Escola Básica e Secundária Dr. Ângelo Augusto da Silva
|
|
- Samuel Belmonte Deluca
- 2 Há anos
- Visualizações:
Transcrição
1 Escola Básica e Secdária Dr. Âgelo Agsto da Silva Teste de MATEMÁTICA A º Ao Dração: 9 mitos Maio/ Nome Nº T: Classificação O Prof. (Lís Abre) ª PARTE Para cada ma das segites qestões de escolha múltipla, seleccioe a resposta correcta de etre as alterativas qe lhe são apresetadas e escreva-a a sa folha de prova. Se apresetar mais do qe ma resposta a qestão será alada, o mesmo acotecedo em caso de resposta ambíga.. Laça-se m dado eqilibrado vezes. Qal é a probabilidade de sair sempre o mesmo úmero? (A) 8 (B) 6 A (C) 6 (D) 6. Seja ser: 6 z = cis m úmero compleo. Um argmeto do simétrico do cojgado de z pode (A) 4 (B) (C) (D) 8. Em, cojto dos úmeros compleos, seja i a idade imagiária. Seja m úmero atral tal qe i = i Idiqe qal dos segites é o valor de i (A) (B) i (C) (D) i 4. Cosidere ma fção h de domíio. A recta de eqação y = é assimptota do gráfico de h. Seja h a fção derivada de h. Idiqe qal dos segites pode ser o valor de lim h ( ). (A) (B) (C) (D) se e. O valor de lim, k \ {} é: k (A) k (B) k (C) (D) Iteret: Págia de 4
2 ª PARTE Apresete o se raciocíio de forma clara, idicado os cálclos efectados e as jstificações ecessárias. Qado ão é idicada a aproimação qe se pede para m resltado, pretede-se o valor eacto.. Sejam z = cis e z = i dois úmeros compleos. Escreva o úmero 6 trigoométrica. 7 i Z Z a forma. Verifiqe qe o úmero compleo w= i é solção da eqação z z 4=. Nm certo ecossistema habitam as espécies aimais A e B. Admita qe, t aos após o iício do ao 9, o úmero de aimais, em milhares, da espécie A é dado aproimadamete por 6 at () = ( t ) t e e qe o úmero de aimais, em milhares, da espécie B é dado aproimadamete por [ ] bt () = 6l( t e) l( t ) ( t ) Resolva os três ites segites, sado eclsivamete métodos aalíticos... Desde o iício do ao 9 até ao iício do ao, morreram aimais da espécie A. Determie, aproimadamete, qatos aimais dessa espécie asceram esse itervalo de tempo. Utilize valores aproimados às idades... Na figra, estão represetadas graficamete as fções a e b. Tal como estes gráficos sgerem, a difereça etre o úmero de aimais da espécie A e o úmero de aimais da espécie B vai ametado, com o decorrer do tempo, e tede para m certo valor. Determie esse valor, recorredo às assimptotas horizotais dos gráficos das fções a e b, cjas eqações deve determiar... Mostre qe o cojto solção da codição at () é o itervalo [ ; l 7, ]. Iterprete este resltado o coteto da sitação. Iteret: Págia de 4
3 4. Seja a fção f, de domíio [, ], defiida por f ( ) = e se 4.. Estde, recorredo eclsivamete a métodos aalíticos, a fção f, qato à mootoia e qato à eistêcia de etremos relativos, idicado os itervalos de mootoia e, caso eistam, os etremos relativos. 4.. Jstifiqe qe o gráfico da fção f ão admite assimptotas. 4.. Seja g a fção, de domíio ], [, defiida por [ ] g ( ) = l f( ) (l desiga logaritmo de base e) Determie o zero de g Determie, recorredo às capacidades gráficas da sa calcladora, m valor, aproimado às décimas, da área do trapézio [OABC], em qe: O é a origem do referecial; A e B são os potos do gráfico de f, fção derivada de f, de ordeada 4; C é o poto de itersecção do gráfico da fção f, com o eio O, de abcissa positiva. Reprodza, a folha de respostas, os gráficos visalizados a calcladora, iclido o referecial. Desehe o trapézio [OABC], assialado os potos qe represetam os ses vértices. Nota: Nas coordeadas dos vértices em qe é ecessário fazer arredodametos, tilize das casas decimais. Fim Cotações: ª Parte ª Parte Qestões potos Potos cada qestão Iteret: Págia de 4
4 Formlário Comprimeto de m arco de circferêcia α. r ( α amplitde, em radiaos, do âglo ao cetro; r raio) Áreas de figras plaas Diagoal maior Diagoal meor Losago: Base maior Base meor Trapézio: Altra Polígoo reglar: Semiperímetro Apótema αr Sector circlar: (α amplitde, em radiaos, do âglo ao cetro; r raio) Áreas de sperfícies Área lateral de m coe: rg (r raio da base; g geratriz) Área de ma sperfície esférica: (r raio) Volmes Pirâmide: Área da base Altra Coe: Área da base Altra Esfera: 4 r (r raio) 4 r Trigoometria se (a b) = se a.cos b se b. cos a cos (a b) = cos a.cos b se a. se b tga tgb tg (a b) = tga. tgb Compleos ( ρ cis θ) = ρ cis (. θ) θ k ρ θ = ρ, k,...,- cis Probabilidades μ = p cis p... σ = ( μ) p... ( μ) p Se X é N(μ,σ), etão: P( μ σ < X < μ σ),687 P( μ σ < X < μ σ),94 P( μ σ < X < μ σ),997 { } Regras de Derivação ( v) = v' v = v v ( ) v v = v v ( ) = ( ) se ( ) = cos ( cos ) ( tg ) ( ) = se = cos e = e ( a ) = a la ( a \{}) = (log a ) = ( a \{}) l a ( l ) Limites otáveis lim = e se e l( ) l lim = e lim = (p ) p Iteret: Págia 4 de 4
5 Solções ª Parte 4 D C A A A ª Parte. 7 cis.. 7 aimais.. 7 milhares.. Período de tempo em qe o úmero de aimais da espécie A foi meor o igal a aimais. 4.. Crescete o itervalo, 4 Decrescete o itervalo, 4 Má: 4 e Mí: 4.. Não admite assimptotas verticais porqe f é cotía o itervalo fechado [, ]. Não admite assimptotas ão verticais porqe o domíio é m cojto limitado. 4.. Admite m zero o poto de abcissa 4.4.,8 A = 4 8, a.. Iteret: Págia de
Escola Básica e Secundária Dr. Ângelo Augusto da Silva. Teste de MATEMÁTICA A 12º Ano. Duração: 90 minutos Março/ Nome Nº T:
Escola Básica e Secdária Dr. Âgelo Agsto da Silva Teste de MATEMÁTICA A º Ao Dração: 9 mitos Março/ Nome Nº T: Classificação O Prof. (Lís Abre) ª PARTE Para cada ma das segites qestões de escolha múltipla,
Escola Básica e Secundária Dr. Ângelo Augusto da Silva
Escola Básica e Secdária Dr. Âgelo Agsto da Silva Teste de MATEMÁTICA A.º Ao Dração: 9 mitos Jho/ 4 Nome N.º T: Classificação O Prof. (Lís Abre).ª PARTE Para cada ma das segites qestões de escolha múltipla,
Escola Básica e Secundária Dr. Ângelo Augusto da Silva
Escola Básica e Secdária Dr. Âgelo Agsto da Silva Teste de MATEMÁTICA A.º Ao Dração: 90 mitos Março/ 05 Nome N.º T:.ª PARTE Para cada ma das segites qestões de escolha múltipla, selecioe a resposta correta
Escola Básica e Secundária Dr. Ângelo Augusto da Silva
Escola Básica e Secdária Dr. Âgelo Agsto da Silva Teste de MATEMÁTICA A º Ao Dração: 9 mitos Maio/ 9 Nome Nº T: Classificação O Prof. (Lís Abre) ª PARTE Para cada ma das segites qestões de escolha múltipla,
Prova Escrita de Matemática A
EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei º 74/004, de 6 de Março Prova Escrita de Matemática A 1º Ao de Escolaridade Prova 65/Época Especial 1 Págias Dração da Prova: 150 mitos Tolerâcia: 0 mitos
Duração da Prova: 150 minutos. Tolerância: 30 minutos. Na folha de respostas, indique de forma legível a versão da prova.
EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei.º 74/004, de de Março Prova Escrita de Matemática A 1.º Ao de Escolaridade Prova 5/1.ª Fase 11 Págias Dração da Prova: 150 mitos. Tolerâcia: 0 mitos. 009
Escola Básica e Secundária Dr. Ângelo Augusto da Silva
Escola Básica e Secdária Dr. Âgelo Agsto da Silva Teste de MATEMÁTICA A 1º Ao Dração: 9 mitos Dezembro/ 1 Nome Nº T: 1.ª PARTE Para cada ma das segites qestões de escolha múltipla, selecioe a resposta
Escola Básica e Secundária Dr. Ângelo Augusto da Silva Teste de MATEMÁTICA A 12º Ano
Escola Básica e Secdária Dr. Âgelo Agsto da Silva Teste de MATEMÁTICA A º Ao Dração: 9 mitos Março/ Nome Nº T: Classificação O Prof. (Lís Abre) ª PARTE Para cada ma das segites qestões de escolha múltipla,
Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.
Teste Itermédio de Matemática A Versão 1 Teste Itermédio Matemática A Versão 1 Dração do Teste: 90 mitos 1.0.01 1.º Ao de Escolaridade Decreto-Lei.º 74/004, de 6 de março Na sa folha de respostas, idiqe
Matemática A. Versão 2. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.
Teste Itermédio de Matemática A Versão Teste Itermédio Matemática A Versão Dração do Teste: 90 mitos 1.0.01 1.º Ao de Escolaridade Decreto-Lei.º 74/004, de 6 de março Na sa folha de respostas, idiqe de
( ) 4. Novo Espaço Matemática A 12.º ano Proposta de Teste de Avaliação [maio 2015] GRUPO I. f x
Novo Espaço Matemática A º ao Proposta de Teste de Avaliação [maio 05] Nome: Ao / Turma: Nº: Data: - - GRUPO I Os sete ites deste grupo são de escolha múltipla Em cada um deles, são idicadas quatro opções,
Duração: 90 minutos 5º Teste, Junho Nome Nº T:
Escola Secudária Dr. Âgelo Augusto da Silva Teste de MATEMÁTICA A 11º Ao Duração: 90 miutos 5º Teste, Juho 006 Nome Nº T: Classificação O Prof. (Luís Abreu) 1ª PARTE Para cada uma das seguites questões
Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.
Teste Itermédio de Matemática A Versão Teste Itermédio Matemática A Versão Duração do Teste: 90 miutos 6.05.0.º Ao de Escolaridade Decreto-Lei.º 74/004, de 6 de Março Na sua folha de respostas, idique
Escola Básica e Secundária Dr. Ângelo Augusto da Silva Teste de MATEMÁTICA A 12º Ano
Escola Básica Scdária Dr. Âglo Agsto da Silva Tst d MATEMÁTICA A º Ao Dração: 9 mitos Maio/ Nom Nº T: ª PARTE Para cada ma das sgits qstõs d scolha múltipla, slccio a rsposta corrcta d tr as altrativas
Escola Básica e Secundária Dr. Ângelo Augusto da Silva
Escola Básica e Secdária Dr. Âgelo Agsto da Silva Teste de MATEMÁTIA A º Ao Dração: 9 mitos Dezembro/ lassificação Nome Nº T: O Prof. (Lís Abre) ª PARTE Para cada ma das segites qestões de escolha múltipla,
Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.
Teste Intermédio de Matemática A Versão Teste Intermédio Matemática A Versão Dração do Teste: 90 mintos 9.0.0.º Ano de Escolaridade Decreto-Lei n.º 74/004, de 6 de Março Na sa folha de respostas, indiqe
Duração da Prova: 150 minutos. Tolerância: 30 minutos. Na folha de respostas, indique de forma legível a versão da prova.
EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei.º 74/2004, de 26 de Março Prova Escrita de Matemática A 2.º ao de Escolaridade Prova 65/2.ª Fase Págias Dração da Prova: 50 mitos. Tolerâcia: 0 mitos 2008
Escola Básica e Secundária Dr. Ângelo Augusto da Silva
Escola Básica Scdária Dr. Âglo Agsto da Silva Tst d MATEMÁTICA A º Ao Dração: 9 mitos Fvriro/ Nom Nº T: Classificação O Prof. (Lís Abr) ª PARTE Para cada ma das sgits qstõs d scolha múltipla, slccio a
No arquivo Exames e Provas podem ser consultados itens e critérios de classificação de provas e de testes intermédios desta disciplina.
INFORMAÇÃO-PROVA MATEMÁTICA A 016 Prova 635 1.º ao de Escolaridade (Decreto-Lei.º 139/01, de 5 de jlho) O presete docmeto divlga iformação relativa à prova de eame fial acioal do esio secdário da disciplia
Matemática A. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A. Versão 2.
Teste Intermédio de Matemática A Versão Teste Intermédio Matemática A Versão Dração do Teste: 90 mintos 4.05.01 1.º Ano de Escolaridade Decreto-Lei n.º 74/004, de 6 de março Na sa folha de respostas, indiqe
Exercícios de exames e provas oficiais
Eercícios de eames e provas oficiais. Cosidere as fuções f e g, de domíio,0, defiidas por l e g f f Recorredo a processos eclusivamete aalíticos, mostre que a codição pelo meos, uma solução em e, f e tem,
EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO
EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO Prova Escrita de Matemática A.º Ao de Escolaridade Decreto-Lei.º 39/0, de 5 de julho Prova 635/.ª Fase 4 Págias Duração da Prova: 50 miutos. Tolerâcia: 30 miutos.
Utilize apenas caneta ou esferográfica, de tinta azul ou preta.
Teste Itermédio Mtemátic A Versão Drção do Teste: 90 mitos 30.04.04.º Ao de Escolridde Idiqe de form legível versão do teste. Utilize pes cet o esferográfic, de tit zl o pret. É permitido o so de mteril
Informação n.º Data: Para: Inspeção-Geral de Educação. Direções Regionais de Educação. Escolas com ensino secundário CIREP FERLAP
Prova de Eame Nacioal de Matemática A Prova 635 01 1.º Ao de Escolaridade Decreto-Lei.º 74/004, de 6 de março Para: Direção-Geral de Iovação e de Desevolvimeto Crriclar Ispeção-Geral de Edcação Direções
Exercícios de exames e provas oficiais
limites, cotiuidade, Teorema de Bolzao Eercícios de eames e provas oficiais. Cosidere as sucessões covergetes a e a b de termos gerais e b l e Sejam a e b os úmeros reais tais que a lima e b limb Qual
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prova Escrita de MATEMÁTICA A - 1o Ao 00 - a Fase Proposta de resolução GRUPO I 1. Como a probabilidade do João acertar em cada tetativa é 0,, a probabilidade do João acertar as tetativas é 0, 0, 0, 0,
Escola Básica e Secundária Dr. Ângelo Augusto da Silva
Escola Básica e Secdária Dr. Âgelo Agsto da Silva Teste de MATEMÁTICA A 1º Ao Dração: 9 mitos Dezembro/ 9 Nome Nº T: Classificação O Prof. (Lís Abre) 1ª PARTE Para cada ma das segites qestões de escolha
Prova-Modelo de Matemática
Prova-Modelo de Matemática PROVA Págias Esio Secudário DURAÇÃO DA PROVA: miutos TOLERÂNCIA: miutos Cotações GRUPO I O quarto úmero de uma certa liha do triâgulo de Pascal é. A soma dos quatro primeiros
Escola Básica e Secundária Dr. Ângelo Augusto da Silva. Teste de MATEMÁTICA A 12º Ano. Duração: 90 minutos Março/ 2014. Nome Nº T:
Escola Básica Scdária Dr Âglo Agsto da Silva Tst d MATEMÁTICA A º Ao Dração: 9 mitos Março/ Nom Nº T: Classificação O Prof (Lís Abr) ª PARTE Para cada ma das sgits qstõs d scolha múltipla slcio a rsposta
TEMA 2 FUNÇÕES FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 2 FUNÇÕES. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess
Jorge Pealva José Carlos Pereira Vítor Pereira MathSuccess FICHAS DE TRABALHO 1.º ANO COMPILAÇÃO TEMA FUNÇÕES Site: http://www.mathsuccess.pt Facebook: https://www.facebook.com/mathsuccess TEMA FUNÇÕES
Apoio às aulas MAT II INSTITUTO SUPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO DE LISBOA LICENCIATURA EM GESTÃO MATEMÁTICA II
Apoio às alas MAT II 8-5-6 INSTITTO SPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO DE LISBOA LICENCIATRA EM GESTÃO MATEMÁTICA II APOIO ÀS ALAS DE 5/6 Mael Martis Carla Martiho Aa Jorge Defiições Defie-se scessão
QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 4
Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado MATEMÁTICA 0 Seja f ( ) log ( ) + log uma fução
Informação n.º Data: Para: Inspecção-Geral de Educação. Direcções Regionais de Educação. Escolas com Ensino Secundário CIREP
Prova de Eame Nacional de Matemática A Prova 635 20 2.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Para: Direcção-Geral de Inovação e de Desenvolvimento Crriclar Inspecção-Geral de Edcação
QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 2
Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado GABARITO MATEMÁTICA 0 Na figura a seguir, esboçamos
Apoio às aulas MAT II INSTITUTO SUPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO DE LISBOA LICENCIATURA EM GESTÃO MATEMÁTICA II
Apoio às alas MAT II 8-05-06 INSTITUTO SUPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO DE LISBOA LICENCIATURA EM GESTÃO MATEMÁTICA II APOIO ÀS AULAS DE 05/06 Mael Martis Carla Martiho Aa Jorge Defiições Chama-se
VERSÃO 1. Prova Escrita de Matemática A. 12.º Ano de Escolaridade. Prova 635/1.ª Fase. Duração da Prova: 150 minutos. Tolerância: 30 minutos.
Eame Nacional do Ensino Secundário Decreto-Lei n.º 74/2004, de 26 de Março Prova Escrita de Matemática A 12.º Ano de Escolaridade Prova 635/1.ª Fase 15 Páginas Duração da Prova: 150 minutos. Tolerância:
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO 12º A1. Grupo I
ESCOLA SECUNDÁRIA COM º CICLO D. DINIS COIMBRA º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO º A Grupo I As três questões deste grupo são de escolha múltipla. Para cada uma delas são idicadas quatro
Mais exercícios de 12.º ano:
Mais exercícios de 1.º ao: www.prof000.pt/users/roliveira0/ao1.htm Escola Secudária de Fracisco Fraco Matemática 1.º ao Cálculo Diferecial algus exercícios saídos em exames e em testes itermédios (Exames
Cálculo Numérico Equações Diferenciais Ordinárias
Cálclo Nmérico Eqações Difereciais Ordiárias Prof: Reialdo Haas - Eqações Difereciais Ordiárias Eqações cotedo derivadas são eqações difereciais. Portato para compreeder e ivestigar problemas evolvedo
MATEMÁTICA II. 01. Uma função f, de R em R, tal. , então podemos afirmar que a, b e c são números reais, tais. que. D) c =
MATEMÁTCA 0. Uma fução f, de R em R, tal que f(x 5) f(x), f( x) f(x),f( ). Seja 9 a f( ), b f( ) e c f() f( 7), etão podemos afirmar que a, b e c são úmeros reais, tais que A) a b c B) b a c C) c a b ab
Prova Escrita de Matemática A
EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n.º 74/004, de 6 de Março Prova Escrita de Matemática A 1.º Ano de Escolaridade Prova 635/Época Especial 14 Páginas Duração da Prova: 150 minutos. Tolerância:
lim Px ( ) 35 x 5 ), teremos Px ( ) cada vez mais próximo de 35 (denotaremos isso da forma Px ( ) 35 ). UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE
CURSO DISCIPLINA PROFESSOR I) Itrodução ao Limite de uma Fução UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE LICENCIATURA EM MATEMÁTICA CÁLCULO DIFERENCIAL E INTEGRAL I Limite de uma Fução José Elias
Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.
Teste Intermédio de Matemática A Versão Teste Intermédio Matemática A Versão Duração do Teste: 90 minutos 24.05.20.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Na sua folha de respostas,
Matemática A. Teste Intermédio Matemática A. Versão 2. Teste Intermédio. Versão 2. Duração do Teste: 90 minutos º Ano de Escolaridade
Teste Intermédio Matemática A Versão 2 Teste Intermédio Matemática A Versão 2 Duração do Teste: 90 minutos 19.05.2010 12.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Na folha de respostas,
Construir indicadores para as mudanças nas dimensões e formas durante o processo de deformação sofrido por um sólido. Eduardo Nobre Lages CTEC/UFAL
Uiersidade Federal de Alagoas Cetro de Tecologia Crso de Egeharia Ciil Disciplia: Mecâica dos Sólidos Código: ECIV3 Professor: Edardo Nobre Lages Aálise de Deformações Maceió/AL Motiação Costrir idicadores
Escola Básica e Secundária Dr. Ângelo Augusto da Silva
Escla Básica Scdária Dr. Âgl Agst da Silva Tst d MATEMÁTICA A º A Draçã: 9 mits Març/ Nm Nº T: Classificaçã O Prf. (Lís Abr) ª PARTE Para cada ma das sgits qstõs d sclha múltipla, slcci a rspsta crrcta
26/11/2000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR PROVA 2 MATEMÁTICA. Prova resolvida pela Profª Maria Antônia Conceição Gouveia.
6//000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR 00- PROVA MATEMÁTICA Prova resolvida pela Profª Maria Atôia Coceição Gouveia RESPONDA ÀS QUESTÕES A SEGUIR, JUSTIFICANDO SUAS SOLUÇÕES QUESTÃO A
FICHA DE TRABALHO 11º ANO. Sucessões
. Observe a sequêcia das seguites figuras: FICHA DE TRABALHO º ANO Sucessões Vão-se costruido, sucessivamete, triâgulos equiláteros os vértices dos triâgulos equiláteros já existetes, prologado-se os seus
1. Na figura seguinte está representada parte do gráfico de uma função g, de domínio R e contínua em
PROVA ESCRITA DE MATEMÁTICA A.º E 00 Fevereiro 8 Duração da prova: 90 miuos VERSÃO Grupo I Para cada uma das cico quesões dese grupo, seleccioe a resposa correca de ere as aleraivas que lhe são apreseadas
[Digite texto] T U R M A D O P R O F. J E J E C A E X A M E F I N A L R E C U P E R A Ç Ã O F I N A L 9 º E. F = b) [Digite texto]
[Digite teto] I Poteciação 0. Calcule as seguites potêcias: a) 4 b) 4 0 e) (-) 4 f) g) h) 0 i) (,4) 0 j) (-0,) 0 k) 7¹ l) (,4) ¹ m) (-) ¹ ) 4 7 o) - p) (-) - q) 4 r) s) t) u) v) 4 ESTUDO DIRIGIDO: Poteciação
PROVA DE MATEMÁTICA DA UNIFESP VESTIBULAR 2011 RESOLUÇÃO: Profa. Maria Antônia Gouveia.
PROVA DE MATEMÁTICA DA UNIFESP VESTIBULAR 0 Profa Maria Atôia Gouveia 6 A figura represeta um cabo de aço preso as etremidades de duas hastes de mesma altura h em relação a uma plataforma horizotal A represetação
NOTAÇÕES. denota o segmento que une os pontos A e B. In x denota o logarítmo natural de x. A t denota a matriz transposta da matriz A.
MATEMÁTICA NOTAÇÕES é o cojuto dos úmeros compleos. é o cojuto dos úmeros reais. = {,,, } i deota a uidade imagiária, ou seja, i =. Z é o cojugado do úmero compleo Z Se X é um cojuto, PX) deota o cojuto
11 Aplicações da Integral
Aplicações da Itegral Ao itroduzirmos a Itegral Defiida vimos que ela pode ser usada para calcular áreas sob curvas. Veremos este capítulo que existem outras aplicações. Essas aplicações estedem-se aos
CÁLCULO DIFERENCIAL. Conceito de derivada. Interpretação geométrica
CÁLCULO DIFERENCIAL Coceito de derivada Iterpretação geométrica A oção fudametal do Cálculo Diferecial a derivada parece ter sido pela primeira vez explicitada o século XVII, pelo matemático fracês Pierre
T E S T E I N T E R M É D I O D E M A T E M Á T I C A. 12.º Ano de Escolaridade. (Decreto Lei n.º 74/2004, de 26 de Março)
gabinete de avaliação educacional T E S T E I N T E R M É D I O D E M A T E M Á T I C A 12.º Ano de Escolaridade (Decreto Lei n.º 74/2004, de 26 de Março) Duração da Prova: 90 minutos 15/ Março/ 2007 VERSÃO
PROVA 435/11 Págs. EXAME NACIONAL DO ENSINO SECUNDÁRIO
PROVA 435/11 Págs. EXAME NACIONAL DO ENSINO SECUNDÁRIO 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais e Cursos Tecnológicos Duração da prova: 120 minutos 1.ª Fase 2000
EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1
EXAME NACIONAL DO ENSINO SECUNDÁRIO 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais e Cursos Tecnológicos PROVA 435/9 Págs. Duração da prova: 120 minutos 2.ª FASE 2004
Em certas situações particulares é possível operar com raízes quadradas, raízes cúbicas,...
Escola Secudária/, da Sé-Lamego Ficha de Trabalho de Matemática A Ao Lectivo 000/0 Cojuto IR - Operações com radicais, racioalização de deomiadores e equadrametos 0º Ao Nome: Nº: Turma: NÚMEROS IRRACIONAIS
Matemática. B) Determine a equação da reta que contém a diagonal BD. C) Encontre as coordenadas do ponto de interseção das diagonais AC e BD.
Matemática 0. Um losago do plao cartesiao oxy tem vértices A(0,0), B(,0), C(,) e D(,). A) Determie a equação da reta que cotém a diagoal AC. B) Determie a equação da reta que cotém a diagoal BD. C) Ecotre
Prova Escrita de Matemática A
EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei.º 74/2004, de 26 de março Prova Escrita de Matemática A 2.º Ao de Escolaridade Prova 65/.ª Fase Critérios de Classificação 0 Págias 202 COTAÇÕES GRUPO I.
VERSÃO 1. Prova Escrita de Matemática A. 12.º Ano de Escolaridade. Prova 635/1.ª Fase EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO
EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO Prova Escrita de Matemática A 1.º Ano de Escolaridade Decreto-Lei n.º 139/01, de 5 de julho Prova 635/1.ª Fase 16 Páginas Duração da Prova: 150 minutos. Tolerância:
12.º Ano de Escolaridade. (Decreto-Lei n.º 74/2004, de 26 de Março) Duração da Prova: 90 minutos VERSÃO 3
gabinete de avaliação educacional T E S T E I N T E R M É D I O D E M A T E M Á T I C A 12.º Ano de Escolaridade (Decreto-Lei n.º 74/2004, de 26 de Março) Duração da Prova: 90 minutos 15/Março/2007 VERSÃO
EXAME NACIONAL DO ENSINO SECUNDÁRIO
PROVA 435/9 Págs. EXAME NACIONAL DO ENSINO SECUNDÁRIO 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais e Cursos Tecnológicos Duração da prova: 120 minutos Época Especial
Lista de Exercícios Método de Newton
UNEMAT Uiversidade do Estado de Mato Grosso Campus Uiversitário de Siop Faculdade de Ciêcias Eatas e Tecológicas Curso de Egeharia Civil Disciplia: Cálculo Diferecial e Itegral I Lista de Eercícios Método
EXAME NACIONAL DO ENSINO SECUNDÁRIO
PROVA 435/9 Págs. EXAME NACIONAL DO ENSINO SECUNDÁRIO 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais e Cursos Tecnológicos Duração da prova: 120 minutos Época Especial
Mecânica dos Sólidos II
Curso de Egeharia Civil Uiversidade Estadual de Marigá Cetro de Tecologia Departameto de Egeharia Civil Mecâica dos Sólidos II Bibliografia: Beer, F. P.; Johsto, Jr. E. R.; DEWolf, J. T. Resistêcia dos
Não é permitido o uso de corrector. Em caso de engano, deve riscar, de forma inequívoca, aquilo que pretende que não seja classificado.
Teste Intermédio de Matemática B 010 Teste Intermédio Matemática B Duração do Teste: 90 minutos 6.05.010 11.º Ano de Escolaridade Decreto-Lei n.º 74/004, de 6 de Março Utilize apenas caneta ou esferográfica
Capítulo I Séries Numéricas
Capítulo I Séries Numéricas Capitulo I Séries. SÉRIES NÚMERICAS DEFINIÇÃO Sedo u, u,..., u,... uma sucessão umérica, chama-se série umérica de termo geral u à epressão que habitualmete se escreve u u...
Duração da Prova: 150 minutos. Tolerância: 30 minutos. Na folha de respostas, indique de forma legível a versão da prova.
EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n.º 74/004, de 6 de Março Prova Escrita de Matemática A.º ano de Escolaridade Prova 65/.ª Fase Páginas Duração da Prova: 50 minutos. Tolerância: 0 minutos
Duração da Prova: 150 minutos. Tolerância: 30 minutos. Na folha de respostas, indique, de forma legível, a versão da prova.
EXAME NACINAL D ENSIN SECUNDÁRI Decreto-Lei n.º 74/004, de 6 de Março Prova Escrita de Matemática A.º Ano de Escolaridade Prova 635/.ª Fase 3 Páginas Dração da Prova: 50 mintos. Tolerância: 30 mintos.
Codificação de Fonte
Sistemas de Comicações Capítlo Codificação de Fote A Codificação de Fote é o processo qe visa redzir o máximo possível a iformação reddate da Seqüêcia de Iformação em sa saída seqüêcia esta obtida a partir
Prova Escrita de Matemática A
EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO Prova Escrita de Matemática A 1.º Ano de Escolaridade Decreto-Lei n.º 139/01, de 5 de julho Prova 635/Época Especial 15 Páginas Duração da Prova: 150 minutos.
Solução Comentada Prova de Matemática
0 questões. Sejam a, b e c os três meores úmeros iteiros positivos, tais que 5a = 75b = 00c. Assiale com V (verdadeiro) ou F (falso) as opções abaixo. ( ) A soma a b c é igual a 9 ( ) A soma a b c é igual
Virgílio A. F. Almeida DCC-UFMG 1/2005
Virgílio A. F. Almeida DCC-UFMG 1/005 !" # Comparado quatitativamete sistemas eperimetais: Algoritmos, protótipos, modelos, etc Sigificado de uma amostra Itervalos de cofiaça Tomado decisões e comparado
EXAME NACIONAL DO ENSINO SECUNDÁRIO
PROVA 435/9 Págs. EXAME NACIONAL DO ENSINO SECUNDÁRIO 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais e Cursos Tecnológicos - Programa ajustado Duração da prova: 120 minutos
EXAME NACIONAL DO ENSINO SECUNDÁRIO
PROVA 435/9 Págs. EXAME NACIONAL DO ENSINO SECUNDÁRIO 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais e Cursos Tecnológicos - Programa ajustado Duração da prova: 120 minutos
Escola Básica e Secundária Dr. Ângelo Augusto da Silva
Escla Básica Scdária Dr. Âgl Agst da Silva Tst d MATEMÁTIA A º A Draçã: 9 mits Març/ 3 Nm Nº T: lassificaçã O Prf. (Lís Abr) ª PARTE Para cada ma das sgits qstõs d sclha múltipla, slci a rspsta crrta d
Análise Infinitesimal II LIMITES DE SUCESSÕES
-. Calcule os seguites limites Aálise Ifiitesimal II LIMITES DE SUCESSÕES a) lim + ) b) lim 3 + 4 5 + 7 + c) lim + + ) d) lim 3 + 4 5 + 7 + e) lim + ) + 3 f) lim + 3 + ) g) lim + ) h) lim + 3 i) lim +
Prova Escrita de Matemática A
EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO Prova Escrita de Matemática A 12.º Ano de Escolaridade Decreto-Lei n.º 139/2012, de 5 de julho Prova 635/Época Especial 15 Páginas Duração da Prova: 150 minutos.
GEOMETRIA BÁSICA GGM00161-TURMA M2. Dirce Uesu Pesco Geometria Espacial 18/11/2010
GEOMETRIA BÁSICA 200-2 GGM006-TURMA M2 Dirce Uesu Pesco Geometria Espacial 8//200 Defiição : PRISMA Cosidere dois plaos paralelos α e β e um segmeto de reta PQ, cuja reta suporte r itercepta o plao α.
M23 Ficha de Trabalho SUCESSÕES 2
M Ficha de Trabalho NOME: SUCESSÕES I PARTE Relativamete à sucessão a =, pode-se afirmar que: (A) É um ifiitamete grade positivo (B) É um ifiitésimo (C) É um ifiitamete grade egativo (D) É limitada Cosidere
Tema: Guia para o estudo das sucessões 12º ano de escolaridade
Istitto Sperior de Edcação I S E Trabalho cietifico do fim do crso apresetado ao I S E Para obteção do gra de liceciatra em matemática Tema: Gia para o estdo das scessões º ao de escolaridade Orietador,
( 7) ( 3) Potenciação
Poteciação Defiição: Calcular a potêcia de um úmero real a equivale a multiplicar a, por ele mesmo, vezes. A otação da operação de poteciação é equivalete a: Eemplos: 6; 7 9 a a. a. a... a vezes Propriedades:
Matemática A. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A. Versão 1.
Teste Intermédio de Matemática A Versão 1 Teste Intermédio Matemática A Versão 1 Dração do Teste: 90 mintos 4.05.01 1.º Ano de Escolaridade Decreto-Lei n.º 74/004, de 6 de março Na sa folha de respostas,
FORMA TRIGONOMÉTRICA. Para ilustrar, calcularemos o argumento de z 1 i 3 e w 2 2i AULA 34 - NÚMEROS COMPLEXOS
145 AULA 34 - NÚMEROS COMPLEXOS FORMA TRIGONOMÉTRICA Argumeto de um Número Complexo Seja = a + bi um úmero complexo, sedo P seu afixo o plao complexo. Medido-se o âgulo formado pelo segmeto OP (módulo
CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE
CAPÍTUO IV DESENVOVIMENTOS EM SÉRIE Série de Taylor e de Mac-auri Seja f ) uma fução real de variável real com domíio A e seja a um poto iterior desse domíio Supoha-se que a fução admite derivadas fiitas
Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica
Exercícios de Aprofudameto Matemática Progressão Aritmética e b. (Fuvest 05) Dadas as sequêcias a 4 4, b, c a a e d, b defiidas para valores iteiros positivos de, cosidere as seguites afirmações: I. a
2.2. Séries de potências
Capítulo 2 Séries de Potêcias 2.. Itrodução Série de potêcias é uma série ifiita de termos variáveis. Assim, a teoria desevolvida para séries ifiitas de termos costates pode ser estedida para a aálise
Prova 3 Matemática. N ọ DE INSCRIÇÃO:
Prova QUESTÕES OBJETIIVAS -- VESTIIBULAR DE VERÃO 00 N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, coforme
Matemática. Resolução das atividades complementares. M7 Função Exponencial. 2 Encontre o valor da expressão
Resolução das atividades complemetares Matemática M Fução Epoecial p. 6 (Furg-RS) O valor da epressão A a) c) e) 6 6 b) d) 0 A?? A? 8? A A A? A 6 8 Ecotre o valor da epressão 0 ( ) 0 ( ) 0 0 0. Aplicado
EXAME NACIONAL DO ENSINO SECUNDÁRIO
PROVA 435/8 Págs. EXAME NACIONAL DO ENSINO SECUNDÁRIO 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais e Cursos Tecnológicos Duração da prova: 120 minutos Militares 2000
NOTAÇÕES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares.
R C : cojuto dos úmeros reais : cojuto dos úmeros complexos i : uidade imagiária: i2 = 1 z Re(z) Im(z) det A : módulo do úmero z E C : parte real do úmero z E C : parte imagiária do úmero z E C : determiate
ITA Destas, é (são) falsa(s) (A) Apenas I (B) apenas II (C) apenas III (D) apenas I e III (E) apenas nenhuma.
ITA 00. (ITA 00) Cosidere as afirmações abaixo relativas a cojutos A, B e C quaisquer: I. A egação de x A B é: x A ou x B. II. A (B C) = (A B) (A C) III. (A\B) (B\A) = (A B) \ (A B) Destas, é (são) falsa(s)
Instituto Universitário de Lisboa
Istituto Uiversitário de Lisboa Departameto de Matemática Exercícios de Sucessões e Séries Exercícios: sucessões. Estude quato à mootoia cada uma das seguites sucessões. (a) (g) + (b) + + + 4 (c) + (h)
Interpolação-Parte II Estudo do Erro
Iterpolação-Parte II Estudo do Erro. Estudo do Erro a Iterpolação. Iterpolação Iversa 3. Grau do Poliômio Iterpolador 4. Fução Splie em Iterpolação 4. Splie Liear 4. Splie Cúbica .Estudo do Erro a Iterpolação
Questão 1. Questão 2. Questão 4. Questão 3. alternativa C. alternativa B. alternativa D. alternativa A n 2 n! O valor de log 2. c) n. b) 2n.
Questão 4 6 O valor de log :! a). b). c). d) log. e) log. Para iteiro positivo, 4 6 = = ( ) ( ) ( 3) ( ) = = ( 3 ) =! Portato 4 6! log = log!! = = log =. Questão Num determiado local, o litro de combustível,
EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1
EXAME NACIONAL DO ENSINO SECUNDÁRIO 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais e Cursos Tecnológicos PROVA 435/11 Págs. Duração da prova: 120 minutos 2.ª FASE 2003
Prova 3 Matemática. N ọ DE INSCRIÇÃO:
Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, coforme o que costa a etiqueta
EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1
EXAME NACIONAL DO ENSINO SECUNDÁRIO 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais Programa novo implementado em 2005/2006 PROVA 635/11 Págs. Duração da prova: 120 minutos