Uma visão gerencial da Estatística e Séries Temporais. Uma visão gerencial da Estatística e Séries Temporais

Tamanho: px
Começar a partir da página:

Download "Uma visão gerencial da Estatística e Séries Temporais. Uma visão gerencial da Estatística e Séries Temporais"

Transcrição

1 IAG MASTER EM DESENVOLVIMENTO GERENCIAL 2006 Fundamentos de Economia de Energia Mônica Barros, D.Sc. Aula 3 10/06/2006 Uma visão gerencial da Estatística e Séries Temporais Séries Temporais Interpretação da saída de ajustes de Comparação de Valores faltantes como tratar? Splines Data mining Transformação e tratamento dados 1 2 Uma visão gerencial da Estatística e Séries Temporais Redes neurais Quando aplicar qual método para longo, médio, curto e curtíssimo prazo? Como medir/quantificar influência de variáveis o conceito de elasticidade Cenários não são minha praia mas vou tentar falar um pouquinho 3 Interpretação da saída de ajustes de Exemplo Legend CARGA_TOTAL X 1E Ajustamos um modelo de regressão dinâmica a esta série de carga total no período 03/2003 a 04/2005. Quais os diagnósticos do modelo? 4

2 Interpretação da saída de ajustes de Estrutura do Modelo Forecast Model for CARGA_TOTAL with log transform Regression(4 regressors, 0 lagged errors) Term Coefficient Std. Error t-statistic Significance Log(CV_X3) Log(EMP_X11) Log(CARGA_TOTAL[-1]) Log(CARGA_TOTAL[-12]) Interpretação da saída de ajustes de O que isso quer dizer? O log da carga total depende das variáveis... Log(CV_X3) uma variável de consumo e vendas Log(EMP_X11) um indicador de emprego Log(Carga_Total(-1)) o log da carga um mês atrás Log(Carga_Total(-12)) o log da carga um ano atrás 5 6 Interpretação da saída de ajustes de Coeficiente é o coeficiente estimado daquela variável no modelo Std. Error é o erro padrão daquele coeficiente estimado T-statistic é a estatística t. Se é maior ou igual a 2 em módulo indica que a variável é significante e deve ser mantida no modelo. 7 Interpretação da saída de ajustes de Significance é a significância da variável (ou do coeficiente). Quanto MAIOR a significância, MELHOR. O valor máximo da significância é 1. Alguns softwares exibem o p-value (p- valor), que é apenas 1-1 significância. Portanto, quanto MENOR o p-value, p MELHOR. 8

3 Interpretação da saída de ajustes de Diagnósticos dentro da amostra Within-Sample Statistics Sample size 27 Number of parameters 4 Mean Standard deviation R-square Adjusted R- squared Durbin-Watson 1.52 Ljung- Box(18)=16.14 P= Forecast error BIC MAPE RMSE MAD Interpretação da saída de ajustes de Sample size Mean R-square Durbin-Watson Forecast error MAPE MAD tamanho da amostra usada no ajuste do modelo média da série R-quadrado - quanto mais perto de 100% melhor Estatística que mede autocorrelação do erro de lag 1 Erro de previsão Erro médio PERCENTUAL de previsão Erro médio ABSOLUTO de previsão 10 Interpretação da saída de ajustes de Number of parameters Standard deviation Adjusted R-squared Ljung-Box(18)=16.14 BIC RMSE Número de coeficientes do modelo Desvio padrão da série R-quadrado ajustado, penalizado pelo número de parâmetros Estatística de Ljung-Box - mede autocorrelações de resíduos nos primeiros k lags. Neste caso 18 lags. Idealmente, você NÃO QUER que esta estatística seja significante. Estatística BIC (Bayesian Information Criterion). Serve apenas para comparar diferentes para a mesma série. Quanto menor, melhor. Raiz do erro quadrático médio. Interpretação da saída de ajustes de Erros fora da amostra Neste exemplo guardamos os 5 meses finais da série para comparar os resultados das previsões com o efetivamente ocorrido. Os resultados são mostrados no Forecast Pro no out of sample rolling evaluation

4 Interpretação da saída de ajustes de Out-of-Sample Rolling Evaluation H N MAD Cumulative Average MAPE Cumulative Average GMRAE Cumulative Average Interpretação da saída de ajustes de Estes diagnósticos são importantes pois nos permitem verificar se as previsões se deterioram rapidamente com o aumento do horizonte de previsão. H = horizontes de previsão (aqui de 1 a 5 meses à frente) N = número de previsões feitas com aquele horizonte MAD = erro absoluto médio MAPE = erro percentual absoluto médio 13 Por exemplo, neste caso vemos que nenhuma das estatísticas acumuladas está explodindo, o que indica que o modelo reage bem neste horizonte de 5 meses. 14 Comparação de Modelos O que é um bom modelo? É algo que consegue estabelecer um balanço entre diversos requisitos, tais como: Parcimônia (simplicidade) Capacidade de ajuste dentro da amostra Capacidade de gerar boas previsões Interpretabilidade (coeficientes com sinais certos ) Inexistência de estrutura nos resíduos Comparação de Modelos As estatísticas de saída de um modelo nos permitem acessar a qualidade do modelo em relação a cada um destes aspectos. Por exemplo: Parcimônia olhe para o R 2 ajustado e o BIC

5 Comparação de Modelos Capacidade de Ajuste Dentro da Amostra Olhe para: R 2 e R 2 ajustado quanto maior melhor Erros Forecast Error, MAD, MAPE e RMSE quanto menor melhor Capacidade de Gerar Boas Previsões Olhe para: Out of sample rolling evaluation 17 Comparação de Modelos Inexistência de Estrutura nos Resíduos Olhe para: Estatística Durbin-Watson só autocorrelação de lag 1 dos erros. Se tudo estiver Ok, está perto de 2, mas é difícil dizer o quanto perto deve estar. Estatística de Ljung-Box calcula k primeiras autocorrelações dos resíduos, onde k depende do tamanho da série. Tem aproximadamente a distribuição Qui-quadrado. Idealmente é não significante. 18 Comparação de Modelos Interpretabilidade Ajuste perfeito não adianta nada se os coeficientes não têm sinais coerentes. Por exemplo, preço explicando vendas com sinal positivo! Não faz sentido! Existe uma outra variável por trás que está sendo ignorada e que está mascarando o efeito do preço nas vendas pode ser o próprio tempo. Não adianta ter um modelo com ajuste perfeito e coeficientes que não fazem sentido. Seja crítico! 19 Comparação de Modelos Interpretabilidade No exemplo, as variáveis causais são: CV_X3 = número de registros recebidos no SPC. Coeficiente positivo. Será que faz sentido? EMP_X11=Média das horas efetivamente trabalhadas por semana, em todos os trabalhos, pelas pessoas de 10 anos ou mais de idade, ocupadas na semana de referência (Horas). O coeficiente foi positivo. Neste caso parece fazer perfeito sentido para mim... 20

6 Comparação de Modelos Valores Faltantes como tratar? Comparação de Modelos Regressão Dinâmica Holt-Winters Box-Jenkins N R-quadrado R-quadrado ajustado Forecast Error 1.54% 2.20% 2.41% MAPE 1.12% 1.57% 1.47% MAD BIC Marcados em laranja os melhores resultados dentre os Depende... Existem algoritmos sofisticadíssimos e soluções simplérrimas. Algumas considerações importantes: Quantidade de valores faltantes Localização de valores faltantes estão todos agrupados em blocos ou espalhados pela série? 22 Valores Faltantes como tratar? Valores Faltantes como tratar? Soluções simples... Substituir por funções fáceis de calcular, por exemplo, médias e medianas. Soluções um pouco mais sofisticadas... Substituir valores faltantes por previsões obtidas através de métodos automáticos. 23 Soluções um pouco mais sofisticadas... Estimar uma função de sen(t) e cos(t) e substituir os valores faltantes pelos valores da função. Usar uma interpolação linear ou um spline cúbico. Note que estas soluções (harmônicas e interpolações) são determinísticas, no sentido de não serem baseadas em estatísticos. 24

7 Valores Faltantes como tratar? Spline cúbico É uma coleção de funções polinomiais de 3a. ordem que passam através de m nós. A segunda derivada de cada polinômio é geralmente igualada a zero nos extremos dos intervalos, o que produz um sistema de equações de contorno fácil de resolver para produzir os coeficientes dos polinômios. Valores Faltantes como tratar? E como fazer para criar uma série para trás? Por exemplo, a série de carga da Eletropaulo não existe antes de O que fazer? Pegar o share correspondente à sua área de concessão na série da Cesp antes de 1998 e construir uma série artificial que corresponderia à Eletropaulo antes de Data Mining Da Wikipedia... Data Mining ou Mineração de Dados é um conjunto de técnicas que buscam a aquisição de novos conhecimentos através da análise de grandes bases de dados. Utilizam diversos algoritmos computacionais tais como Segmentação, Classificação e Previsão. 27 Data Mining Ainda da Wikipedia... A premissa do Data Mining é uma argumentação ativa, isto é, em vez do usuário definir o problema, selecionar os dados e as ferramentas para analisar tais dados, as ferramentas do Data Mining pesquisam automaticamente os mesmos à procura de anomalias e possíveis relacionamentos, identificando assim problemas que não tinham sido identificados pelo usuário. 28

8 Data Mining As ferramentas de Data Mining analisam os dados, descobrem problemas ou oportunidades escondidas nos relacionamentos dos dados, e então diagnosticam o comportamento dos negócios, requerendo a mínima intervenção do usuário Data Mining Para nós em Séries Temporais... É um bom namoro com os dados! Não é uma coleção de algoritmos automáticos. Olhe para os dados de diversas formas, tente extrair o máximo de informação possível contida neles. O gráfico da série é essencial! 30 Transformação e Tratamento de Dados Os estatísticos geralmente pressupõem que os dados são Normais (Gaussianos). Em linhas gerais, isso requer que eles sejam números reais, simétricos em relação à média. Como verificar? Faça um histograma dos dados, que é apenas um gráfico de barras com as freqüências de ocorrência em diversos intervalos. Transformação e Tratamento de Dados O Excel, através da ferramenta de análise de dados, produz histogramas, como mostrado na próxima figura. Nota: o suplemento de Análise de Dados deverá ter sido previamente instalado

9 Transformação e Tratamento de Dados Transformação e Tratamento de Dados Transformação e Tratamento de Dados Transformação e Tratamento de Dados Histograma - Consumo Total Brasil - 01/1979 a 03/ Freqüência More Intervalo 35 36

10 Transformação e Tratamento de Dados Transformação e Tratamento de Dados Não tem uma cara muito Normal mas posso garantir que existem piores... O próximo gráfico contém o histograma de uma série que CERTAMENTE requer uma transformação de dados Transformação e Tratamento de Dados Transformação e Tratamento de Dados Uma transformação usual para dados positivos (como o consumo de energia) é o logaritmo. A próxima figura apresenta o histograma do logaritmo do consumo. Nota-se que não houve uma melhora substancial na Normalidade dos dados. Freqüência Histograma - log(consumo) More Intervalo 39 40

11 As redes neurais artificiais (RN) são sistemas de processamento distribuído paralelo inspirados no sistema nervoso biológico. Como o cérebro humano, as RN são compostas de um conjunto de unidades de processamento interconectadas,, chamadas de neurônios artificiais, ou apenas de neurônios. 41 RNs têm sido aplicadas em diversas áreas, como engenharia, ciências biológicas, economia, finanças, e computação. Algumas das mais importantes aplicações têm sido realizadas em reconhecimento de padrões, aproximação de funções e previsão de séries temporais. 42 Neurônio Biológico Neurônio Artificial 43 O neurônio artificial desta figura é composto por n valores de entrada e um valor de saída ( output( output ) ) Y. Os valores W, W 1 2,... W n são pesos aplicados aos inputs que resultam num potencial de ativação u. 44

12 Neurônio Artificial Este potencial de ativação u é então submetido a uma função de ativação f (geralmente não linear) e o resultado final (a saída do neurônio) é Y = f(u). f No nosso caso específico (n( inputs) então: Y f u f WX = ( ) = n i i i= 1 Em linhas muito simplificadas, o algoritmo anterior descreve o funcionamento de um neurônio em uma RN Funções de Ativação Mais Comuns S inal Funções de Ativação Mais Comuns Sigmoidal é um parâmetro que determina o ponto de inflexão da função. A Figura mostra o caso particular ξ = 2. R ampa Tangente Hiperbólica Produzem saídas do neurônio positivas ou negativas. O gráfico mostra a função com parâmetro ξ =

13 O Neurônio Artificial Clássico McCulloch & Pitts (1943) Estes neurônios são capazes de executar várias operações lógicas l (OR, AND, etc.). O neurônio clássico pode ser expresso por: Uma rede neural é uma interconexão de neurônios artificiais, como na figura a seguir: T y = f( u) = f( xw + x w x w ) = f( w x) n n Onde a função de ativação é binária e os x s s e W s W s são como definidos anteriormente, e y é a saída do neurônio Redes Perceptron Multicamadas (redes MLP) Redes Perceptron Multicamadas (redes MLP) Consistem em: uma camada de entrada, uma ou várias v camadas intermediárias rias e uma camada de saída

14 As camadas intermediárias rias transmitem informações entre a camada de entrada e a camada de saída, e as funções de ativação dos neurônios desta camada são tipicamente funções de ativação não decrescentes e diferenciáveis, em geral sigmóides ides. Exemplo Previsão de Carga Horária 12 entradas 1 hora 2 horas 1 semana Mês (bits) Hora (bits) M 20 neurônios M Previsão de Carga Horária Horizonte de Previsão: 24 horas à frente Saída Amostra: janeiro de 1996 a outubro de 1998 Previsão: novembro de Entradas Camada Escondida Saída 54 d t 1 d t 2 d t 7+ i Exemplo - Rede Neural - Previsão 15 min M M M RN i M M d t + i d t+i+7 Rede que prevê o dia t+i (24horas) e o dia t+i+7 uma semana à frente usa como informação: -dia t-1 (ontem: 96 períodos de 15 minutos) -dia t-2 (ante ontem: 96 períodos de 15 minutos) dia t-7+i (7 dias antes do dia a prever) - Horário de verão -Dia da semana Exemplo RN 15 minutos Previsão de 1 a 15 de Maio de Dados Previstos Dados Reais 1000 f t + i s t+ i

15 Exemplo RN 15 minutos Previsão de 1 a 15 de Maio de 2005 MAPE Dias Dia Erro Dia Dia Dia Dia Dia Dia Dia Dia Dia Dia Dia Dia Dia Dia Dia MAPE médio dos 15 dias Previstos 57 Dia 1 Dia 2 Dia 3 Dia 4 Dia 5 Dia 6 Dia 7 Dia 8 Dia 9 Dia 10 Dia 11 Dia 12 Dia 13 Dia 14 Dia 15 Exemplo RN 15 minutos Previsão de 15 a 29 de Julho de Dados Previstos Dados Reais Exemplo RN 15 minutos Previsão de 15 a 29 de Julho de 2005 MAPE Dias Dia Erro Dia Dia Dia Dia Dia Dia Dia Dia Dia Dia Dia Dia Dia Dia Dia MAPE médio dos 15 dias Previstos 59 Dia 1 Dia 2 Dia 3 Dia 4 Dia 5 Dia 6 Dia 7 Dia 8 Dia 9 Dia 10 Dia 11 Dia 12 Dia 13 Dia 14 Dia 15 Quando aplicar qual método? Curtíssimo prazo Periodicidade <= 1hora Modelos de Amortecimento Exponencial de Duplo Ciclo (Taylor) Curto Prazo Periodicidade Semanal Modelos de Amortecimento Exponencial Modelos Box-Jenkins 60

16 Quando aplicar qual método? Médio Prazo Periodicidade Mensal Modelos Causais Modelos de Amortecimento Exponencial Modelos Box-Jenkins Longo Prazo Periodicidade Anual Modelos Causais Cenários 61 O conceito de elasticidade Elasticidade Variação percentual na quantidade dividida pela variação percentual no preço (ou renda). No caso de consumo de um bem, a elasticidade-preço é negativa (quanto maior o preço, menor o consumo), e a elasticidade-renda é positiva (quanto maior a renda, maior o consumo). 62 O conceito de elasticidade O conceito de elasticidade Em termos algébricos: η = ΔQ Q ΔP P Variação percentual na quantidade Variação percentual no preço 63 No limite: dq Q dq dp η = =η dp Q P P Ao integrarmos esta última expressão encontramos: ( Q ) = P) + const ln η.ln( A elasticidade é o coeficiente da variável explicativa preço numa regressão linear nos logs da quantidade e do preço. 64

17 Cenários Metodologia Utilizada no Plano Nacional de Energia 2030 (EPE) para criação de cenários macroeconômicos 1. Análise do ambiente atual (nacional e mundial) 2. Coleta de percepções e expectativas 3. Identificação de condicionantes tendências e incertezas 4. Seleção de fatores críticos 5. Formulação de hipóteses 6. Geração de cenários exploratórios 7. Quantificação 65 Cenários 1. Análise do ambiente atual Atualização dos trabalhos desenvoilvidos em 2005 e aplicados no Plano Decenal Coleta de percepções e expectativas Consulta a especialistas e extensão do horizonte dos cenários até Identificação de condicionantes Reconhecimento de tendências e incertezas. 66 Cenários 4. Seleção dos Fatores Críticos Definição das variáveis centrais. 5. Formulação de hipóteses Geração de cenários exploratórios. Definição de cenas (repartição temporal dos cenários). 6. Quantificação Cenários Mundiais aferidos com referências disponíveis. Cenários Nacionais aferidos através de de consistência macroeconômica. 67

PRO FOR WINDOWS (FPW)

PRO FOR WINDOWS (FPW) INTRODUÇÃO OAO FORECAST PRO FOR WINDOWS (FPW) Considerações Básicas Introdução ao Forecast Pro Software para análise e previsão de séries temporais. Características importantes Roda sob as diversas versões

Leia mais

Uma aplicação de Inteligência Computacional e Estatística Clássica na Previsão do Mercado de Seguros de Automóveis Brasileiro

Uma aplicação de Inteligência Computacional e Estatística Clássica na Previsão do Mercado de Seguros de Automóveis Brasileiro Uma aplicação de Inteligência Computacional e Estatística Clássica na Previsão do Mercado de Seguros de Automóveis Brasileiro Tiago Mendes Dantas t.mendesdantas@gmail.com Departamento de Engenharia Elétrica,

Leia mais

Modelagem da Venda de Revistas. Mônica Barros. Julho de 1999. info@mbarros.com 1

Modelagem da Venda de Revistas. Mônica Barros. Julho de 1999. info@mbarros.com 1 Modelagem da Venda de Revistas Mônica Barros Julho de 1999 info@mbarros.com 1 Modelagem Matemática e Previsão de Negócios Em todas as empresas, grandes e pequenas, é necessário fazer projeções. Em muitos

Leia mais

Previsão de demanda em uma empresa farmacêutica de manipulação

Previsão de demanda em uma empresa farmacêutica de manipulação Previsão de demanda em uma empresa farmacêutica de manipulação Ana Flávia Brito Rodrigues (Anafla94@hotmail.com / UEPA) Larissa Pinto Marques Queiroz (Larissa_qz@yahoo.com.br / UEPA) Luna Paranhos Ferreira

Leia mais

Sumário. Parte l. 1. Introdução à pesquisa qualitativa e quantitativa em marketing 1 1.1 Pesquisa qualitativa 1 1.2 Pesquisa quantitativa 3

Sumário. Parte l. 1. Introdução à pesquisa qualitativa e quantitativa em marketing 1 1.1 Pesquisa qualitativa 1 1.2 Pesquisa quantitativa 3 Sumário Parte l 1. Introdução à pesquisa qualitativa e quantitativa em marketing 1 1.1 Pesquisa qualitativa 1 1.2 Pesquisa quantitativa 3 2. Entrevistas 5 2.1 Tipos de entrevistas 8 2.2 Preparação e condução

Leia mais

Complemento II Noções Introdutória em Redes Neurais

Complemento II Noções Introdutória em Redes Neurais Complemento II Noções Introdutória em Redes Neurais Esse documento é parte integrante do material fornecido pela WEB para a 2ª edição do livro Data Mining: Conceitos, técnicas, algoritmos, orientações

Leia mais

Uma proposta de gráfico de controle EWMA com dados sazonais

Uma proposta de gráfico de controle EWMA com dados sazonais Uma proposta de gráfico de controle EWMA com dados sazonais Leandro Callegari Coelho (UFSC) leandroah@hotmail.com Robert Wayne Samohyl (UFSC) samohyl@yahoo.com Resumo: A importância do controle estatístico

Leia mais

COMENTÁRIO AFRM/RS 2012 ESTATÍSTICA Prof. Sérgio Altenfelder

COMENTÁRIO AFRM/RS 2012 ESTATÍSTICA Prof. Sérgio Altenfelder Comentário Geral: Prova muito difícil, muito fora dos padrões das provas do TCE administração e Economia, praticamente só caiu teoria. Existem três questões (4, 45 e 47) que devem ser anuladas, por tratarem

Leia mais

Técnicas de Mineração de Dados Aplicadas a Reservatórios visando à Gestão Ambiental na Geração de Energia

Técnicas de Mineração de Dados Aplicadas a Reservatórios visando à Gestão Ambiental na Geração de Energia Técnicas de Mineração de Dados Aplicadas a Reservatórios visando à Gestão Ambiental na Geração de Energia Aluno: Gabriel Leite Mariante Orientador: Marley Maria Bernardes Rebuzzi Vellasco Introdução e

Leia mais

Radar de Penetração no Solo e Meio- Ambiente

Radar de Penetração no Solo e Meio- Ambiente UNIVERSIDADE DE SÃO PAULO INSTITUTO DE ASTRONOMIA, GEOFÍSICA E CIÊNCIAS ATMOSFÉRICAS DEPARTAMENTO DE GEOFÍSICA Curso 3ª Idade Radar de Penetração no Solo e Meio- Ambiente Vinicius Rafael Neris dos Santos

Leia mais

Redes Neurais. Profa. Flavia Cristina Bernardini

Redes Neurais. Profa. Flavia Cristina Bernardini Redes Neurais Profa. Flavia Cristina Bernardini Introdução Cérebro & Computador Modelos Cognitivos Diferentes Cérebro Computador Seqüência de Comandos Reconhecimento de Padrão Lento Rápido Rápido Lento

Leia mais

AULAS 13, 14 E 15 Correlação e Regressão

AULAS 13, 14 E 15 Correlação e Regressão 1 AULAS 13, 14 E 15 Correlação e Regressão Ernesto F. L. Amaral 23, 28 e 30 de setembro de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de

Leia mais

Curso Superior de Tecnologia em Banco de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan

Curso Superior de Tecnologia em Banco de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan Faculdade INED Curso Superior de Tecnologia em Banco de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan 1 Unidade 4.5 2 1 BI BUSINESS INTELLIGENCE BI CARLOS BARBIERI

Leia mais

3 Previsão da demanda

3 Previsão da demanda 42 3 Previsão da demanda Este capítulo estuda o processo de previsão da demanda através de métodos quantitativos, assim como estuda algumas medidas de erro de previsão. Num processo de previsão de demanda,

Leia mais

Relatório Iniciação Científica

Relatório Iniciação Científica Relatório Iniciação Científica Ambientes Para Ensaios Computacionais no Ensino de Neurocomputação e Reconhecimento de Padrões Bolsa: Programa Ensinar com Pesquisa-Pró-Reitoria de Graduação Departamento:

Leia mais

Pós-Graduação "Lato Sensu" Especialização em Análise de Dados e Data Mining

Pós-Graduação Lato Sensu Especialização em Análise de Dados e Data Mining Pós-Graduação "Lato Sensu" Especialização em Análise de Dados e Data Mining Inscrições Abertas Início das Aulas: 24/03/2015 Dias e horários das aulas: Terça-Feira 19h00 às 22h45 Semanal Quinta-Feira 19h00

Leia mais

EXCEL 2013. Público Alvo: Arquitetos Engenheiros Civis Técnicos em Edificações Projetistas Estudantes das áreas de Arquitetura, Decoração e Engenharia

EXCEL 2013. Público Alvo: Arquitetos Engenheiros Civis Técnicos em Edificações Projetistas Estudantes das áreas de Arquitetura, Decoração e Engenharia EXCEL 2013 Este curso traz a vocês o que há de melhor na versão 2013 do Excel, apresentando seu ambiente de trabalho, formas de formatação de planilhas, utilização de fórmulas e funções e a criação e formatação

Leia mais

A demanda pode ser entendida como a disposição dos clientes ao consumo de bens e serviços ofertados por uma organização.

A demanda pode ser entendida como a disposição dos clientes ao consumo de bens e serviços ofertados por uma organização. Previsão da Demanda As previsões têm uma função muito importante nos processos de planejamento dos sistemas logísticos, pois permite que os administradores destes sistemas antevejam o futuro e planejem

Leia mais

Por que estudar econometria? Passos para uma análise econômica empírica. Por que estudar econometria? Tipos de dados Cross Section

Por que estudar econometria? Passos para uma análise econômica empírica. Por que estudar econometria? Tipos de dados Cross Section Por que estudar econometria? Inexistência de dados experimentais (experimentos controlados) em economia O que é Econometria? Necessidade de usar dados não experimentais, ou melhor, dados observados para

Leia mais

tipos de métodos, técnicas de inteligência artificial e técnicas de otimização. Por fim, concluise com as considerações finais.

tipos de métodos, técnicas de inteligência artificial e técnicas de otimização. Por fim, concluise com as considerações finais. 1. Introdução A previsão de vendas é fundamental para as organizações uma vez que permite melhorar o planejamento e a tomada de decisão sobre o futuro da empresa. Contudo toda previsão carrega consigo

Leia mais

Instituto Superior de Economia e Gestão Universidade Técnica de Lisboa Econometria Época Normal 9/01/2013 Duração 2 horas

Instituto Superior de Economia e Gestão Universidade Técnica de Lisboa Econometria Época Normal 9/01/2013 Duração 2 horas Instituto Superior de Economia e Gestão Universidade Técnica de Lisboa Econometria Época Normal 9/01/2013 Duração 2 horas NOME: Turma: Processo Espaço Reservado para Classificações A utilização do telemóvel

Leia mais

BROMBERGER, Dalton (UTFPR) daltonbbr@yahoo.com.br. KUMMER, Aulison André (UTFPR) aulisonk@yahoo.com.br. PONTES, Herus³ (UTFPR) herus@utfpr.edu.

BROMBERGER, Dalton (UTFPR) daltonbbr@yahoo.com.br. KUMMER, Aulison André (UTFPR) aulisonk@yahoo.com.br. PONTES, Herus³ (UTFPR) herus@utfpr.edu. APLICAÇÃO DAS TÉCNICAS DE PREVISÃO DE ESTOQUES NO CONTROLE E PLANEJAMENTO DA PRODUÇÃO DE MATÉRIA- PRIMA EM UMA INDÚSTRIA PRODUTORA DE FRANGOS DE CORTE: UM ESTUDO DE CASO BROMBERGER, Dalton (UTFPR) daltonbbr@yahoo.com.br

Leia mais

INE 7001 - Procedimentos de Análise Bidimensional de variáveis QUANTITATIVAS utilizando o Microsoft Excel. Professor Marcelo Menezes Reis

INE 7001 - Procedimentos de Análise Bidimensional de variáveis QUANTITATIVAS utilizando o Microsoft Excel. Professor Marcelo Menezes Reis INE 7001 - Procedimentos de Análise Bidimensional de variáveis QUANTITATIVAS utilizando o Microsoft Excel. Professor Marcelo Menezes Reis O objetivo deste texto é apresentar os principais procedimentos

Leia mais

FUNDAMENTOS DE SISTEMAS DE INFORMAÇÃO

FUNDAMENTOS DE SISTEMAS DE INFORMAÇÃO @ribeirord FUNDAMENTOS DE SISTEMAS DE INFORMAÇÃO Rafael D. Ribeiro, M.Sc,PMP. rafaeldiasribeiro@gmail.com http://www.rafaeldiasribeiro.com.br Lembrando... Aula 4 1 Lembrando... Aula 4 Sistemas de apoio

Leia mais

PREVISÃO DE VENDAS DE CERVEJA PARA UMA INDÚSTRIA DE RIBEIRÃO PRETO

PREVISÃO DE VENDAS DE CERVEJA PARA UMA INDÚSTRIA DE RIBEIRÃO PRETO PREVISÃO DE VENDAS DE CERVEJA PARA UMA INDÚSTRIA DE RIBEIRÃO PRETO José Gilberto S. Rinaldi (UNESP/Presidente Prudente) Randal Farago (Faculdades Integradas FAFIBE) Resumo: Este trabalho aborda técnicas

Leia mais

Identificação de Caracteres com Rede Neuronal Artificial com Interface Gráfica

Identificação de Caracteres com Rede Neuronal Artificial com Interface Gráfica Identificação de Caracteres com Rede Neuronal Artificial com Interface Gráfica João Paulo Teixeira*, José Batista*, Anildio Toca**, João Gonçalves**, e Filipe Pereira** * Departamento de Electrotecnia

Leia mais

Aula 5 Metodologias de avaliação de impacto

Aula 5 Metodologias de avaliação de impacto Aula 5 Metodologias de avaliação de impacto Metodologias de Avaliação de Impacto Objetiva quantificar as mudanças que o projeto causou na vida dos beneficiários. Plano de Aula Método experimental: regressão

Leia mais

MetrixND. especificações. MetrixND - Ferramenta de previsão de energia elétrica

MetrixND. especificações. MetrixND - Ferramenta de previsão de energia elétrica MetrixND especificações MetrixND - Ferramenta de previsão de energia elétrica Visão geral O MetrixND da Itron é uma ferramenta de modelagem flexível, bastante usada pelos principais serviços de previsão

Leia mais

Aplicações Práticas com Redes Neurais Artificiais em Java

Aplicações Práticas com Redes Neurais Artificiais em Java com em Java Luiz D Amore e Mauro Schneider JustJava 2009 17 de Setembro de 2009 Palestrantes Luiz Angelo D Amore luiz.damore@metodista.br Mauro Ulisses Schneider mauro.schneider@metodista.br http://blog.mauros.org

Leia mais

ESTUDO DE PREVISÃO DE DEMANDA PARA EMPRESA DE EQUIPAMENTOS MÉDICOS DE DIAGNÓSTICO

ESTUDO DE PREVISÃO DE DEMANDA PARA EMPRESA DE EQUIPAMENTOS MÉDICOS DE DIAGNÓSTICO ESTUDO DE PREVISÃO DE DEMANDA PARA EMPRESA DE EQUIPAMENTOS MÉDICOS DE DIAGNÓSTICO Andréa Crispim Lima dekatop@gmail.com Manoela Alves Vasconcelos manoelavasconcelos@hotmail.com Resumo: A previsão de demanda

Leia mais

Forecast Pro: pacotes e funcionalidades

Forecast Pro: pacotes e funcionalidades Forecast Pro: pacotes e funcionalidades Tiago Pellegrini T. Vieira Belge Blue Tree Towers Morumbi São Paulo / SP 03 de maio de 2011 Realização: Agenda Belge Engenharia BFS e Forecast Pro Previsão de Demanda

Leia mais

NECESSIDADES DE PREVISÃO DA CADEIA DE SUPRIMENTOS. Mayara Condé Rocha Murça TRA-53 Logística e Transportes

NECESSIDADES DE PREVISÃO DA CADEIA DE SUPRIMENTOS. Mayara Condé Rocha Murça TRA-53 Logística e Transportes NECESSIDADES DE PREVISÃO DA CADEIA DE SUPRIMENTOS Mayara Condé Rocha Murça TRA-53 Logística e Transportes Setembro/2013 Introdução Estimativas acuradas do volume de produtos e serviços processados pela

Leia mais

3 Metodologia de Previsão de Padrões de Falha

3 Metodologia de Previsão de Padrões de Falha 3 Metodologia de Previsão de Padrões de Falha Antes da ocorrência de uma falha em um equipamento, ele entra em um regime de operação diferente do regime nominal, como descrito em [8-11]. Para detectar

Leia mais

Matlab - Neural Networw Toolbox. Ana Lívia Soares Silva de Almeida

Matlab - Neural Networw Toolbox. Ana Lívia Soares Silva de Almeida 27 de maio de 2014 O que é a Neural Networw Toolbox? A Neural Network Toolbox fornece funções e aplicativos para a modelagem de sistemas não-lineares complexos que não são facilmente modelados com uma

Leia mais

Expanda suas Capacidades Analíticas

Expanda suas Capacidades Analíticas Módulos IBM SPSS Statistics Expanda suas Capacidades Analíticas Um guia resumido dos módulos para o IBM SPSS Statistics Base Destaques Existem vários produtos IBM SPSS para te ajudar em cada fase do projeto

Leia mais

Estatística stica para Metrologia

Estatística stica para Metrologia Aula 5 Estatística stica para Metrologia Aula 5 Variáveis Contínuas Uniforme Exponencial Normal Lognormal Mônica Barros, D.Sc. Maio de 008 1 Distribuição Uniforme A probabilidade de ocorrência em dois

Leia mais

UNISINOS - UNIVERSIDADE DO VALE DO RIO DOS SINOS

UNISINOS - UNIVERSIDADE DO VALE DO RIO DOS SINOS UNISINOS - UNIVERSIDADE DO VALE DO RIO DOS SINOS Curso: Informática Disciplina: Redes Neurais Prof. Fernando Osório E-mail: osorio@exatas.unisinos.br EXEMPLO DE QUESTÕES DE PROVAS ANTIGAS 1. Supondo que

Leia mais

CÁLCULO DE INCERTEZA EM ENSAIO DE TRAÇÃO COM OS MÉTODOS DE GUM CLÁSSICO E DE MONTE CARLO

CÁLCULO DE INCERTEZA EM ENSAIO DE TRAÇÃO COM OS MÉTODOS DE GUM CLÁSSICO E DE MONTE CARLO ENQUALAB-28 Congresso da Qualidade em Metrologia Rede Metrológica do Estado de São Paulo - REMESP 9 a 2 de junho de 28, São Paulo, Brasil CÁLCULO DE INCERTEZA EM ENSAIO DE TRAÇÃO COM OS MÉTODOS DE GUM

Leia mais

Laudon & Laudon Essentials of MIS, 5th Edition. Pg. 1.1

Laudon & Laudon Essentials of MIS, 5th Edition. Pg. 1.1 Laudon & Laudon Essentials of MIS, 5th Edition. Pg. 1.1 SISTEMA DE APOIO À DECISÃO Grupo: Denilson Neves Diego Antônio Nelson Santiago Sabrina Dantas CONCEITO É UM SISTEMA QUE AUXILIA O PROCESSO DE DECISÃO

Leia mais

6 Construção de Cenários

6 Construção de Cenários 6 Construção de Cenários Neste capítulo será mostrada a metodologia utilizada para mensuração dos parâmetros estocásticos (ou incertos) e construção dos cenários com respectivas probabilidades de ocorrência.

Leia mais

Ajuste de modelos de redes neurais artificiais na precipitação pluviométrica mensal

Ajuste de modelos de redes neurais artificiais na precipitação pluviométrica mensal Ajuste de modelos de redes neurais artificiais na precipitação pluviométrica mensal 1 Introdução Antonio Sergio Ferraudo 1 Guilherme Moraes Ferraudo 2 Este trabalho apresenta estudos de série de precipitação

Leia mais

5 Análise prospectiva dos investimentos das EFPC

5 Análise prospectiva dos investimentos das EFPC 5 Análise prospectiva dos investimentos das EFPC Nesta seção serão apresentados os resultados encontrados para os diversos modelos estimados. No total foram estimados dezessete 1 modelos onde a variável

Leia mais

4 Arquitetura básica de um analisador de elementos de redes

4 Arquitetura básica de um analisador de elementos de redes 4 Arquitetura básica de um analisador de elementos de redes Neste capítulo é apresentado o desenvolvimento de um dispositivo analisador de redes e de elementos de redes, utilizando tecnologia FPGA. Conforme

Leia mais

Pesquisa Operacional

Pesquisa Operacional GOVERNO DO ESTADO DO PARÁ UNIVERSIDADE DO ESTADO DO PARÁ CENTRO DE CIÊNCIAS NATURAIS E TECNOLOGIA DEPARTAMENTO DE ENGENHARIA Pesquisa Operacional Tópico 4 Simulação Rosana Cavalcante de Oliveira, Msc rosanacavalcante@gmail.com

Leia mais

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia. Introdução O Cálculo Numérico

Leia mais

AULAS 04 E 05 Estatísticas Descritivas

AULAS 04 E 05 Estatísticas Descritivas 1 AULAS 04 E 05 Estatísticas Descritivas Ernesto F. L. Amaral 19 e 28 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

SISTEMAS INTELIGENTES DE APOIO À DECISÃO

SISTEMAS INTELIGENTES DE APOIO À DECISÃO SISTEMAS INTELIGENTES DE APOIO À DECISÃO As organizações estão ampliando significativamente suas tentativas para auxiliar a inteligência e a produtividade de seus trabalhadores do conhecimento com ferramentas

Leia mais

SisDEA Home Windows Versão 1

SisDEA Home Windows Versão 1 ROTEIRO PARA CRIAÇÃO E ANÁLISE MODELO REGRESSÃO 1. COMO CRIAR UM MODELO NO SISDEA Ao iniciar o SisDEA Home, será apresentada a tela inicial de Bem Vindo ao SisDEA Windows. Selecione a opção Criar Novo

Leia mais

Relatório de uma Aplicação de Redes Neurais

Relatório de uma Aplicação de Redes Neurais UNIVERSIDADE ESTADUAL DE MONTES CLAROS CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE CIÊNCIAS DA COMPUTACAÇÃO ESPECIALIZAÇÃO EM ENGENHARIA DE SISTEMAS DISCIPLINA: REDES NEURAIS PROFESSOR: MARCOS

Leia mais

PALAVRAS-CHAVE: Massas Nodulares, Classificação de Padrões, Redes Multi- Layer Perceptron.

PALAVRAS-CHAVE: Massas Nodulares, Classificação de Padrões, Redes Multi- Layer Perceptron. 1024 UMA ABORDAGEM BASEADA EM REDES PERCEPTRON MULTICAMADAS PARA A CLASSIFICAÇÃO DE MASSAS NODULARES EM IMAGENS MAMOGRÁFICAS Luan de Oliveira Moreira¹; Matheus Giovanni Pires² 1. Bolsista PROBIC, Graduando

Leia mais

Aula 5 Técnicas para Estimação do Impacto

Aula 5 Técnicas para Estimação do Impacto Aula 5 Técnicas para Estimação do Impacto A econometria é o laboratório dos economistas, que busca reproduzir o funcionamento do mundo de forma experimental, como se faz nas ciências naturais. Os modelos

Leia mais

Marcio Cataldi 1, Carla da C. Lopes Achão 2, Bruno Goulart de Freitas Machado 1, Simone Borim da Silva 1 e Luiz Guilherme Ferreira Guilhon 1

Marcio Cataldi 1, Carla da C. Lopes Achão 2, Bruno Goulart de Freitas Machado 1, Simone Borim da Silva 1 e Luiz Guilherme Ferreira Guilhon 1 Aplicação das técnicas de Mineração de Dados como complemento às previsões estocásticas univariadas de vazão natural: estudo de caso para a bacia do rio Iguaçu Marcio Cataldi 1, Carla da C. Lopes Achão

Leia mais

Projeto de Redes Neurais e MATLAB

Projeto de Redes Neurais e MATLAB Projeto de Redes Neurais e MATLAB Centro de Informática Universidade Federal de Pernambuco Sistemas Inteligentes IF684 Arley Ristar arrr2@cin.ufpe.br Thiago Miotto tma@cin.ufpe.br Baseado na apresentação

Leia mais

Alisamento Exponencial (EWMA) e Holt-Winters

Alisamento Exponencial (EWMA) e Holt-Winters Alisamento Exponencial (EWMA) e Holt-Winters 1 - Alisamento Exponencial Simples Admita-se que pretendemos prever os valores futuros da série representada no gráfico 1. Gráfico 1 - esta série não apresenta

Leia mais

IC Inteligência Computacional Redes Neurais. Redes Neurais

IC Inteligência Computacional Redes Neurais. Redes Neurais Universidade Federal do Rio de Janeiro PÓS-GRADUAÇÃO / 2008-2 IC Inteligência Computacional Redes Neurais www.labic.nce.ufrj.br Antonio G. Thomé thome@nce.ufrj.br Redes Neurais São modelos computacionais

Leia mais

SIS 0011 Sistema de Visão com Perceptron Lento

SIS 0011 Sistema de Visão com Perceptron Lento SIS 0011 Sistema de Visão com Perceptron Lento Guia Rápido de estratégia, configuração e operação Robôs Investidores Sumário 1) Sobre o Trajecta Open... 4 2) Estratégia: Sistema de Visão com Perceptron

Leia mais

Análise de Regressão. Tópicos Avançados em Avaliação de Desempenho. Cleber Moura Edson Samuel Jr

Análise de Regressão. Tópicos Avançados em Avaliação de Desempenho. Cleber Moura Edson Samuel Jr Análise de Regressão Tópicos Avançados em Avaliação de Desempenho Cleber Moura Edson Samuel Jr Agenda Introdução Passos para Realização da Análise Modelos para Análise de Regressão Regressão Linear Simples

Leia mais

Inteligência Artificial

Inteligência Artificial Inteligência Artificial As organizações estão ampliando significativamente suas tentativas para auxiliar a inteligência e a produtividade de seus trabalhadores do conhecimento com ferramentas e técnicas

Leia mais

COMO CONSTRUIR CENÁRIOS MACROECONÔMICOS. Autor: Gustavo P. Cerbasi(gcerbasi@mandic.com.br) ! O que é cenário macroeconômico?

COMO CONSTRUIR CENÁRIOS MACROECONÔMICOS. Autor: Gustavo P. Cerbasi(gcerbasi@mandic.com.br) ! O que é cenário macroeconômico? COMO CONSTRUIR CENÁRIOS! O que é cenário macroeconômico?! Quais os elementos necessários para construção de cenários?! Etapas para elaboração de cenários macroeconômicos! Análise do comportamento das variáveis

Leia mais

http://www.de.ufpb.br/~luiz/

http://www.de.ufpb.br/~luiz/ UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS Departamento de Estatística Luiz Medeiros http://www.de.ufpb.br/~luiz/ Vimos que é possível sintetizar os dados sob a forma de distribuições de frequências

Leia mais

AVALIAÇÃO DO MODELO DE ONDAS

AVALIAÇÃO DO MODELO DE ONDAS AVALIAÇÃO DO MODELO DE ONDAS O modelo de onda WAVEWATCH implementado operacionalmente no CP- TEC/INPE global é validado diariamente com os dados do satélite JASON-2. Este novo produto tem como finalidade

Leia mais

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES Caros concurseiros, Como havia prometido, seguem comentários sobre a prova de estatística do ICMS RS. Em cada questão vou fazer breves comentários, bem como indicar eventual possibilidade de recurso. Não

Leia mais

Módulo 6: Inteligência Artificial

Módulo 6: Inteligência Artificial Módulo 6: Inteligência Artificial Assuntos: 6.1. Aplicações da IA 6.2. Sistemas Especialistas 6.1. Aplicações da Inteligência Artificial As organizações estão ampliando significativamente suas tentativas

Leia mais

MAE0325 - Séries Temporais

MAE0325 - Séries Temporais MAE0325 - Séries Temporais Fernando Henrique Ferraz Pereira da Rosa Vagner Aparecido Pedro Junior 26 de setembro de 2004 E7p80. Considere a série A (M-ICV): Lista 1 1 (a) teste a existência de tendência,

Leia mais

4 Gráficos de controle

4 Gráficos de controle 4 Gráficos de controle O gráfico de controle é uma ferramenta poderosa do Controle Estatístico de Processo (CEP) para examinar a variabilidade em dados orientados no tempo. O CEP é composto por um conjunto

Leia mais

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010. Matemática Essencial Extremos de funções reais Departamento de Matemática - UEL - 2010 Conteúdo Ulysses Sodré http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Leia mais

MATERIAL DE DIVULGAÇÃO DA EDITORA MODERNA

MATERIAL DE DIVULGAÇÃO DA EDITORA MODERNA MATERIAL DE DIVULGAÇÃO DA EDITORA MODERNA Professor, nós, da Editora Moderna, temos como propósito uma educação de qualidade, que respeita as particularidades de todo o país. Desta maneira, o apoio ao

Leia mais

Regressão Linear em SPSS

Regressão Linear em SPSS Regressão Linear em SPSS 1. No ficheiro Calor.sav encontram-se os valores do consumo mensal de energia, medido em milhões de unidades termais britânicas, acompanhados de valores de output, em milhões de

Leia mais

UTILIZAÇÃO DO MÉTODO DE HOLT WINTERS PARA A PREVISÃO AGREGADA DE SANDÁLIAS FABRICADAS A PARTIR DE PNEUS INSERVÍVEIS

UTILIZAÇÃO DO MÉTODO DE HOLT WINTERS PARA A PREVISÃO AGREGADA DE SANDÁLIAS FABRICADAS A PARTIR DE PNEUS INSERVÍVEIS XXIX ENCONTRO NACIONAL DE ENGENHARIA DE PRODUÇÃO. UTILIZAÇÃO DO MÉTODO DE HOLT WINTERS PARA A PREVISÃO AGREGADA DE SANDÁLIAS FABRICADAS A PARTIR DE PNEUS INSERVÍVEIS Tulio Franco de Souza (UEPA) tfsengprod@yahoo.com.br

Leia mais

Planejamento Estratégico de TI. Prof.: Fernando Ascani

Planejamento Estratégico de TI. Prof.: Fernando Ascani Planejamento Estratégico de TI Prof.: Fernando Ascani Data Warehouse - Conceitos Hoje em dia uma organização precisa utilizar toda informação disponível para criar e manter vantagem competitiva. Sai na

Leia mais

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 UNIVERSIDADE FEDERAL DE VIÇOSA Departamento de Matemática - CCE Cálculo Numérico - MAT 271 Prof.: Valéria Mattos da Rosa As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia

Leia mais

Previsão do Mercado de Ações Brasileiro utilizando Redes Neurais Artificiais

Previsão do Mercado de Ações Brasileiro utilizando Redes Neurais Artificiais Previsão do Mercado de Ações Brasileiro utilizando Redes Neurais Artificiais Elisângela Lopes de Faria (a) Marcelo Portes Albuquerque (a) Jorge Luis González Alfonso (b) Márcio Portes Albuquerque (a) José

Leia mais

AULAS 24 E 25 Análise de Regressão Múltipla: Inferência

AULAS 24 E 25 Análise de Regressão Múltipla: Inferência 1 AULAS 24 E 25 Análise de Regressão Múltipla: Inferência Ernesto F. L. Amaral 23 e 25 de novembro de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Wooldridge, Jeffrey M. Introdução à econometria: uma

Leia mais

MLP (Multi Layer Perceptron)

MLP (Multi Layer Perceptron) MLP (Multi Layer Perceptron) André Tavares da Silva andre.silva@udesc.br Roteiro Rede neural com mais de uma camada Codificação de entradas e saídas Decorar x generalizar Perceptron Multi-Camada (MLP -

Leia mais

Inteligência Computacional [2COP229]

Inteligência Computacional [2COP229] Inteligência Computacional [2COP229] Mestrado em Ciência da Computação Sylvio Barbon Jr barbon@uel.br (2/24) Tema Aula 1 Introdução ao Reconhecimento de Padrões 1 Introdução 2 Componentes clássicos da

Leia mais

Correlação e Regressão

Correlação e Regressão Correlação e Regressão Análise de dados. Tópico Prof. Dr. Ricardo Primi & Prof. Dr. Fabian Javier Marin Rueda Adaptado de Gregory J. Meyer, University of Toledo, USA; Apresentação na Universidade e São

Leia mais

3 Método de Monte Carlo

3 Método de Monte Carlo 25 3 Método de Monte Carlo 3.1 Definição Em 1946 o matemático Stanislaw Ulam durante um jogo de paciência tentou calcular as probabilidades de sucesso de uma determinada jogada utilizando a tradicional

Leia mais

1. ROTEIRO DE USO DO CORISCO Para usar o CoRisco, e gerar os seus próprios modelos de risco, você deve seguir o roteiro:

1. ROTEIRO DE USO DO CORISCO Para usar o CoRisco, e gerar os seus próprios modelos de risco, você deve seguir o roteiro: Como usar o CoRisco CoRisco é um programa, escrito na linguagem Visual Basic, que executa automaticamente os passos requeridos para a simulação de Monte Carlo, simplificando muito o trabalho de geração

Leia mais

4 Avaliação Econômica

4 Avaliação Econômica 4 Avaliação Econômica Este capítulo tem o objetivo de descrever a segunda etapa da metodologia, correspondente a avaliação econômica das entidades de reservas. A avaliação econômica é realizada a partir

Leia mais

MINERAÇÃO DE DADOS APLICADA. Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br

MINERAÇÃO DE DADOS APLICADA. Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br MINERAÇÃO DE DADOS APLICADA Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br Processo Weka uma Ferramenta Livre para Data Mining O que é Weka? Weka é um Software livre do tipo open source para

Leia mais

FUNDAÇÃO DE APOIO AO ENSINO TÉCNICO DO ESTADO DO RIO DE JANEIRO FAETERJ Petrópolis Área de Extensão PLANO DE CURSO

FUNDAÇÃO DE APOIO AO ENSINO TÉCNICO DO ESTADO DO RIO DE JANEIRO FAETERJ Petrópolis Área de Extensão PLANO DE CURSO FUNDAÇÃO DE APOIO AO ENINO TÉCNICO DO ETADO DO RIO DE JANEIRO PLANO DE CURO 1. Identificação Curso de Extensão: INTRODUÇÃO AO ITEMA INTELIGENTE Professor Regente: José Carlos Tavares da ilva Carga Horária:

Leia mais

Modelo SARIMA: um estudo de caso sobre venda mensal de gasolina

Modelo SARIMA: um estudo de caso sobre venda mensal de gasolina Modelo SARIMA: um estudo de caso sobre venda mensal de gasolina Ana Julia Righetto 1 Luiz Ricardo Nakamura 1 Pedro Henrique Ramos Cerqueira 1 Manoel Ivanildo Silvestre Bezerra 2 Taciana Villela Savian

Leia mais

COM A TÉCNICA DE REGRESSÃO LINEAR SIMPLES

COM A TÉCNICA DE REGRESSÃO LINEAR SIMPLES DESENVOLVIMENTO DE UM SISTEMA PARA SIMULAÇÃO DE PREVISÃO DE PREÇO DE AÇÕES NA BOVESPA UTILIZANDO DATA MINING COM A TÉCNICA DE REGRESSÃO LINEAR SIMPLES Davi da Silva Nogueira Orientador: Prof. Oscar Dalfovo,

Leia mais

1 Introdução 1.1. Segurança em Redes de Computadores

1 Introdução 1.1. Segurança em Redes de Computadores 1 Introdução 1.1. Segurança em Redes de Computadores A crescente dependência das empresas e organizações modernas a sistemas computacionais interligados em redes e a Internet tornou a proteção adequada

Leia mais

Introdução aos Sistemas de Informação Geográfica

Introdução aos Sistemas de Informação Geográfica Introdução aos Sistemas de Informação Geográfica Mestrado Profissionalizante 2015 Karla Donato Fook karladf@ifma.edu.br IFMA / DAI Análise Espacial 2 1 Distribuição Espacial A compreensão da distribuição

Leia mais

DELEGAÇÃO DE TETE CAPACITAÇÃO INTERNA DO CORPO DOCENTE/ FEVEREIRO DE 2015

DELEGAÇÃO DE TETE CAPACITAÇÃO INTERNA DO CORPO DOCENTE/ FEVEREIRO DE 2015 DELEGAÇÃO DE TETE CAPACITAÇÃO INTERNA DO CORPO DOCENTE/ FEVEREIRO DE 2015 TEMA: IBM SPSS Statistics 20 FACILITADORES: dr. Alfeu Dias Martinho dr. Pércio António Chitata dr. Domingos Arcanjo António Nhampinga

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Aprendizagem de Máquina Professor: Rosalvo Ferreira de Oliveira Neto Disciplina: Inteligência Artificial Tópicos 1. Definições 2. Tipos de aprendizagem 3. Paradigmas de aprendizagem 4. Modos de aprendizagem

Leia mais

Aula 2 RNA Arquiteturas e Treinamento

Aula 2 RNA Arquiteturas e Treinamento 2COP229 Aula 2 RNA Arquiteturas e Treinamento 2COP229 Sumário 1- Arquiteturas de Redes Neurais Artificiais; 2- Processos de Treinamento; 2COP229 1- Arquiteturas de Redes Neurais Artificiais -Arquitetura:

Leia mais

Inteligência Artificial. Redes Neurais Artificiais

Inteligência Artificial. Redes Neurais Artificiais Curso de Especialização em Sistemas Inteligentes Aplicados à Automação Inteligência Artificial Redes Neurais Artificiais Aulas Práticas no Matlab João Marques Salomão Rodrigo Varejão Andreão Matlab Objetivos:

Leia mais

CURRÍCULO DE MATEMÁTICA PARA O ENSINO MÉDIO COM BASE NOS PARÂMETROS CURRICULARES DO ESTADO DE PERNAMBUCO

CURRÍCULO DE MATEMÁTICA PARA O ENSINO MÉDIO COM BASE NOS PARÂMETROS CURRICULARES DO ESTADO DE PERNAMBUCO CURRÍCULO DE MATEMÁTICA PARA O ENSINO MÉDIO COM BASE NOS PARÂMETROS CURRICULARES DO ESTADO DE PERNAMBUCO GOVERNADOR DE PERNAMBUCO Eduardo Campos VICE-GOVERNADOR João Lyra Neto SECRETÁRIO DE EDUCAÇÃO Ricardo

Leia mais

Nathalie Portugal Vargas

Nathalie Portugal Vargas Nathalie Portugal Vargas 1 Introdução Trabalhos Relacionados Recuperação da Informação com redes ART1 Mineração de Dados com Redes SOM RNA na extração da Informação Filtragem de Informação com Redes Hopfield

Leia mais

Programa do Curso de Pós-Graduação Lato Sensu MBA em Business Intelligence (BI)

Programa do Curso de Pós-Graduação Lato Sensu MBA em Business Intelligence (BI) Programa do Curso de Pós-Graduação Lato Sensu MBA em Business Intelligence (BI) Apresentação O programa de Pós-graduação Lato Sensu em Business Intelligence Inteligência Competitiva tem por fornecer conhecimento

Leia mais

SATURNO V 6.11. Por Hindemburg Melão Jr. http://www.saturnov.com

SATURNO V 6.11. Por Hindemburg Melão Jr. http://www.saturnov.com SATURNO V 6. Por Hindemburg Melão Jr. http://www.saturnov.com A versão 6. (ou 3.4926c83) foi analisada sob diversos aspectos, a fim de verificar a uniformidade do comportamento ao longo do tempo. Primeiramente

Leia mais

Um Estudo da Série de Vendas de Automóveis no Brasil através de Métodos Clássicos de Previsão de Demanda

Um Estudo da Série de Vendas de Automóveis no Brasil através de Métodos Clássicos de Previsão de Demanda Um Estudo da Série de Vendas de Automóveis no Brasil através de Métodos Clássicos de Previsão de Demanda Autoria: André Assis de Salles, Paula Evaristo Arantes, Carolina Campos Tavares A necessidade de

Leia mais

Pós-Graduação em Engenharia Elétrica Inteligência Artificial

Pós-Graduação em Engenharia Elétrica Inteligência Artificial Pós-Graduação em Engenharia Elétrica Inteligência Artificial João Marques Salomão Rodrigo Varejão Andreão Inteligência Artificial Definição (Fonte: AAAI ): "the scientific understanding of the mechanisms

Leia mais

Técnicas de Previsão de Box-Jenkins ARIMA 1

Técnicas de Previsão de Box-Jenkins ARIMA 1 Técnicas de Previsão de Box-Jenkins ARIMA 1 Introdução Metodologia Box-Jenkins Ou Método de Previsão ARIMA: Os modelos de previsão Box-Jenkins são baseados em conceitos e princípios estatísticos e são

Leia mais

BUSINESS INTELLIGENCE, O ELEMENTO CHAVE PARA O SUCESSO DAS ORGANIZAÇÕES.

BUSINESS INTELLIGENCE, O ELEMENTO CHAVE PARA O SUCESSO DAS ORGANIZAÇÕES. Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 22 a 25 de outubro, 2012 88 BUSINESS INTELLIGENCE, O ELEMENTO CHAVE PARA O SUCESSO DAS ORGANIZAÇÕES. Andrios Robert Silva Pereira, Renato Zanutto

Leia mais

Pesquisa de controle de desperdícios e ramais clandestinos em ligações de água residenciais unifamiliares 1

Pesquisa de controle de desperdícios e ramais clandestinos em ligações de água residenciais unifamiliares 1 Pesquisa de controle de desperdícios e ramais clandestinos em ligações de água residenciais unifamiliares 1 1 Escrito em 20 de fevereiro de 1996 e revisto em junho de 1998. 1 Sumário 1) Objetivo 2) Benefícios

Leia mais

SISTEMAS DE APOIO À DECISÃO SAD

SISTEMAS DE APOIO À DECISÃO SAD SISTEMAS DE APOIO À DECISÃO SAD Conceitos introdutórios Decisão Escolha feita entre duas ou mais alternativas. Tomada de decisão típica em organizações: Solução de problemas Exploração de oportunidades

Leia mais

Gerenciamento de Redes

Gerenciamento de Redes Gerenciamento de Redes As redes de computadores atuais são compostas por uma grande variedade de dispositivos que devem se comunicar e compartilhar recursos. Na maioria dos casos, a eficiência dos serviços

Leia mais