Plano. Aspectos Relevantes de HMMs. Teoria de HMMs. Introdução aos Modelos Escondidos de Markov

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Plano. Aspectos Relevantes de HMMs. Teoria de HMMs. Introdução aos Modelos Escondidos de Markov"

Transcrição

1 Plano Esta apresentação é para pessoas sem conhecimento prévio de HMMs Introdução aos Modelos Escondidos de Markov 2004 Objetivos: Ensinar alguma coisa, não tudo (Visão geral, sem muitos detalhes). Tentar explicar porque Sr. Markov esta escondido embaixo de sua mesa Exemplos: Mostrar como HMMs podem ser aplicados em Inteligência Artificial Aspectos Relevantes de HMMs Em muitos problemas de classificação e processamento de padrões seqüenciais, uma das maiores dificuldades é: modelar simultaneamente as variações estatísticas da seqüência e dos features (atributos). HMMs estão baseados em um teoria matemática rigorosa. Modelos gerados por um processo de treinamento em grandes conjuntos de dados Performance robusta (ao ruído/incertezas) Teoria de HMMs HMM é uma técnica estocástica para o estudo de problemas associados a séries temporais. Processo Markoviano: Para qualquer seqüência de eventos no domínio do tempo, a probabilidade condicional de um evento atual dados todos os eventos passados e presentes, depende somente dos k eventos mais recentes. Exemplo (Processo Markoviano de 1 a ordem): Previsão do tempo 3 símbolos (R, S, C) estados deterministicos probabilidade de transição ( P(R R), P(R S), P(C R), )

2 Teoria de HMMs Exemplo (Processo Markoviano de 1a ordem): Previsão do tempo 3 símbolos (R, S, C) estados deterministicos probabilidade de transição ( P(R R), P(R S), P(C R), ) Teoria de HMMs Em HMMs a saída de cada estado corresponde a distribuição de probabilidade de emissão ao invés de um evento deterministico. As probabilidades de emissão impõem dessa maneira, uma venda entre a seqüência de estados e o observador da seqüência temporal, i.e., a seqüência de estados está escondida. Exemplo (urnas e bolas): Teoria de HMMs Cada urna contém bolas coloridas sendo que existem 4 cores distintas Escolher de acordo com um processo aleatório uma urna, pegue uma bola e observe sua cor. Recolocar a bola na urna Selecionar uma outra urna e repita os passos acima As cores das bolas são observadas, porém, a seqüência de urnas escolhida é oculta. Teoria de HMMs Interesse: Como construir um modelo estocástico de acordo com a seqüência de bolas coloridas para explicar o comportamento do experimento conduzido atrás da venda.

3 Parâmetros de um HMM λ = ( A, B, π ) Problemas Básicos e Algoritmos Símbolo N Significado Número de estados Exemplo Número de urnas Três problemas básicos devem ser resolvidos para a utilização de HMMs em problemas reais: M A Número de símbolos distintos Distribuição de probabilidade de transição de estados Número de cores distintas Processo aleatório para selecionar uma nova urna Problema de avaliação: Qual a probabilidade que o modelo λ produziu a seqüência de observações o 1,o 2,,o T? algoritmo forward backward B π Distribuição de probabilidade de observação de um símbolo Distribuição de estado inicial Distribuição de cores em cada urna Probabilidade de selecionar um urna inicial Problema de estimação: Como ajustar os parâmetros do modelo (maximizar P(o λ) ), dadas seqüências (de observações) de treinamento? algoritmo Baum Welch Problemas Básicos e Algoritmos Exemplo: Modelamento do Clima Problema de decodificação: Qual a seqüência de estados mais provável, dada uma seqüência de observações algoritmo de Viterbi Temper. Vento Pressão Medidas Climáticas 1 dia As soluções matemáticas formais para estes 3 problemas não serão abordadas nesta apresentação Quantização Vetorial: Clustering Tempo

4 Hidden Markov Models Hidden Markov Models Exemplos de treinamento: Dada as 5 seqüências: Autômato finito capaz de gerar as seqüências acima: Podemos gerar este simples HMM (ordem 0) Estado de inserção (regiões de alta variabilidade) Estados principais Cadeia de Markov de 1 a Ordem Cadeia de Markov de 2 a Ordem Ex. P(ACACATC) = (0.8*1)*(0.8*1)*(0.8*0.6)*(0.4*0.6)*(1*1)*(0.8*1)*(0.8) A C A C A T C Modelando Escrita com HMMs Modelando Escrita com HMMs A = Ascender D = Descender N = Nada HMM modelando a fonte que gera as palavras twenty Model Esquerda-Direita: estado inicial, estado final, somente transições à frente permitidas estado inicial, início da palavra estado final, término da palavra Treinamento: Automático com o algoritmo Baum Welch (máxima probabilidade)

5 HMM versus NN HMM versus Redes Neurais HMM gera probabilidades condicionais P(input class) NN pode gerar probabilidades a posteriori P(class input) Combinação pode ser feita através do teorema de Bayes: P( input class) P( class) P ( class input) = P( input) HMM e NN: Diferenças Modelamento: HMM modela a fonte gerador das seqüências NN modela as fronteiras entre as classes Treinamento: HMM não leva em contra outras classes, somente a sua própria com o treinamento baseado em máxima probabilidade NN é treinada para ser discriminante HMM discriminante: Treinamento MMI Complexidade Computacional TN 2 onde: T: seqüência de observações N: número de estados do modelo Exemplo: Reconhecimento de Palavras Manuscritas em um Grande Vocabulário: TN 2 H L V =245 GFLOPS H: número de modelos por caracteres L: número de caracteres em uma palavra V: tamanho do vocabulário Assumindo valores típicos dos parâmetros (T=30, L=10, N=10, V=80,000, H=2) e o algoritmo de Viterbi Porém os computadores pessoais atuais são capazes de realizar entre 1 GFLOPS e 3 GFLOPS!

6 Gene Recognition: Exemplo Gene Recognition HMMs Modelo probabilístico Utiliza uma descrição da estrutura do gene (e.g. junções, regiões codificadas, codons iniciais e finais, etc. ) Seqüência DNA Simplificada VEIL (Viterbi Exon-Intron Locator) Promoter StartCodon CodingRegion StopCodon intergenicregion Promoter StartCodon HMM combinado para exons, introns, intergenic regions, splice sites exon intron exon intron exon ATG Donor site Acceptor site TAA, TAG, TGA A idéia é ter HMMs para cada uma destas regiões do gene e combinar (concatenar) estes modelos em um único HMM. Algoritmo ML para treinar o modelo e Algoritmo de Viterbi para alinhar novas seqüências Resultados Experimentais 53% das extremidades do exon localizadas corretamente 49% dos exons são corretamente extraídos

7 Exon and Stop Codon models in VEIL Intron model (VEIL) 2 estados em branco em ambos os lados podem produzir qualquer base. (permite o alinhamento ao frame de leitura adequado. Donor site (5 splice site)- VEIL HMMs: Vantagens e Limitações A aplicação de maior sucesso é em reconhecimento da fala. HMMs podem lidar com variações temporais e distorção em freqüências. Além disso, HMMs vem sendo utilizadas com sucesso em reconhecimento de escritura, bioinformática, processamento de imagens e outros problemas de IA. Possui algoritmos poderosos de treinamento e decodificação Fronteira do Exon-intron - Modelos de primeira ordem

8 HMMs: Vantagens e Limitações Questões Entretanto: As simplificações que fazem a otimização possível, limitam sua generalização: Discriminação fraca devido ao algoritmo de treinamento que maximiza probabilidades ao invés de probabilidade à posteriori. A escolha a priori da topologia dos modelos e distribuições estatísticas Simplificação: as seqüências de estados são cadeias de Markov de 1a ordem Simplificação: observações não estão correlacionadas no tempo.

TE802 Processos Estocásticos em Engenharia. Informação sobre a disciplina Notes. Processos Estocásticos em Engenharia Conteúdo Notes.

TE802 Processos Estocásticos em Engenharia. Informação sobre a disciplina Notes. Processos Estocásticos em Engenharia Conteúdo Notes. TE802 Processos Estocásticos em Engenharia Conceitos Básicos de Teoria de Probabilidade 7 de março de 2016 Informação sobre a disciplina Terças e Quintas feiras das 09:30 às 11:20 horas Professor: Evelio

Leia mais

Busca de motivos em sequências. João Carlos Setubal 2015

Busca de motivos em sequências. João Carlos Setubal 2015 Busca de motivos em sequências João Carlos Setubal 2015 Cadeias exatas Podem ser encontradas com o mecanismo de busca de qualquer editor de textos Que algoritmo é executado? O mais simples (e que é muito

Leia mais

MODELOS PROBABILÍSTICOS

MODELOS PROBABILÍSTICOS Disciplina de BIOLOGIA COMPUTACIONAL Mestrado em ENGENHARIA BIOMÉDICA 4º Ano, 1º Semestre 2007/08 MODELOS PROBABILÍSTICOS Relatório 4 Ana Calhau Ângela Pisco Nuno Santos 54605 55748 55746 Palavras-Chave:

Leia mais

IA - Planejamento II

IA - Planejamento II PO IA - Planejamento II Professor Paulo Gurgel Pinheiro MC906A - Inteligência Articial Instituto de Computação Universidade Estadual de Campinas - UNICAMP 16 de Novembro de 2010 1 / 48 PO http://www.ic.unicamp.br/

Leia mais

Combinação de Classificadores (fusão)

Combinação de Classificadores (fusão) Combinação de Classificadores (fusão) André Tavares da Silva andre.silva@udesc.br Livro da Kuncheva Roteiro Sistemas com múltiplos classificadores Fusão por voto majoritário voto majoritário ponderado

Leia mais

3 Redes Neurais Artificiais

3 Redes Neurais Artificiais 3 Redes Neurais Artificiais 3.1. Introdução A capacidade de implementar computacionalmente versões simplificadas de neurônios biológicos deu origem a uma subespecialidade da inteligência artificial, conhecida

Leia mais

Inteligência Artificial. Prof. Tiago A. E. Ferreira Aula 21 Projeto de RNA

Inteligência Artificial. Prof. Tiago A. E. Ferreira Aula 21 Projeto de RNA Inteligência Artificial Prof. Tiago A. E. Ferreira Aula 21 Projeto de RNA Projeto de Redes Neurais Projeto de Redes Neurais Baseado apenas em dados Exemplos para treinar uma rede devem ser compostos por

Leia mais

Número de genes versus número de proteínas em eucariotos

Número de genes versus número de proteínas em eucariotos Número de genes versus número de proteínas em eucariotos Bioquímica II SQM0416 Júlia Assirati Tomie Kuriyama Victória Montenegro de Campos Resumo Introdução Características do genoma humano Como foram

Leia mais

Reconhecimento de Fala

Reconhecimento de Fala ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO DEPARTAMENTO DE ENGENHARIA DE COMPUTAÇÃO E SISTEMAS DIGITAIS PCS2428 Inteligência Artificial Reconhecimento de Fala Professora Anna Helena Reali Costa Grupo

Leia mais

Reconhecimento de Padrões

Reconhecimento de Padrões Reconhecimento de Padrões André Tavares da Silva andre.silva@udesc.br Roteiro da aula Conceitos básicos sobre reconhecimento de padrões Visão geral sobre aprendizado no projeto de classificadores Seleção

Leia mais

2 Modelos de sintetização de séries temporais de atenuação por chuva

2 Modelos de sintetização de séries temporais de atenuação por chuva 2 Modelos de sintetização de séries temporais de atenuação por chuva Alguns modelos estocásticos de sintetização de séries temporais de atenuação por chuva são baseados no modelo proposto por Maseng &

Leia mais

Como modelar o comportamento de um sistema? MAB-515

Como modelar o comportamento de um sistema? MAB-515 Como modelar o comportamento de um sistema? MAB-515 Possibilidades de modelagem PARAMETRIZA modelo matemático experimento real AJUDA A COMPREENDER SIMULAÇÃO SOLUÇÃO ANALÍTICA MEDIDAS EXPERIMENTAIS NO MODELO

Leia mais

Árvores e Florestas Probabilísticas

Árvores e Florestas Probabilísticas Árvores e Florestas Probabilísticas e como elas ajudam a distinguir os ritmos do Português Brasileiro e do Português Europeu Instituto de Matemática e Estatística Universidade de São Paulo Colaboradores

Leia mais

Introdução a Sistemas Inteligentes

Introdução a Sistemas Inteligentes Introdução a Sistemas Inteligentes Conceituação Prof. Ricardo J. G. B. Campello ICMC / USP Créditos Parte do material a seguir consiste de adaptações e extensões dos originais gentilmente cedidos pelo

Leia mais

Bioinformática DCC/FCUP

Bioinformática DCC/FCUP Bioinformática DCC/FCUP 2012/2013 Pedro Ribeiro Unidade 5 Modelos Probabilísticos (baseado nos slides de Vítor Costa/DCC-FCUP e Sushmita Roy/UWisconsin) Objectivos desta unidade Conceitos básicos de probabilidade

Leia mais

Seleção de Atributos 1

Seleção de Atributos 1 Seleção de Atributos 1 Tópicos Por que atributos irrelevantes são um problema Quais tipos de algoritmos de aprendizado são afetados Seleção de atributos antes do aprendizado Benefícios Abordagens automáticas

Leia mais

Introdução aos Algoritmos Genéticos

Introdução aos Algoritmos Genéticos Introdução aos Algoritmos Genéticos Prof. Matheus Giovanni Pires EXA 868 Inteligência Artificial Não-Simbólica B Universidade Estadual de Feira de Santana 2 Algoritmos Genéticos: Introdução Introduzidos

Leia mais

Canais discretos sem memória e capacidade do canal

Canais discretos sem memória e capacidade do canal Canais discretos sem memória e capacidade do canal Luis Henrique Assumpção Lolis 17 de outubro de 2013 Luis Henrique Assumpção Lolis Canais discretos sem memória e capacidade do canal 1 Conteúdo 1 Canais

Leia mais

Linguagens Formais e Autômatos. Apresentação do Plano de Ensino

Linguagens Formais e Autômatos. Apresentação do Plano de Ensino Linguagens Formais e Autômatos Apresentação do Plano de Ensino Linguagens Formais e Autômatos LFA Código - CMP4145 Turma A01 Engenharia da Computação e Ciência da Computação Horário: Segunda, Terça e Quinta.

Leia mais

Otimização. Unidade 6: Algoritmo Genético. Jaime Arturo Ramírez. 7. Teoria do processo evolutivo num GA. 8. Aspectos avançados

Otimização. Unidade 6: Algoritmo Genético. Jaime Arturo Ramírez. 7. Teoria do processo evolutivo num GA. 8. Aspectos avançados Otimização Jaime Arturo Ramírez Conteúdo 1. Introdução 2. Analogia de mecanismos de seleção natural com sistemas artificiais 3. Algoritmo genético modelo 4. Um GA simples 5. Representação, genes e cromossomos

Leia mais

CLASSIFICADORES BAEYSIANOS

CLASSIFICADORES BAEYSIANOS CLASSIFICADORES BAEYSIANOS Teorema de Bayes 2 Frequentemente, uma informação é apresentada na forma de probabilidade condicional Probabilidade de um evento ocorrer dada uma condição Probabilidade de um

Leia mais

Algoritmos Genéticos. Princípio de Seleção Natural. Sub-áreas da Computação Evolutiva. Idéias básicas da CE. Computação Evolutiva

Algoritmos Genéticos. Princípio de Seleção Natural. Sub-áreas da Computação Evolutiva. Idéias básicas da CE. Computação Evolutiva Computação Evolutiva Algoritmos Genéticos A computação evolutiva (CE) é uma área da ciência da computação que abrange modelos computacionais inspirados na Teoria da Evolução das Espécies, essencialmente

Leia mais

Tabela de Pré-Requisitos. Interdisciplinar 36 Não há

Tabela de Pré-Requisitos. Interdisciplinar 36 Não há Nome da UC Categoria CH Total Pré-Requisitos Álgebra Linear Eletiva 72 Geometria Analítica Álgebra Linear Computacional Eletiva 72 Cálculo Numérico Álgebra Linear II Eletiva 72 Álgebra Linear Algoritmos

Leia mais

serotonina (humor) dopamina (Parkinson) serotonina (humor) dopamina (Parkinson) Prozac inibe a recaptação da serotonina

serotonina (humor) dopamina (Parkinson) serotonina (humor) dopamina (Parkinson) Prozac inibe a recaptação da serotonina Redes Neurais O modelo biológico O cérebro humano possui cerca 100 bilhões de neurônios O neurônio é composto por um corpo celular chamado soma, ramificações chamadas dendritos (que recebem as entradas)

Leia mais

3. Probabilidade P(A) =

3. Probabilidade P(A) = 7 3. Probabilidade Probabilidade é uma medida numérica da plausibilidade de que um evento ocorrerá. Assim, as probabilidades podem ser usadas como medidas do grau de incerteza e podem ser expressas de

Leia mais

Rede RBF (Radial Basis Function)

Rede RBF (Radial Basis Function) Rede RBF (Radial Basis Function) André Tavares da Silva andre.silva@udesc.br Roteiro Introdução à rede neural artificial RBF Teorema de Cover da separabilidade de padrões RBF x MLP RBF Função de ativação

Leia mais

Um Estudo sobre Modelos Ocultos de Markov HMM - Hidden Markov Model

Um Estudo sobre Modelos Ocultos de Markov HMM - Hidden Markov Model Pontifícia Universidade Católica do Rio Grande do Sul Faculdade de Informática Pós-Graduação em Ciência da Computação Um Estudo sobre Modelos Ocultos de Markov HMM - Hidden Markov Model Luciana da Silveira

Leia mais

Linguagens Formais e Autômatos. Apresentação do Plano de Ensino

Linguagens Formais e Autômatos. Apresentação do Plano de Ensino Linguagens Formais e Autômatos Apresentação do Plano de Ensino Linguagens Formais e Autômatos LFA Código - CMP4145 Turma C01 Engenharia da Computação e Ciência da Computação Horário: Terça e Sexta: 20:30

Leia mais

Paradigmas de Aprendizagem

Paradigmas de Aprendizagem Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Paradigmas de Aprendizagem Redes Neurais Artificiais Site: http://jeiks.net E-mail: jacsonrcsilva@gmail.com

Leia mais

1.1 Tema Aprendizado de Máquina (Mit97) é o campo da Inteligência Artificial responsável pelo desenvolvimento de modelos inferidos automaticamente a

1.1 Tema Aprendizado de Máquina (Mit97) é o campo da Inteligência Artificial responsável pelo desenvolvimento de modelos inferidos automaticamente a 1 Introdução 1.1 Tema Aprendizado de Máquina (Mit97) é o campo da Inteligência Artificial responsável pelo desenvolvimento de modelos inferidos automaticamente a partir de dados. Existem diversas aplicações

Leia mais

LINGUAGENS FORMAIS Modelos Determinísticos e Não Determinísticos. Usam-se modelos matemáticos para representar eventos (fenômenos) do mundo real.

LINGUAGENS FORMAIS Modelos Determinísticos e Não Determinísticos. Usam-se modelos matemáticos para representar eventos (fenômenos) do mundo real. LINGUAGENS FORMAIS Modelos Determinísticos e Não Determinísticos Modelos Matemáticos Usam-se modelos matemáticos para representar eventos (fenômenos) do mundo real. Ressalta-se contudo que é muito importante

Leia mais

Modelamento e simulação de processos

Modelamento e simulação de processos Modelamento e de processos 3. Modelagem e Prof. Dr. André Carlos Silva 2 1. Modelos matemáticos Segundo Possa (1995), um modelo pode ser definido como sendo uma equação, ou um conjunto de equações, que

Leia mais

PROBABILIDADE E ESTATÍSTICA EM HIDROLOGIA

PROBABILIDADE E ESTATÍSTICA EM HIDROLOGIA Introdução 1 PROBABILIDADE E ESTATÍSTICA EM HIDROLOGIA Fenômeno - MODELO MATEMÁTICO Q = L.H 3/2 F= γ.h.a Ênfase: forma da expressão relação entre : L e H Q γ, h e A F Aula 1 Introdução 2 HIDROLOGIA " É

Leia mais

Introdução a Algoritmos Genéticos

Introdução a Algoritmos Genéticos Introdução a Algoritmos Genéticos Tiago da Conceição Mota Laboratório de Inteligência Computacional Núcleo de Computação Eletrônica Universidade Federal do Rio de Janeiro Outubro de 2007 O Que São? Busca

Leia mais

Reconhecimento da voz baseado em segmento

Reconhecimento da voz baseado em segmento Reconhecimento da voz baseado em segmento Introdução Pesquisando gráficos baseados no espaço de observações Modelamento antifonema Modelamento Near -miss Modelamento por marcas Modelamento fonológico 1

Leia mais

Elementos de Estatística. Michel H. Montoril Departamento de Estatística - UFJF

Elementos de Estatística. Michel H. Montoril Departamento de Estatística - UFJF Elementos de Estatística Michel H. Montoril Departamento de Estatística - UFJF O que é a estatística? Para muitos, a estatística não passa de conjuntos de tabelas de dados numéricos. Os estatísticos são

Leia mais

Inteligência Artificial

Inteligência Artificial Inteligência Artificial Aula 6 Algoritmos Genéticos M.e Guylerme Velasco Roteiro Introdução Otimização Algoritmos Genéticos Representação Seleção Operadores Geneticos Aplicação Caixeiro Viajante Introdução

Leia mais

Princípios de Modelagem Matemática Aula 09

Princípios de Modelagem Matemática Aula 09 Princípios de Modelagem Matemática Aula 09 Prof. José Geraldo DFM CEFET/MG 12 de maio de 2014 1 Modelos estatísticos e estimação de parâmetros A verificação de um modelo matemático demanda a realização

Leia mais

Introdução à Redes Neurais. Prof. Matheus Giovanni Pires EXA 868 Inteligência Artificial Não-Simbólica B Universidade Estadual de Feira de Santana

Introdução à Redes Neurais. Prof. Matheus Giovanni Pires EXA 868 Inteligência Artificial Não-Simbólica B Universidade Estadual de Feira de Santana Introdução à Redes Neurais Artificiais Prof. Matheus Giovanni Pires EXA 868 Inteligência Artificial Não-Simbólica B Universidade Estadual de Feira de Santana 2 Introdução Redes Neurais Artificiais (RNAs)

Leia mais

Aprendizado Bayesiano Anteriormente...

Aprendizado Bayesiano Anteriormente... Aprendizado Bayesiano Anteriormente... Conceito de Probabilidade Condicional É a probabilidade de um evento A dada a ocorrência de um evento B Universidade de São Paulo Instituto de Ciências Matemáticas

Leia mais

CE Estatística I

CE Estatística I CE 002 - Estatística I Agronomia - Turma B Professor Walmes Marques Zeviani Laboratório de Estatística e Geoinformação Departamento de Estatística Universidade Federal do Paraná 1º semestre de 2012 Zeviani,

Leia mais

Processos Estocásticos. Luiz Affonso Guedes

Processos Estocásticos. Luiz Affonso Guedes Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Variáveis Aleatórias Funções de Uma Variável Aleatória Funções de Várias Variáveis Aleatórias Momentos e Estatística Condicional Teorema

Leia mais

Modelo de previsão de partida de ônibus utilizando cadeias de Markov de alcance variável

Modelo de previsão de partida de ônibus utilizando cadeias de Markov de alcance variável Modelo de previsão de partida de ônibus utilizando cadeias de Markov de alcance variável Maria das Vitórias Alexandre Serafim 1 Manuel Rivelino Gomes de Oliveira 2 Divanilda Maia Esteves 3 Paulo José Duarte-Neto

Leia mais

Processos Estocásticos. Introdução. Probabilidade. Introdução. Espaço Amostral. Luiz Affonso Guedes. Fenômenos Determinísticos

Processos Estocásticos. Introdução. Probabilidade. Introdução. Espaço Amostral. Luiz Affonso Guedes. Fenômenos Determinísticos Processos Estocásticos Luiz ffonso Guedes Sumário Probabilidade Variáveis leatórias Funções de Uma Variável leatória Funções de Várias Variáveis leatórias Momentos e Estatística Condicional Teorema do

Leia mais

1.4.2 Probabilidade condicional

1.4.2 Probabilidade condicional M. Eisencraft 1.4 Probabilidades condicionais e conjuntas 9 Portanto, P(A B) = P(A)+P(B) P(A B) (1.2) Para eventos mutuamente exclusivos, P(A B) = e P(A)+P(B) = P(A B). 1.4.2 Probabilidade condicional

Leia mais

Modelos Probabilísticos de Desempenho. Profa. Jussara M. Almeida 1º Semestre de 2014

Modelos Probabilísticos de Desempenho. Profa. Jussara M. Almeida 1º Semestre de 2014 Modelos Probabilísticos de Desempenho Profa. Jussara M. Almeida 1º Semestre de 2014 Modelos Probabilísticos Processos Estocásticos Processos de Poisson Filas M/M/1, M/G/1... Mais genericamente: modelos

Leia mais

Cap. 4 - Probabilidade

Cap. 4 - Probabilidade Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004 Cap. 4 - Probabilidade APOIO: Fundação de Apoio à Pesquisa

Leia mais

1 Classificadores Bayseanos Simples

1 Classificadores Bayseanos Simples Aula 12 - Classificadores Bayseanos Curso de Data Mining Sandra de Amo Classificadores Bayseanos são classificadores estatísticos que classificam um objeto numa determinada classe baseando-se na probabilidade

Leia mais

Algoritmos Genéticos. Estéfane G. M. de Lacerda DCA/UFRN Outubro/2008

Algoritmos Genéticos. Estéfane G. M. de Lacerda DCA/UFRN Outubro/2008 Estéfane G. M. de Lacerda DCA/UFRN Outubro/2008 Introdução São técnicas de busca e otimização. É a metáfora da teoria da evolução das espécies iniciada pelo Fisiologista e Naturalista inglês Charles Darwin.

Leia mais

3 Aprendizado por reforço

3 Aprendizado por reforço 3 Aprendizado por reforço Aprendizado por reforço é um ramo estudado em estatística, psicologia, neurociência e ciência da computação. Atraiu o interesse de pesquisadores ligados a aprendizado de máquina

Leia mais

Classificação Linear. André Tavares da Silva.

Classificação Linear. André Tavares da Silva. Classificação Linear André Tavares da Silva andre.silva@udesc.br Roteiro Introduzir os o conceito de classificação linear. LDA (Linear Discriminant Analysis) Funções Discriminantes Lineares Perceptron

Leia mais

6 Modelo Gamma-Cetuc (GC)

6 Modelo Gamma-Cetuc (GC) 6 Modelo Gamma-Cetuc (GC) Um modelo de sintetização de séries temporais de atenuação por chuva envolve a geração de dados aleatórios que satisfaçam especificações de estatísticas de primeira e de segunda

Leia mais

Análise Quantitativa de Tecidos em Úlceras de Perna

Análise Quantitativa de Tecidos em Úlceras de Perna 49 5 Análise Quantitativa de Tecidos em Úlceras de Perna A avaliação das áreas proporcionais de cada tecido interno das úlceras fornece informações importantes sobre seu estado patológico [BERRISS, 2000],

Leia mais

Classificação e Predição de Dados - Profits Consulting - Consultoria Empresarial - Serviços SAP- CRM Si

Classificação e Predição de Dados - Profits Consulting - Consultoria Empresarial - Serviços SAP- CRM Si Classificação e Predição de Dados - Profits Consulting - Consultoria Empresarial - Serviços SAP- CRM Si Classificação de Dados Os modelos de classificação de dados são preditivos, pois desempenham inferências

Leia mais

MAC499 - Trabalho de Formatura Supervisionado. Sistema de Reconhecimento de Escrita On-Line

MAC499 - Trabalho de Formatura Supervisionado. Sistema de Reconhecimento de Escrita On-Line MAC499 - Trabalho de Formatura Supervisionado Sistema de Reconhecimento de Escrita On-Line Integrantes Pedro Henrique Simões de Oliveira pedrohenriquesimoesdeoliveira at gmail.com Eduardo Gusmão Caceres

Leia mais

RECONHECIMENTO DE VOZ PARA PALAVRAS ISOLADAS

RECONHECIMENTO DE VOZ PARA PALAVRAS ISOLADAS UN IVERS ID ADE FEDER A L DE PERNAM B UCO GRADUAÇÃO EM ENGENHARIA DA COMPUTAÇÃO CENTRO DE INFORMÁTICA RECONHECIMENTO DE VOZ PARA PALAVRAS ISOLADAS TRABALHO DE GRADUAÇÃO Aluno: Anderson Gomes da Silva {ags@cin.ufpe.br}

Leia mais

Métodos Estatísticos Básicos

Métodos Estatísticos Básicos Aula 1 - Conceitos introdutórios Departamento de Economia Universidade Federal de Pelotas (UFPel) Março de 2014 Importância da estatística na economia A economia, em geral, é uma ciência não-experimental.

Leia mais

Pesquisa Operacional Introdução. Profa. Alessandra Martins Coelho

Pesquisa Operacional Introdução. Profa. Alessandra Martins Coelho Pesquisa Operacional Introdução Profa. Alessandra Martins Coelho julho/2014 Operational Research Pesquisa Operacional - (Investigação operacional, investigación operativa) Termo ligado à invenção do radar

Leia mais

Avaliação Quantitativa de Sistemas

Avaliação Quantitativa de Sistemas Avaliação Quantitativa de Sistemas Contexto A Avaliação Quantitativa de Sistemas permite a avaliação de sistemas antes mesmo da sua implementação física. Dessa forma, é possível avaliar um sistema projetado

Leia mais

UNIVERSIDADE DO ESTADO DE MATO GROSSO - UNEMAT. Faculdade de Ciências Exatas e Tecnológicas FACET / Sinop Curso de Bacharelado em Engenharia Elétrica

UNIVERSIDADE DO ESTADO DE MATO GROSSO - UNEMAT. Faculdade de Ciências Exatas e Tecnológicas FACET / Sinop Curso de Bacharelado em Engenharia Elétrica REDES DE FUNÇÃO DE BASE RADIAL - RBF Prof. Dr. André A. P. Biscaro 1º Semestre de 2017 Funções de Base Global Funções de Base Global são usadas pelas redes BP. Estas funções são definidas como funções

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Aprendizagem de Máquina Avaliação de Paradigmas Alessandro L. Koerich Mestrado/Doutorado em Informática Pontifícia Universidade Católica do Paraná (PUCPR) Mestrado/Doutorado em Informática Aprendizagem

Leia mais

Inteligência Artificial

Inteligência Artificial Inteligência Artificial Prof. Kléber de Oliveira Andrade pdjkleber@gmail.com Algoritmos Genéticos Conteúdo Introdução O Algoritmo Genético Binário Noções de Otimização O Algoritmo Genético com Parâmetros

Leia mais

Introdução a Ciência da Computação. Prof. Andréa Iabrudi. 2012/1

Introdução a Ciência da Computação. Prof. Andréa Iabrudi. 2012/1 Introdução a Ciência da Computação Prof. Andréa Iabrudi 2012/1 andrea.iabrudi@iceb.ufop.br 2 3 Quem sou eu no DECOM? Ensino: Disciplinas Inteligência Artificial (6º. Período) Atual: Projeto e Análise de

Leia mais

Aprendizado Bayesiano

Aprendizado Bayesiano Aprendizado Bayesiano Marcelo K. Albertini 26 de Junho de 2014 2/20 Conteúdo Teorema de Bayes Aprendizado MAP Classificador ótimo de Bayes 3/20 Dois papéis para métodos bayesianos Algoritmos de aprendizado

Leia mais

Introdução aos Proc. Estocásticos - ENG 430

Introdução aos Proc. Estocásticos - ENG 430 Introdução aos Proc. Estocásticos - ENG 430 Fabrício Simões IFBA 16 de novembro de 2015 Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG 430 16 de novembro de 2015 1 / 34 1 Motivação 2 Conceitos

Leia mais

Eisencraft e Loiola 2.1 Probabilidade 37. Para resolver problemas de probabilidades são necessários 3 passos:

Eisencraft e Loiola 2.1 Probabilidade 37. Para resolver problemas de probabilidades são necessários 3 passos: Eisencraft e Loiola 2.1 Probabilidade 37 Modelo matemático de experimentos Para resolver problemas de probabilidades são necessários 3 passos: a Estabelecimento do espaço das amostras b Definição dos eventos

Leia mais

Teoria da Probabilidade

Teoria da Probabilidade Teoria da Probabilidade Luis Henrique Assumpção Lolis 14 de fevereiro de 2014 Luis Henrique Assumpção Lolis Teoria da Probabilidade 1 Conteúdo 1 O Experimento Aleatório 2 Espaço de amostras 3 Álgebra dos

Leia mais

3 Estimação e Compensação de movimento na codificação de vídeo

3 Estimação e Compensação de movimento na codificação de vídeo Estimação e Compensação de movimento na codificação de vídeo 36 3 Estimação e Compensação de movimento na codificação de vídeo O objetivo do modelo temporal (que engloba as fases de estimação e compensação

Leia mais

3 Extração de Regras Simbólicas a partir de Máquinas de Vetores Suporte 3.1 Introdução

3 Extração de Regras Simbólicas a partir de Máquinas de Vetores Suporte 3.1 Introdução 3 Extração de Regras Simbólicas a partir de Máquinas de Vetores Suporte 3.1 Introdução Como já mencionado na seção 1.1, as SVMs geram, da mesma forma que redes neurais (RN), um "modelo caixa preta" de

Leia mais

Buscas Informadas ou Heurísticas - Parte II

Buscas Informadas ou Heurísticas - Parte II Buscas Informadas ou Heurísticas - Parte II Prof. Cedric Luiz de Carvalho Instituto de Informática - UFG Graduação em Ciência da Computação / 2006 FUNÇÕES HEURÍSTICAS - 1/7 FUNÇÕES HEURÍSTICAS - 2/7 Solução

Leia mais

Análise de clusters usando classes latentes

Análise de clusters usando classes latentes Análise de clusters usando classes latentes João Branco Departamento de Matemática, IST XIV Congresso SPE, 27-30 Set. 2006 Covilhã Poucos dados/muitos dados p. 0/23 Sumário 1. Variáveis latentes 2. Modelos

Leia mais

Linguagens Formais e Autômatos

Linguagens Formais e Autômatos Linguagens Formais e Autômatos Conversão de Expressões Regulares (ER) para Autômatos Finitos Determinísticos (AFD) Cristiano Lehrer, M.Sc. Introdução A construção sistemática de um Autômato Finito para

Leia mais

FUNDAMENTOS DE MODELOS DE MARKOV ESCONDIDOS (HMM)

FUNDAMENTOS DE MODELOS DE MARKOV ESCONDIDOS (HMM) Pesquisa FUNDAMENTOS DE MODELOS DE MARKOV ESCONDIDOS (HMM) Marco Antônio Rocca de Andrade * sumário Dentre as várias técnicas de l1'lodelagel1't de fenômenos físicos está a l1'lodelagem por máquina de

Leia mais

Aplicação de Modelos Ocultos de Markov na Teoria dos Jogos

Aplicação de Modelos Ocultos de Markov na Teoria dos Jogos Aplicação de Modelos Ocultos de Markov na Teoria dos Jogos Eduardo R. Waghabi, Mario R. F. Benevides Programa de Engenharia de Sistemas e Computação (PESC) COPPE Universidade Federal do Rio de Janeiro

Leia mais

CAPÍTULOS 7 E 8 AMOSTRAGEM POR ATRIBUTOS OU VARIÁVEIS

CAPÍTULOS 7 E 8 AMOSTRAGEM POR ATRIBUTOS OU VARIÁVEIS CAPÍTULOS 7 E 8 AMOSTRAGEM POR ATRIBUTOS OU VARIÁVEIS 1. PLANOS DE AMOSTRAGEM tamanho do lote; nível de inspeção; tamanho da amostra; tipos de inspeção; regime de inspeção; nível de qualidade aceitável

Leia mais

PROCESSAMENTO DE RNA. Prof. Marcelo A. Soares. Universidade Federal do Rio de Janeiro

PROCESSAMENTO DE RNA. Prof. Marcelo A. Soares. Universidade Federal do Rio de Janeiro PROCESSAMENTO DE RNA Prof. Marcelo A. Soares Laboratório rio de Virologia Molecular Universidade Federal do Rio de Janeiro Curso de Genética Molecular I - Ciências Biológicas Transcrição/Tradução Em procariotos

Leia mais

Pré-Processamento de Documentos

Pré-Processamento de Documentos Pré-Processamento de Documentos Introdução Pré-Processamento : Análise léxica; Stopwords; Stemming; Vocabulário; Thesaurus Compressão: Fundamentos; Método Estatístico; Método Dicionário; Arquivos Invertidos

Leia mais

Análise Sintática de Frases utilizando Gramáticas Livres de Contexto Probabilísticas

Análise Sintática de Frases utilizando Gramáticas Livres de Contexto Probabilísticas Universidade de São Paulo Mestrado em Ciência da Computação Instituto de Matemática e Estatística Disciplina MAC5725 Lingüística Computacional Análise Sintática de Frases utilizando Gramáticas Livres de

Leia mais

MÉTODOS QUANTITATIVOS PARA CIÊNCIA DA COMPUTAÇÃO EXPERIMENTAL

MÉTODOS QUANTITATIVOS PARA CIÊNCIA DA COMPUTAÇÃO EXPERIMENTAL MÉTODOS QUANTITATIVOS PARA CIÊNCIA DA COMPUTAÇÃO EXPERIMENTAL Pedro Henrique Bragioni Las Casas Pedro.lascasas@dcc.ufmg.br Apresentação baseada nos slides originais de Jussara Almeida e Virgílio Almeida

Leia mais

Computação na Biologia Molecular e Bionanotecnologia: Computação Biológica

Computação na Biologia Molecular e Bionanotecnologia: Computação Biológica Computação na Biologia Molecular e Bionanotecnologia: Computação Biológica Leila Ribeiro Instituto de Informática -UFRGS Roteiro Minhas áreas de interesse... Evolução da Ciência da Computação Biologia

Leia mais

CAPÍTULO 4 CONCEITOS BÁSICOS DE ESTATÍSTICA E PROBABILIDADES

CAPÍTULO 4 CONCEITOS BÁSICOS DE ESTATÍSTICA E PROBABILIDADES CAPÍTULO 4 CONCEITOS BÁSICOS DE ESTATÍSTICA E PROBABILIDADES. INTRODUÇÃO - Conceito de população desconhecida π e proporção da amostra observada P. π P + pequeno erro Perguntas: - Qual é o pequeno erro?

Leia mais

Definição: É uma coleção bem definida de

Definição: É uma coleção bem definida de EST029 Cálculo de Probabilidade I Cap. 1: Introdução à Probabilidade Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Conjuntos: Definição e notação Definição: É uma coleção bem definida de objetos,

Leia mais

Algoritmo Genético. Inteligência Artificial. Professor: Rosalvo Ferreira de Oliveira Neto

Algoritmo Genético. Inteligência Artificial. Professor: Rosalvo Ferreira de Oliveira Neto Algoritmo Genético Inteligência Artificial Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Introdução 2. Conceitos Básicos 3. Aplicações 4. Algoritmo 5. Exemplo Introdução São técnicas de busca

Leia mais

Métodos de Busca. Inteligência Artificial. Algoritmos Genéticos. Algoritmos Evolucionários. Prof. Ms. Luiz Alberto Contato:

Métodos de Busca. Inteligência Artificial. Algoritmos Genéticos. Algoritmos Evolucionários. Prof. Ms. Luiz Alberto Contato: Inteligência Artificial Prof. Ms. Luiz Alberto Contato: lasf.bel@gmail.com Métodos de Busca Busca Cega ou Exaustiva: Não sabe qual o melhor nó da fronteira a ser expandido. Apenas distingue o estado objetivo

Leia mais

Inteligência Computacional para Jogos Eletrônicos

Inteligência Computacional para Jogos Eletrônicos Inteligência Computacional para Jogos Eletrônicos Papéis da IA em Jogos Adversários Aliados Personagens de apoio NPC s (Non-player Character) Comentaristas Controle de câmera Geração de fases Nivelamento

Leia mais

Ementário das disciplinas do curso de Engenharia de Computação

Ementário das disciplinas do curso de Engenharia de Computação Ementário das disciplinas do curso de Engenharia de Computação Currículo 7 - aprovado pelo CDI em 19/12/2016 C201 Introdução à Engenharia CH Teórica 10 CH Prática 10 CH Total 20 cr 1 Introdução aos conceitos

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Aprendizagem de Máquina Estudo de Caso Alessandro L. Koerich Mestrado/Doutorado em Informática (PPGIa) Pontifícia Universidade Católica do Paraná (PUCPR) Mestrado/Doutorado em Informática PPGIa 2 Introdução

Leia mais

Computação Evolucionária: Conceitos Básicos de Otimização

Computação Evolucionária: Conceitos Básicos de Otimização Computação Evolucionária: Conceitos Básicos de Otimização Prof. Dr. Rafael Stubs Parpinelli E-mail: rafael.parpinelli@udesc.br Otimização Min ou Max Sujeito a Otimização Função objetivo A qual se quer

Leia mais

UNIVERSIDADE DO ESTADO DE MATO GROSSO - UNEMAT. Faculdade de Ciências Exatas e Tecnológicas FACET / Sinop Curso de Bacharelado em Engenharia Elétrica

UNIVERSIDADE DO ESTADO DE MATO GROSSO - UNEMAT. Faculdade de Ciências Exatas e Tecnológicas FACET / Sinop Curso de Bacharelado em Engenharia Elétrica REDES NEURAIS ARTIFICIAIS MÁQUINA DE VETOR DE SUPORTE (SUPPORT VECTOR MACHINES) Prof. Dr. André A. P. Biscaro 1º Semestre de 2017 Introdução Poderosa metodologia para resolver problemas de aprendizagem

Leia mais

Diagnóstico Médico de Imagem Auxiliado por Computador

Diagnóstico Médico de Imagem Auxiliado por Computador Diagnóstico Médico de Imagem Auxiliado por Computador Fundamentos de Sistemas Multimídia Flávio Luiz Seixas 2005 Agenda Agenda: Sistemas CAD Telemedicina Princípios da Tomografia Computadorizada Processamento

Leia mais

Redes Neurais e Sistemas Fuzzy

Redes Neurais e Sistemas Fuzzy 1. Inteligência Computacional Redes Neurais e Sistemas Fuzzy Apresentação da disciplina Conceitos básicos A chamada Inteligência Computacional (IC) reúne uma série de abordagens e técnicas que tentam modelar

Leia mais

PAULO EDUARDO BRANDÃO, PhD DEPARTAMENTO DE MEDICINA VETERINÁRIA PREVENTIVA E SAÚDE ANIMAL FACULDADE DE MEDICINA VETERINÁRIA E ZOOTECNIA UNIVERSIDADE

PAULO EDUARDO BRANDÃO, PhD DEPARTAMENTO DE MEDICINA VETERINÁRIA PREVENTIVA E SAÚDE ANIMAL FACULDADE DE MEDICINA VETERINÁRIA E ZOOTECNIA UNIVERSIDADE CONCEITOS EM EPIDEMIOLOGIA E FILOGENIA MOLECULARES PAULO EDUARDO BRANDÃO, PhD DEPARTAMENTO DE MEDICINA VETERINÁRIA PREVENTIVA E SAÚDE ANIMAL FACULDADE DE MEDICINA VETERINÁRIA E ZOOTECNIA UNIVERSIDADE DE

Leia mais

Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 02 / Processos Aleatórios

Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 02 / Processos Aleatórios Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 02 / Processos Aleatórios Prof. Eduardo Simas (eduardo.simas@ufba.br) Programa de Pós-Graduação em Engenharia Elétrica/PPGEE Universidade

Leia mais

Desenvolvimento de um Modelo de Desempenho para Infraestruturas Ferroviárias aplicado à Linha Férrea

Desenvolvimento de um Modelo de Desempenho para Infraestruturas Ferroviárias aplicado à Linha Férrea Desenvolvimento de um Modelo de Desempenho para Infraestruturas Ferroviárias aplicado à Linha Férrea Tiago. Regado Universidade do Minho, Departamento de Engenharia Civil, Guimarães José C. Matos ISISE,

Leia mais

3 Modelos Comparativos: Teoria e Metodologia

3 Modelos Comparativos: Teoria e Metodologia 3 Modelos Comparativos: Teoria e Metodologia Para avaliar o desempenho do modelo STAR-Tree, foram estimados os modelos Naive, ARMAX e Redes Neurais. O ajuste dos modelos ARMAX e das redes neurais foi feito

Leia mais

Classificação de Padrões. Abordagem prática com Redes Neurais Artificiais

Classificação de Padrões. Abordagem prática com Redes Neurais Artificiais Classificação de Padrões Abordagem prática com Redes Neurais Artificiais Agenda Parte I - Introdução ao aprendizado de máquina Parte II - Teoria RNA Parte III - Prática RNA Parte IV - Lições aprendidas

Leia mais

3 Identificação de Locutor Usando Técnicas de Múltiplos Classificadores em Sub-bandas Com Pesos Não-Uniformes

3 Identificação de Locutor Usando Técnicas de Múltiplos Classificadores em Sub-bandas Com Pesos Não-Uniformes 3 Identificação de Locutor Usando Técnicas de Múltiplos Classificadores em Sub-bandas Com Pesos Não-Uniformes Neste capítulo, é apresentada uma nova proposta de combinação de múltiplos classificadores

Leia mais

A estacionariedade prova-se de maneira semel- hante.

A estacionariedade prova-se de maneira semel- hante. Se por outro lado (U 1, U 2,...) é IID então mostremos que X n U 1 + + U n tem incrementos independentes e estacionários. De facto, dados n > m temos que X n X m U m+1 + + U n. Tome-se quaisquer n 1

Leia mais

Redes Neurais Artificiais (RNA) Definições. Prof. Juan Moisés Mauricio Villanueva

Redes Neurais Artificiais (RNA) Definições. Prof. Juan Moisés Mauricio Villanueva Redes Neurais Artificiais (RNA) Definições Prof. Juan Moisés Mauricio Villanueva jmauricio@cear.ufpb.br 1 Conteúdo 1. 2. 3. 4. 5. 6. Introdução Modelos básicos e regras de aprendizagem Rede neural de retro

Leia mais

Ementário das disciplinas do curso de Engenharia da Computação. - Núcleo Básico -

Ementário das disciplinas do curso de Engenharia da Computação. - Núcleo Básico - Ementário das disciplinas do curso de Engenharia da Computação Currículo 6 Criado pelo CDI em 30/05/2016 - Núcleo Básico - NB 019 - Cálculo I CH Teórica 160 CH Prática 00 CH Total 160 cr 8 Funções. Limites.

Leia mais