AULA EXTRA Análise de Regressão Logística

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "AULA EXTRA Análise de Regressão Logística"

Transcrição

1 1 AULA EXTRA Análse de Regressão Logístca Ernesto F. L. Amaral 13 de dezembro de 2012 Metodologa de Pesqusa (DCP 854B)

2 VARIÁVEL DEPENDENTE BINÁRIA 2 O modelo de regressão logístco é utlzado quando a varável resposta é qualtatva com dos resultados possíves. Probabldade de sucesso = p Probabldade de fracasso = 1 p = q Chance = (prob. de sucesso) / (prob. de fracasso) Por exemplo, se a probabldade de sucesso é 0,75, a chance é gual a: p / (1 p) = p / q = 0,75 / 0,25 = 3

3 RAZÃO DE CHANCES 3 Razão de chances para varáves dependentes bnáras é a razão entre a chance de uma lnha (ou coluna) de uma tabela 2x2, dvdda pela chance da outra lnha (ou coluna):

4 EXEMPLO DE CÁLCULO DE RAZÃO DE CHANCES 4 Sexo Dlma Serra Total Homem Mulher Total Chance de votar na Dlma entre homens: p 1 / (1-p 1 ) = (52/91) / (39/91) = 0,57 / 0,43 = 1,33 Chance de votar na Dlma entre mulheres: p 2 / (1-p 2 ) = (43/87) / (44/87) = 0,49 / 0,51 = 0,96 Razão de chances de votar na Dlma entre homens, em relação às mulheres: [p 1 /(1- p 1 )] / [p 2 /(1- p 2 )] = 1,33 / 0,96 = 1,39

5 FUNÇÃO DE RESPOSTA QUANTO VARIÁVEL DEPENDENTE É BINÁRIA Vamos consderar o modelo de regressão lnear smples: Y X Y A resposta esperada é dada por: Y X E 1 0 ) ( Na regressão logístca, Y possu uma dstrbução de probabldade: Y P Y Y P Y 1 0) ( 0 1) ( 1 5

6 LOGITO 6 O logto (logt) equvale ao logartmo natural (base e) da chance: A função logístca é dada pelo logto-nverso (ant-logt) que nos permte transformar o logto em probabldade:

7 RAZÃO DE CHANCES (ODDS RATIO) 7 Compara a chance de sucesso de um grupo em relação a outro grupo: Portanto, a dferença entre os logtos de duas probabldades equvale ao logartmo da razão de chances.

8 RAZÃO DE CHANCES (ODDS RATIO) 8 Razão de chance é dada pela expressão exp(γ): chance de sucesso no grupo A, em relação ao grupo B. Se exp(γ) for maor que uma undade, chance de sucesso em A é maor que em B. Ex.: exp(γ)=1,17, chance de sucesso em A é 1,17 vezes maor do que em B, ou seja, é 17% maor do que em B. Se exp(γ) for menor que uma undade, chance de sucesso em A é menor que em B. Ex.: exp(γ)=0,61, chance de sucesso em A é 0,61 vezes a chance de B, ou seja, é 39% menor do que em B.

9 DEFINIÇÃO DO VALOR ESPERADO 9 Pela defnção de valor esperado, obtemos: E( Y ) X 0 1 Assm, a resposta méda, quando a varável resposta é uma varável bnára (1 ou 0), representa a probabldade de Y = 1, para o nível da varável ndependente X.

10 REGRESSÃO LOGÍSTICA COM UMA VARIÁVEL INDEPENDENTE 10 Consderações teórcas e prátcas sugerem que quando a varável resposta é bnára, a forma da função resposta será frequentemente curvlínea. As funções respostas (valores predtos) das fguras são denomnadas funções logístcas, cuja expressão é: E ( Y) exp( 0 1X ) 1exp( X 0 1 ) Forma equvalente: E( Y ) 1 exp X 1 0 1

11 VARIÁVEL DEPENDENTE ESTIMADA PELA VARIÁVEL INDEPENDENTE OBSERVADA 11 E ( Y) exp( 0 1X ) 1exp( X ) 0 1

12 VARIÁVEL DEPENDENTE ESTIMADA PELA VARIÁVEL INDEPENDENTE OBSERVADA 12 E exp( 0 1X ) ( Y) 1exp( X ) 0 1

13 REGRESSÃO LOGÍSTICA COM MAIS DE UMA VARIÁVEL INDEPENDENTE 13 Função com uma varável ndependente: E( Y) exp( 0 1X ) 1exp( X ) Função com uma sére de varáves ndependentes: E( Y ) E( Y) (1 0 exp( β X) 1exp( β X) Uma forma equvalente é dada por: exp( β ' ' ' 1 X)) 1

14 EQUAÇÃO DE REGRESSÃO 14 A parte lnear da equação da regressão logístca é usada para encontrar a probabldade de estar em uma categora, baseado na combnação de varáves ndependentes. Os coefcentes de regressão e seus erros padrões são estmados com métodos de máxma verossmlhança.

15 AJUSTANDO O MODELO A função log-verossmlhança estende-se dretamente para o modelo de regressão logístca múltpla, dada por: log L(β) n e Y 1 ' ( β X ) n 1 log e (1 exp( β Métodos numércos devem ser utlzados para encontrar os valores de 0, 1,..., p-1 para maxmzar a expressão. As estmatvas de máxma verossmlhança serão denotadas por b 0, b 1,...,b p-1. A função resposta logístca ajustada e os valores ajustados são dados por: ˆ exp( b X) 1 ' exp( b X) ˆ exp( b X ) 1 ' exp( b X ) ' ' (1 (1 exp( b ' exp( X)) b ' X -1 )) ' X -1 )) 15

16 ESTIMADORES DE MÁXIMA VEROSSIMILHANÇA Não exste uma solução analítca para os valores 0 e 1 que maxmzam a função de verossmlhança. Métodos numércos são necessáros para encontrar as estmatvas de máxma verossmlhança, b 0 e b 1. Encontradas as estmatvas b 0 e b 1, substtu-se esses valores para encontrar os valores ajustados. O valor ajustado para o -ésmo valor é dado por: ˆ exp( b0 b1 X ) 1exp( b b X ) Se usarmos a transformação logt, a função é: ˆ A função de resposta ajustada é dada por: ' ˆ b0 b1 X onde: ' ˆ ˆ log 0 1 exp( b0 b1 X ) 1exp( b b X ) 0 1 e 1 ˆ 16

17 TESTE DE QUI-QUADRADO DA RAZÃO DE VEROSSIMILHANÇA Logartmo da verossmlhança (Log-lkelhood): N log lkelhood [ Y ln( Y ) (1 Y )ln(1 Y )] Modelos são comparados com uso dos logartmos das verossmlhanças dos modelos: ou 1 X 2 = 2 [(log-lkelhood do modelo restrto) (log lkelhood do modelo rrestrto)] X 2 = 2 [(log-lkelhood do modelo rrestrto) (log lkelhood do modelo restrto)] 17 Modelos precsam ser annhados para comparação, ou seja, todas varáves ndependentes do menor modelo (restrto) devem estar ncluídas no maor modelo (rrestrto).

18 MAIS TESTE DE QUI-QUADRADO O teste de qu-quadrado da razão da verossmlhança é gual ao ajuste do modelo restrto ( 2*log. da verossmlhança do modelo anteror) menos o ajuste do modelo rrestrto ( 2*log. da versossmlhança do modelo atual). O logartmo da verossmlhança multplcado por 2 é usado para testar hpóteses entre modelos annhados, sendo que seu valor não tem um sgnfcado específco. Esta razão é testada em uma dstrbução de qu-quadrado, levando em consderação a dferença entre os graus de lberdade (número de varáves ndependentes do modelo rrestrto menos o número de varáves ndependentes do modelo restrto). Se o teste de qu-quadrado é sgnfcante, é afrmado que o modelo rrestrto não pode ter redução de varáves ndependentes, dado um nível de sgnfcânca específco. 18

19 TESTE DE WALD 19 Cada coefcente é avalado usando o teste de Wald, que é smplesmente um teste de escore z: Os testes dos coefcentes são aproxmadamente escores z, os quas são posterormente elevados ao quadrado, fazendo com que esta estatístca tenha dstrbução de qu-quadrado. Esse teste é usado para avalar a sgnfcânca de cada coefcente (β) no modelo. O teste de Wald é conhecdo por ser conservador (aumenta o erro II).

20 ERROS TIPO I E TIPO II 20 Ao testar H 0, chegamos a uma conclusão de rejetá-la ou de dexar de rejetá-la. Tas conclusões pode estar corretas ou erradas. α: probabldade de erro tpo I (probabldade de rejetar hpótese nula quando ela é verdadera). β: probabldade de erro tpo II (probabldade de dexar de rejetar hpótese nula quando ela é falsa).

21 PSEUDO R 2 21 Há váras meddas de assocação que pretendem servr como um R 2 na regressão logístca. Porém, nenhuma destas meddas é realmente o R 2. A nterpretação não é a mesma, mas eles podem ser vstos como uma aproxmação da varação na varável dependente, devdo à varação nas varáves ndependentes. Para comparação de grau de ajuste entre modelos é mas aproprado fazer o teste de qu-quadrado da razão da verossmlhança.

22 MODELO LOGÍSTICO MULTINOMIAL 22 É possível estmar uma regressão logístca em que a varável dependente tem mas de duas categoras. Ou seja, o modelo logístco pode ser estenddo quando a varável resposta qualtatva tem mas do que duas categoras. Por exemplo, posconamento deológco: esquerda, centro, dreta. São geradas k 1 equações, sendo k o número de categoras. As equações geram probabldades para predzer se uma categora está acma/abaxo da categora de referênca.

23 EXEMPLO DE MODELO LOGÍSTICO 23

24 IMPACTO DO BOLSA FAMÍLIA SOBRE ABANDONO ESCOLAR Banco de dados de Avalação de Impacto do Programa Bolsa Famíla (AIBF) de 2005 do Mnstéro do Desenvolvmento Socal e Combate à Fome (MDS). 24 Modelos logístcos foram estmados para três grupos de domcílos, segundo lmtes máxmos da renda domclar per capta: 1) R$50,00: população com pores condções sócoeconômcas. 2) R$100,00: lmte ofcal de renda defndo para elegbldade ao PBF. 3) R$200,00: garante representatvdade amostral em todos grupos.

25 VARIÁVEL DEPENDENTE 25 Varável dependente ndca se a crança abandonou a escola entre 2004 e 2005: No ano passado, frequentava escola ou creche? Frequenta escola ou creche atualmente? Fo realzada análse multvarada, controlando as estmatvas por característcas do domcílo, mãe e crança.

26 VARIÁVEIS INDEPENDENTES DE DOMICÍLIO 26 Número de membros da famíla. Presença de dosos. Presença de rede geral de água. Ilumnação elétrca. Servço de coleta de lxo. Domcílo em zona urbana ou rural. Regão de resdênca (Sul/Sudeste; Norte/Centro-Oeste; Nordeste).

27 VARIÁVEIS INDEPENDENTES DA MÃE 27 Indcação se mãe é chefe do domcílo. Cor/raça. Anos de escolardade. Idade. Resda há menos de 10 anos no muncípo. Partcpação em organzações socas. Horas de trabalho por semana. Tempo gasto em cudados com a casa por da.

28 DEMAIS VARIÁVEIS INDEPENDENTES 28 Varáves ndependentes da crança: Idade da crança. Indcação se crança trabalha. Mãe resde no domcílo. Benefcáro do Programa Bolsa Famíla: Indcação se crança resde em domcílo que recebe o benefíco.

29 DESCRIÇÃO DA AMOSTRA Dstrbução percentual de cranças por grupos de renda domclar per capta e recebmento do benefíco. 29 Programa Bolsa Famíla Lmte de renda domclar per capta R$50,00 R$100,00 R$200,00 Sm 68,39% 64,71% 59,75% Não 31,61% 35,29% 40,25% Nº casos (n) Fonte: AIBF/MDS (2005).

30 DISTRIBUIÇÃO DA VARIÁVEL DEPENDENTE 30 Percentual de cranças que abandonaram a escola entre 2004 e 2005 por grupo de renda e recebmento do benefíco. Programa Bolsa Famíla Lmte de renda domclar per capta R$50,00 R$100,00 R$200,00 Sm 1,10% 1,42% 1,30% Não 2,39% 1,97% 1,80% Dferença 1,28%*** 0,55%*** 0,50*** ***Sgnfcatvo ao nível de confança de 99%. Fonte: AIBF/MDS (2005).

31 RAZÕES DE CHANCES DA CRIANÇA TER ABANDONADO A ESCOLA ENTRE 2004 E Varáves ndependentes R$50,00 R$100,00 R$200,00 Varáves de domcílo Nº de membros da famíla 1,122 1,124*** 1,108*** Idosos no domcílo 1,454 1,678 1,331 Rede de água 1,066 0,767 0,694* Ilumnação elétrca 1,270 1,106 1,293 Coleta de lxo 0,994 0,756 0,621** Rural ref. ref. ref. Urbano 1,729 1,910* 2,309*** Sul/Sudeste ref. ref. ref. Norte/Centro-Oeste 2,536** 1,889** 1,630** Nordeste 3,035** 2,248*** 2,064***

32 RAZÕES DE CHANCES DA CRIANÇA TER ABANDONADO A ESCOLA ENTRE 2004 E 2005 (cont.) 32 Varáves ndependentes R$50,00 R$100,00 R$200,00 Varáves da mãe Mãe é chefe do domcílo 1,974*** 1,445* 1,508** Preta/Parda ref. ref. ref. Branca 2,248** 2,029*** 1,465** 0 anos de estudo ref. ref. ref. 1-4 anos de estudo 1,267 1,195 1, anos de estudo 0,701 0,898 0, anos de estudo 0,251* 0,440* 0,481* 0-24 anos 1,507 4,757*** 4,534*** anos ref. ref. ref anos 1,170 1,111 1, anos 0,053*** 0,532 0,645

33 RAZÕES DE CHANCES DA CRIANÇA TER ABANDONADO A ESCOLA ENTRE 2004 E 2005 (cont.) 33 Varáves ndependentes R$50,00 R$100,00 R$200,00 Varáves da mãe <10 anos no muncípo 1,325 1,411 1,838*** Partcpa org. socal 0,731 0,643* 0,565*** 0 hora/semana trabalho ref. ref. ref horas/semana trabalho 0,257* 0,920 1, horas/semana trabalho 0,736 0,744 0, horas/semana trabalho 0,904 1,790** 1,529* 0-2 hora/da trab. casa ref. ref. ref. 3-4 hora/da trab. casa 2,975 1,089 0, hora/da trab. casa 2,399 1,241 1, hora/da trab. casa 2,084 1,563 1,443

34 RAZÕES DE CHANCES DA CRIANÇA TER ABANDONADO A ESCOLA ENTRE 2004 E 2005 (cont.) 34 Varáves ndependentes R$50,00 R$100,00 R$200,00 Varáves da crança Idade 1,174** 1,226*** 1,194*** Crança trabalha 1,417 1,177 1,465 Mãe resde no domcílo 0,218*** 0,455** 0,610* Benefcáro do Programa Bolsa Famíla 0,428*** 0,662** 0,666** Número de casos (cranças) *Sgnfcatvo ao nível de 90%; **Sgnfcatvo ao nível de 95%; ***Sgnfcatvo ao nível de 99%. Fonte: AIBF/MDS (2005).

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência. MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,

Leia mais

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES 1. Obtenha os estmadores dos coefcentes lnear e angular de um modelo de regressão lnear smples utlzando o método

Leia mais

1. CORRELAÇÃO E REGRESSÃO LINEAR

1. CORRELAÇÃO E REGRESSÃO LINEAR 1 CORRELAÇÃO E REGREÃO LINEAR Quando deseja-se estudar se exste relação entre duas varáves quanttatvas, pode-se utlzar a ferramenta estatístca da Correlação Lnear mples de Pearson Quando essa correlação

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

PRESSUPOSTOS DO MODELO DE REGRESSÃO

PRESSUPOSTOS DO MODELO DE REGRESSÃO PREUPOTO DO MODELO DE REGREÃO A aplcação do modelo de regressão lnear múltpla (bem como da smples) pressupõe a verfcação de alguns pressupostos que condensamos segudamente.. Os erros E são varáves aleatóras

Leia mais

Análise de Regressão Linear Múltipla VII

Análise de Regressão Linear Múltipla VII Análse de Regressão Lnear Múltpla VII Aula 1 Hej et al., 4 Seções 3. e 3.4 Hpótese Lnear Geral Seja y = + 1 x 1 + x +... + k x k +, = 1,,..., n. um modelo de regressão lnear múltpla, que pode ser escrto

Leia mais

Análise de Regressão

Análise de Regressão Análse de Regressão método estatístco que utlza relação entre duas ou mas varáves de modo que uma varável pode ser estmada (ou predta) a partr da outra ou das outras Neter, J. et al. Appled Lnear Statstcal

Leia mais

Capítulo 1. Exercício 5. Capítulo 2 Exercício

Capítulo 1. Exercício 5. Capítulo 2 Exercício UNIVERSIDADE FEDERAL DE GOIÁS CIÊNCIAS ECONÔMICAS ECONOMETRIA (04-II) PRIMEIRA LISTA DE EXERCÍCIOS Exercícos do Gujarat Exercíco 5 Capítulo Capítulo Exercíco 3 4 5 7 0 5 Capítulo 3 As duas prmeras demonstrações

Leia mais

O problema da superdispersão na análise de dados de contagens

O problema da superdispersão na análise de dados de contagens O problema da superdspersão na análse de dados de contagens 1 Uma das restrções mpostas pelas dstrbuções bnomal e Posson, aplcadas usualmente na análse de dados dscretos, é que o parâmetro de dspersão

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

Algarismos Significativos Propagação de Erros ou Desvios

Algarismos Significativos Propagação de Erros ou Desvios Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

Tipo tratamento idade Tipo tratamento sexo

Tipo tratamento idade Tipo tratamento sexo Modelos de Regressão em Saúde Rejane Sobrno Pnhero Tâna Zdenka Gullén de Torres Modelos de Regressão Famíla de técncas estatístcas város fatores meddos (predtor, covarável, varável ndependente) relaconados

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Constata-se, freqüentemente, a estênca de uma relação entre duas (ou mas) varáves. Se tal relação é de natureza quanttatva, a correlação é o nstrumento adequado para descobrr e medr

Leia mais

2 Incerteza de medição

2 Incerteza de medição 2 Incerteza de medção Toda medção envolve ensaos, ajustes, condconamentos e a observação de ndcações em um nstrumento. Este conhecmento é utlzado para obter o valor de uma grandeza (mensurando) a partr

Leia mais

Contabilometria. Aula 8 Regressão Linear Simples

Contabilometria. Aula 8 Regressão Linear Simples Contalometra Aula 8 Regressão Lnear Smples Orgem hstórca do termo Regressão Le da Regressão Unversal de Galton 1885 Galton verfcou que, apesar da tendênca de que pas altos tvessem flhos altos e pas axos

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ 1 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

Reconhecimento Estatístico de Padrões

Reconhecimento Estatístico de Padrões Reconhecmento Estatístco de Padrões X 3 O paradgma pode ser sumarzado da segunte forma: Cada padrão é representado por um vector de característcas x = x1 x2 x N (,,, ) x x1 x... x d 2 = X 1 X 2 Espaço

Leia mais

Programa de Certificação de Medidas de um laboratório

Programa de Certificação de Medidas de um laboratório Programa de Certfcação de Meddas de um laboratóro Tratamento de dados Elmnação de dervas Programa de calbração entre laboratóros Programa nterno de calbração justes de meddas a curvas Tratamento dos resultados

Leia mais

Modelo linear normal com erros heterocedásticos. O método de mínimos quadrados ponderados

Modelo linear normal com erros heterocedásticos. O método de mínimos quadrados ponderados Modelo lnear normal com erros heterocedástcos O método de mínmos quadrados ponderados Varâncas homogêneas Varâncas heterogêneas y y x x Fgura 1 Ilustração da dstrbução de uma varável aleatóra y (condconal

Leia mais

Estatística. 8 Teste de Aderência. UNESP FEG DPD Prof. Edgard

Estatística. 8 Teste de Aderência. UNESP FEG DPD Prof. Edgard Estatístca 8 Teste de Aderênca UNESP FEG DPD Prof. Edgard 011 8-1 Teste de Aderênca IDÉIA: descobrr qual é a Dstrbução de uma Varável Aleatóra X, a partr de uma amostra: {X 1, X,..., X n } Problema: Seja

Leia mais

Análise de Variância. Comparação de duas ou mais médias

Análise de Variância. Comparação de duas ou mais médias Análse de Varânca Comparação de duas ou mas médas Análse de varânca com um fator Exemplo Um expermento fo realzado para se estudar dabetes gestaconal. Desejava-se avalar o comportamento da hemoglobna (HbA)

Leia mais

DEFINIÇÃO - MODELO LINEAR GENERALIZADO

DEFINIÇÃO - MODELO LINEAR GENERALIZADO DEFINIÇÃO - MODELO LINEAR GENERALIZADO 1 Um modelo lnear generalzado é defndo pelos seguntes três componentes: Componente aleatóro; Componente sstemátco; Função de lgação; Componente aleatóro: Um conjunto

Leia mais

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas 3.6. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2 Econometra - Lsta 3 - Regressão Lnear Múltpla Professores: Hedbert Lopes, Prscla Rbero e Sérgo Martns Montores: Gustavo Amarante e João Marcos Nusdeo QUESTÃO 1. Você trabalha na consultora Fazemos Qualquer

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

Prof. Cláudio Serra, Esp. 1. Produção de Leite x índice Pluviométrico y = 0.8x R 2 =

Prof. Cláudio Serra, Esp. 1. Produção de Leite x índice Pluviométrico y = 0.8x R 2 = Análse de Regressão Cap.. Introdução Análse de regressão é uma técnca de modelagem utlzada para analsar a relação entre uma varável dependente () e uma ou mas varáves ndependentes,, 3,..., n. O ojetvo

Leia mais

Regressão Logística Aplicada aos Casos de Sífilis Congênita no Estado do Pará

Regressão Logística Aplicada aos Casos de Sífilis Congênita no Estado do Pará Regressão Logístca Aplcada aos Casos de Sífls Congênta no Estado do Pará Crstane Nazaré Pamplona de Souza 1 Vanessa Ferrera Montero 1 Adrlayne dos Res Araújo 2 Edson Marcos Leal Soares Ramos 2 1 Introdução

Leia mais

ANÁLISE DA VARIÂNCIA DA REGRESSÃO

ANÁLISE DA VARIÂNCIA DA REGRESSÃO ANÁLISE DA VARIÂNCIA DA REGRESSÃO PROCEDIMENTO GERAL DE REGRESSÃO Em um modelo de análse de varânca, como no DIA, o fator em estudo pode ser quanttatvo ou qualtatvo. FATOR QUANTITATIVO: é aquele cujos

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

Diferenciais de Salários por Raça e Gênero: Aplicação dos procedimentos de Oaxaca e Heckman em Pesquisas Amostrais Complexas

Diferenciais de Salários por Raça e Gênero: Aplicação dos procedimentos de Oaxaca e Heckman em Pesquisas Amostrais Complexas N o 638 ISSN 0104-8910 Dferencas de Saláros por Raça e Gênero: Aplcação dos procedmentos de Oaxaca e Heckman em Pesqusas Amostras Complexas Alexandre Pnto de Carvalho, Marcelo Côrtes Ner, Dense Brtz Slva

Leia mais

Métodos Experimentais em Ciências Mecânicas

Métodos Experimentais em Ciências Mecânicas Métodos Expermentas em Cêncas Mecâncas Professor Jorge Luz A. Ferrera Sumáro.. Dagrama de Dspersão. Coefcente de Correlação Lnear de Pearson. Flosofa assocada a medda da Estatstca. este de Hpótese 3. Exemplos.

Leia mais

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel MOQ-4 PROJETO e ANÁLISE de EPERIMENTOS Professor: Rodrgo A. Scarpel rodrgo@ta.br www.mec.ta.br/~rodrgo Programa do curso: Semana Conteúdo Apresentação da dscplna. Prncípos de modelos lneares de regressão.

Leia mais

Análise de influência

Análise de influência Análse de nfluênca Dzemos que uma observação é nfluente caso ela altere, de forma substancal, alguma propredade do modelo ajustado (como as estmatvas dos parâmetros, seus erros padrões, valores ajustados...).

Leia mais

Gabarito da Lista de Exercícios de Econometria I

Gabarito da Lista de Exercícios de Econometria I Gabarto da sta de Exercícos de Econometra I Professor: Rogéro lva Mattos Montor: eonardo enrque A. lva Questão Y X y x xy x ŷ ˆ ˆ y ŷ (Y - Y ) (X - X ) (Ŷ - Y ) 360 00-76 -00 35.00 40.000 36-4 30.976 3076

Leia mais

(B) Considere X = antes e Y = depois e realize um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados.

(B) Considere X = antes e Y = depois e realize um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados. INF 6 Notas de aula sujeto a correções Prof. Luz Alexandre Peternell (B) Consdere X antes e Y depos e realze um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados.

Leia mais

5 Métodos de cálculo do limite de retenção em função da ruína e do capital inicial

5 Métodos de cálculo do limite de retenção em função da ruína e do capital inicial 5 Métodos de cálculo do lmte de retenção em função da ruína e do captal ncal Nesta dssertação serão utlzados dos métodos comparatvos de cálculo de lmte de retenção, onde ambos consderam a necessdade de

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso de Admnstração em Gestão Públca Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos uns dos

Leia mais

Análise Descritiva com Dados Agrupados

Análise Descritiva com Dados Agrupados Análse Descrtva com Dados Agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas descrtvas

Leia mais

Identidade dos parâmetros de modelos segmentados

Identidade dos parâmetros de modelos segmentados Identdade dos parâmetros de modelos segmentados Dana Campos de Olvera Antono Polcarpo Souza Carnero Joel Augusto Munz Fabyano Fonseca e Slva 4 Introdução No Brasl, dentre os anmas de médo porte, os ovnos

Leia mais

O que heterocedasticidade? Heterocedasticidade. Por que se preocupar com heterocedasticidade? Exemplo de heterocedasticidade.

O que heterocedasticidade? Heterocedasticidade. Por que se preocupar com heterocedasticidade? Exemplo de heterocedasticidade. Heterocedastcdade y = β 0 + β + β + β k k + u O que heterocedastcdade? Lembre-se da hpótese de homocedastcdade: condconal às varáves eplcatvas, a varânca do erro, u, é constante Se sso não for verdade,

Leia mais

8.16. Experimentos Fatoriais e o Fatorial Fracionado

8.16. Experimentos Fatoriais e o Fatorial Fracionado 8.6. Expermentos Fatoras e o Fatoral Fraconado Segundo Kng (995) os arranos fatoras e fatoral fraconado estão dentre os arranos mas usados em expermentos ndustras. Veremos aqu alguns casos mas geras e

Leia mais

CAPÍTULO 9 REGRESSÃO LINEAR PPGEP REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES UFRGS. Regressão Linear Simples

CAPÍTULO 9 REGRESSÃO LINEAR PPGEP REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES UFRGS. Regressão Linear Simples CAPÍTULO 9 REGREÃO LINEAR IMPLE REGREÃO LINEAR IMPLE UFRG Em mutos problemas há duas ou mas varáves que são relaconadas, e pode ser mportante modelar essa relação. Por exemplo, a resstênca à abrasão de

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso Superor de tecnólogo em Gestão Ambental Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos

Leia mais

2. Validação e ferramentas estatísticas

2. Validação e ferramentas estatísticas . Valdação e ferramentas estatístcas Mutos aspectos relaconados à socedade são suportados, de alguma forma, por algum tpo de medção analítca. Mlhões de medções analítcas são realzadas todos os das, em

Leia mais

Estatística I Licenciatura MAEG 2006/07

Estatística I Licenciatura MAEG 2006/07 Estatístca I Lcencatura MAEG 006/07 AMOSTRAGEM. DISTRIBUIÇÕES POR AMOSTRAGEM.. Em determnada unversdade verfca-se que 30% dos alunos têm carro. Seleccona-se uma amostra casual smples de 0 alunos. a) Qual

Leia mais

Teoria da Regressão Espacial Aplicada a. Sérgio Alberto Pires da Silva

Teoria da Regressão Espacial Aplicada a. Sérgio Alberto Pires da Silva Teora da Regressão Espacal Aplcada a Modelos Genércos Sérgo Alberto Pres da Slva ITENS DE RELACIONAMENTOS Tópcos Báscos da Regressão Espacal; Banco de Dados Geo-Referencados; Modelos Genércos Robustos;

Leia mais

A redução na pressão sangüínea (mm Hg) em um período de quatro semanas observadas em cães experimentais está tabulada abaixo:

A redução na pressão sangüínea (mm Hg) em um período de quatro semanas observadas em cães experimentais está tabulada abaixo: UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CAMPUS DE JABOTICABAL ª PROVA DE ESTATÍSTICA EXPERIMENTAL - MEDICINA VETERINÁRIA NOME: DATA / / ª QUESTÃO (,): A redução da

Leia mais

Como aposentadorias e pensões afetam a educação e o trabalho de jovens do domicílio 1

Como aposentadorias e pensões afetam a educação e o trabalho de jovens do domicílio 1 Como aposentadoras e pensões afetam a educação e o trabalo de jovens do domcílo 1 Rodolfo Hoffmann 2 Resumo A questão central é saber como o valor da parcela do rendmento domclar formada por aposentadoras

Leia mais

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16%

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16% Análse de Rsco 1 RISCO Rsco possbldade de perda. Quanto maor a possbldade, maor o rsco. Exemplo: Empresa X va receber $ 1.000 de uros em 30 das com títulos do governo. A empresa Y pode receber entre $

Leia mais

AULA 4. Segundo Quartil ( Q observações são menores que ele e 50% são maiores.

AULA 4. Segundo Quartil ( Q observações são menores que ele e 50% são maiores. Estatístca Aplcada à Engenhara AULA 4 UNAMA - Unversdade da Amazôna.8 MEDIDA EPARATRIZE ão valores que separam o rol (os dados ordenados) em quatro (quarts), dez (decs) ou em cem (percents) partes guas.

Leia mais

Efeito Trabalhador Adicional: Evidências Usando as Condições de Saúde dos Trabalhadores por Conta-Própria

Efeito Trabalhador Adicional: Evidências Usando as Condições de Saúde dos Trabalhadores por Conta-Própria Efeto Trabalhador Adconal: Evdêncas Usando as Condções de Saúde dos Trabalhadores por Conta-Própra Maurco Cortez Res IPEA Resumo De acordo com o efeto trabalhador adconal, a oferta agregada de trabalho

Leia mais

SELEÇÃO DE MODELOS VOLUMÉTRICOS PARA CLONES DE EUCALYPTUS SPP., NO PÓLO GESSEIRO DO ARARIPE

SELEÇÃO DE MODELOS VOLUMÉTRICOS PARA CLONES DE EUCALYPTUS SPP., NO PÓLO GESSEIRO DO ARARIPE SELEÇÃO DE MODELOS VOLUMÉTRICOS PARA CLONES DE EUCALYPTUS SPP, NO PÓLO GESSEIRO DO ARARIPE Jáder da Slva Jale Joselme Fernandes Gouvea Alne Santos de Melo Denns Marnho O R Souza Kléber Napoleão Nunes de

Leia mais

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EATAS DEPARTAMENTO DE ESTATÍSTICA UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

Leia mais

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel MOQ-14 PROJETO e ANÁLISE de EPERIMENTOS Professor: Rodrgo A. Scarpel rodrgo@ta.br www.mec.ta.br/~rodrgo Prncípos de cração de modelos empírcos: Modelos (matemátcos, lógcos, ) são comumente utlzados na

Leia mais

1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL; 2.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL.

1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL; 2.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL. A FUNÇÃO DE PRODUÇÃO E SUPERMERCADOS NO BRASIL ALEX AIRES CUNHA (1) ; CLEYZER ADRIAN CUNHA (). 1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL;.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL.

Leia mais

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012 Notas Processos estocástcos Nestor Catcha 23 de abrl de 2012 notas processos estocástcos 2 O Teorema de Perron Frobenus para matrzes de Markov Consdere um processo estocástco representado por um conunto

Leia mais

MODELO RECEPTOR MODELO RECEPTOR MODELO RECEPTOR. Princípio do modelo:

MODELO RECEPTOR MODELO RECEPTOR MODELO RECEPTOR. Princípio do modelo: MODELO RECEPTOR Não modela a dspersão do contamnante. MODELO RECEPTOR Prncípo do modelo: Atacar o problema de dentfcação da contrbução da fonte em ordem nversa, partndo da concentração do contamnante no

Leia mais

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma:

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma: Professora Janete Perera Amador 1 8 Meddas Descrtvas Vmos anterormente que um conjunto de dados pode ser resumdo através de uma dstrbução de freqüêncas, e que esta pode ser representada através de uma

Leia mais

ANDRÉ OLIVEIRA SOUZA TESTES ESTATÍSTICOS EM REGRESSÃO LOGÍSTICA SOB A CONDIÇÃO DE SEPARABILIDADE

ANDRÉ OLIVEIRA SOUZA TESTES ESTATÍSTICOS EM REGRESSÃO LOGÍSTICA SOB A CONDIÇÃO DE SEPARABILIDADE ANDRÉ OLIVEIRA SOUZA TESTES ESTATÍSTICOS EM REGRESSÃO LOGÍSTICA SOB A CONDIÇÃO DE SEPARABILIDADE Dssertação apresentada à Unversdade Federal de Vçosa, como parte das exgêncas do Programa de Pós-Graduação

Leia mais

Variável discreta: X = número de divórcios por indivíduo

Variável discreta: X = número de divórcios por indivíduo 5. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais

R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais 30 Varáves aleatóras bdmensonas Sea ε uma experênca aleatóra e S um espaço amostral assocado a essa experênca. Seam X X(s) e Y Y(s) duas funções cada uma assocando um número real a cada resultado s S.

Leia mais

Capítulo XI. Teste do Qui-quadrado. (χ 2 )

Capítulo XI. Teste do Qui-quadrado. (χ 2 ) TLF 00/ Cap. XI Teste do Capítulo XI Teste do Qu-quadrado ( ).. Aplcação do teste do a uma dstrbução de frequêncas 08.. Escolha de ntervalos para o teste do.3. Graus de lberdade e reduzdo.4. Tabela de

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Não Lnear com Restrções Aula 9: Programação Não-Lnear - Funções de Váras Varáves com Restrções Ponto Regular; Introdução aos Multplcadores de Lagrange; Multplcadores de Lagrange e Condções

Leia mais

1. Quantidade de dinheiro doado para caridade: muitas pessoas não fazem este tipo de doação. Uma parcela expressiva dos

1. Quantidade de dinheiro doado para caridade: muitas pessoas não fazem este tipo de doação. Uma parcela expressiva dos Tópcos em Econometra I Ala /7/23 Modelo Tobt para solção de canto Eemplos Solções de canto. Qantdade de dnhero doado para cardade: mtas pessoas não fazem este tpo de doação. Uma parcela epressva dos dados

Leia mais

Aplicação do Teste de Elegibilidade Multidimensional na Definição do Público-alvo Beneficiário de Políticas Públicas

Aplicação do Teste de Elegibilidade Multidimensional na Definição do Público-alvo Beneficiário de Políticas Públicas Aplcação do Teste de Elegbldade Multdmensonal na Defnção do Públco-alvo Benefcáro de Polítcas Públcas Ana Luca Cosenza Fara Dense Brtz do Nascmento Slva Carmem Aparecda Fejó Palavras-chave: Regressão logístca;

Leia mais

Correlação. Frases. Roteiro. 1. Coeficiente de Correlação 2. Interpretação de r 3. Análise de Correlação 4. Aplicação Computacional 5.

Correlação. Frases. Roteiro. 1. Coeficiente de Correlação 2. Interpretação de r 3. Análise de Correlação 4. Aplicação Computacional 5. Correlação Frases Uma probabldade razoável é a únca certeza Samuel Howe A experênca não permte nunca atngr a certeza absoluta. Não devemos procurar obter mas que uma probabldade. Bertrand Russel Rotero

Leia mais

REGRESSÃO LOGÍSTICA. Seja Y uma variável aleatória dummy definida como:

REGRESSÃO LOGÍSTICA. Seja Y uma variável aleatória dummy definida como: REGRESSÃO LOGÍSTCA. ntrodução Defnmos varáves categórcas como aquelas varáves que podem ser mensurados usando apenas um número lmtado de valores ou categoras. Esta defnção dstngue varáves categórcas de

Leia mais

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF)

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF) PMR 40 - Mecânca Computaconal CAPÍTULO VI Introdução ao Método de Elementos Fntos (MEF). Formulação Teórca - MEF em uma dmensão Consderemos a equação abao que representa a dstrbução de temperatura na barra

Leia mais

Eletroquímica 2017/3. Professores: Renato Camargo Matos Hélio Ferreira dos Santos.

Eletroquímica 2017/3. Professores: Renato Camargo Matos Hélio Ferreira dos Santos. Eletroquímca 2017/3 Professores: Renato Camargo Matos Hélo Ferrera dos Santos http://www.ufjf.br/nups/ Data Conteúdo 07/08 Estatístca aplcada à Químca Analítca Parte 2 14/08 Introdução à eletroquímca 21/08

Leia mais

2 Agregação Dinâmica de Modelos de Turbinas e Reguladores de Velocidade: Teoria

2 Agregação Dinâmica de Modelos de Turbinas e Reguladores de Velocidade: Teoria Agregação Dnâmca de Modelos de urbnas e Reguladores de elocdade: eora. Introdução O objetvo da agregação dnâmca de turbnas e reguladores de velocdade é a obtenção dos parâmetros do modelo equvalente, dados

Leia mais

Função de Incidência: uma possível união da Teoria de Metapopulação com a Ecologia da Paisagem?

Função de Incidência: uma possível união da Teoria de Metapopulação com a Ecologia da Paisagem? Função de Incdênca: uma possível unão da Teora de Metapopulação com a Ecologa da Pasagem? Função de Incdênca: uma possível unão da Teora de Metapopulação com a Ecologa da Pasagem? INTRODUÇÃO O que é uma

Leia mais

Estatística - exestatmeddisper.doc 25/02/09

Estatística - exestatmeddisper.doc 25/02/09 Estatístca - exestatmeddsper.doc 5/0/09 Meddas de Dspersão Itrodução ão meddas estatístcas utlzadas para avalar o grau de varabldade, ou dspersão, dos valores em toro da méda. ervem para medr a represetatvdade

Leia mais

Professor Mauricio Lutz CORRELAÇÃO

Professor Mauricio Lutz CORRELAÇÃO Professor Maurco Lutz 1 CORRELAÇÃO Em mutas stuações, torna-se nteressante e útl estabelecer uma relação entre duas ou mas varáves. A matemátca estabelece város tpos de relações entre varáves, por eemplo,

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

ANÁLISE DAS TENSÕES TÉRMICAS EM MATERIAIS CERÂMICOS. Palavras-chave: Tensões térmicas, Propriedades variáveis, Condução de calor, GITT

ANÁLISE DAS TENSÕES TÉRMICAS EM MATERIAIS CERÂMICOS. Palavras-chave: Tensões térmicas, Propriedades variáveis, Condução de calor, GITT ANÁLISE DAS TENSÕES TÉRMICAS EM MATERIAIS CERÂMICOS Dnz, L.S. Santos, C.A.C. Lma, J.A. Unversdade Federal da Paraíba Laboratóro de Energa Solar LES/DTM/CT/UFPB 5859-9 - João Pessoa - PB, Brasl e-mal: cabral@les.ufpb.br

Leia mais

18 e 20/Abr/2016 Aulas 12 e 13. Introdução à Física Estatística Postulados Equilíbrio térmico Função de Partição; propriedades termodinâmicas

18 e 20/Abr/2016 Aulas 12 e 13. Introdução à Física Estatística Postulados Equilíbrio térmico Função de Partição; propriedades termodinâmicas 01/Abr/2016 Aula 11 Potencas termodnâmcos Energa nterna total Entalpa Energas lvres de Helmholtz e de Gbbs Relações de Maxwell 18 e 20/Abr/2016 Aulas 12 e 13 Introdução à Físca Estatístca Postulados Equlíbro

Leia mais

Introdução à Análise de Dados nas medidas de grandezas físicas

Introdução à Análise de Dados nas medidas de grandezas físicas Introdução à Análse de Dados nas meddas de grandezas físcas www.chem.wts.ac.za/chem0/ http://uregna.ca/~peresnep/ www.ph.ed.ac.uk/~td/p3lab/analss/ otas baseadas nos apontamentos Análse de Dados do Prof.

Leia mais

Avaliação do tamanho da amostra de segmentos regulares para estimar a área plantada com café na região sul de Minas Gerais

Avaliação do tamanho da amostra de segmentos regulares para estimar a área plantada com café na região sul de Minas Gerais Avalação do tamanho da amostra de segmentos regulares para estmar a área plantada com café na regão sul de Mnas Geras Marcos Adam Maurco Alves Morera Bernardo Fredrch Theodor Rudorff Insttuto Naconal de

Leia mais

Resistores. antes de estudar o capítulo PARTE I

Resistores. antes de estudar o capítulo PARTE I PARTE I Undade B 6 capítulo Resstores seções: 61 Consderações ncas 62 Resstênca elétrca Le de Ohm 63 Le de Joule 64 Resstvdade antes de estudar o capítulo Veja nesta tabela os temas prncpas do capítulo

Leia mais

Representação e Descrição de Regiões

Representação e Descrição de Regiões Depos de uma magem ter sdo segmentada em regões é necessáro representar e descrever cada regão para posteror processamento A escolha da representação de uma regão envolve a escolha dos elementos que são

Leia mais

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO Área Centfca Curso Matemátca Engenhara Electrotécnca º Semestre º 00/0 Fcha nº 9. Um artgo da revsta Wear (99) apresenta dados relatvos à vscosdade do óleo e ao desgaste do aço maco. A relação entre estas

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 11: Varáves Aleatóras (webercampos@gmal.com) VARIÁVEIS ALEATÓRIAS 1. Conceto de Varáves Aleatóras Exemplo: O expermento consste no lançamento de duas moedas: X: nº de caras

Leia mais

CAPÍTULO 7 TESTES DE HIPÓTESES

CAPÍTULO 7 TESTES DE HIPÓTESES CAPÍTULO 7 TESTES DE HIPÓTESES Além dos métodos de estmação de parâmetros e de construção de ntervalos de confança, os testes de hpóteses são procedmentos usuas da nferênca estatístca, útes na tomada de

Leia mais

Método dos Mínimos Quadrados com ênfase em variâncias e com recursos matriciais (13/2/2014)

Método dos Mínimos Quadrados com ênfase em variâncias e com recursos matriciais (13/2/2014) Método dos Mínmos Quadrados com ênfase em varâncas e com recursos matrcas (3//4) Otavano Helene Curso de etensão unverstára, IFUSP, feverero/4 Baseado no lvro Método dos Mínmos Quadrados com Formalsmo

Leia mais

Atividade em Soluções Eletrolíticas

Atividade em Soluções Eletrolíticas Modelo de solução eletrolítca segundo Debye-Hückel. - A le lmte de Debye-Hückel (LLDH) tem o lmte que está em: I 0,01. log z.z A I 1/ valêncas do íons + e do eletrólto I 1 [ z b / b ] constante que depende

Leia mais

Atividade em Soluções Eletrolíticas

Atividade em Soluções Eletrolíticas Modelo de solução eletrolítca segundo Debye-Hückel. - A le lmte de Debye-Hückel (LLDH) tem o lmte que está em: I 0,01. log z.z A I 1/ valêncas do íons + e do eletrólto I 1 [ z b / b ] constante que depende

Leia mais

Título: A importância da saúde como um dos determinantes da distribuição de rendimentos e pobreza no Brasil

Título: A importância da saúde como um dos determinantes da distribuição de rendimentos e pobreza no Brasil Título: A mportânca da saúde como um dos determnantes da dstrbução de rendmentos e pobreza no Brasl Autoras: Kenya Valera Mcaela de Souza Noronha Aluna do programa de Doutorado em Economa do Centro de

Leia mais

2 Principio do Trabalho Virtual (PTV)

2 Principio do Trabalho Virtual (PTV) Prncpo do Trabalho rtual (PT)..Contnuo com mcroestrutura Na teora que leva em consderação a mcroestrutura do materal, cada partícula anda é representada por um ponto P, conforme Fgura. Porém suas propredades

Leia mais

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma Redução dos Dados Júlo Osóro Meddas Característcas da Dstrbução Tendênca Central (Localzação) Varação (Dspersão) Forma 1 Meddas Característcas da Dstrbução Meddas Estatístcas Tendênca Central Dspersão

Leia mais

AULA Espaços Vectoriais Estruturas Algébricas.

AULA Espaços Vectoriais Estruturas Algébricas. Note bem: a letura destes apontamentos não dspensa de modo algum a letura atenta da bblografa prncpal da cadera Chama-se a atenção para a mportânca do trabalho pessoal a realzar pelo aluno resolvendo os

Leia mais

7 Análise de covariância (ANCOVA)

7 Análise de covariância (ANCOVA) Plejameto de Expermetos II - Adlso dos Ajos 74 7 Aálse de covarâca (ANCOVA) 7.1 Itrodução Em algus expermetos, pode ser muto dfícl e até mpossível obter udades expermetas semelhtes. Por exemplo, pode-se

Leia mais

NOTAS DE AULA DA DISCIPLINA CE076

NOTAS DE AULA DA DISCIPLINA CE076 5. COMPONENTES PRINCIPAIS 5. Introdução A análse de Comonentes Prncas está relaconada com a exlcação da estrutura de covarânca or meo de oucas combnações lneares das varáves orgnas em estudo, ou sea, rocura

Leia mais

Ascensão profissional feminina no mercado de trabalho brasileiro no período 2002/2014

Ascensão profissional feminina no mercado de trabalho brasileiro no período 2002/2014 Ascensão profssonal femnna no mercado de trabalho braslero no período 2002/2014 Renan Bonfm Luz 1 Danela Verzola Vaz 2 RESUMO Apesar da crescente partcpação femnna no mercado de trabalho braslero observada

Leia mais