algarismos é igual a =18, e como 18 é divisível por 9, então 2871 é divisível por 9. DIVISIBILIDADE POR 10 Um número natural é divisível por 10 quando ele termina em 0. Exemplos: 1) 4150 é divisível por 10, pois termina em 0. 2) 2106 não é divisível por 10, pois não termina em 0. DIVISIBILIDADE POR 11 Um número é divisível por 11 quando a diferença entre as somas dos valores absolutos dos algarismos de ordem ímpar e a dos de ordem par é divisível por 11. O algarismo das unidades é de 1ª ordem, o das dezenas de 2ª ordem, o das centenas de 3ª ordem, e assim sucessivamente. 2

3 Exemplos: 1) Si (soma das ordens ímpares) = = 22 Sp (soma das ordens pares) = 4+7 = 11 Si-Sp = = 11 Como 11 é divisível por 11, então o número é divisível por 11. 2) Si (soma das ordens ímpares) = = 10 Sp (soma das ordens pares) = = 21 Si-Sp = Como a subtração não pode ser realizada, acrescenta-se o menor múltiplo de 11 (diferente de zero) ao minuendo, para que a subtração possa ser realizada: = 21. Então temos a subtração = 0. Como zero é divisível por 11, o número é divisível por 11. DIVISIBILIDADE POR 12 Um número é divisível por 12 quando é divisível por 3 e por 4. Exemplos: 1) 720 é divisível por 12, porque é divisível por 3 (soma=9) e por 4 (dois últimos algarismos, 20). 2) 870 não é divisível por 12 (é divisível por 3, mas não é divisível por 4). 3) 340 não é divisível por 12 (é divisível por 4, mas não é divisível por 3). DIVISIBILIDADE POR 15 Um número é divisível por 15 quando é divisível por 3 e por 5. Exemplos: 1) 105 é divisível por 15, porque é divisível por 3 (soma=6) e por 5 (termina em 5). 2) 324 não é divisível por 15 (é divisível por 3, mas não é divisível por 5). 3) 530 não é divisível por 15 (é divisível por 5, mas não é divisível por 3). DIVISIBILIDADE POR 25 Um número é divisível por 25 quando os dois algarismos finais forem 00, 25, 50 ou 75. Exemplos: 200, 525, 850 e 975 são divisíveis por 25. 3

4 NÚMEROS PRIMOS Números primos são os números naturais que têm apenas dois divisores diferentes: o 1 e ele mesmo. Exemplos: 1) 2 tem apenas os divisores 1 e 2, portanto 2 é um número primo. 2) 17 tem apenas os divisores 1 e 17, portanto 17 é um número primo. 3) 10 tem os divisores 1, 2, 5 e 10, portanto 10 não é um número primo. Observações: => 1 não é um número primo, porque ele tem apenas um divisor que é ele mesmo. => 2 é o único número primo que é par. Os números que têm mais de dois divisores são chamados números compostos. Exemplo: 15 tem mais de dois divisores => 15 é um número composto. Reconhecimento de um número primo Para saber se um número é primo, dividimos esse número pelos números primos 2, 3, 5, 7, 11 etc. até que tenhamos: => ou uma divisão com resto zero e neste caso o número não é primo, => ou uma divisão com quociente menor que o divisor e o resto diferente de zero. Neste caso o número é primo. Exemplos: 1) O número 161: não é par, portanto não é divisível por 2; = 8, portanto não é divisível por 3; não termina em 0 nem em 5, portanto não é divisível por 5; por 7: 161 / 7 = 23, com resto zero, logo 161 é divisível por 7, e portanto não é um número primo. 2) O número 113: não é par, portanto não é divisível por 2; = 5, portanto não é divisível por 3; não termina em 0 nem em 5, portanto não é divisível por 5; por 7: 113 / 7 = 16, com resto 1. O quociente (16) ainda é maior que o divisor (7). por 11: 113 / 11 = 10, com resto 3. O quociente (10) é menor que o divisor (11), e além disso o resto é diferente de zero (o resto vale 3), portanto 113 é um número primo. 4

5 DECOMPOSIÇÃO EM FATORES PRIMOS Todo número natural, maior que 1, pode ser decomposto num produto de dois ou mais fatores. Decomposição do número 24 num produto: 24 = 4 x 6 24 = 2 x 2 x 6 24 = 2 x 2 x 2 x 3 = 2 3 x 3 No produto 2 x 2 x 2 x 3 todos os fatores são primos. Chamamos de fatoração de 24 a decomposição de 24 num produto de fatores primos. Então a fatoração de 24 é 2 3 x 3. De um modo geral, chamamos de fatoração de um número natural, maior que 1, a sua decomposição num produto de fatores primos. Regra prática para a fatoração Existe um dispositivo prático para fatorar um número. Acompanhe, no exemplo, os passos para montar esse dispositivo: 1º) Dividimos o número pelo seu menor divisor primo; 2º) a seguir, dividimos o quociente obtido pelo menor divisor primo desse quociente e assim sucessivamente até obter o quociente 1. A figura ao lado mostra a fatoração do número 630. Então 630 = 2 x 3 x 3 x 5 x = 2 x 3 2 x 5 x 7. DETERMINAÇÃO DOS DIVISORES DE UM NÚMERO Na prática determinamos todos os divisores de um número utilizando os seus fatores primos. Vamos determinar, por exemplo, os divisores de 90: 5

6 1º) decompomos o número em fatores primos; 2º) traçamos uma linha e escrevemos o 1 no alto, porque ele é divisor de qualquer número; 3º) multiplicamos sucessivamente cada fator primo pelos divisores já obtidos e escrevemos esses produtos ao lado de cada fator primo; 4º) os divisores já obtidos não precisam ser repetidos. Portanto os divisores de 90 são 1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90. MÁXIMO DIVISOR COMUM Dois números naturais sempre têm divisores comuns. Por exemplo: os divisores comuns de 12 e 18 são 1,2,3 e 6. Dentre eles, 6 é o maior. Então chamamos o 6 de máximo divisor comum de 12 e 18 e indicamos m.d.c.(12,18) = 6. O maior divisor comum de dois ou mais números é chamado de máximo divisor comum desses números. Usamos a abreviação m.d.c. Alguns exemplos: mdc (6,12) = 6 mdc (12,20) = 4 mdc (20,24) = 4 mdc (12,20,24) = 4 mdc (6,12,15) = 3 6

7 CÁLCULO DO M.D.C. Um modo de calcular o m.d.c. de dois ou mais números é utilizar a decomposição desses números em fatores primos. 1) decompomos os números em fatores primos; 2) o m.d.c. é o produto dos fatores primos comuns. Acompanhe o cálculo do m.d.c. entre 36 e 90: 36 = 2 x 2 x 3 x 3 90 = 2 x 3 x 3 x 5 O m.d.c. é o produto dos fatores primos comuns => m.d.c.(36,90) = 2 x 3 x 3 Portanto m.d.c.(36,90) = 18. Escrevendo a fatoração do número na forma de potência temos: 36 = 2 2 x = 2 x 3 2 x5 Portanto m.d.c.(36,90) = 2 x 3 2 = 18. O m.d.c. de dois ou mais números, quando fatorados, é o produto dos fatores comuns a eles, cada um elevado ao menor expoente. CÁLCULO DO M.D.C. PELO PROCESSO DAS DIVISÕES SUCESSIVAS Nesse processo efetuamos várias divisões até chegar a uma divisão exata. O divisor desta divisão é o m.d.c. Acompanhe o cálculo do m.d.c.(48,30). Regra prática: 1º) dividimos o número maior pelo número menor; 48 / 30 = 1 (com resto 18) 2º) dividimos o divisor 30, que é divisor da divisão anterior, por 18, que é o resto da divisão anterior, e assim sucessivamente; 30 / 18 = 1 (com resto 12) 18 / 12 = 1 (com resto 6) 12 / 6 = 2 (com resto zero - divisão exata) 3º) O divisor da divisão exata é 6. Então m.d.c.(48,30) = 6. 7

8 NÚMEROS PRIMOS ENTRE SI Dois ou mais números são primos entre si quando o máximo divisor comum desses números é 1. Exemplos: Os números 35 e 24 são números primos entre si, pois mdc (35,24) = 1. Os números 35 e 21 não são números primos entre si, pois mdc (35,21) = 7. PROPRIEDADE DO M.D.C. Dentre os números 6, 18 e 30, o número 6 é divisor dos outros dois. Neste caso, 6 é o m.d.c.(6,18,30). Observe: 6 = 2 x 3 18 = 2 x = 2 x 3 x 5 Portanto m.d.c.(6,18,30) = 6 Dados dois ou mais números, se um deles é divisor de todos os outros, então ele é o m.d.c. dos números dados. MÍNIMO MÚLTIPLO COMUM MÚLTIPLO DE UM NÚMERO NATURAL Como 24 é divisível por 3 dizemos que 24 é múltiplo de também é múltiplo de 1, 2, 3, 4, 6, 8, 12 e 24. Se um número é divisível por outro, diferente de zero, então dizemos que ele é múltiplo desse outro. Os múltiplos de um número são calculados multiplicando-se esse número pelos números naturais. Exemplo: os múltiplos de 7 são: 7x0, 7x1, 7x2, 7x3, 7x4,... = 0, 7, 14, 21, 28,... Observações importantes: 1) Um número tem infinitos múltiplos 2) Zero é múltiplo de qualquer número natural 8

9 MÍNIMO MÚLTIPLO COMUM (M.M.C.) Dois ou mais números sempre têm múltiplos comuns a eles. Vamos achar os múltiplos comuns de 4 e 6: Múltiplos de 6: 0, 6, 12, 18, 24, 30,... Múltiplos de 4: 0, 4, 8, 12, 16, 20, 24,... Múltiplos comuns de 4 e 6: 0, 12, 24,... Dentre estes múltiplos, diferentes de zero, 12 é o menor deles. Chamamos o 12 de mínimo múltiplo comum de 4 e 6. O menor múltiplo comum de dois ou mais números, diferente de zero, é chamado de mínimo múltiplo comum desses números. Usamos a abreviação m.m.c. CÁLCULO DO M.M.C. Podemos calcular o m.m.c. de dois ou mais números utilizando a fatoração. Acompanhe o cálculo do m.m.c. de 12 e 30: 1º) decompomos os números em fatores primos 2º) o m.m.c. é o produto dos fatores primos comuns e não-comuns: 12 = 2 x 2 x 3 30 = 2 x 3 x 5 m.m.c (12,30) = 2 x 2 x 3 x 5 Escrevendo a fatoração dos números na forma de potência, temos: 12 = 2 2 x 3 30 = 2 x 3 x 5 m.m.c (12,30) = 2 2 x 3 x 5 O m.m.c. de dois ou mais números, quando fatorados, é o produto dos fatores comuns e não-comuns a eles, cada um elevado ao maior expoente. 9

10 PROCESSO DA DECOMPOSIÇÃO SIMULTÂNEA Neste processo decompomos todos os números ao mesmo tempo, num dispositivo como mostra a figura ao lado. O produto dos fatores primos que obtemos nessa decomposição é o m.m.c. desses números. Ao lado vemos o cálculo do m.m.c.(15,24,60) Portanto, m.m.c.(15,24,60) = 2 x 2 x 2 x 3 x 5 = 120 PROPRIEDADE DO M.M.C. Entre os números 3, 6 e 30, o número 30 é múltiplo dos outros dois. Neste caso, 30 é o m.m.c.(3,6,30). Observe: m.m.c.(3,6,30) = 2 x 3 x 5 = 30 Dados dois ou mais números, se um deles é múltiplo de todos os outros, então ele é o m.m.c. dos números dados. Considerando os números 4 e 15, que são primos entre si. O m.m.c.(4,15) é igual a 60, que é o produto de 4 por 15. Observe: m.m.c.(4,15) = 2 x 2 x 3 x 5 = 60 Dados dois números primos entre si, o m.m.c. deles é o produto desses números. 10

11 TEORIA DOS CONJUNTOS Símbolos : pertence : existe : não pertence : não existe : está contido : para todo (ou qualquer que seja) : não está contido : conjunto vazio : contém N: conjunto dos números naturais : não contém Z : conjunto dos números inteiros / : tal que Q: conjunto dos números racionais : implica que Q'= I: conjunto dos números irracionais : se, e somente se R: conjunto dos números reais Símbolos das operações : A intersecção B : A união B a - b: diferença de A com B a < b: a menor que b : a menor ou igual a b a > b: a maior que b : a maior ou igual a b : a e b : a ou b 11

12 CONCEITOS DE CONJUNTOS Conjunto vazio: é um conjunto que não possui elementos. O conjunto vazio é representado por { } ou. Subconjuntos: quando todos os elementos de um conjunto A qualquer pertencem a um outro conjunto B, diz-se, então, que A é um subconjunto de B, ou seja A B. Observações: Todo o conjunto A é subconjunto dele próprio, ou seja ; O conjunto vazio, por convenção, é subconjunto de qualquer conjunto, ou seja União de Conjuntos: dados os conjuntos A e B, define-se como união dos conjuntos A e B ao conjunto representado por, formado por todos os elementos pertencentes a A ou B, ou seja: Intersecção de Conjuntos: dados os conjuntos A e B, define-se como intersecção dos conjuntos A e B ao conjunto representado por, formado por todos os elementos pertencentes a A e B, simultaneamente, ou seja: Diferença de Conjuntos: dados os conjuntos A e B, define-se como diferença entre A e B (nesta ordem) ao conjunto representado por A-B, formado por todos os elementos pertencentes a A, mas que não pertencem a B, ou seja 12

13 Produto Cartesiano: dados os conjuntos A e B, chama-se peoduto cartesiano A com B, ao conjunto AxB, formado por todos os pares ordenados (x,y), onde x é elemento de A e y é elemento de B, ou seja Número de subconjuntos de um conjunto: se um conjunto A possuir n elementos, então existirão 2 n subconjuntos de A. PORCENTAGEM É frequente o uso de expressões que refletem acréscimos ou reduções em preços, números ou quantidades, sempre tomando por base 100 unidades. Alguns exemplos: A gasolina teve um aumento de 15% Significa que em cada R$100 houve um acréscimo de R$15,00 O cliente recebeu um desconto de 10% em todas as mercadorias. Significa que em cada R$100 foi dado um desconto de R$10,00 Dos jogadores que jogam no Grêmio, 90% são craques. Significa que em cada 100 jogadores que jogam no Grêmio, 90 são craques. RAZÃO CENTESIMAL Toda a razão que tem para consequente o número 100 denomina-se razão centesimal. Alguns exemplos: Podemos representar uma razão centesimal de outras formas: As expressões 7%, 16% e 125% são chamadas taxas centesimais ou taxas percentuais. 13

14 Considere o seguinte problema: João vendeu 50% dos seus 50 cavalos. Quantos cavalos ele vendeu? Para solucionar esse problema devemos aplicar a taxa percentual (50%) sobre o total de cavalos. Logo, ele vendeu 25 cavalos, que representa a porcentagem procurada. Portanto, chegamos a seguinte definição: Exemplos: Porcentagem é o valor obtido ao aplicarmos uma taxa percentual a um determinado valor. Calcular 10% de 300. Calcular 25% de 200kg. Logo, 50kg é o valor correspondente à porcentagem procurada. 14

15 Retângulo ÁREA DAS FIGURAS PLANAS Quadrado Triângulo Paralelogramo Trapézio Losango Triângulo equilátero Leitura das Medidas de Comprimento MEDIDAS DE COMPRIMENTO A leitura das medidas de comprimentos pode ser efetuada com o auxílio do quadro de unidades. Exemplos: Leia a seguinte medida: 15,048 m. 15

16 Seqüência prática 1º) Escrever o quadro de unidades: km hm dam m dm cm mm 2º) Colocar o número no quadro de unidades, localizando o último algarismo da parte inteira sob a sua respectiva. km hm dam m dm cm mm 1 5, º) Ler a parte inteira acompanhada da unidade de medida do seu último algarismo e a parte decimal acompanhada da unidade de medida do último algarismo da mesma. Outros exemplos: 15 metros e 48 milímetros 6,07 km lê-se "seis quilômetros e sete decâmetros" 82,107 dam lê-se "oitenta e dois decâmetros e cento e sete centímetros". 0,003 m lê-se "três milímetros". TRANSFORMAÇÃO DE UNIDADES Observe as seguintes transformações: Transforme 16,584hm em m. km hm dam m dm cm mm Para transformar hm em m (duas posições à direita) devemos multiplicar por 100 (10 x 10). 16,584 x 100 = 1.658,4 Ou seja: 16,584hm = 1.658,4m 16

17 MEDIDAS DE SUPERFÍCIE O metro quadrado (m 2 ) é a medida correspondente à superfície de um quadrado com 1 metro de lado. Unidade Múltiplos Submúltiplos Fundamental quilômetros hectômetro decâmetro metro decímetro centímetro milímetro quadrado quadrado quadrado quadrado quadrado quadrado quadrado km 2 hm 2 dam 2 m 2 dm 2 cm 2 mm m m 2 100m 2 1m 2 0,01m 2 0,0001m 2 0,000001m 2 km 2 hm 2 dam 2 m 2 dm 2 cm 2 mm 2 TRANSFORMAÇÃO DE UNIDADES No sistema métrico decimal, devemos lembrar que, na transformação de unidades de superfície, cada unidade de superfície é 100 vezes maior que a unidade imediatamente inferior: Observe as seguintes transformações: transformar 2,36 m 2 em mm 2. km 2 hm 2 dam 2 m 2 dm 2 cm 2 mm 2 Para transformar m 2 em mm 2 (três posições à direita) devemos multiplicar por (100x100x100). 2,36 x = mm 2 transformar 580,2 dam 2 em km 2. km 2 hm 2 dam 2 m 2 dm 2 cm 2 mm 2 17

18 Para transformar dam 2 em km 2 (duas posições à esquerda) devemos dividir por (100x100). 580,2 : = 0,05802 km 2 Medidas Agrárias As medidas agrárias são utilizadas parea medir superfícies de campo, plantações, pastos, fazendas, etc. A principal unidade destas medidas é o are (a). Possui um múltiplo, o hectare (ha), e um submúltiplo, o centiare (ca). Unidade agrária Equivalência de valor hectare (ha) are (a) centiare (ca) 100a 1a 0,01a Lembre-se:1 ha = 1hm 2 1a = 1 dam 2 1ca = 1m 2 MEDIDAS DE VOLUME Introdução Freqüentemente nos deparamos com problemas que envolvem o uso de três dimensões: comprimento, largura e altura. De posse de tais medidas tridimensionais, poderemos calcular medidas de metros cúbicos e volume. Metro cúbico A unidade fundamental de volume chama-se metro cúbico. O metro cúbico (m 3 ) é medida correspondente ao espaço ocupado por um cubo com 1 m de aresta. Múltiplos e submúltiplos do metro cúbico Múltiplos Unidade Fundament al Submúltiplos quilômetro cúbico hectômetro cúbico decâmetr o cúbico metro cúbico decímetr o cúbico centímetro cúbico milímetro cúbico km 3 hm 3 dam 3 m 3 dm 3 cm 3 mm 3 18

19 TRANSFORMAÇÃO DE UNIDADES Na transformação de unidades de volume, no sistema métrico decimal, devemos lembrar que cada unidade de volume é vezes maior que a unidade imediatamente inferior. Observe a seguinte transformação: transformar 2,45 m 3 para dm 3. km 3 hm 3 dam 3 m 3 dm 3 cm 3 mm 3 Para transformar m 3 em dm 3 (uma posição à direita) devemos multiplicar por ,45 x = dm 3 MEDIDAS DE CAPACIDADE A quantidade de líquido é igual ao volume interno de um recipiente, afinal quando enchemos este recipiente, o líquido assume a forma do mesmo. Capacidade é o volume interno de um recipiente. A unidade fundamental de capacidade chama-se litro. Litro é a capacidade de um cubo que tem 1dm de aresta. 1l = 1dm 3 Múltiplos MÚLTIPLOS E SUBMÚLTIPLOS DO LITRO Unidade Fundament al Submúltiplos quilolitro hectolitro decalitro litro decilitro centilitro mililitro kl hl dal l dl cl ml 1000l 100l 10l 1l 0,1l 0,01l 0,001l Cada unidade é 10 vezes maior que a unidade imediatamente inferior. Relações 1l = 1dm 3 1ml = 1cm 3 19

20 1kl = 1m 3 TRANSFORMAÇÃO DE UNIDADES Na transformação de unidades de capacidade, no sistema métrico decimal, devemos lembrar que cada unidade de capacidade é 10 vezes maior que a unidade imediatamente inferior. Observe a seguinte transformação: transformar 3,19 l para ml. kl hl dal l dl cl ml Para transformar l para ml (três posições à direita) devemos multiplicar por (10x10x10). 3,19 x = ml MÉDIA ARITMÉTICA SIMPLES A média aritmética simples também é conhecida apenas por média. É a medida de posição mais utilizada e a mais intuitiva de todas. Ela está tão presente em nosso dia-adia que qualquer pessoa entende seu significado e a utiliza com frequência. A média de um conjunto de valores numéricos é calculada somando-se todos estes valores e dividindo-se o resultado pelo número de elementos somados, que é igual ao número de elementos do conjunto, ou seja, a média de n números é sua soma dividida por n. MÉDIA PONDERADA Nos cálculos envolvendo média aritmética simples, todas as ocorrências têm exatamente a mesma importância ou o mesmo peso. Dizemos então que elas têm o mesmo peso relativo. No entanto, existem casos onde as ocorrências têm importância relativa diferente. Nestes casos, o cálculo da média deve levar em conta esta importância relativa ou peso relativo. Este tipo de média chama-se média aritmética ponderada. Ponderar é sinônimo de pesar. No cálculo da média ponderada, multiplicamos cada valor do conjunto por seu "peso", isto é, sua importância relativa. 20

21 DEFINIÇÃO DE MÉDIA ARITMÉTICA PONDERADA: A média aritmética ponderada p de um conjunto de números x 1, x 2, x 3,..., x n cuja importância relativa ("peso") é respectivamente p 1, p 2, p 3,..., p n é calculada da seguinte maneira: p = EXEMPLO: Alcebíades participou de um concurso, onde foram realizadas provas de Português, Matemática, Biologia e História. Essas provas tinham peso 3, 3, 2 e 2, respectivamente. Sabendo que Alcebíades tirou 8,0 em Português, 7,5 em Matemática, 5,0 em Biologia e 4,0 em História, qual foi a média que ele obteve? p = Portanto a média de Alcebíades foi de 6,45. Catetos e Hipotenusa Razões trigonométricas Em um triângulo chamamos o lado oposto ao ângulo reto de hipotenusa e os lados adjacentes de catetos. Observe a figura: Hipotenusa: Catetos: e 21

22 Seno, Cosseno e Tangente Considere um triângulo retângulo BAC: Hipotenusa:, m( ) = a. Catetos:, m( ) = b. Ângulos:, e., m( ) = c. Tomando por base os elementos desse triângulo, podemos definir as seguintes razões trigonométricas: Seno de um ângulo agudo é a razão entre a medida do cateto oposto a esse ângulo e a medida da hipotenusa. Assim: Cosseno de um ângulo agudo é a razão entre a medida do cateto adjacente a esse ângulo e a medida da hipotenusa. Assim: 22

23 Tangente RAZÕES TRIGONOMÉTRICAS Tangente de um ângulo agudo é a razão entre a medida do cateto oposto e a medida do cateto adjacente a esse ângulo. Assim: 23

24 Exemplo: Observações: 1. A tangente de um ângulo agudo pode ser definida como a razão entre seno deste ângulo e o seu cosseno. Assim: 2. A tangente de um ângulo agudo é um número real positivo. 3. O seno e o cosseno de um ângulo agudo são sempre números reais positivos menores que 1, pois qualquer cateto é sempre menor que a hipotenusa. 24

25 As razões trigonométricas de 30º, 45º e 60º Resumindo x sen x cos x tg x 30º 45º 60º Equações de 2º grau Definições Denomina-se equação do 2º grau na incógnita x, toda equação da forma: ax 2 + bx + c = 0; a, b, c IR e Exemplo: x 2-5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e c = 6. 6x 2 - x - 1 = 0 é um equação do 2º grau com a = 6, b = -1 e c = -1. 7x 2 - x = 0 é um equação do 2º grau com a = 7, b = -1 e c = 0. x 2-36 = 0 é um equação do 2º grau com a = 1, b = 0 e c = -36. Nas equações escritas na forma ax² + bx + c = 0 (forma normal ou forma reduzida de uma equação do 2º grau na incógnita x) chamamos a, b e c de coeficientes. a é sempre o coeficiente de x²; b é sempre o coeficiente de x, c é o coeficiente ou termo independente. 25

26 Equação completas e Incompletas Uma equação do 2º grau é completa quando b e c são diferentes de zero. Exemplos: x² - 9x + 20 = 0 e -x² + 10x - 16 = 0 são equações completas. Uma equação do 2º grau é incompleta quando b ou c é igual a zero, ou ainda quando ambos são iguais a zero. Exemplos: x² - 36 = 0 (b = 0) x² - 10x = 0 (c = 0) 4x² = 0 (b = c = 0) Raízes de uma equação do 2º grau Resolver uma equação do 2º grau significa determinar suas raízes. Raiz é o número real que, ao substituir a incógnita de uma equação, transforma-a numa sentença verdadeira. O conjunto formado pelas raízes de uma equação denomina-se conjunto verdade ou conjunto solução. Exemplos: Dentre os elementos do conjuntos A= {-1, 0, 1, 2}, quais são raízes da equação x² - x - 2 = 0? Solução Substituímos a incógnita x da equação por cada um dos elementos do conjunto e verificamos quais as sentenças verdadeiras. Para x = -1 Para x = 0 Para x = 1 Para x = 2 Logo, -1 e 2 são raízes da equação. (-1)² - (-1) - 2 = = 0 0 = 0 0² = = 0-2 = 0 1² = = 0-2 = 0 2² = = 0 0 = 0 (V) (F) (F) (V) 26

27 Resolução de equações incompletas Resolver uma equação significa determinar o seu conjunto verdade. Utilizamos na resolução de uma equação incompleta as técnicas da fatoração e duas importantes propriedades dos números reais: 1ª Propriedade: 2ª Propriedade: 1º Caso: Equação do tipo. Exemplo: Determine as raízes da equação, sendo. Solução Inicialmente, colocamos x em evidência: Para o produto ser igual a zero, basta que um dos fatores também o seja. Assim: Obtemos dessa maneira duas raízes que formam o conjunto verdade: De modo geral, a equação do tipo tem para soluções e. 2º Caso: Equação do tipo Exemplos: Determine as raízes da equação, sendo U = IR. Solução 27

28 De modo geral, a equação do tipo possui duas raízes reais se for um número positivo, não tendo raiz real caso seja um número negativo. Resolução de equações completas Para solucionar equações completas do 2º grau utilizaremos a fórmula de Bhaskara. A partir da equação, em que a, b, c IR e, desenvolveremos passo a passo a dedução da fórmula de Bhaskara (ou fórmula resolutiva). 1º passo: multiplicaremos ambos os membros por 4a. 2º passo: passar 4ac par o 2º membro. 3º passo: adicionar aos dois membros. 4º passo: fatorar o 1º elemento. 5º passo: extrair a raiz quadrada dois membros. 6º passo: passar b para o 2º membro. 7º passo: dividir os dois membros por. 28

29 Assim, encontramos a fórmula resolutiva da equação do 2º grau: Podemos representar as duas raízes reais por x' e x", assim: Exemplos: resolução a equação: Temos 29

30 Resumindo Dada a equação ax² + bx + c = 0, temos: Para Para Para, a equação tem duas raízes reais diferentes., a equação tem duas raízes reais iguais., a equação não tem raízes reais. 30

31 NOÇÕES DE LÓGICA SENTENÇA OU PROPOSIÇÃO Sentença ou proposição é um conjunto de palavras ou símbolos que exprimem uma idéia. Exemplos: a) O elefante é um mamífero b) As árvores falam. c) Há infinitos números primos. Nosso interesse irá se concentrar nas proposições que podem assumir apenas dois valores lógicos: verdadeiro ou falso. MODIFICADOR Uma proposição pode ser formada a partir de outra, pelo uso do modificador não. Ao acrescentar o modificador não a uma proposição obtemos a sua negação. Indicando uma proposição por p, sua negação será representada por ~ p, que se lê: não p. Exemplos: a) p: Isabel tem olhos azuis. ~ p: Isabel NÃO tem olhos azuis. b) q: dois é um número par ~ q: dois NÃO é um número par. Se uma proposição é verdadeira, sua negação será falsa. DA mesma forma, se uma proposição é falsa, sua negação será verdadeira. Temos, então, a seguinte tabela verdade: p V F ~ p F V 31

32 Exemplo: a) p: o gato é um animal (V) ~ p : o gato não é um animal (F) b) q: três não é um número ímpar (F) ~ q: três é um número ímpar (V) É fácil observar que, em qualquer caso: ~ (~ p) = p CONECTIVOS Conectivos são palavras usadas para formar uma proposição a partir de outra. Os principais conectivos são: e, ou, se... então, se e somente se. Exemplos de proposições formadas a partir de conectivos: a) dez é um número par e futebol é um esporte. b) Se hoje é Domingo então amanhã é quarta-feira. Denomina-se proposição simples ou atômica a toda proposição que não contenha nenhuma outra proposição, isto é, que não tenha nenhum conectivo. Ex.: hoje é feriado. Denomina-se proposição composta ou molecular à proposição formada pela combinação de duas ou mais proposições, isto é, que contenha ao menos um conectivo. Ex.: a laranja é uma fruta ou os leões são mansos. Sejam: P: a água do mar é salgada. Q: todo pássaro tem quatro pernas O CONECTIVO E ( /\ ) A proposição p /\ q será: a água do mar é salgada e todo pássaro tem quatro pernas. À proposição p /\ q dá-se o nome de conjunção. A conjunção p /\ q somente será verdadeira quando p e q forem verdadeiras. 32

33 Tem-se, então, a seguinte tabela - verdade: p q p /\ q V V V V F F F V F F V F Sejam: p: Raquel gosta de praia. q: José é pintor. O CONECTIVO OU ( \/ ) A proposição p \/ q será: Raquel gosta de praia ou José é pintor. À proposição p \/ q dá-se o nome de disjunção. A disjunção p \/ q somente será falsa quando ambas as proposições forem falsas. A tabela-verdade de uma disjunção é: p q p \/ q V V V V F V F V V F F F Sejam: p: hoje é Sábado. q: amanhã irei à praia. O CONECTIVO SE... ENTÃO ( ) A proposição p A proposição p q será: se hoje é Sábado então amanhã irei à praia. q é denominada condicional ou subcondicional. Vejamos o seguinte exemplo: José diz: se Sábado chover então ficarei estudando. 33

34 Considere, agora as seguintes situações e vejamos se José cumpriu sua palavra: a) Sábado choveu e José ficou estudando. José cumpriu sua palavra. b) Sábado choveu e José não ficou estudando. José não cumpriu sua palavra. c) Sábado não choveu e José ficou estudando. José cumpriu sua palavra, pois não disse o que faria caso não chovesse, o que significa que poderia ou não ficar estudando. d) Sábado não choveu e José não ficou estudando. José também cumpriu sua palavra, pelos mesmos motivos explicados na letra c. É fácil observar que a proposição p falsa. q somente será falsa quando apenas q for Sua tabela-verdade é: p q p q V V V V F F F V V F F V O CONECTIVO SE E SOMENTE SE ( ) Sejam: P: a lua é um satélite. Q: a Terra é um planeta. A proposição p q será: a lua é um satélite se e somente se a Terra é um planeta. A proposição p q recebe o nome de bicondicional ou bijunção. Tomemos o exemplo: Paulo diz: sairei de casa se e somente se o Palmeiras ganhar. Considere agora as situações seguintes: a) O Palmeiras ganhou e Paulo saiu de casa. Paulo cumpriu sua palavra. 34

35 b) O Palmeiras ganhou e Paulo não saiu de casa. Paulo não cumpriu sua palavra. c) O Palmeiras não ganhou e Paulo saiu de casa. Paulo não cumpriu sua palavra. d) O Palmeiras não ganhou e Paulo não saiu de casa. Paulo cumpriu sua palavra. A tabela-verdade de p q é: p q p q V V V V F F F V F F F V TAUTOLOGIA Denomina-se tautologia à proposição que é sempre verdadeira, independentemente dos valores lógicos das proposições simples que a integram. Exemplo: José diz: hoje é Domingo ou hoje não é Domingo Observe que José está sempre dizendo a verdade, não importa que dia seja hoje. Em nosso exemplo, temos a seguinte tautologia: p \/ ( ~ p), cuja tabela-verdade é: p ~ p p \/ ( ~ p ) V F V F V V CONTRADIÇÃO Denomina-se contradição à proposição que é sempre falsa, independentemente dos valores lógicos das proposições simples que a integram. Exemplo: hoje é Domingo e hoje não é Domingo. 35

36 Em nosso exemplo, temos a seguinte contradição: p /\ ( ~ p ), cuja tabela-verdade é: p ~ p p /\ ( ~ p ) V F F F V F EXERCÍCIOS 1) Três irmãos João, Eduardo e Ricardo jogavam futebol quando, em dado momento quebraram a vidraça da sala de sua mãe. Furiosa a mãe perguntou quem foi o responsável. Somente um dos três garotos dizia a verdade, e a mãe sabia que Eduardo estava mentindo. Então: a) Ricardo, além de mentir, quebrou a vidraça. b) João mentiu, mas não quebrou a vidraça. c) Ricardo disse a verdade. d) Não foi Ricardo que quebrou a vidraça. e) Quem quebrou a vidraça foi Eduardo ou João. 2) Existem três bolas: A, B e C. Pintei uma de vermelho, uma de branco e outra de azul, não necessariamente nesta ordem. Somente uma das seguintes afirmações é verdadeira: A é vermelha B não é vermelha C não é azul Então: a) A é azul, B é branca, C é vermelha. b) A é azul, B é vermelha, C é branca. c) A é branca, B é azul, C é vermelha. d) A é branca, B é vermelha, C é azul. e) A é vermelha, B é azul, C é branca. 36

37 3) Recebi um cartão onde estavam impressas 4 informações: Neste cartão exatamente uma sentença é falsa. Neste cartão exatamente duas sentenças são falsas. Neste cartão exatamente três sentenças são falsas. Neste cartão exatamente quatro sentenças são falsas. Quantas dessas afirmações são falsas? 4) Se Beto briga com Glória, então Glória vai ao cinema. Se Glória vai ao cinema, então Carla fica em casa. Se Carla fica em casa, então Raul briga com Carla. Ora. Raul não briga com Carla. Logo: a) Carla não fica em casa e Beto não briga com Glória. b) Carla fica em casa e Glória vai ao cinema. c) Carla não fica em casa e Glória vai ao cinema. d) Glória vai ao cinema e Beto briga com Glória. e) Glória não vai ao cinema e Beto briga com Glória. 5) Três irmãs Ana, Maria e Cláudia foram a uma festa com vestidos de cores diferentes. Uma vestia azul, a outra branco, e a terceira preto. Chegando à festa, o anfitrião pergunto quem era cada uma delas. A de azul respondeu: Ana é a que está de branco. A de branco falou: Eu sou Maria. E a de preto disse: Claudia é quem está de branco. Como o anfitrião sabia que Ana sempre diz a verdade, que Maria às vezes diz verdade, e que Cláudia nunca diz a verdade, ele foi capaz de identificar corretamente quem era cada pessoa. As cores dos vestidos de Ana, Maria e Cláudia eram, respectivamente: a) preto, branco, azul b) preto, azul, branco c) azul, preto, branco d) azul, branco, preto e) branco, azul, preto 6) Se Carlos é mais velho do que Pedro, então Maria e Júlia têm a mesma idade. Se Maria e Júlia têm a mesma idade, então João é mais moço do que Pedro. Se João é mais moço do que Pedro, então Carlos é mais velho do que Maria. Ora, Carlos não é mais velho do que Maria. Então: c) é mais velho do que Pedro, e Maria e Júlia têm a mesma idade. d) Carlos e João são mais moços do que Pedro. 37

38 e) Carlos não é mais velho do que Pedro, e Maria e Júlia não têm a mesma idade. 7) Toda criança é feliz. Algumas pessoas que usam óculos são infelizes. Logo: a) as pessoas que não usam óculos são felizes. b) Algumas crianças que usam óculos são infelizes. c) Todas as crianças que usam óculos são felizes. d) Nenhuma criança usa óculos. e) Todas as alternativas anteriores estão corretas. ATENÇÃO: nas questões abaixo envolvem seqüências de letras, utilize o alfabeto oficial que NÃO inclui as letras K, W e Y. 1) Complete a série: B D G L Q... (A) R (B) T (C) V (D) X (E) Z 2) A D F I : C F H... (A) I (B) J (C) L (D) N (E) P 3) Relacione as séries que possuem a mesma seqüência lógica e assinale a opção que contém a numeração correta> (1) A F B E ( ) H N L J (2) B G E D ( ) L P N L (3) L H E B ( ) H N I M (4) G L I G ( ) U R O L (A) (B) (C) (D) (E) ) A G E C = G N L I D J H F... (A) M S O Q (B) J M O Q (C) J Q P L (D) J Q O M (E) G O M J 38

39 5) (A) 9 (B) 36 (C) 42 (D) 48 (E) 64 6) B C F H M O O F C A C D F O R A D G I Q V I D D F H I N O C E H L R T... B D E L S T (A) T E C (B) E L T (C) T L (D) L E (E) T L E 7) 1 ; 16 ; 25 ; 64 ; (A) 82 (B) 81 (C) (D) 99 (E) ) Considerando as afirmativas abaixo, marque a única opção logicamente possível: I. Assinale A, e E estiver certa. II. Assinale a letra C, se B for incorreta. III. A letra E será o gabarito, se D for verdadeira. IV. Se D estiver correta, B também estará. 39

40 (A) (B) (C) (D) (E) 9) (A) 5 (B) 6 (C) 7 (D) 8 (E) 9 10) Assinale a opção que contém a sequência correta das quatro bolas, de acordo com as afirmativas abaixo: I- A bola amarela está depois da branca. II- A bola azul está antes da verde. III- A bola que está imediatamente após a azul é maior do que a que está antes dela. IV- A bola verde é a menor de todas. (A) Branca, amarela, azul e verde. (B) Branca, azul, amarela e verde. (C) Branca, azul, verde e amarela. (D) Azul, branca, amarela e verde. (E) Azul, branca, verde e amarela. 11) + + = = = 1 x x =... (A) 160 (B) 135 (C) 120 (D) 108 (E)

41 12) Se considerarmos que cada valor expresso nos círculo representa a soma dos números que estão nos 2 vértices que delimitam o respectivo lado do triângulo, a soma dos valores correspondentes aos vértices deste triângulo será igual a: (A) 21 (B) 25 (C) 30 (D) 35 (E) 40 y 14 x z 13) Os carros de Artur, Bernardo e Cesar são, não necessariamente nesta ordem, uma Brasília, uma Parati e um Santana. Um dos carros é cinza, um outro é verde, e o outro é azul. O carro de Artur é cinza; o carro de Cesar é o Santana; e o carro de Bernardo não é verde e não é a Brasília. As cores da Brasília, da Parati e do Santana são, respectivamente; a) cinza, verde e azul b) azul, cinza e verde c) azul, cinza e verde d) verde, azul e cinza 14) Um agente de viagens atende três amigas. Uma delas é loura, outra é morena e a outra é ruiva. O agente sabe que uma delas se chama Bete, outra se chama Elza e a outra se chama Sara. Sabe, ainda, que cada uma delas fará uma viagem a um país diferente da Europa: uma delas irá à Alemanha, outra irá à França e a outra irá à Espanha. Ao agente de viagens, que queria identificar o nome e o destino de cada uma, elas deram as seguintes informações: A loura: "Não vou à França nem à Espanha". A morena: "Meu nome não é Elza nem Sara". A ruiva: "Nem eu nem Elza vamos à França". O agente de viagens concluiu, então, acertadamente, que: a) A loura é Sara e vai à Espanha. b) A ruiva é Sara e vai à França. c) A ruiva é Bete e vai à Espanha. d) A morena é Bete e vai à Espanha. e) A loura é Elza e vai à Alemanha. 41

Números Primos, Fatores Primos, MDC e MMC

Números Primos, Fatores Primos, MDC e MMC Números primos são os números naturais que têm apenas dois divisores diferentes: o 1 e ele mesmo. 1) 2 tem apenas os divisores 1 e 2, portanto 2 é um número primo. 2) 17 tem apenas os divisores 1 e 17,

Leia mais

Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se

Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se efetuar a divisão. Essas regras são chamadas de critérios

Leia mais

TEORIA 6: EQUAÇÕES E SISTEMAS DO 2º GRAU MATEMÁTICA BÁSICA

TEORIA 6: EQUAÇÕES E SISTEMAS DO 2º GRAU MATEMÁTICA BÁSICA TEORIA 6: EQUAÇÕES E SISTEMAS DO 2º GRAU MATEMÁTICA BÁSICA Nome: Turma: Data / / Prof: Walnice Brandão Machado Equações de 2º grau Definições Denomina-se equação do 2º grau na incógnita x, toda equação

Leia mais

MATEMÁTICA. Aula 4. Professor : Dêner Rocha. Monster Concursos 1

MATEMÁTICA. Aula 4. Professor : Dêner Rocha. Monster Concursos 1 MATEMÁTICA Aula 4 Professor : Dêner Rocha Monster Concursos 1 Divisibilidade Critérios de divisibilidade São critérios que nos permite verificar se um precisarmos efetuar grandes divisões. número é divisível

Leia mais

Revisão de Matemática

Revisão de Matemática UNIVERSIDADE FEDERAL DO CEARÁ - UFC DEPARTAMENTO DE ENGENHARIA AGRÍCOLA DENA TOPOGRAFIA BÁSICA Revisão de Matemática Facilitador: Fabrício M. Gonçalves Unidades de medidas Unidade de comprimento (METRO)

Leia mais

Equações de 2º grau. Denomina-se equação do 2º grau na incógnita x, toda equação da forma: IR e

Equações de 2º grau. Denomina-se equação do 2º grau na incógnita x, toda equação da forma: IR e Equações de 2º grau Definições Denomina-se equação do 2º grau na incógnita x, toda equação da forma: ax 2 + bx + c = 0; a, b, c IR e Exemplo: x 2-5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e

Leia mais

a é sempre o coeficiente de x²; b é sempre o coeficiente de x, c é o coeficiente ou termo independente.

a é sempre o coeficiente de x²; b é sempre o coeficiente de x, c é o coeficiente ou termo independente. Definições Denomina-se equação do 2º grau na incógnita x, toda equação da forma: ax 2 + bx + c = 0; a, b, c Exemplo: x 2-5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e c = 6. 6x 2 - x - 1 = 0 é

Leia mais

O Quadro abaixo pode ser usado para a maioria das conversões de Unidades

O Quadro abaixo pode ser usado para a maioria das conversões de Unidades O Quadro abaixo pode ser usado para a maioria das conversões de Unidades Descrição Múltiplos Unidade Fundamental Submúltiplos Nome do Sufixo Quilo Hecto Deca X Deci Centi Mili Notação Cientifica 10³ 10²

Leia mais

Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! MATEMÁTICA BÁSICA

Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora!  MATEMÁTICA BÁSICA MATEMÁTICA BÁSICA CONJUNTOS Conjunto é um grupo de objeto e cada objeto que forma o conjunto é chamado elemento. Ex.: Conjunto de vogais do alfabeto Elementos: a, e, i, o, u Conjunto das cores da bandeira

Leia mais

MEDIDAS LINEARES. Um metro equivale à distância linear percorrida pela luz no vácuo, durante um intervalo de 1/ segundo.

MEDIDAS LINEARES. Um metro equivale à distância linear percorrida pela luz no vácuo, durante um intervalo de 1/ segundo. MEDIDAS LINEARES Um metro equivale à distância linear percorrida pela luz no vácuo, durante um intervalo de 1/299.792.458 segundo. Nome e símbolo As unidades do Sistema Internacional podem ser escritas

Leia mais

TRANSFORMAÇÕES DE UNIDADES

TRANSFORMAÇÕES DE UNIDADES TRANSFORMAÇÕES DE UNIDADES A) Unidades de Comprimento A unidade de principal de comprimento é o metro, entretanto existem situações em que essa unidade deixa de ser prática. Se quisermos medir grandes

Leia mais

75, 840 Lê-se "75 metros cúbicos e 840 decímetros cúbicos".

75, 840 Lê-se 75 metros cúbicos e 840 decímetros cúbicos. VOLUME Prof. Patricia Caldana Definimos volume como o espaço ocupado por um corpo ou a capacidade que ele tem de comportar alguma substância. As figuras espaciais como o cubo, paralelepípedo, cone, pirâmide,

Leia mais

Números Naturais Operações Fundamentais com Números Naturais *Adição; Subtração; Multiplicação e Divisão Exercícios

Números Naturais Operações Fundamentais com Números Naturais *Adição; Subtração; Multiplicação e Divisão Exercícios Curso de Elétrica... Matemática Básica Curso de Elétrica... Matemática Básica Sumário 1_Números Inteiros Números Naturais Operações Fundamentais com Números Naturais *Adição; Subtração; Multiplicação e

Leia mais

Planejamento Anual OBJETIVO GERAL

Planejamento Anual OBJETIVO GERAL Planejamento Anual Componente Curricular: Matemática Ano: 6º ano Ano Letivo: 2017 Professor(a): Eni OBJETIVO GERAL Desenvolver e aprimorar estruturas cognitivas de interpretação, análise, síntese, relação

Leia mais

a) 2 b) 3 c) 4 d) 5 e) 6

a) 2 b) 3 c) 4 d) 5 e) 6 Recordando operações básicas 01. Calcule as expressões abaixo: a) 2254 + 1258 = b) 300+590 = c) 210+460= d) 104+23 = e) 239 54 = f) 655-340 = g) 216-56= h) 35 x 15 = i) 50 x 210 = j) 366 x 23 = k) 355

Leia mais

Matemática Régis Cortes SISTEMA MÉTRICO

Matemática Régis Cortes SISTEMA MÉTRICO SISTEMA MÉTRICO 1 Unidades de medida ou sistemas de medida Para podermos comparar um valor com outro, utilizamos uma grandeza predefinida como referência, grandeza esta chamada de unidade padrão. As unidades

Leia mais

RESISTÊNCIA DOS MATERIAIS

RESISTÊNCIA DOS MATERIAIS 2 RESISTÊNCIA DOS MATERIAIS Revisão de Matemática Faremos aqui uma pequena revisão de matemática necessária à nossa matéria, e sem a qual poderemos ter dificuldades em apreender os conceitos básicos e

Leia mais

APOSTILA DE MATEMÁTICA PM/PA 2016

APOSTILA DE MATEMÁTICA PM/PA 2016 APOSTILA DE MATEMÁTICA PM/PA 2016 Olá, tudo bem? Sou o Prof. Arthur Lima, e resumi nas próximas páginas os pontos do edital de MATEMÁTICA da POLÍCIA MILITAR DO PARÁ, cujas provas serão aplicadas pela banca

Leia mais

NIVELAMENTO DE MATEMÁTICA

NIVELAMENTO DE MATEMÁTICA NIVELAMENTO DE MATEMÁTICA 1 Sumário Aula 1... 5 Números primos... 5 Fatoração de um número... 5 Método da tabela... 6 Mínimo múltiplo comum... 6 Máximo divisor comum... 7 Lista de exercícios... 8 Aula

Leia mais

ÁREA. Unidades de medida de área. Prof. Patricia Caldana

ÁREA. Unidades de medida de área. Prof. Patricia Caldana ÁREA Prof. Patricia Caldana Área ou superfície de uma figura plana tem a ver com o conceito (primitivo) de sua extensão (bidimensional). Usamos a área do quadrado de lado unitário como referência de unidade

Leia mais

3Parte. Soluções das fichas de reforço FICHA DE REFORÇO 1 PÁG. 251 FICHA DE REFORÇO 2 PÁG. 252 FICHA DE REFORÇO 3 PÁG. 253

3Parte. Soluções das fichas de reforço FICHA DE REFORÇO 1 PÁG. 251 FICHA DE REFORÇO 2 PÁG. 252 FICHA DE REFORÇO 3 PÁG. 253 Parte Soluções das fichas de reforço UNIDADE FICHA DE REFORÇO PÁG. aresta face vértice Sim, porque todas as faces são polígonos regulares iguais e em cada vértice encontram-se o mesmo número de faces.

Leia mais

PLANEJAMENTO ANUAL / TRIMESTRAL 2012 Conteúdos Habilidades Avaliação

PLANEJAMENTO ANUAL / TRIMESTRAL 2012 Conteúdos Habilidades Avaliação COLÉGIO LA SALLE BRASÍLIA Disciplina: Matemática Trimestre: 1º Números Naturais: - Sistema de numeração - Adição e subtração - Multiplicação e divisão - Traduzir em palavras números representados por algarismos

Leia mais

MEDIDAS. O tamanho de uma régua, a distância entre duas cidades, a altura de um poste e a largura de uma sala tudo isso é medido em comprimento.

MEDIDAS. O tamanho de uma régua, a distância entre duas cidades, a altura de um poste e a largura de uma sala tudo isso é medido em comprimento. MEDIDAS Comprimento O tamanho de uma régua, a distância entre duas cidades, a altura de um poste e a largura de uma sala tudo isso é medido em comprimento. Existem várias unidades que podem ser utilizadas

Leia mais

1.0. Conceitos Utilizar os critérios de divisibilidade por 2, 3, 5 e Utilizar o algoritmo da divisão de Euclides.

1.0. Conceitos Utilizar os critérios de divisibilidade por 2, 3, 5 e Utilizar o algoritmo da divisão de Euclides. Conteúdo Básico Comum (CBC) Matemática - do Ensino Fundamental do 6º ao 9º ano Os tópicos obrigatórios são numerados em algarismos arábicos Os tópicos complementares são numerados em algarismos romanos

Leia mais

SISTEMA MÉTRICO DECIMAL

SISTEMA MÉTRICO DECIMAL 1 - Medida de comprimento SISTEMA MÉTRICO DECIMAL No sistema métrico decimal, a unidade fundamental para medir comprimentos é o metro, cuja abreviação é m. Existem os múltiplos e os submúltiplos do metro,

Leia mais

RECRO MATEMÁTICA 6º ANO 1º BIMESTRE EIXO: NÚMEROS E OPERAÇÕES

RECRO MATEMÁTICA 6º ANO 1º BIMESTRE EIXO: NÚMEROS E OPERAÇÕES 6º ANO 1º BIMESTRE S Compreender o sistema de numeração decimal como um sistema de agrupamentos e trocas na base 10; Compreender que os números Naturais podem ser escritos de formas diferenciadas e saber

Leia mais

à situação. à situação.

à situação. à situação. Unidade 1 Números naturais 1. Números naturais 2. Sistemas de numeração 3. Tabela simples Reconhecer os números naturais. Identificar o antecessor e o sucessor numa sequência de números naturais. Identificar

Leia mais

O metro com seus múltiplos forma o Sistema Métrico Decimal que é apresentado no seguinte quadro:

O metro com seus múltiplos forma o Sistema Métrico Decimal que é apresentado no seguinte quadro: O metro com seus múltiplos forma o Sistema Métrico Decimal que é apresentado no seguinte quadro: Múltiplos Unidade Fundamental Submúltiplos Unidade Quilômetro Hectômetro Decâmetro Metro Decímetro Centímetro

Leia mais

Quadro de conteúdos MATEMÁTICA

Quadro de conteúdos MATEMÁTICA Quadro de conteúdos MATEMÁTICA 1 Apresentamos a seguir um resumo dos conteúdos trabalhados ao longo dos quatro volumes do Ensino Fundamental II, ou seja, um panorama dos temas abordados na disciplina de

Leia mais

Gabarito. 6. a) Quatro mil, setecentos e sessenta e nove unidades.

Gabarito. 6. a) Quatro mil, setecentos e sessenta e nove unidades. O COTIDIANO E OS NÚMEROS CAPÍTULO 1 Um pouco da história dos números 1. a) 32 d) 311 22 e) 1.000.110 211 f) 1.000.101 2. Não. DC = 600 e CD = 400. 3. a) VIII d) LI g) CIII CVI e) CDII h) CCCVIII DCCCIII

Leia mais

ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. Questão 01 [ 1,25 ]

ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. Questão 01 [ 1,25 ] MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 017 Gabarito Questão 01 [ 1,5 ] Encontre as medidas dos lados e ângulos de dois triângulos ABC diferentes tais que AC = 1, BC = e A BC = 0 Considere

Leia mais

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)

Leia mais

araribá matemática Quadro de conteúdos e objetivos Quadro de conteúdos e objetivos Unidade 1 Números inteiros adição e subtração

araribá matemática Quadro de conteúdos e objetivos Quadro de conteúdos e objetivos Unidade 1 Números inteiros adição e subtração Unidade 1 Números inteiros adição e subtração 1. Números positivos e números negativos Reconhecer o uso de números negativos e positivos no dia a dia. 2. Conjunto dos números inteiros 3. Módulo ou valor

Leia mais

PLANEJAMENTO ANUAL / TRIMESTRAL 2014 Conteúdos Habilidades Avaliação

PLANEJAMENTO ANUAL / TRIMESTRAL 2014 Conteúdos Habilidades Avaliação Disciplina: Matemática Trimestre: 1º PLANEJAMENTO ANUAL / TRIMESTRAL 2014 Conteúdos Fundamentais de Matemática Sistema de Numeração decimal As quatro operações fundamentais Compreender problemas Números

Leia mais

Disciplina: Matemática DIAGNÓSTICO PROF. REGENTE DOMÍNIOS / CONTEÚDOS DESCRIÇÃO DO CONTEÚDO ACOMPANHAMENTO DO PROFESSOR DA SAA. Não At.

Disciplina: Matemática DIAGNÓSTICO PROF. REGENTE DOMÍNIOS / CONTEÚDOS DESCRIÇÃO DO CONTEÚDO ACOMPANHAMENTO DO PROFESSOR DA SAA. Não At. Escola: Nome do Aluno: Professor Regente: Tempo de Permanência no Programa: Disciplina: Matemática Turma: Data Nasc.: / / Professor da Sala de Apoio: Entrada / / Saída / / DOMÍNIOS / CONTEÚDOS DESCRIÇÃO

Leia mais

NEEJA: NÚCLEO ESTADUAL DE EDUCAÇÃO DE JOVENS E ADULTOS CONSTRUINDO UM NOVO MUNDO MÓDULO 6 (OITAVA SÉRIE) PROFESSOR Ardelino R Puhl

NEEJA: NÚCLEO ESTADUAL DE EDUCAÇÃO DE JOVENS E ADULTOS CONSTRUINDO UM NOVO MUNDO MÓDULO 6 (OITAVA SÉRIE) PROFESSOR Ardelino R Puhl NEEJA: NÚCLEO ESTADUAL DE EDUCAÇÃO DE JOVENS E ADULTOS CONSTRUINDO UM NOVO MUNDO MÓDULO 6 (OITAVA SÉRIE) PROFESSOR Ardelino R Puhl MEDIDAS DE SUPERFÍCIE Introdução As medidas de superfície fazem parte

Leia mais

PLANO DE ENSINO Disciplina: Matemática 8 a série Professor: Fábio Girão. Competências Habilidades Conteúdos. I Etapa

PLANO DE ENSINO Disciplina: Matemática 8 a série Professor: Fábio Girão. Competências Habilidades Conteúdos. I Etapa PLANO DE ENSINO 2015 Disciplina: Matemática 8 a série Professor: Fábio Girão I Etapa Competências Habilidades Conteúdos Construir significados e ampliar os já existentes para os números naturais, inteiros,

Leia mais

Tema I Introdução à lógica bivalente e à teoria de conjuntos

Tema I Introdução à lógica bivalente e à teoria de conjuntos Tema I Introdução à lógica bivalente e à teoria de conjuntos Unidade 1 Proposições Páginas 13 a 9 1. a) 3 é uma designação. b) 3 = 6 é uma proposição. c) é o único número primo par é uma proposição. d)

Leia mais

Matéria: Matemática Assunto: Sistema Métrico Decimal Prof. Dudan

Matéria: Matemática Assunto: Sistema Métrico Decimal Prof. Dudan Matéria: Matemática Assunto: Sistema Métrico Decimal Prof. Dudan Matemática Sistema Métrico Decimal Definição: O SISTEMA MÉTRICO DECIMAL é parte integrante do Sistema de Medidas. É adotado no Brasil tendo

Leia mais

Capítulo 01. Unidades de medidas. Medidas de comprimento. exercitando. exercitando. Medidas agrárias. Medidas de superfície.

Capítulo 01. Unidades de medidas. Medidas de comprimento. exercitando. exercitando. Medidas agrárias. Medidas de superfície. Capítulo 01 Medidas de comprimento A unidade fundamental para medir comprimento é o metro; logo abaixo teremos seus múltiplos e submúltiplos. km hm dam m dm cm mm Observe o quadro. Sempre completamos a

Leia mais

Programação Anual. 6 ọ ano (Regime 9 anos) 5 ạ série (Regime 8 anos) VOLUME VOLUME

Programação Anual. 6 ọ ano (Regime 9 anos) 5 ạ série (Regime 8 anos) VOLUME VOLUME Programação Anual 6 ọ ano (Regime 9 anos) 5 ạ série (Regime 8 anos) 1 ọ 2 ọ 1. Sistemas de numeração Características de um sistema de numeração (símbolos e regras) Alguns sistemas de numeração (egípcio,

Leia mais

DISCIPLINA: MATEMÁTICA DISCRETA I PROFESSOR: GISLAN SILVEIRA SANTOS CURSO: SISTEMAS DE INFORMAÇÃO SEMESTRE: TURNO: NOTURNO

DISCIPLINA: MATEMÁTICA DISCRETA I PROFESSOR: GISLAN SILVEIRA SANTOS CURSO: SISTEMAS DE INFORMAÇÃO SEMESTRE: TURNO: NOTURNO DISCIPLINA: MATEMÁTICA DISCRETA I PROFESSOR: GISLAN SILVEIRA SANTOS CURSO: SISTEMAS DE INFORMAÇÃO SEMESTRE: 2018-2 TURNO: NOTURNO ALUNO a): 1ª Lista de Exercícios - Introdução à Lógica Matemática, Teoria

Leia mais

PLANEJAMENTO ANUAL / TRIMESTRAL 2013 Conteúdos Habilidades Avaliação

PLANEJAMENTO ANUAL / TRIMESTRAL 2013 Conteúdos Habilidades Avaliação Disciplina: Matemática Trimestre: 1º PLANEJAMENTO ANUAL / TRIMESTRAL 2013 Conteúdos Fundamentais de Matemática Sistema de Numeração decimal As quatro operações fundamentais Compreender problemas Números

Leia mais

unidade de milhar Centena dezena unidade ordem

unidade de milhar Centena dezena unidade ordem 1 REPRESENTAÇÃO NA FORMA DECIMAL A representação dos números fracionária já era conhecida há quase 3.000 anos, enquanto a forma decimal surgiu no século XVI com o matemático francês François Viète. O uso

Leia mais

CURSO ANUAL DE MATEMÁTICA VOLUME 1

CURSO ANUAL DE MATEMÁTICA VOLUME 1 CURSO ANUAL DE MATEMÁTICA VOLUME ) SISTEMA DE NUMERAÇÃO DECIMAL O sistema de numeração que usamos é o sistema de numeração decimal, pelo fato de contarmos os elementos em grupos de dez. Dezenas cada grupo

Leia mais

PLANO DE ENSINO Disciplina: Matemática 8 a série Professor: Fábio Girão. Competências e Habilidades Gerais da Disciplina

PLANO DE ENSINO Disciplina: Matemática 8 a série Professor: Fábio Girão. Competências e Habilidades Gerais da Disciplina PLANO DE ENSINO 2016 Disciplina: Matemática 8 a série Professor: Fábio Girão Competências e Habilidades Gerais da Disciplina Desenvolver a responsabilidade e o gosto pelo trabalho em equipe; Relacionar

Leia mais

SIMULADO OBJETIVO S4

SIMULADO OBJETIVO S4 SIMULADO OBJETIVO S4 6º ano - Ensino Fundamental 3º Trimestre Matemática Dia: 07/1 - sexta-feira Nome completo: Turma: Unidade: 018 ORIENTAÇÕES PARA APLICAÇÃO DA PROVA OBJETIVA - 3º TRI 1. A prova terá

Leia mais

Divisibilidade Múltiplos de um número Critérios de divisibilidade 5367

Divisibilidade Múltiplos de um número Critérios de divisibilidade 5367 Divisibilidade Um número é divisível por outro quando sua divisão por esse número for exata. Por exemplo: 20 : 5 = 4 logo 20 é divisível por 5. Múltiplos de um número Um número tem um conjunto infinito

Leia mais

- Dizemos que um número é divisor de outro quando o resto da divisão é igual a zero. Ex.: 5 é divisor de 30, pois 30: 5 = 6 e o resto é 0.

- Dizemos que um número é divisor de outro quando o resto da divisão é igual a zero. Ex.: 5 é divisor de 30, pois 30: 5 = 6 e o resto é 0. Noções conceituais MDC - Dizemos que um número é divisor de outro quando o resto da divisão é igual a zero. Ex.: 5 é divisor de 30, pois 30: 5 = 6 e o resto é 0. - Todo número natural é produto de dois

Leia mais

Medida de comprimento; Medida de massa; Medida de capacidade; Medida de tempo.

Medida de comprimento; Medida de massa; Medida de capacidade; Medida de tempo. Medida de comprimento; Medida de massa; Medida de capacidade; Medida de tempo. Medidas de comprimento Quando necessitamos medir a altura de uma pessoa, tamanho de uma mesa, comprar uma barra de cano ou

Leia mais

Professor: MARA BASTOS E SÔNIA VARGAS Turma: 61 Nota: Questão 5. a) 0,1692 km b) 16,92 km. c) 169,2 km d) 1,692 km. Questão 6. a) 270 km b) 260 km

Professor: MARA BASTOS E SÔNIA VARGAS Turma: 61 Nota: Questão 5. a) 0,1692 km b) 16,92 km. c) 169,2 km d) 1,692 km. Questão 6. a) 270 km b) 260 km ATENÇÃO Esta é uma avaliação individual e não são permitidas consultas a nenhum tipo de material didático. Utilize caneta azul ou preta, respostas à lápis não serão consideradas para efeito de revisão,

Leia mais

MÓDULO VII SISTEMAS DE UNIDADES DE MEDIDA 2ª PARTE

MÓDULO VII SISTEMAS DE UNIDADES DE MEDIDA 2ª PARTE MÓDULO VII SISTEMAS DE UNIDADES DE MEDIDA 2ª PARTE No módulo anterior, estudamos os Sistemas de Unidades de Comprimento, Massa e de Tempo. Nesse módulo iremos estudar outros Sistemas de Unidades de Medidas,

Leia mais

Conjuntos. Notações e Símbolos

Conjuntos. Notações e Símbolos Conjuntos A linguagem de conjuntos é interessante para designar uma coleção de objetos. Quando os estatísticos selecionam indivíduos de uma população eles usam a palavra amostra, frequentemente. Todas

Leia mais

araribá matemática Quadro de conteúdos e objetivos Quadro de conteúdos e objetivos Unidade 1 Potências Unidade 2 Radiciação

araribá matemática Quadro de conteúdos e objetivos Quadro de conteúdos e objetivos Unidade 1 Potências Unidade 2 Radiciação Unidade 1 Potências 1. Recordando potências Calcular potências com expoente natural. Calcular potências com expoente inteiro negativo. Conhecer e aplicar em expressões as propriedades de potências com

Leia mais

Colégio Técnico São Bento. Noções de Matemática

Colégio Técnico São Bento. Noções de Matemática Colégio Técnico São Bento Noções de Matemática SUMÁRIO Capítulo 1 - Unidades de Comprimento... 3 1.1 Conversão de Medidas... 4 1.2 Unidades de comprimento... 4 1.2 Unidades de Área... 5 1.3 Unidades de

Leia mais

MATEMÁTICA 1 MÓDULO 2. Divisibilidade. Professor Matheus Secco

MATEMÁTICA 1 MÓDULO 2. Divisibilidade. Professor Matheus Secco MATEMÁTICA 1 Professor Matheus Secco MÓDULO 2 Divisibilidade 1. DIVISIBILIDADE 1.1 DEFINIÇÃO: Dizemos que o inteiro a é divisível pelo inteiro b (ou ainda que a é múltiplo de b) se existe um inteiro c

Leia mais

E essa procura pela abstração da natureza foi fundamental para a evolução, não só, mas também, dos conjuntos numéricos

E essa procura pela abstração da natureza foi fundamental para a evolução, não só, mas também, dos conjuntos numéricos A história nos mostra que desde muito tempo o homem sempre teve a preocupação em contar objetos e ter registros numéricos. Seja através de pedras, ossos, desenhos, dos dedos ou outra forma qualquer, em

Leia mais

Receita para ter sucesso em Matemática

Receita para ter sucesso em Matemática Receita para ter sucesso em Matemática Muita atenção nas aulas + Estudo q. b. + Interesse + Organização + Salpicar com muita brincadeira nos tempos livres + Misturar com a disponibilidade, a exigência

Leia mais

Divisibilidade: múltiplos e divisores

Divisibilidade: múltiplos e divisores DIVISIBILIDADE: MÚLTIPLOS E DIVISORES Divisibilidade: múltiplos e divisores Entender o conceito de múltiplos e divisores; Conhecer as regras de divisibilidade. 1) a) {0, 3, 6, 9...} b) 0, 13 e 26 c) 21,

Leia mais

RESUMO MATEMÁTICA 6ºANO

RESUMO MATEMÁTICA 6ºANO RESUMO MATEMÁTICA ºANO ESTATÍSTICA MÉDIA para calcular a média de um conjunto de valores, divide-se a soma de todos esses valores pelo número total de dados. MODA é o dado que ocorre com maior frequência,

Leia mais

D 7 C 4 U 5. MATEMÁTICA Revisão Geral Aula 1 - Parte 1. Professor Me. Álvaro Emílio Leite. Valor posicional dos números. milésimos décimos.

D 7 C 4 U 5. MATEMÁTICA Revisão Geral Aula 1 - Parte 1. Professor Me. Álvaro Emílio Leite. Valor posicional dos números. milésimos décimos. MATEMÁTICA Revisão Geral Aula 1 - Parte 1 Professor Me. Álvaro Emílio Leite O que é um algarismo? É um símbolo que utilizamos para formar e representar os números. Exemplo: Os algarismos que compõem o

Leia mais

Disciplina: Matemática. Período: I. Professor (a): Maria Aparecida Holanda Veloso e Liliane Cristina de Oliveira Vieira

Disciplina: Matemática. Período: I. Professor (a): Maria Aparecida Holanda Veloso e Liliane Cristina de Oliveira Vieira COLÉGIO LA SALLE BRASILIA Associação Brasileira de Educadores Lassalistas ABEL SGAS Q. 906 Conj. E C.P. 320 Fone: (061) 3443-7878 CEP: 70390-060 - BRASÍLIA - DISTRITO FEDERAL Disciplina: Matemática Período:

Leia mais

3ª Igor/ Eduardo. Competência Objeto de aprendizagem Habilidade

3ª Igor/ Eduardo. Competência Objeto de aprendizagem Habilidade Matemática 3ª Igor/ Eduardo 9º Ano E.F. Competência Objeto de aprendizagem Habilidade C3 - Espaço e forma Números racionais. Números irracionais. Números reais. Relações métricas nos triângulos retângulos.

Leia mais

MATEMÁTICA I. Ana Paula Figueiredo

MATEMÁTICA I. Ana Paula Figueiredo I Ana Paula Figueiredo Números Reais IR O conjunto dos números Irracionais reunido com o conjunto dos números Racionais (Q), formam o conjunto dos números Reais (IR ). Assim, os principais conjuntos numéricos

Leia mais

Exemplos: Observe: Exemplos: Observe:

Exemplos: Observe: Exemplos: Observe: Exemplos: a) ( x) 4 4x + x ( x y) x 4xy + y ( ) 8 4 + (7 ) 49 8 + 4 (7 ) 5 1. INTRODUÇÃO A Álgebra é a parte da Matemática em que se empregam outros símbolos além dos algarismos. Esses símbolos, ligados

Leia mais

8º ANO ENSINO FUNDAMENTAL Matemática. 1º Trimestre 45 questões 26 de abril (Sexta-feira)

8º ANO ENSINO FUNDAMENTAL Matemática. 1º Trimestre 45 questões 26 de abril (Sexta-feira) 8º ANO ENSINO FUNDAMENTAL Matemática S º Trimestre 5 questões 6 de abril (Sexta-feir 09 SIMULADO OBJETIVO 8º ANO º TRIMESTRE. O número, corresponde à fração 0. 00. 000.. 99. MATEMÁTICA COMENTÁRIO/RESOLUÇÃO:

Leia mais

COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES

COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES SANTO ANDRÉ 2012 MEDIDAS DE SUPERFÍCIES (ÁREA): No sistema métrico decimal, devemos lembrar que,

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 7.º ANO PLANIFICAÇÃO ANUAL Planificação 7º ano 2010/2011 Página 1 DOMÍNIO TEMÁTICO: NÚMEROS

Leia mais

Colégio Naval 2003 (prova verde)

Colégio Naval 2003 (prova verde) Colégio Naval 00 (prova verde) 01) Analise as seguintes afirmativas sobre um sistema S se duas equações do primeiro grau com duas incógnitas X e Y. I - S sempre terá ao menos uma solução, se os seus termos

Leia mais

Soluções Comentadas Matemática Curso Mentor Aprendizes-Marinheiros. Barbosa, L.S.

Soluções Comentadas Matemática Curso Mentor Aprendizes-Marinheiros. Barbosa, L.S. Soluções Comentadas Matemática Curso Mentor Aprendizes-Marinheiros Barbosa, L.S. leonardosantos.inf@gmail.com 6 de dezembro de 2014 2 Sumário I Provas 5 1 Matemática 2013/2014 7 2 Matemática 2014/2015

Leia mais

MATEMÁTICA ENSINO FUNDAMENTAL (ANOS INICIAIS)

MATEMÁTICA ENSINO FUNDAMENTAL (ANOS INICIAIS) ENSINO FUNDAMENTAL (ANOS INICIAIS) A proposta pedagógica dos colégios jesuítas está centrada na formação da pessoa toda e para toda vida; trabalhamos para realizar uma aprendizagem integral que leve o

Leia mais

1º Período. Figuras geométricas

1º Período. Figuras geométricas ii 1º Período Figuras geométricas Quadrado polígono com quatro lados iguais e com quatro ângulos rectos. Rectângulo polígono com quatro lados iguais dois a dois e com quatro ângulos rectos. Trapézio rectângulo

Leia mais

MATEMÁTICA SARGENTO DA FAB

MATEMÁTICA SARGENTO DA FAB MATEMÁTICA BRUNA PAULA 1 COLETÂNEA DE QUESTÕES DE MATEMÁTICA DA EEAr (QUESTÕES RESOLVIDAS) QUESTÃO 1 (EEAr 2013) Se x é um arco do 1º quadrante, com sen x a e cosx b, então é RESPOSTA: d QUESTÃO 2 (EEAr

Leia mais

IGUALDADES EM IR IDENTIDADES NOTÁVEIS

IGUALDADES EM IR IDENTIDADES NOTÁVEIS IGUALDADES EM IR Uma relação muito importante definida em IR (conjunto dos números reais) é a relação de igualdade. Na igualdade A = B, A é o primeiro membro e B é o segundo membro. As igualdades entre

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 7.º ANO PLANIFICAÇÃO GLOBAL Múltiplos e divisores. Critérios de divisibilidade. - Escrever múltiplos

Leia mais

Como é possível afirmar que a sala ficou com 5,5 m de comprimento após a ampliação?

Como é possível afirmar que a sala ficou com 5,5 m de comprimento após a ampliação? EQUAÇÕES DO º GRAU CONTEÚDOS Equações do º grau Processo resolutivo de uma equação Discriminante de uma equação AMPLIANDO SEUS CONHECIMENTOS Iniciaremos agora o estudo das equações do º grau com uma incógnita.

Leia mais

Aula Inaugural Curso Alcance 2017

Aula Inaugural Curso Alcance 2017 Aula Inaugural Curso Alcance 2017 Revisão de Matemática Básica Professores: Me Carlos Eurico Galvão Rosa e Me. Márcia Mikuska Universidade Federal do Paraná Campus Jandaia do Sul cegalvao@ufpr.br 06 de

Leia mais

MATEMÁTICA ENSINO FUNDAMENTAL (ANOS INICIAIS)

MATEMÁTICA ENSINO FUNDAMENTAL (ANOS INICIAIS) ENSINO FUNDAMENTAL (ANOS INICIAIS) A proposta pedagógica dos colégios jesuítas está centrada na formação da pessoa toda e para toda vida; trabalhamos para realizar uma aprendizagem integral que leve o

Leia mais

Colégio Naval 2008/2009 (PROVA VERDE)

Colégio Naval 2008/2009 (PROVA VERDE) Colégio Naval 008/009 (PROVA VERDE) 01) Um triângulo retângulo, de lados expressos por números inteiros consecutivos, está inscrito em um triângulo eqüilátero T de lado x. Se o maior cateto é paralelo

Leia mais

MATEMÁTICA. Revisão para o testes: dicas e bizus Prof.: Danillo Alves

MATEMÁTICA. Revisão para o testes: dicas e bizus Prof.: Danillo Alves MATEMÁTICA Revisão para o testes: dicas e bizus Prof.: Danillo Alves OPERAÇÕES MATEMÁTICAS ADIÇÃO SUBTRAÇÃO MULTIPLICAÇÃO DIVISÃO DOS NÚMEROS ADIÇÃO Adição é uma das operações básicas da álgebra. Na sua

Leia mais

MATEMÁTICA. ÍNDICE Conjuntos Numéricos... 2

MATEMÁTICA. ÍNDICE Conjuntos Numéricos... 2 MATEMÁTICA ÍNDICE Conjuntos Numéricos... 2 1 1 Matemática 2 Conjuntos Numéricos 00 Introdução Os conjuntos numéricos mostram a evolução do homem no decorrer do tempo mostrando que, de acordo com suas necessidades,

Leia mais

GAMA. Universidade Federal de Pelotas. Atividades de Reforço em Cálculo. Aula 01. Instituto de Física e Matemática Pró-reitoria de Ensino

GAMA. Universidade Federal de Pelotas. Atividades de Reforço em Cálculo. Aula 01. Instituto de Física e Matemática Pró-reitoria de Ensino Universidade Federal de Pelotas Instituto de Física e Matemática Pró-reitoria de Ensino Atividades de Reforço em Cálculo Módulo de Matemática Básica Aula 01 019/1 Projeto GAMA Grupo de Apoio em Matemática

Leia mais

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A.

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A. Capítulo 1 Números Reais 1.1 Conjuntos Numéricos Um conjunto é uma coleção de elementos. A relação básica entre um objeto e o conjunto é a relação de pertinência: quando um objeto x é um dos elementos

Leia mais

PRÉ-VESTIBULINHO MATEMÁTICA. Leonardo Garibaldi Rigon Luís Otávio Lima Rochel

PRÉ-VESTIBULINHO MATEMÁTICA. Leonardo Garibaldi Rigon Luís Otávio Lima Rochel PRÉ-VESTIBULINHO MATEMÁTICA Leonardo Garibaldi Rigon Luís Otávio Lima Rochel Setembro/2012 MATEMÁTICA FRAÇÃO Algumas vezes, a/b é uma número natural. Outras vezes, isso não acontece. Neste caso, qual é

Leia mais

(PROVA DE MATEMÁTICA DO CONCURSO DE ADMISSÃO À 5ª SÉRIE CMB ANO 2006 / 07) MÚLTIPLA-ESCOLHA. (Marque com um X a única alternativa certa)

(PROVA DE MATEMÁTICA DO CONCURSO DE ADMISSÃO À 5ª SÉRIE CMB ANO 2006 / 07) MÚLTIPLA-ESCOLHA. (Marque com um X a única alternativa certa) MÚLTIPLA-ESCOLHA (Marque com um X a única alternativa certa) Item 01. Sabendo-se que = mdc(8,7) de ( - A) B. ) zero ) 1 ) 56 ) 62 ) 63 A e B = mmc (9,7) Item 02. Determine o valor da expressão 1 + 2 +

Leia mais

PC Polícia Civil do Estado de São Paulo PAPILOSCOPISTA

PC Polícia Civil do Estado de São Paulo PAPILOSCOPISTA PC Polícia Civil do Estado de São Paulo PAPILOSCOPISTA Concurso Público 2016 Conteúdo Teoria dos conjuntos. Razão e proporção. Grandezas proporcionais. Porcentagem. Regras de três simples. Conjuntos numéricos

Leia mais

LEIA COM ATENÇÃO E SIGA RIGOROSAMENTE ESTAS INSTRUÇÕES

LEIA COM ATENÇÃO E SIGA RIGOROSAMENTE ESTAS INSTRUÇÕES DEPARTAMENTO DE RECURSOS HUMANOS - DRH SELEÇÃO PÚBLICA PARA FORMAÇÃO DE CADASTRO DE RESERVA DE PROFESSOR SUBSTITUTO PARA A SECRETARIA MUNICIPAL DE EDUCAÇÃO EDITAL 28/2012 PROFESSOR DE MATEMÁTICA LOCAL

Leia mais

SEAM - SOCIEDADE EDUCACIONAL DO AMANHÃ

SEAM - SOCIEDADE EDUCACIONAL DO AMANHÃ SEAM - SOCIEDADE EDUCACIONAL DO AMANHÃ MÚLTIPLOS E DIVISORES PROFª EDNALVA DOS SANTOS Um Objeto de Aprendizagem é um arquivo digital (imagem, filme, etc.) que pretende ser utilizado para fins pedagógicos

Leia mais

Monster. Concursos. Matemática 1 ENCONTRO

Monster. Concursos. Matemática 1 ENCONTRO Monster Concursos Matemática 1 ENCONTRO CONJUNTOS NUMÉRICOS Conjuntos numéricos podem ser representados de diversas formas. A forma mais simples é dar um nome ao conjunto e expor todos os seus elementos,

Leia mais

Datas de Avaliações 2016

Datas de Avaliações 2016 ROTEIRO DE ESTUDOS MATEMÁTICA (6ºB, 7ºA, 8ºA e 9ºA) SÉRIE 6º ANO B Conteúdo - Sucessor e Antecessor; - Representação de Conjuntos e as relações entre eles: pertinência e inclusão ( ). - Estudo da Geometria:

Leia mais

Qual o raio de um círculo com 53,38 cm de perímetro? (considera = 3,14) Qual o diâmetro de um círculo com 37,68 cm de perímetro?

Qual o raio de um círculo com 53,38 cm de perímetro? (considera = 3,14) Qual o diâmetro de um círculo com 37,68 cm de perímetro? Qual o raio de um círculo com 53,38 cm de perímetro? (considera = 3,14) Qual o diâmetro de um círculo com 37,68 cm de perímetro? (considera = 3,14) Qual o perímetro de um círculo com 18 cm de raio? (considera

Leia mais

REVISÃO DOS CONTEÚDOS

REVISÃO DOS CONTEÚDOS REVISÃO DOS CONTEÚDOS Prof. Patricia Caldana Seno, Cosseno e Tangente de um arco Dado um arco trigonométrico AP de medida α, chamam-se cosseno e seno de α a abscissa e a ordenada do ponto P, respetivamente.

Leia mais

PLANIFICAÇÃO ANUAL MATEMÁTICA 4º ANO

PLANIFICAÇÃO ANUAL MATEMÁTICA 4º ANO PLANIFICAÇÃO ANUAL MATEMÁTICA 4º ANO Domínios Subdomínios Objetivos Descritores/ Metas de Aprendizagem ORGANIZAÇÃO E TRATAMENTO DE DADOS Tratamento dados de Representar e interpretar dados e situações

Leia mais

MATEMÁTICA DESCRITORES BIM3/2017

MATEMÁTICA DESCRITORES BIM3/2017 4º ANO Calcular o resultado de uma adição ou de uma subtração de números naturais. Calcular o resultado de uma multiplicação ou de uma divisão de números naturais Ler informações e dados apresentados em

Leia mais

Conteúdos Ideias-Chave Objectivos específicos. múltiplo de outro número, este é divisor do primeiro.

Conteúdos Ideias-Chave Objectivos específicos. múltiplo de outro número, este é divisor do primeiro. Capítulo 1 Números Naturais Múltiplos e Divisores Se um número natural é múltiplo de outro número, este é divisor do primeiro. Números primos e números compostos Decomposição de um número em factores primos

Leia mais

Segue, abaixo, o Roteiro de Estudo para a Verificação Global 2 (VG2), que acontecerá no dia 26 de junho de 2013 (a confirmar).

Segue, abaixo, o Roteiro de Estudo para a Verificação Global 2 (VG2), que acontecerá no dia 26 de junho de 2013 (a confirmar). Divisibilidade - Regras de divisibilidade por 2, 3, 4, 5, 6, 8, 9 e 10. - Divisores de um número natural. - Múltiplos de um número natural. - Números primos. - Reconhecimento de um número primo. - Decomposição

Leia mais

MATEMÁTICA PLANEJAMENTO 4º BIMESTRE º B - 11 Anos

MATEMÁTICA PLANEJAMENTO 4º BIMESTRE º B - 11 Anos PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 4º

Leia mais

,12 2, = , ,12 = = (2012) 2.

,12 2, = , ,12 = = (2012) 2. 1 QUESTÃO 1 Usando a comutatividade da multiplicação, podemos escrever 1000 0,1,01 100 = 1000,01 00 0,1 = 01 01 = (01). QUESTÃO Observe que para obter o primeiro retângulo foi necessário escrever quatro

Leia mais

Matemática PROFESSOR: Francisco Monteiro OBJETIVO GERAL

Matemática PROFESSOR: Francisco Monteiro OBJETIVO GERAL ANO DE ESCOLARIDADE: 8º ano (A e B matutino e A vespertino) DISCIPLINA: Matemática PROFESSOR: Francisco Monteiro OBJETIVO GERAL Resolver situações-problema, construindo estratégias e fazendo uso de diversas

Leia mais

SUPERINTENDÊNCIA DE ACOMPANHAMENTO DOS PROGRAMAS INSTITUCIONAIS NÚCLEO DE ORIENTAÇÃO PEDAGÓGICA GERÊNCIA DE DESENVOLVIMENTO CURRICULAR

SUPERINTENDÊNCIA DE ACOMPANHAMENTO DOS PROGRAMAS INSTITUCIONAIS NÚCLEO DE ORIENTAÇÃO PEDAGÓGICA GERÊNCIA DE DESENVOLVIMENTO CURRICULAR SUPERINTENDÊNCIA DE ACOMPANHAMENTO DOS PROGRAMAS INSTITUCIONAIS NÚCLEO DE ORIENTAÇÃO PEDAGÓGICA GERÊNCIA DE DESENVOLVIMENTO CURRICULAR 2ª AVALIAÇÃO DIAGNÓSTICA DO 9º ANO DO ENSINO FUNDAMENTAL 2012 MATEMÁTICA

Leia mais