SOLUÇÕES HEURÍSTICAS PARA O JOGO DE DAMAS

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "SOLUÇÕES HEURÍSTICAS PARA O JOGO DE DAMAS"

Transcrição

1 Universidade Federal do Tocantins SOLUÇÕES HEURÍSTICAS PARA O JOGO DE DAMAS Diogo Rigo de Brito Guimarães Alexandre Tadeu Rossini da Silva

2 Objetivo Implementar soluções heurísticas para o Jogo de Damas e aplicar os algoritmos em um ambiente gráfico capaz de confrontar as soluções.

3 O Jogo de Damas É um jogo disputado em turnos por dois jogadores, em uma matriz quadrada 8x8 (tabuleiro de 64 casas), dispondo de 12 peças para cada jogador.

4 Introdução O desenvolvimento de soluções heurísticas é motivado pelo alto custo computacional de se analisar, via busca cega, todas as possibilidades.

5 Motivação Estudar técnicas heurísticas e metaheurísticas Damas foi escolhido por possuir características semelhantes à de problemas mais complexos Utilizar as técnicas estudadas em problemas semelhantes Xadrez Caixeiro viajante Passeio do cavalo Go

6 Métodos Foram utilizados conceitos de teoria dos jogos, heurística (MiniMax com poda Alfa Beta) e metaheurística (algoritmo genético). Algoritmo genético: Algoritmo evolutivo. Minimax: Algoritmo de maximização do ganho. 0,9 0,8 0,6 0,6 0,5 0,

7 Características Características do Jogo de Damas: Simétrico: De mesmo peso para os jogadores. Soma zero: Competição direta. Seqüencial: Jogado em turnos. Informação perfeita e finita: Conhecimento prévio de todos os movimentos que podem ser feitos.

8 Algoritmo genético Algoritmo evolutivo que usa técnicas inspiradas pela biologia evolutiva como hereditariedade, mutação, seleção natural e recombinação. Baseia se em uma codificação do conjunto das soluções possíveis. Os resultados são apresentados como uma população de soluções. Não necessitam de nenhum conhecimento derivado do problema. Usa transições probabilísticas.

9 Implementação por algoritmo genético Foi modelado o cromossomo com um conjunto de genes (a peça a ser movida e seu movimento). Cada gene representa um movimento de um jogador.

10 Implementação por algoritmo genético Exemplo de codificação:

11 Implementação por algoritmo genético Avaliação do cromossomo (fitness): Soma( jogada * (número genes índice) ) Avaliação do estado do tabuleiro: Soma(peça jogador*peso) soma(peça oponente*peso) Peso posicional

12 Implementação por algoritmo genético Para o cruzamento primeiro são selecionados dois indivíduos pelo método da roleta. Os indivíduos estão ordenados de acordo com a função objetivo. A roleta atribui probabilidades decrescentes de indivíduos menos aptos serem escolhidos. População Fitness % Indivíduo ,33% Indivíduo ,67% Indivíduo ,00% Indivíduo ,33% Indivíduo 5 1 6,67%

13 Implementação por algoritmo genético O cruzamento gera dois novos indivíduos e estes recebem o cromossomo dos pais recombinados por um corte. O Corte pode dividir um gene ao meio ou não. Na mutação um gene qualquer recebe uma nova peça.

14 Minimax Pode ser considerado como a maximização do ganho mínimo.

15 Corte Alfa Beta Tem por objetivo reduzir a árvore de busca.

16 Desenvolvimento A fim de aplicar as soluções propostas pelos algoritmos desenvolvidos, foi necessária a criação de um ambiente gráfico. Nesse ambiente são feitas as simulações entre os algoritmos propostos e jogadores humanos. Humano Algoritmos genético Minimax

17 Desenvolvimento Tanto o ambiente quanto as soluções foram implementadas em C++. Como biblioteca gráfica foi utilizada SDL.

18 Testes e resultados Não foram realizados testes para quantificar a eficiência e a qualidade das soluções propostas. O trabalho encontra se em fase de desenvolvimento.

19 Teste e resultados A solução por algoritmo genético foi proposta a fim de minimizar o tempo de resposta por buscas, mas não obteve resultado satisfatório. O resultado foi uma solução com defensiva baixa e ofensiva quase inexistente: Peças movidas para posições seguras e de forma ingênua.

20 Testes e resultados A solução por MiniMax com poda Alfa Beta encontra se em desenvolvimento.

Algoritmos Genéticos. Princípio de Seleção Natural. Sub-áreas da Computação Evolutiva. Idéias básicas da CE. Computação Evolutiva

Algoritmos Genéticos. Princípio de Seleção Natural. Sub-áreas da Computação Evolutiva. Idéias básicas da CE. Computação Evolutiva Computação Evolutiva Algoritmos Genéticos A computação evolutiva (CE) é uma área da ciência da computação que abrange modelos computacionais inspirados na Teoria da Evolução das Espécies, essencialmente

Leia mais

Técnicas para Implementação de Jogos

Técnicas para Implementação de Jogos Técnicas para Implementação de Jogos Solange O. Rezende Thiago A. S. Pardo Considerações gerais Aplicações atrativas para métodos de IA Formulação simples do problema (ações bem definidas) Ambiente acessível

Leia mais

Otimização. Unidade 6: Algoritmo Genético. Jaime Arturo Ramírez. 7. Teoria do processo evolutivo num GA. 8. Aspectos avançados

Otimização. Unidade 6: Algoritmo Genético. Jaime Arturo Ramírez. 7. Teoria do processo evolutivo num GA. 8. Aspectos avançados Otimização Jaime Arturo Ramírez Conteúdo 1. Introdução 2. Analogia de mecanismos de seleção natural com sistemas artificiais 3. Algoritmo genético modelo 4. Um GA simples 5. Representação, genes e cromossomos

Leia mais

C o m p u t a ç ã o M ó v e l. André Siqueira Ruela

C o m p u t a ç ã o M ó v e l. André Siqueira Ruela C o m p u t a ç ã o M ó v e l André Siqueira Ruela Sumário Revisão sobre AGs. Codificação de uma Rede Neural. AG em treinamento supervisionado. AG em treinamento não supervisionado. Revisão: Algoritmos

Leia mais

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ ALGORITMOS GENÉTICOS. Metaheurísticas de Buscas

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ ALGORITMOS GENÉTICOS. Metaheurísticas de Buscas PR UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ ALGORITMOS GENÉTICOS Metaheurísticas de Buscas ALGORITMOS GENÉTICOS (AG) Popularizados por John Holland podem ser considerados os primeiros modelos algorítmicos

Leia mais

Busca Competitiva. Inteligência Artificial. Até aqui... Jogos vs. busca. Decisões ótimas em jogos 9/22/2010

Busca Competitiva. Inteligência Artificial. Até aqui... Jogos vs. busca. Decisões ótimas em jogos 9/22/2010 Inteligência Artificial Busca Competitiva Aula 5 Profª Bianca Zadrozny http://www.ic.uff.br/~bianca/ia-pos Capítulo 6 Russell & Norvig Seção 6.1 a 6.5 2 Até aqui... Problemas sem interação com outro agente.

Leia mais

Métodos de Busca. Inteligência Artificial. Algoritmos Genéticos. Algoritmos Evolucionários. Prof. Ms. Luiz Alberto Contato:

Métodos de Busca. Inteligência Artificial. Algoritmos Genéticos. Algoritmos Evolucionários. Prof. Ms. Luiz Alberto Contato: Inteligência Artificial Prof. Ms. Luiz Alberto Contato: lasf.bel@gmail.com Métodos de Busca Busca Cega ou Exaustiva: Não sabe qual o melhor nó da fronteira a ser expandido. Apenas distingue o estado objetivo

Leia mais

Metahuerísticas: Algoritmos Genéticos. Sistemas de Informação/Ciências da Computação UNISUL Aran Bey Tcholakian Morales, Dr. Eng.

Metahuerísticas: Algoritmos Genéticos. Sistemas de Informação/Ciências da Computação UNISUL Aran Bey Tcholakian Morales, Dr. Eng. Metahuerísticas: Algoritmos Genéticos Sistemas de Informação/Ciências da Computação UNISUL Aran Bey Tcholakian Morales, Dr. Eng. (Apostila 8) Meta-heurísticas Classificação de métodos heurísticos: os métodos

Leia mais

Alternativamente pode ser pensado como uma forma de maximizar o minimo ganho possível.

Alternativamente pode ser pensado como uma forma de maximizar o minimo ganho possível. Inteligência Artificial Algoritmo i com cortes Alfa-Beta Ana Saraiva 050509087 Ana Barbosa 050509089 Marco Cunha 050509048 Tiago Fernandes 050509081 FEUP - MIEIC 3ºAno/ºSemestre 1 Introdução O algoritmo

Leia mais

Sumário. Decisões óptimas em jogos (minimax) Cortes α-β Decisões imperfeitas em tempo real

Sumário. Decisões óptimas em jogos (minimax) Cortes α-β Decisões imperfeitas em tempo real Jogos Capítulo 6 Sumário Decisões óptimas em jogos (minimax) Cortes α-β Decisões imperfeitas em tempo real Jogos vs. Problemas de Procura Adversário imprevisível" necessidade de tomar em consideração todas

Leia mais

Algoritmos Genéticos. Indivíduos em uma população competem por recursos e parceiros. Os indivíduos mais bem sucedidos em cada competição vão produzir

Algoritmos Genéticos. Indivíduos em uma população competem por recursos e parceiros. Os indivíduos mais bem sucedidos em cada competição vão produzir Algoritmos Genéticos Algoritmos Genéticos (GA) são algoritmos de busca heurística baseados em ideias de seleção natural e genética. Dessa forma, eles representam uma forma inteligente de se fazer uma busca

Leia mais

Microsoft Faculty Connection

Microsoft Faculty Connection Microsoft Faculty Connection Plataforma de Jogos como Ferramenta Multidisciplinar Prof. Dr. LucianoAntonio Digiampietri EACH-USP Roteiro Introdução Objetivos Detalhamentodo Projeto Conclusões Introdução

Leia mais

Introdução aos Algoritmos Genéticos

Introdução aos Algoritmos Genéticos Introdução aos Algoritmos Genéticos Prof. Matheus Giovanni Pires EXA 868 Inteligência Artificial Não-Simbólica B Universidade Estadual de Feira de Santana 2 Algoritmos Genéticos: Introdução Introduzidos

Leia mais

Inteligência Computacional para Jogos Eletrônicos

Inteligência Computacional para Jogos Eletrônicos Inteligência Computacional para Jogos Eletrônicos Papéis da IA em Jogos Adversários Aliados Personagens de apoio NPC s (Non-player Character) Comentaristas Controle de câmera Geração de fases Nivelamento

Leia mais

Jogo de Damas. Alunos: Sávio Mendes de Figueiredo Sômulo Nogueira Mafra

Jogo de Damas. Alunos: Sávio Mendes de Figueiredo Sômulo Nogueira Mafra Jogo de Damas Alunos: Sávio Mendes de Figueiredo (savio@cos.ufrj.br) Sômulo Nogueira Mafra (somulo@cos.ufrj.br) Prof.: Inês dutra Inteligência artificial Coppe sistemas - UFRJ 1. Algumas Frases 2. Origens

Leia mais

Computação Evolutiva Eduardo do Valle Simões Renato Tinós ICMC - USP

Computação Evolutiva Eduardo do Valle Simões Renato Tinós ICMC - USP Computação Evolutiva Eduardo do Valle Simões Renato Tinós ICMC - USP 1 Principais Tópicos Introdução Evolução Natural Algoritmos Genéticos Aplicações Conclusão 2 Introdução http://www.formula-um.com/ Como

Leia mais

INTELIGÊNCIA ARTIFICIAL 2008/09

INTELIGÊNCIA ARTIFICIAL 2008/09 INTELIGÊNCIA ARTIFICIAL 2008/09 JOGOS Ex. 1) ( Teste 2005/06) Considere a seguinte árvore de procura de dois agentes. Reordene as folhas de modo a maximizar o número de cortes com uma procura da esquerda

Leia mais

APLICAÇÃO DE ALGORITMOS BIO-INSPIRADOS EM CONTROLE ÓTIMO

APLICAÇÃO DE ALGORITMOS BIO-INSPIRADOS EM CONTROLE ÓTIMO APLICAÇÃO DE ALGORITMOS BIO-INSPIRADOS EM CONTROLE ÓTIMO Profa. Mariana Cavalca Baseado em: Material didático do Prof. Dr. Carlos Henrique V. Moraes da UNIFEI Curso de verão da Profa. Gisele L. Pappa Material

Leia mais

Introdução a Algoritmos Genéticos

Introdução a Algoritmos Genéticos Introdução a Algoritmos Genéticos Tiago da Conceição Mota Laboratório de Inteligência Computacional Núcleo de Computação Eletrônica Universidade Federal do Rio de Janeiro Outubro de 2007 O Que São? Busca

Leia mais

Inteligência Artificial

Inteligência Artificial Inteligência Artificial Aula 6 Algoritmos Genéticos M.e Guylerme Velasco Roteiro Introdução Otimização Algoritmos Genéticos Representação Seleção Operadores Geneticos Aplicação Caixeiro Viajante Introdução

Leia mais

Resolvendo o Problema do Cavalo do Xadrez Utilizando Algoritmo Genético

Resolvendo o Problema do Cavalo do Xadrez Utilizando Algoritmo Genético Resolvendo o Problema do Cavalo do Xadrez Utilizando Algoritmo Genético Alexandre Tadeu Rossini da Silva 1, Gustavo Setúbal Nazareno 1, André Marcelo Schneider 2 1 Bacharelado em Ciência da Computação

Leia mais

Introdução à Inteligência Artificial. Procura em contextos competitivos jogos (cont.)

Introdução à Inteligência Artificial. Procura em contextos competitivos jogos (cont.) Introdução à Inteligência Artificial Procura em contextos competitivos jogos (cont.) Sumário n Vimos Jogos de 2 jogadores n Determinísticos, soma nula, informação perfeita Estratégia óptima minimax Algoritmos

Leia mais

INF 1771 Inteligência Artificial

INF 1771 Inteligência Artificial INF 1771 Inteligência Artificial Aula 06 Algoritmos Genéticos Prof. Augusto Baffa Métodos de Busca Busca Cega ou Exaustiva: Não sabe qual o melhor nó da fronteira a ser expandido.

Leia mais

Enunciados dos Exercícios Cap. 2 Russell & Norvig

Enunciados dos Exercícios Cap. 2 Russell & Norvig Enunciados dos Exercícios Cap. 2 Russell & Norvig 1. (2.2) Tanto a medida de desempenho quanto a função de utilidade medem o quanto um agente está desempenhando bem suas atividades. Explique a diferença

Leia mais

Inteligência Artificial. Resolução de problemas por meio de algoritmos de busca. Aula VI Busca Competitiva

Inteligência Artificial. Resolução de problemas por meio de algoritmos de busca. Aula VI Busca Competitiva Universidade Estadual do Oeste do Paraná Curso de Bacharelado em Ciência da Computação http://www.inf.unioeste.br/~claudia/ia2017.html Inteligência Artificial Resolução de problemas por meio de algoritmos

Leia mais

OTIMIZAÇÃO FUNÇÕES UTILIZANDO ALGORITMOS GENÉTICOS NO APLICATIVO MS EXCEL RESUMO INTRODUÇÃO

OTIMIZAÇÃO FUNÇÕES UTILIZANDO ALGORITMOS GENÉTICOS NO APLICATIVO MS EXCEL RESUMO INTRODUÇÃO OTIMIZAÇÃO FUNÇÕES UTILIZANDO ALGORITMOS GENÉTICOS NO APLICATIVO MS EXCEL Miquéias Augusto Ferreira Nantes 1, Douglas Peixoto de Carvalho 1 (Alunos do Curso de Matemática da Universidade Anhanguera - Uniderp)

Leia mais

Árvore de Jogos Minimax e Poda Alfa-Beta

Árvore de Jogos Minimax e Poda Alfa-Beta Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Árvore de Jogos Minimax e Poda Alfa-Beta Inteligência Artificial Site: http://jeiks.net E-mail: jacsonrcsilva@gmail.com

Leia mais

3 Algoritmos Genéticos

3 Algoritmos Genéticos Técnicas de Inteligência Computacional 33 3 Algoritmos Genéticos Este capítulo resume os principais conceitos sobre o algoritmo evolucionário empregado nesta dissertação. É apresentada uma breve explicação

Leia mais

Backtracking. Backtracking

Backtracking. Backtracking Notas de aula da disciplina IME 0-0 ALGORITMOS E ESTRUTURAS DE DADOS II Paulo Eustáquio Duarte Pinto (pauloedp arroba ime.uerj.br) É uma técnica de solução de problemas (construção de algoritmos) que eamina

Leia mais

Jogos com Oponentes. Problemas de busca: não assumem a presença de um oponente

Jogos com Oponentes. Problemas de busca: não assumem a presença de um oponente istemas Inteligentes, 10-11 1 Jogos com ponentes Problemas de busca: não assumem a presença de um oponente Jogos: oponente INCERTEZA! Incerteza porque não se conhece as jogadas exatas do oponente e não

Leia mais

Optimização Não-linear

Optimização Não-linear Optimização Não-linear Problemas de optimização não-linear A função a minimizar (maximizar) não é linear Exemplo: Z=43x 2 +log(x 2 )*sin(x x3 ), com x 3 -x 2! < 0 Não existem métodos universais para este

Leia mais

Exemplo de Aplicação de Algoritmos Genéticos. Prof. Juan Moisés Mauricio Villanueva cear.ufpb.br/juan

Exemplo de Aplicação de Algoritmos Genéticos. Prof. Juan Moisés Mauricio Villanueva cear.ufpb.br/juan Exemplo de Aplicação de Algoritmos Genéticos Prof. Juan Moisés Mauricio Villanueva jmauricio@cear.ufpb.br cear.ufpb.br/juan Estrutura do Algoritmo Genético Algoritmo genético Inicio t = 0 inicializar P(t)

Leia mais

Jogos com Oponentes. Problemas de busca: não assumem a presença de um oponente

Jogos com Oponentes. Problemas de busca: não assumem a presença de um oponente Sistemas Inteligentes, 13-14 1 Jogos com ponentes Problemas de busca: não assumem a presença de um oponente Jogos: oponente INCERTEZA! Incerteza porque não se conhece as jogadas exatas do oponente e não

Leia mais

Inteligência Artificial (SI 214) Aula 6 Busca com Adversário. Prof. Josenildo Silva

Inteligência Artificial (SI 214) Aula 6 Busca com Adversário. Prof. Josenildo Silva Inteligência Artificial (SI 214) Aula 6 Busca com Adversário Prof. Josenildo Silva jcsilva@ifma.edu.br 2015 2012-2015 Josenildo Silva (jcsilva@ifma.edu.br) Este material é derivado dos slides de Hwee Tou

Leia mais

Métodos de pesquisa e Optimização

Métodos de pesquisa e Optimização Métodos de pesquisa e Optimização Victor Lobo Importância para os SAD Definir o caminho a tomar depois de se ter trabalhado os dados 1ª Fase: Analisar os dados disponíveis Visualização OLAP, relatórios

Leia mais

Algoritmos de retrocesso

Algoritmos de retrocesso Algoritmos de retrocesso Algoritmos em que se geram escolhas que vão sendo testadas e eventualmente refeitas Problemas para os quais não existem algoritmos eficientes: retrocesso é melhor que pesquisa

Leia mais

Jogos com Oponentes. March 13, 2017

Jogos com Oponentes. March 13, 2017 Jogos com Oponentes March 13, 2017 Jogos com Oponentes Problemas de busca: não assumem a presença de um oponente Jogos: oponente INCERTEZA! Incerteza porque não se conhece as jogadas exatas do oponente

Leia mais

Jogo King Relatório da Melhoria do Trabalho Inteligência Artificial. Tiago Fonseca, ei02100

Jogo King Relatório da Melhoria do Trabalho Inteligência Artificial. Tiago Fonseca, ei02100 Jogo King Relatório da Melhoria do Trabalho Inteligência Artificial Tiago Fonseca, ei02100 19 de Julho de 2005 Resumo Conteúdo 1 Introdução 3 1.1 Objectivo................................... 3 1.2 Motivação...................................

Leia mais

4 Metáforas de Optimização

4 Metáforas de Optimização 4 Metáforas de Optimização O gigantesco avanço tecnológico que vem sofrendo os sistemas de computação, mais precisamente as unidades de processamento, criou a base para o uso efetivo da Inteligência Computacional,

Leia mais

Jogos com Oponentes. espaço de busca muito grande tempo para cada jogada

Jogos com Oponentes. espaço de busca muito grande tempo para cada jogada Jogos com Oponentes Jogos com Oponentes ˆ Problemas de busca: não assumem a presença de um oponente ˆ Jogos: oponente INCERTEZA! ˆ Incerteza porque não se conhece as jogadas exatas do oponente e não por

Leia mais

5 Modelo Kernel PCA Genético para Ajuste de Histórico

5 Modelo Kernel PCA Genético para Ajuste de Histórico 5 Modelo Kernel PCA Genético para Ajuste de Histórico Conforme descrito na seção 3.2.2.2.1, em um estudo anterior, Sarma, Durlofsky, et al. (2007) parametrizaram o campo de permeabilidade através do Kernel

Leia mais

Sistemas de Controle e Programação Genética. Rodolfo Berlezi

Sistemas de Controle e Programação Genética. Rodolfo Berlezi Sistemas de Controle e Programação Genética Rodolfo Berlezi Introdução Desenvolver um software para otimização de sistemas de controle utilizando programação genética Um sistema de controle necessita de

Leia mais

Ex. 1) Considere que a árvore seguinte corresponde a uma parte do espaço de estados de um jogo de dois agentes: f=7 f=7 f=1 f=2

Ex. 1) Considere que a árvore seguinte corresponde a uma parte do espaço de estados de um jogo de dois agentes: f=7 f=7 f=1 f=2 LERCI/LEIC Tagus 2005/06 Inteligência Artificial Exercícios sobre Minimax: Ex. 1) Considere que a árvore seguinte corresponde a uma parte do espaço de estados de um jogo de dois agentes: Max Min f=4 f=7

Leia mais

Otimização com Algoritmos Genéticos no MATLAB. Prof. Rafael Saraiva Campos CEFET-RJ

Otimização com Algoritmos Genéticos no MATLAB. Prof. Rafael Saraiva Campos CEFET-RJ Otimização com Algoritmos Genéticos no MATLAB Prof. Rafael Saraiva Campos CEFET-RJ Conteúdo do Mini-Curso PARTE 1 Teoria PARTE 2 Prática Conteúdo do Mini-Curso PARTE 1 Teoria 1.1. Conceitos Básicos de

Leia mais

Implementação De Um Algoritmo Genético Codificado Para A Solução do Problema do Caixeiro Viajante

Implementação De Um Algoritmo Genético Codificado Para A Solução do Problema do Caixeiro Viajante Implementação De Um Algoritmo Genético Codificado Para A Solução do Problema do Caixeiro Viajante 1 Resumo Neste trabalho será realizada a codificação do algoritmo genético para a solução do problema do

Leia mais

Estudo e implementação de heurísticas para determinação do caminho de menor custo para atender a rotas pré estabelecidas. Por: Charles Pereira

Estudo e implementação de heurísticas para determinação do caminho de menor custo para atender a rotas pré estabelecidas. Por: Charles Pereira Estudo e implementação de heurísticas para determinação do caminho de menor custo para atender a rotas pré estabelecidas Por: Charles Pereira Objetivos Principal: - Criar, implementar e avaliar heurísticas

Leia mais

Otimização com Algoritmos Evolutivos

Otimização com Algoritmos Evolutivos Otimização com Algoritmos Evolutivos Francisco Pereira (xico@dei.uc.pt) ELBCE 2016 (Setembro 2016) Resumo Problem Optimization Method Solution } Algoritmos Evolutivos } Propriedades e funcionamento } Exemplos

Leia mais

Introdução ao Algoritmo Genético

Introdução ao Algoritmo Genético Introdução ao Algoritmo Genético Sadao Massago Agosto de 2013 1 Introdução O algoritmo genético é um método de otimização bio insperado, desenvolvida por John Henry Holland em 1975. Segundo a teoria evolucionária

Leia mais

Algoritmos Genéticos. Estéfane G. M. de Lacerda DCA/UFRN Outubro/2008

Algoritmos Genéticos. Estéfane G. M. de Lacerda DCA/UFRN Outubro/2008 Estéfane G. M. de Lacerda DCA/UFRN Outubro/2008 Introdução São técnicas de busca e otimização. É a metáfora da teoria da evolução das espécies iniciada pelo Fisiologista e Naturalista inglês Charles Darwin.

Leia mais

Anatomia do motor de um programa de xadrez. Hugo Vinicius M. D. Santana Orientador: José Coelho de Pina

Anatomia do motor de um programa de xadrez. Hugo Vinicius M. D. Santana Orientador: José Coelho de Pina Anatomia do motor de um programa de xadrez Hugo Vinicius M. D. Santana Orientador: José Coelho de Pina Conteúdo Objetivo O que é um motor de xadrez? Arquitetura Entrada e saída Representação do tabuleiro

Leia mais

CTC-17 Inteligência Artificial Busca Competitiva e Busca Iterativa. Prof. Paulo André Castro

CTC-17 Inteligência Artificial Busca Competitiva e Busca Iterativa. Prof. Paulo André Castro CTC-17 Inteligência Artificial Busca Competitiva e Busca Iterativa Prof. Paulo André Castro pauloac@ita.br www.comp.ita.br/~pauloac Sala 110, IEC-ITA Sumário Busca Competitiva Para Ambientes multiagentes...

Leia mais

Lista de Exercícios - Modelagem de representação cromossômica e função fitness

Lista de Exercícios - Modelagem de representação cromossômica e função fitness Lista de Exercícios - Modelagem de representação cromossômica e função fitness Para cada um dos problemas descritos abaixo: crie uma ou mais representações cromossômicas capazes de representar uma solução

Leia mais

Computação Evolutiva. Aula 4 Usando AEs Prof. Tiago A. E. Ferreira

Computação Evolutiva. Aula 4 Usando AEs Prof. Tiago A. E. Ferreira Computação Evolutiva Aula 4 Usando AEs Prof. Tiago A. E. Ferreira Roteiro Exemplos: Problema das 8 rainhas Comportamentos Típicos dos AE CE no contexto da Otimização Global Relembrando Na Aula Passada,

Leia mais

CEFET/RJ Disciplina: Inteligência Artificial Professor: Eduardo Bezerra Lista de exercícios 02

CEFET/RJ Disciplina: Inteligência Artificial Professor: Eduardo Bezerra Lista de exercícios 02 . CEFET/RJ Disciplina: Inteligência Artificial Professor: Eduardo Bezerra Lista de exercícios 02 Créditos: alguns itens desta lista são adaptados do material da disciplina CS188 - Artificial Intelligence

Leia mais

3 Otimização Evolucionária de Problemas com Restrição

3 Otimização Evolucionária de Problemas com Restrição 3 Otimização Evolucionária de Problemas com Restrição 3.1. Introdução Este capítulo resume os principais conceitos sobre os algoritmos evolucionários empregados nesta dissertação. Primeiramente, se fornece

Leia mais

Algoritmos Genéticos Fundamentos e Aplicações. Prof. Juan Moisés Mauricio Villanueva

Algoritmos Genéticos Fundamentos e Aplicações. Prof. Juan Moisés Mauricio Villanueva Algoritmos Genéticos Fundamentos e Aplicações Prof. Juan Moisés Mauricio Villanueva jmauricio@cear.ufpb.br Conteúdo Introdução Inteligência Artificial (IA) Algoritmos Genéticos Aplicações de Algoritmos

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL FACULDADE DE CIÊNCIAS ECONÔMICAS DISCIPLINA DE TEORIA DOS JOGOS - CURSO DE VERÃO PROF. SABINO PÔRTO JÚNIOR

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL FACULDADE DE CIÊNCIAS ECONÔMICAS DISCIPLINA DE TEORIA DOS JOGOS - CURSO DE VERÃO PROF. SABINO PÔRTO JÚNIOR UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL FACULDADE DE CIÊNCIAS ECONÔMICAS DISCIPLINA DE TEORIA DOS JOGOS - CURSO DE VERÃO PROF. SABINO PÔRTO JÚNIOR MONITOR: GUILHERME RISCO (guilhermerisco@gmail.com)

Leia mais

Algoritmos genéticos Abordagem unificada de algoritmos evolutivos simples

Algoritmos genéticos Abordagem unificada de algoritmos evolutivos simples Introdução Inspiração biológica Histórico da computação evolutiva Algoritmo evolutivo simples Programação evolutiva Estratégias evolutivas Algoritmos genéticos Abordagem unificada de algoritmos evolutivos

Leia mais

Inteligência Artificial

Inteligência Artificial Inteligência Artificial Prof. Kléber de Oliveira Andrade pdjkleber@gmail.com Algoritmos Genéticos Conteúdo Introdução O Algoritmo Genético Binário Noções de Otimização O Algoritmo Genético com Parâmetros

Leia mais

PCS Inteligência Artificial

PCS Inteligência Artificial PCS 2059 - Inteligência Artificial 1a. Lista de Exercícios Prof. Responsável: Jaime Simão Sichman A. Introdução à IA 1. Descreva resumidamente o que é o Teste de Turing. B. Representação por Espaço de

Leia mais

Algoritmo Genético. Inteligência Artificial. Professor: Rosalvo Ferreira de Oliveira Neto

Algoritmo Genético. Inteligência Artificial. Professor: Rosalvo Ferreira de Oliveira Neto Algoritmo Genético Inteligência Artificial Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Introdução 2. Conceitos Básicos 3. Aplicações 4. Algoritmo 5. Exemplo Introdução São técnicas de busca

Leia mais

Proposta de Algoritmo Genético Seqüencial e Paralelo para o Problema da Mochila

Proposta de Algoritmo Genético Seqüencial e Paralelo para o Problema da Mochila Proposta de Algoritmo Genético Seqüencial e Paralelo para o Problema da Mochila Ricardo de Jesus Carvalho, Gustavo Andrade Lemos, Adenevaldo da Silva Machado Junior, Lairton Reis, Wilton Oliveira Ferreira,

Leia mais

Algoritmos Evolutivos Canônicos

Algoritmos Evolutivos Canônicos Algoritmos Evolutivos Canônicos Como representar os indivíduos Vetor de comprimento fixo com L características escolhidas previamente. Ex.: Definição

Leia mais

Resolução de Problemas

Resolução de Problemas Resolução de Problemas 1 Agente de Resolução de Problemas (1/2) 2 O agente reativo Escolhe suas ações com base apenas nas percepções atuais não pode pensar no futuro, não sabe aonde vai 4 5 8 1 6 7 2 3?

Leia mais

Grafos Hamiltonianos e o Problema do Caixeiro Viajante. Prof. Ademir Constantino Departamento de Informática Universidade Estadual de Maringá

Grafos Hamiltonianos e o Problema do Caixeiro Viajante. Prof. Ademir Constantino Departamento de Informática Universidade Estadual de Maringá Grafos Hamiltonianos e o Problema do Caixeiro Viajante Prof. Ademir Constantino Departamento de Informática Universidade Estadual de Maringá Grafo Hamiltoniano Definição: Um circuito hamiltoniano em um

Leia mais

Trabalho Prático. Bruno Coswig Fiss Kauê Soares da Silveira. Disciplina INF Inteligência Artificial. Professor: Paulo Martins Engel

Trabalho Prático. Bruno Coswig Fiss Kauê Soares da Silveira. Disciplina INF Inteligência Artificial. Professor: Paulo Martins Engel Bruno Coswig Fiss Kauê Soares da Silveira Trabalho Prático Disciplina INF01048 - Inteligência Artificial Professor: Paulo Martins Engel UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL 1 de julho de 2010 Sumário

Leia mais

Busca em Espaço de Estados a

Busca em Espaço de Estados a Busca em Espaço de Estados a Fabrício Jailson Barth BandTec Agosto de 2012 a Slides baseados no material do Prof. Jomi F. Hübner (UFSC) Introdução 2 Agente orientado a meta O projetista não determina um

Leia mais

Busca competitiva. Inteligência Artificial. Profª. Solange O. Rezende

Busca competitiva. Inteligência Artificial. Profª. Solange O. Rezende Profª. Solange O. Rezende 1 O que vimos até agora... Busca não informada Baseada somente na organização de estados e a sucessão entre eles Busca informada Utiliza, também, informações a respeito do domínio

Leia mais

Jogos e Busca. Silvio Lago

Jogos e Busca. Silvio Lago 1 Jogos e Busca Silvio Lago slago@ime.usp.br 2 Sumário Jogos adversariais Algoritmo MINIMAX Algoritmo de poda α-β Função de avaliação e corte Jogos de sorte 3 Jogos Ambientes competitivos, em que as metas

Leia mais

Resumo. Como um agente busca de seqüência de ações para alcançar seus objetivos.

Resumo. Como um agente busca de seqüência de ações para alcançar seus objetivos. Resumo Inteligência Artificial Russel e Norvig Capítulos 3,4 e 5 Prof. MsC Ly Freitas UEG Resolução de problemas por meio de busca Como um agente busca de seqüência de ações para alcançar seus objetivos.

Leia mais

Unidade III ESTRATÉGIA APLICADA. Profª. Lérida Malagueta

Unidade III ESTRATÉGIA APLICADA. Profª. Lérida Malagueta Unidade III ESTRATÉGIA APLICADA TEORIA DOS JOGOS Profª. Lérida Malagueta Caos Ora, minha suspeita é que o universo não é só mais estranho do que supomos, mas é mais estranho do que somos capazes de supor.

Leia mais

Inteligência Artificial

Inteligência Artificial Contextualizando Inteligência Artificial Buscas Onde podemos usar a IA Problemas que não possuem soluções algortimicas Problemas que possuem soluções algoritimicas, mas são impraticáveis (Complexidade,

Leia mais

GT-JeDi - Curso de Desenv. de Jogos IA para Jogos. Gustavo Pessin 2007

GT-JeDi - Curso de Desenv. de Jogos IA para Jogos. Gustavo Pessin 2007 GT-JeDi - Curso de Desenv. de Jogos IA para Jogos Gustavo Pessin 2007 Cronograma Base conceitual Exemplo: Achando o máximo de uma função... Como criar uma pequena aplicação: Exercício-Exemplo [Animal selvagem...]

Leia mais

PMR Computação para Mecatrônica

PMR Computação para Mecatrônica PMR3201 - Computação para Mecatrônica Prof. Thiago de Castro Martins Prof. Newton Maruyama Prof. Marcos de S.G. Tsuzuki Monitor: Pietro Teruya Domingues Exercício Programa 2 - Versão 2017 Resolvendo o

Leia mais

Inteligência Artificial. Prof. Tiago A. E. Ferreira Aula 5 Resolvendo Problemas

Inteligência Artificial. Prof. Tiago A. E. Ferreira Aula 5 Resolvendo Problemas Inteligência Artificial Prof. Tiago A. E. Ferreira Aula 5 Resolvendo Problemas 1 Agente solucionador de problemas (guiado por objetivo) O agente reativo Escolhe suas ações com base apenas nas percepções

Leia mais

Algoritmos Genéticos em Ambientes Paralelos

Algoritmos Genéticos em Ambientes Paralelos Algoritmos Genéticos em Ambientes Paralelos Michele Alves de Freitas Batista Instituto Nacional de Pesquisas Espaciais michele.afreitas@gmail.com Lamartine Nogueira Frutuoso Guimarães Instituto Nacional

Leia mais

Introdução à Inteligência Artificial 2007/08

Introdução à Inteligência Artificial 2007/08 Introdução à Inteligência rtificial 2007/08 Procura em contextos competitivos jogos Contexto Um agente vs multiagente mbiente cooperativo vs competitivo Teoria dos jogos (ramo da Economia) Sistema multiagente

Leia mais

8 Experimentos. de pelo menos uma solução. 2 Na verdade, poderíamos definir uma função que retorna o conjunto de equilíbrios de

8 Experimentos. de pelo menos uma solução. 2 Na verdade, poderíamos definir uma função que retorna o conjunto de equilíbrios de 8 Experimentos Neste capítulo tratamos da utilização do verificador de modelos na prática, e realizamos algumas comparações entre outros algoritmos existentes. Os experimentos foram executados em uma máquina

Leia mais

ANÁLISE DO DESEMPENHO DE ARQUITETURAS DE AGENTES INTELIGENTES NA RESOLUÇÃO DE PROBLEMAS ESTRATÉGICOS EM TEORIA DOS JOGOS

ANÁLISE DO DESEMPENHO DE ARQUITETURAS DE AGENTES INTELIGENTES NA RESOLUÇÃO DE PROBLEMAS ESTRATÉGICOS EM TEORIA DOS JOGOS Anais do 15 O Encontro de Iniciação Científica e Pós-Graduação do ITA XV ENCITA / 2009 Instituto Tecnológico de Aeronáutica, São José dos Campos, SP, Brasil, Outubro, 19 a 22, 2009. ANÁLISE DO DESEMPENHO

Leia mais

MODELOS PROBABILÍSTICOS

MODELOS PROBABILÍSTICOS Disciplina de BIOLOGIA COMPUTACIONAL Mestrado em ENGENHARIA BIOMÉDICA 4º Ano, 1º Semestre 2007/08 MODELOS PROBABILÍSTICOS Relatório 4 Ana Calhau Ângela Pisco Nuno Santos 54605 55748 55746 Palavras-Chave:

Leia mais

Fundamentos de Teoria dos jogos

Fundamentos de Teoria dos jogos Fundamentos de Teoria dos jogos A Teoria dos Jogos é um ramo da matemática aplicada que estuda situações estratégicas em que jogadores escolhem diferentes ações na tentativa de melhorar seu retorno. Na

Leia mais

Busca com informação e exploração. Inteligência Artificial. Revisão da aula passada: Heurística Admissível. Revisão da aula passada: Busca A *

Busca com informação e exploração. Inteligência Artificial. Revisão da aula passada: Heurística Admissível. Revisão da aula passada: Busca A * Inteligência Artificial Aula 6 Profª Bianca Zadrozny http://www.ic.uff.br/~bianca/ia Busca com informação e exploração Capítulo 4 Russell & Norvig Seção 4.2 e 4.3 Revisão da aula passada: Busca A * Idéia:

Leia mais

Sistemas Baseados em Conhecimento

Sistemas Baseados em Conhecimento Departamento de Informática Faculdade de Ciências Universidade de Lisboa Sistemas Baseados em Conhecimento Primeiro Teste 24 de Abril de 2008 Nome Completo: Nº Aluno: Licenciatura: com consulta 1 hora

Leia mais

Algoritmo genético para formação de células de fabricação

Algoritmo genético para formação de células de fabricação Algoritmo genético para formação de células de fabricação Eduardo Vila Gonçalves Filho (EESC-USP) evila@sc.usp.br José Hamilton Chaves Gorgulho Júnior (UNIFEI) gorgulhojunior@ig.com.br Ana Rita T. Terra

Leia mais

5ª Lista de Exercícios de Programação I

5ª Lista de Exercícios de Programação I 5ª Lista de Exercícios de Programação I Instrução As questões devem ser implementadas em C. Questões que envolvam leitura de matrizes, a construção dessas matrizes pode ser realizada através da geração

Leia mais

Inteligência Artificial Projecto 1

Inteligência Artificial Projecto 1 Bantumi ESPECIFICAÇÕES O projecto destina-se a resolver um conjunto de problemas do jogo Bantumi utilizando métodos de procura em espaço de estados. Bantumi é um jogo derivado do jogo Mancala de origem

Leia mais

Caixeiro Viajante. Estruturas de Dados II. Prof. a Mariella Berger. 1. Objetivo

Caixeiro Viajante. Estruturas de Dados II. Prof. a Mariella Berger. 1. Objetivo Estruturas de Dados II Prof. a Mariella Berger Caixeiro Viajante 1. Objetivo O objetivo deste trabalho é implementar diferentes soluções para o problema clássico do Caixeiro Viajante. 2. Introdução O Problema

Leia mais

Algoritmo MiniMax. Minimax

Algoritmo MiniMax. Minimax Algoritmo MiniMax Luís Carlos Calado 050509043 João Carlos Sousa 050509027 José Carlos Campos 060509007 Rodolfo Sousa Silva 050509069 1 Minimax Minimax (ou minmax) é um método usado na Teoria da Decisão,

Leia mais

Leilões e Algoritmos

Leilões e Algoritmos Laboratório de Otimização e Combinatória Leilões e Algoritmos Carlos Eduardo de Andrade Flávio Keidi Miyazawa {andrade,fkm}@ic.unicamp.br 11 de maio de 2011 Este projeto tem apoio da Agenda 1 Introdução

Leia mais

4 Métodos Existentes. 4.1 Algoritmo Genético

4 Métodos Existentes. 4.1 Algoritmo Genético 61 4 Métodos Existentes A hibridização de diferentes métodos é em geral utilizada para resolver problemas de escalonamento, por fornecer empiricamente maior eficiência na busca de soluções. Ela pode ser

Leia mais

Uma Proposta de Algoritmos Genéticos para a Resolução do Problema das 8 Rainhas

Uma Proposta de Algoritmos Genéticos para a Resolução do Problema das 8 Rainhas Uma Proposta de Algoritmos Genéticos para a Resolução do Problema das 8 Rainhas Valdirene Neves, Douglas Mendes de Brito, Moisés Lima, Raurício Mendes, Fabiano Fagundes Curso de Sistemas de Informação

Leia mais

Análise de Decisão, Jogos & Negociação. Cesaltina Pires

Análise de Decisão, Jogos & Negociação. Cesaltina Pires Análise de Decisão, Jogos & Negociação Cesaltina Pires Fevereiro 2007 ii Conteúdo 1 Introdução (incompleto) 1 1.1 Decisão várias abordagens........................... 1 1.1.1 Decisões individuais versus

Leia mais

O peão Se um peão consegue chegar até a outra extremidade do tabuleiro(linha 8), ele é promovido. Um peão promovido é substituído, ainda na mesma jogada em que o movimento foi feito, por um cavalo, bispo,torreoudamadamesmacor.

Leia mais

Algoritmos Genéticos na obtenção de uma Grade de Horários com Múltiplos Cursos para uma Instituição de Ensino

Algoritmos Genéticos na obtenção de uma Grade de Horários com Múltiplos Cursos para uma Instituição de Ensino 239 Algoritmos Genéticos na obtenção de uma Grade de Horários com Múltiplos Cursos para uma Instituição de Ensino Alexandre Brasil da Silva 1, Carlos Michel Betemps 1, Milton Heinen 1 1 Universidade Federal

Leia mais

Neodarwinismo ou Teoria sintética de evolução

Neodarwinismo ou Teoria sintética de evolução Neodarwinismo ou Teoria sintética de evolução O desenvolvimento dos conhecimentos de genética e as novas descobertas sobre hereditariedade, permitiram fazer uma nova interpretação da teoria da evolução

Leia mais

Pesquisa Operacional Programação em Redes

Pesquisa Operacional Programação em Redes Pesquisa Operacional Programação em Redes Profa. Alessandra Martins Coelho outubro/2013 Seminários Datas Temas Problema do Caminho mais curto programação em redes Data 07/11/13 Problema do Fluxo máximo

Leia mais

Algoritmos Genéticos e Evolucionários

Algoritmos Genéticos e Evolucionários Algoritmos Genéticos e Evolucionários Djalma M. Falcão COPPE/UFRJ PEE e NACAD falcao@nacad.ufrj.br http://www.nacad.ufrj.br/~falcao/ http://www.nacad.ufrj.br/~falcao/ag/ag.htm Resumo do Curso Introdução

Leia mais

Buscas Informadas ou Heurísticas - Parte III

Buscas Informadas ou Heurísticas - Parte III Buscas Informadas ou Heurísticas - Parte III Prof. Cedric Luiz de Carvalho Instituto de Informática - UFG Mestrado em Ciência da Computação / 2006 BUSCA SMA* (Simplified Memory-Bounded A*) BUSCA SMA* (Simplified

Leia mais

Buscas Informadas ou Heurísticas - Parte II

Buscas Informadas ou Heurísticas - Parte II Buscas Informadas ou Heurísticas - Parte II Prof. Cedric Luiz de Carvalho Instituto de Informática - UFG Graduação em Ciência da Computação / 2006 FUNÇÕES HEURÍSTICAS - 1/7 FUNÇÕES HEURÍSTICAS - 2/7 Solução

Leia mais

Controlador Preditivo Otimizado Aplicado ao Controle de Velocidade de Motor CC

Controlador Preditivo Otimizado Aplicado ao Controle de Velocidade de Motor CC Controlador Preditivo Otimizado Aplicado ao Controle de Velocidade de Motor CC CARVALHO, Douglas F. 1,,, CALIXTO, Wesley P. 2,,, GANZAROLI, Cleber A. 3,,,,, DIAS, Rafael N. H. M.,, COUTO, Luiz A.. Resumo:

Leia mais