PARÂMETRO DE EXATIDÃO PARA APROXIMACÃO DE FUNCÕES UTILIZANDO MULTILAYER PERCEPTRONS NOS DOMÍNIOS REAL, COMPLEXO E DE CLIFFORD

Tamanho: px
Começar a partir da página:

Download "PARÂMETRO DE EXATIDÃO PARA APROXIMACÃO DE FUNCÕES UTILIZANDO MULTILAYER PERCEPTRONS NOS DOMÍNIOS REAL, COMPLEXO E DE CLIFFORD"

Transcrição

1 PARÂMETRO DE EXATIDÃO PARA APROXIMACÃO DE FUNCÕES UTILIZANDO MULTILAYER PERCEPTRONS NOS DOMÍNIOS REAL, COMPLEXO E DE CLIFFORD Thalles S. Torch, Mlton R. Romero e Evandro M. Martns 3 Depto. de Eng. Elétrca, UFMS, Caxa Postal 549, CEP , Campo Grande, MS e 3 Resumo - Na fase de utlzação, as Redes Neuras Artfcas (RNA) Multlayer Perceptrons, trenadas com o algortmo de Backpropagaton, não conseguem aproxmar a função de nteresse para 00% dos dados de entrada. Este trabalho propõe uma metodologa para abordagem de dos pontos de nteresse: º) estmar um parâmetro de exatdão para as saídas de RNA na fase de utlzação, com o obetvo de defnr quas saídas podem ser consderadas confáves e quas não, defnndo como confáves as saídas que se aproxmam do comportamento da função de nteresse; e º) estabelecer o número de padrões a serem utlzados na fase de trenamento, que permtam a convergênca e a generalzação da rede na metodologa proposta. A metodologa basea-se no treno e utlzação de duas redes: a RNA Dreta (RNAD), utlzada para aproxmar a função de nteresse, e a RNA Inversa (RNAI), utlzada para aproxmar a nversa (FI) da função de nteresse. Caso a função a ser aproxmada não tenha FI defnda, o domíno é restrngdo para onde exsta. Na utlzação destas redes será computada a dferença entre a entrada da RNAD e a saída da RNAI. Quando a entrada da RNAD e a saída da RNAI forem computaconalmente guas, ou sea, sua dferenca muto próxma de zero, tanto quanto à aplcação exgr, será consderado que a saída da rede dreta (RNAD), sto é, a aproxmação da função de nteresse, é confável. O método é comprovado expermentalmente a partr de dados sntétcos, utlzando a função f ( x) = x, a fm de permtr o controle entre as entradas e saídas das redes com o ntuto de valdação do método nos domínos Real, Complexo e de Clfford. Os dados sntétcos e não dados de aplcações reas, se utlzam para demonstrar a vabldade do algortmo permtndo comparar os três domínos, pos possíves erros contdos nos dados reas se mesclaram com possíves erros no algortmo dfcultando a valdação do método proposto. Os resultados mostram que o método é robusto e permte determnar o parâmetro de exatdão para as saídas da RNA, o crtéro de convergênca e a qualdade da generalzação das mesmas, permtndo a comparação gráfca dos três domínos. Palavras-chave RNA, parâmetro de exatdão, Multlayer Perceptrons, Domíno Complexo, Domíno Clfford.. INTRODUÇÃO As Redes Neuras Artfcas (RNA) são consttuídas de undades de processamento denomnadas neurônos artfcas que armazenam conhecmento expermental para posteror uso []. Uma prátca estatístca comum para a escolha do conunto de trenamento dessas redes, dentre outros métodos [], é o método hold-out [3], o qual reserva a maor parte dos dados dsponíves para trenamento, geralmente mas que 50%, e o restante para valdação. Tendo como característca não deseável a admssão de subconuntos de trenamento maores ou menores que o necessáro, sto ncde dretamente nas fases de valdação e utlzação, pos as redes podem convergr de acordo com o crtéro de parada, mas não necessaramente generalzar a função deseada. Na fase de utlzação, é uma característca nerente a estas redes que alguns valores de saída seam dferentes do esperado. Em certas aplcações de controle é necessáro utlzar uncamente saídas sobre as quas a aproxmação da função de nteresse sea consderada acetável, caso contráro, não é recomendável utlzar [4], [5]. Este trabalho apresenta uma metodologa que fornecerá dos parâmetros: º) para aferr a exatdão das saídas de RNA, defnndo assm os valores de saída acetáves de acordo com a função de nteresse; º) para determnar a quantdade de padrões de trenamento necessáros para permtr a convergênca e a generalzação destas redes de acordo com a metodologa. A metodologa basea-se no treno e utlzação de duas redes: RNA Dreta (RNAD), utlzada para aproxmar a função de nteresse, e a RNA Inversa (RNAI), utlzada para aproxmar a Função Inversa (FI) da função de nteresse. Caso a função a ser aproxmada não tenha FI defnda, o domíno é restrngdo para onde exsta. Dependendo da aplcação, uma manera Bolssta Capes Brasíla/Brasl 34

2 pratca de fazer a verfcação da exstênca da nversa é fazendo um gráfco da função e vsualmente verfcando se a função é betva. As classes de problemas admssíves nesta metodologa restrngem as aplcações aos problemas que requerem o uso de redes neuras utlzadas na aproxmação de funções e que tenham nversa e se não tem nversa, que possam ser tratadas por ntervalos onde exsta a função nversa. Sobre o treno destas redes é computada a dferença entre a entrada da RNAD e a saída da RNAI, que devem ser computaconalmente guas. Esta dferença é algebrcamente gual a zero, mas pela representação de ponto flutuante no processamento, esta dferença deve ser verfcada dentro de um valor muto próxmo de zero, tanto quanto à aplcação exgr, onde esta dferença rá defnr os parâmetros de convergênca e generalzação. Na utlzação destas redes será computada também a dferença entre a entrada da RNAD e a saída da RNAI. Quando a entrada da RNAD e a saída da RNAI forem computaconalmente guas, será consderado que a saída da rede dreta (RNAD), sto é, a aproxmação da função de nteresse, é confável. Esta metodologa é aplcada para aproxmar a função quadrátca f ( x) = x, utlzando as redes Multlayer Perceptrons nos domínos Real, Complexo e de Clfford, com o ntuto de determnar os parâmetros propostos nos tens º e º de aferr a exatdão das saídas de RNA e determnar a quantdade de padrões de trenamento necessáros para permtr a convergênca e a generalzação, respectvamente. A metodologa é demonstrada, utlzando-se a função quadrátca (dados sntétcos), que tem a vantagem de: º permte a representação nos três domínos para poder comparar grafcamente os resultados e permte defnr um somorfsmo entre o domíno complexo e de Clfford; º não tem nversa para todo o domíno e pode se mostrar como se tratam essa classe de funções; 3º podem se controlar todos os parâmetros da metodologa para poder atrbur qualquer problema ao algortmo e não aos dados; 4º é sufcentemente suave para não precsar muto trenamento (precsa de poucas amostras para ser aproxmada); 5º é sufcentemente complexa para mostrar como a metodologa deve tratar com conuntos que não são totalmente ordenados. Os dados sntétcos se utlzam para demonstrar a valdade do algortmo, pos ao se utlzar dados de aplcações reas os possíves erros contdos nos dados se mesclaram com possíves erros no algortmo dfcultando a valdação do método proposto. Este trabalho está organzado como segue: a Seção apresenta os concetos relevantes para a metodologa proposta das Redes Neuras Artfcas Multlayer Perceptron no domíno Real com o algortmo de trenamento Backpropagaton; a Seção 3 apresenta os aspectos relevantes da álgebra de Clfford para o algortmo proposto; a Seção 4 estende as Redes Neuras Artfcas Multlayer Perceptron para os domínos Complexo e de Clfford com o algortmo de trenamento Backpropagaton; a Seção 5 apresenta a metodologa proposta; a Seção 6 lustra os resultados obtdos e a dscussão desses resultados; e a Seção 7 sugere os trabalhos futuros e as conclusões fnas.. REDES NEURAIS ARTIFICIAIS As Equações () e () descrevem o funconamento do neurôno artfcal [6], Fg., e as relações entre os pesos w, as entradas x, bas b, valor de atvação net, a Função de Atvação (FA) f ( ) e as saídas o, onde o estado do ambente é representado pelas entradas e o conhecmento adqurdo no trenamento é armazenado nos pesos. Fg.. Neurôno artfcal. 35

3 = w x + net b () o = f net ) () ( o net net e e = f ( net ) = (3) net net e + e Este trabalho utlza a FA Tangente Hperbólca (FATH), Equação (3), a qual é escrta na forma de função elementar transcendental, que permte a mesma representação matemátca para os domínos Real, Complexo e de Clfford, tendo apenas como dferença os valores assumdos por net [7]. O valor de net pertence ao domíno Real, Complexo ou de Clfford, de acordo com o domíno da rede neural artfcal escolhda. O modelo de RNA adotado por este trabalho é o Multlayer Perceptrons (MLP) [8], Fg., no qual se utlza o algortmo de trenamento Backpropagaton (BP), que aproxma com apenas duas camadas ocultas qualquer função contínua [9]. O modelo MLP tem como característca uma camada de entrada onde são apresentados os dados de entrada X, uma camada de saída onde se apresentam as saídas O e uma ou mas camadas ocultas, stuadas entre as camadas de entrada e de saída. Este modelo é utlzado com frequênca para resolver problemas que não seam lnearmente separáves, os quas são maora no campo da Engenhara. Os valores atrbuídos as entradas e saídas dessas camadas são modfcadas de acordo com o domíno no qual a rede está defnda.. BACKPROPAGATION NO DOMÍNIO REAL Fg.. Rede Multlayer Perceptron ( MLP ). O BP é um algortmo de aprendzagem supervsonada, que pode ser executado padrão a padrão [] da segunte manera: Cada um dos -ésmos exemplos x são aplcados à rede e esta produz as saídas o. As saídas estão baseadas no estado corrente dos pesos snáptcos, que são ncalmente defndos de forma aleatóra. Cada uma destas saídas o é comparada com uma saída deseada t para determnar a dferença entre a saída deseada e a saída obtda e, Equação (4), onde n se refere ao passo de execução do algortmo. A segur é computado o erro E (n), conhecdo como Sum of Squared Error (SSE), Equação (5), onde N é a quantdade de padrões de trenamento. Esse erro é retropropagado pela rede, a atualzação dos pesos de cada camada é proporconal a ele e tem como obetvo reduz-lo a cada nova teração. Esta rotna é repetda até que o SSE atna o crtéro de parada que é um valor defndo a pror. Alcançando esse valor, dz-se que a rede aprendeu ou está trenada [8]. e ( n) = t ( n) o ( n) (4) = N E( n) = ( e ( n)) (5) 36

4 A regra delta de atualzação dos pesos w é descrta na Equação (6), onde η refere-se à taxa de aprendzagem que controla a velocdade da convergênca, δ é o termo de propagação do erro na saída e new old w e w são os valores do peso w na teração n+ e n, respectvamente. Caso o peso pertença à camada de saída, δ deve ser o descrto na Equação (7), onde f '( ) é a dervada prmera da FA e, portanto, a função de atvação deve ser dervável. Caso pertença a uma camada oculta, δ deve ser o descrto na Equação (8), onde k é o número de neurônos na camada anteror ao se retropropagar o erro na saída da rede. O termo n (terações) dessas equações é suprmdo para melhor vsualzação das relações. Detalhes sobre o algortmo de aprendzagem Backpropagaton podem ser encontrados em [], [8]. w new = w + η δ x (6) old δ = e f '( net ) (7) δ = (δ w ) f '( net ) (8) k k 3. ÁLGEBRAS DE CLIFFORD k As Álgebras de Clfford são um tpo de álgebra assocatva, e são uma das possíves generalzações dos números Complexos e dos quaternons [0], [], [], as quas são defndas da segunte manera: seam a, b, c,... vetores pertencentes ao espaço vetoral V n-dmensonal sobre os reas e α qualquer escalar Real. A álgebra geométrca n Cl p, q = Cl( Vn ) com n = p + q é gerada a partr do espaço vetoral V onde é defndo o produto geométrco, Equação (9), n que é a combnação lnear do produto nterno e do produto exteror onde o prmero representa os escalares e o segundo os bvetores []. ( a b + b a) + ( a b b a) a b = a b + a b = (9) Este produto guarda as seguntes propredades sobre todos os vetores:. a ( b c) = ( a b) c;. a ( b + c) = a b + a c; 3. ( b + c) a = b a + c a; 4. bα = αb; 5. b = ± b. As álgebras de Clfford têm dversas assnaturas Cl p,, onde: p é a quantdade de elementos de base q e que, elevados ao quadrado, são guas a ( + ) e q é a quantdade de elementos de base e que, elevados ao quadrado, são guas a ( ). Essas geram exatamente n combnações lnearmente ndependentes entre a undade escalar e os vetores de base {,e,e, K,e n } através do produto geométrco. Estes elementos satsfazem às seguntes relações: ( e ) = + com =,,3, K, p ( e ) = com = p +, p +, K, n e e = e e com =,,3, K, p 37

5 Os elementos utlzados pela álgebra são chamados k-blades. Esses elementos são os escalares (0-blades), vetores (- blade), segmentos de plano orentados (-blades) e volumes orentados (3-blades) como mostra a Fg. 3, a qual exbe uma possível representação destes subespaços [3], [4]. Os k-blades nada mas são do que subespaços orentados [5], onde o produto geométrco, Equação (9), permte a modelagem dos espaços vetoras conhecdos através desses elementos. Fg. 3. k-blades: subespaços orentados. Dependendo da assnatura da álgebra de Clfford, essa pode ter a álgebra dos números Complexos como subespaço [4], [5]. Como é o exemplo da assnatura Cl que tem a álgebra dos números Complexos expandda sobre os elementos de, 0 base {,e e } onde ( e e ) = n é equvalente à undade magnára do plano Complexo. Para n = 3 as combnações Cl, somorfa ao espaço Eucldano 3D que possu lnearmente ndependentes defnem a álgebra de Clfford de assnatura 3, 0 8 elementos: escalar ) onde o símbolo ( ) (, vetores ( e,e, ), bvetores ( e e,e e,e ) e o trvetor ou pseudoescalar ( e e ) e3 3 3 e, e3 dentfca o produto exteror. O produto geométrco, para a álgebra de Clfford com assnatura Cl, 3, 0 está defndo como segue, na Tabela, onde e = e e ; e3 = e e ; 3 e3 = e3 e ; e3 = e e e. 3 Tabela. Produto geométrco com assnatura Cl. 3, 0 4. REDES NEURAIS ARTIFICIAIS NOS DOMÍNIOS COMPLEXO E DE CLIFFORD Do ponto de vsta estrutural, proetar RNA que possam processar snas Complexos ou de Clfford, este últmo apresentado na Seção 5, é semelhante a proetar RNA de domíno Real. Os concetos de topologa de rede, modos de trenamento, crtéros de parada e valdação do trenamento são análogos às RNA de domíno Real [], [6], [7], [8]. A dferença encontra-se nos valores de entrada, alvos e pesos que são ou números Complexos ou números de Clfford e, por consequênca, necesstam de FA defndas em seu domíno de atuação. Entretanto, certos cudados devem ser tomados ao se escolher a FA a ser mplementada, pos essa escolha tem nfluênca dreta na adaptação do algortmo BP, tanto para o domíno Complexo quanto para o de Clfford. Esta nfluênca está lgada aos tpos de função que as RNA mplementadas com determnada FA complexa ou de Clfford podem aproxmar [7],[8] e na adaptação do algortmo BP para estes domínos onde há a necessdade de que a FA sea dervável para poder efetuar o trenamento. O algortmo pode ser mplementado usando as dervadas totas ou parcas [], [9], [0], [], [], [3]. Tanto as FA complexas quanto as de 38

6 Clfford podem ser dvddas em três classes de nteresse: as nteras não-lmtadas, não-nteras lmtadas e as nteras lmtadas []. Essa últma classe lmta a quantdade de funções que as RNA complexas podem aproxmar e consequentemente esta lmtação também estará presente em álgebras de Clfford de assnatura somorfa à álgebra dos números Complexos. Isso é explcado pelo teorema de Louvlle, o qual estabelece que qualquer função complexa ntera e lmtada no domíno Complexo é uma função constante e, portanto, não é adequada para a mplementação do algortmo de trenamento BP []. No domíno Complexo e no domíno de Clfford, a FATH é chamada de fully tangente hperbólca, Equação (3). Essa função representa a classe de funções nteras não-lmtadas, Fg. 4, onde a é a parte real e d a parte magnára do argumento da função, e O a saída da função. Fg. 4. Função de Atvação Fully Tangente Hperbólca. No domíno Complexo, essa FA possu valores que tendem ao nfnto, valores sngulares, peródcos em net 0 ± ( q + )π com q. Caso a saída do neurôno stue-se em alguma sngulardade, representada pelos pcos na Fg. 4, onde net = a + d, a dervada da FA assumrá um valor elevado e consequentemente a correção dos pesos poderá ser maor que o necessáro, podendo elevar o tempo de convergênca ou até mesmo comprometê-lo []. Para contornar esse problema, em [0] sugere-se que os padrões de trenamento, valdação, utlzação e os pesos ncas devam ser escalados para uma regão do plano Complexo onde as sngulardades tenham menor nfluênca. Essas mesmas meddas podem ser tomadas quanto à FA fully tangente hperbólca de Clfford, desde que a assnatura da álgebra sea somorfa à álgebra dos números Complexos. Defnções e característcas detalhadas com relação aos tpos de FA de domíno Complexo podem ser encontradas em [7] e para o domíno de Clfford em [],[]. 4. BACKPROPAGATION COMPLEXO E DE CLIFFORD Para que o algortmo BP possa processar no domíno Complexo ou de Clfford, é necessáro redefnr para esses domínos o SSE, Equação (5), e as Equações (6), (7) e (8) que compõem a regra delta de atualzação dos pesos e consequentemente a FA. Este trabalho adota a regra delta de domíno Complexo e de Clfford, esse últmo de assnatura Cl, para o uso da FA 0, 3 fully tangente hperbólca defndos nas Equações (), (), (3) e (4). Essa regra possu a mesma representação matemátca para os dos domínos devdo ao somorfsmo. A generalzação dessas relações para qualquer álgebra de Clfford de assnatura Cl p, pode ser encontrada em []. O erro q na saída da rede complexa e na rede de Clfford é defndo de forma análoga ao domíno Real, Equação (4), com a dferença que e ( n) { ou Cl }. Há consenso que a função custo, Equação (0), tanto no domíno Real [], Complexo 0, 3 [7], [8], [9], [0], [] ou de Clfford [], [3], [6], [], deva ser uma função Real. Nas Equações (0), (), () e (3), o operador utlzado nas equações deve ser mudado de acordo com o domíno, portanto, se o domíno for complexo, o operador representa a multplcação convenconal; caso o domíno sea o de Clfford Cl, o operador 0, 3 representa o produto geométrco. 39

7 E = N * ( e e ) = (0) = e f '( net ) * δ () * * δ = δ k w k f '( net ) () k w new old = w + η δ x (3) * O astersco ( ) sobrescrto mplca no conugado complexo ou de Clfford [4]. No domíno complexo, o complexo conugado de um número z = a ± b é dado por z * = am b, ou sea, basta nverter o snal da parte magnára. Já no domíno de Clfford, o processo é semelhante com a dferença que o complexo conugado de cada um dos k-blades depende do grade k, onde grade corresponde à dmensão do blade, à qual o blade pertence. Tomemos como exemplo o multvetor A dado por: m Os snas de cada um dos k-blades do complexo conugado de Clfford são dados pela expressão ( ) k m = ( k mod 4). A Tabela descreve essa relação. km + k, onde Logo, o complexo conugado do multvetor A será: Tabela. Snal do conugado do blade de grade k. 5. METODOLOGIA DIRETA-INVERSA: DOMÍNIO REAL A metodologa proposta por este trabalho basea-se no trenamento de duas RNA: uma rede para aproxmar a função de nteresse, RNAD, e uma segunda para aproxmar a função nversa da prmera, RNAI, como mostra a Fg. 5. Seam, respectvamente: X, T e O: o vetor de entradas, alvos e saídas da RNAD; O, X e α X : o vetor de entradas, alvos e saídas da RNAI; N: o número de padrões de trenamento. 40

8 Incalmente, fo realzada apenas uma ncalzação da rede neural para cada caso. Sabe-se que o desempenho da rede pode varar em função dos pesos ncas e do crtéro de parada utlzado, mas este aspecto não é estudado neste trabalho. Posterormente é fornecdo para a RNAD um conunto de trenamento, padrão a padrão, [X T] com N ncalmente pequeno. Esta rede é trenada até se atngr o crtéro de parada e os pesos representatvos deste treno são salvos. Logo após, a RNAI começa seu trenamento com o conunto [O X]. Seu trenamento é executado até se atngr o crtéro de parada, que pode ser ou não gual ao crtéro de parada da RNAD. Seus pesos representatvos são salvos e a rede fornece α como conunto de saídas atuas o vetor X. Este fluxo de trenamento pode ser vsualzado na Fg. 5. Fg. 5. Fluxo de dados no trenamento e utlzação das redes dreta e nversa. Após o trenamento seqüencal das RNAD e RNAI, nesta ordem, o valor absoluto da dferença entre cada componente do α vetor X e X é calculado de acordo com o erro e, Equação (4), e logo em seguda é computada a méda desses erros nv E, Equação (5). nv e nv α ( t) x( t) x ( t) =, com t N (4) E nv = N N t= e nv ( t) (5) Esse últmo parâmetro será utlzado para separar as saídas confáves das não-confáves na fase de utlzação, onde uma saída confável é aquela que é menor que o erro médo de trenamento E. O uso desse na fase de utlzação processa-se nv da segunte manera: um conunto de utlzação X é aplcado à RNAD e o fluxo da Fg. 5 é proceddo usando-se os pesos α armazenados após o trenamento das redes, desconsderando-se os vetores alvos, para fornecer a saída X. Logo após, o α erro e é computado para cada componente dos vetores X e X de utlzação. Esses são classfcados de acordo com a nv desgualdade da Equação (6). Para qualquer quantdade N de padrões de trenamento, o parâmetro E consegue nv classfcar os valores confáves e não-confáves. ( ) o t ( t) ( t) não- confável, se env > Env será = (6) confável, se env Env Para se obter a quantdade de padrões que permtrá à RNAD generalzar, aumenta-se gradatvamente a quantdade de padrões N de trenamento. Efetua-se um novo trenamento seqüencal da RNAD e RNAI e avala-se o novo valor para o parâmetro E. Esse novo valor tenderá a ser menor que o do trenamento anteror. Este processo é repetdo até que nv E nv não tenha mas mudanças sgnfcatvas em seu valor, sto é, se mantém dentro dos valores da defnção de computaconalmente guas.. Para esse últmo trenamento, o valor N assocado a ele é a quantdade de padrões que permtrá à RNAD generalzar a função de nteresse satsfatoramente. 5. METODOLOGIA DIRETA-INVERSA: DOMÍNIO COMPLEXO E DE CLIFFORD Esta metodologa é utlzada no domíno Complexo e de Clfford. Nestes domínos, é necessára a utlzação de outro parâmetro para aferr a quantdade de padrões de trenamento que garanta a generalzação da função de nteresse. Este fato deve-se à característca nerente destes domínos: ambos não são totalmente ordenados. Este parâmetro é dado como módulo da dferença dos valores absolutos entre a entrada da RNAD e a saída da RNAI, Env, como mostra a Equação 4 dm

9 (7), lembrando que a defnção de módulo para o domíno Complexo e para o domíno de Clfford [4] deve ser respetada. No caso do domíno de Clfford, o módulo é dado por multvetor A e é obtdo nvertendo-se a ordem dos fatores do k-blades com grade k. A = A Ã, onde à é defndo como reverso de um Env dm = N N α t= x ( t) x ( t) (7) O parâmetro E, Equação (6), permanece sendo o valor que fará a classfcação entre os valores confáves e os nãoconfáves, na fase de utlzação nestes nv domínos. 6. TREINAMENTOS E RESULTADOS A função quadrátca Real, Complexa e de Clfford não tem sua FI garantda por todo domíno, razão pela qual os domínos dessa função são restrngdos para a elaboração dos resultados. Os algortmos BP para o domíno Real [], [8], Complexo, [7], [8], [9], [0], [] e de Clfford [], [4], [5], [] foram desenvolvdos no ambente Matlab, versão (R4), e escrtos de forma a não conter nenhuma melhora de otmzação ou adaptações no algortmo para facltar a convergênca ou qualquer outra mudança que vse a ncrementar o desempenho. Esta medda fo tomada para analsar as capacdades da metodologa proposta. A topologa em cada domíno, defnda por tentatva e erro [], sem um estudo detalhado, fo escolhda de manera que permta a função quadrátca convergr. A Tabela 3 descreve os parâmetros de trenamento das redes nos três domínos de atuação. Tabela 3. Parâmetros de trenamento RNAD e RNAI. Para a avalação da capacdade de classfcação das saídas confáves e das não-confáves, na fase de utlzação foram gerados 500 padrões de utlzação que foram submetdos a cada uma das redes trenadas, as quas foram trenadas com dferentes quantdade de padrões, todos esses valores pertencentes aos ntervalos de trenamento especfcados para cada uma das redes. 6. RESULTADOS NO DOMÍNIO REAL Os conuntos de trenamento fornecdos às redes reas são valores gualmente espaçados entre [,5]. Os dados de trenamento não foram gerados aleatoramente, para ter controle sobre a sua localzação. O trenamento ncal com dos padrões mostra que a metodologa consegue classfcar as saídas de forma satsfatóra, como pode ser observado na Fg. 6, onde fca claro que os 4

10 Fg. 6. Saídas da RNAD trenada com padrões: domíno Real. valores confáves estão próxmos dos padrões de trenamento (na fgura superor esquerda), como era esperado, á que dos padrões de trenamento são nsufcentes para representar a função quadrátca no ntervalo especfcado. Os valores não confáves estão mostrados na fgura superor dreta e todos os resultados untos na fgura nferor. Com o aumento progressvo da quantdade de padrões de trenamento, verfcou-se também o aumento da quantdade de valores classfcados como confáves (na fgura superor esquerda), como pode ser notado na Fg. 7. Os valores não confáves estão mostrados na fgura superor dreta e todos os resultados untos na fgura nferor. É notóro também o comportamento do erro Env, que tem seu valor reduzdo conforme o aumento de padrões de trenamento. Fg. 7. Saídas da RNAD trenada com 5 padrões: domíno Real. 43

11 Observando-se a Tabela 4, podemos verfcar que, a partr de cnco padrões de trenamento, o parâmetro Env á não sofre alterações sgnfcatvas. Conclu-se, de acordo com a metodologa proposta, que essa é a quantdade sufcente para generalzar esta função no ntervalo admtdo. Tabela 4. Comportamento do erro Env: domíno Real. No domíno Real, o parâmetro Env proposto consegue classfcar a exatdão das saídas da RNA e ao mesmo tempo quantfcar o tamanho do conunto de trenamento necessáro para generalzar a função. Verfcou-se necessáro usar duas camadas ocultas, vsto que o aumento gradatvo de padrões aumenta demasadamente o número de épocas de trenamento, quando utlzada apenas uma camada oculta. Com duas camadas ocultas, as redes convergem para quasquer quantdades de padrões de trenamento. 6. RESULTADOS NO DOMÍNIO COMPLEXO Pelo fato de o domíno Complexo não ser um conunto totalmente ordenado, como os números reas sobre a reta Real, fo utlzada a representação de um número Complexo na forma exponencal z = r exp( θ ) para construr os conuntos de trenamento e de utlzação da função quadrátca complexa. Esta forma permte gerar números Complexos gualmente espaçados pela fase θ sobre um determnado rao r de nteresse. Tal como a função quadrátca real, a função quadrátca complexa não tem sua FI garantda por todo o seu domíno. Assm, optamos por uma faxa de valores para a fase no rao untáro, onde a função quadrátca tenha sua função nversa garantda. Os parâmetros de trenamento para a RNAD e RNAI de domíno Complexo são mostrados na Tabela 3, na Seção 6. O comportamento da metodologa neste domíno va ao encontro dos resultados no domíno Real. Com algumas ressalvas, dscutdas na Seção 7, neste domíno Env é o parâmetro que afere a quantdade de padrões que permte a generalzação da função. Como no domíno Real, o erro Env consegue classfcar satsfatoramente as saídas confáves das não-confáves, na fase de utlzação da RNAD, como se pode observar nas Fgs. 8 e 9, as quas também mostram que os valores confáves se encontram próxmos dos valores de trenamento, como esperado. Nas fguras os valores confáves estão mostrados na fgura a esquerda, os valores não confáves estão mostrados na fgura central e todos os resultados untos na fgura dreta. Neste domíno também se verfca que o aumento de padrões de trenamento melhora a exatdão dos valores de saída da RNA complexa. Observando-se a Tabela 5, podemos notar que ses padrões de trenamento são sufcentes para garantr a generalzação da rede dreta. Tabela 5. Comportamento dos Erros Env e 44 Env : domíno Complexo. dm

12 Fg. 8. Saídas da RNAD trenada com padrões: domíno Complexo. Fg. 9. Saídas da RNAD trenada com 6 padrões: domíno Complexo. 6.3 RESULTADOS NO DOMÍNIO DE CLIFFORD Conforme dscutdo na Seção 3, as álgebras de Clfford podem ter, dependendo da sua assnatura, a álgebra dos números Complexos como subespaço. A fm de facltar a ponderação dos resultados e estabelecer parâmetros observáves, foram fornecdos conuntos de trenamento e utlzação para as RNA de Clfford de assnatura Cl, a qual contém o subespaço 0, 3 gerado pelos elementos de base {,e e }, somorfo à álgebra dos números Complexos. Na Tabela 3, na Seção 6, é possível observar que os parâmetros de trenamentos das redes complexas e de Clfford são semelhantes dferencando-se apenas na topologa. Esta semelhança é propostal para a comparação e avalação da metodologa nos dos domínos. No domíno de Clfford, a metodologa também conseguu classfcar as saídas confáves das não-confáves por meo do parâmetro Env, resultado que pode ser observado nas Fgs. 0 e. Nas fguras os valores confáves estão mostrados na fgura a esquerda, os valores não confáves estão mostrados na fgura central e todos os resultados untos na fgura dreta. 45

13 Fg. 0. Saídas da RNAD trenada com padrões: domíno de Clfford. Fg.. Saídas da RNAD trenada com 6 padrões: domíno de Clfford. A metodologa também conseguu aferr a quantdade de padrões de trenamento para permtr a generalzação da RNAD, utlzando-se o parâmetro Env, o qual mostrou que ses padrões são sufcentes para tal conclusão, como se evdenca na dm Tabela 6. Tabela 6. Comportamento dos erros Env e 46 Env : domíno de Clfford. dm Esses resultados eram esperados, á que este domíno de atuação é somorfo ao domíno Complexo. Verfcou-se também que uma menor quantdade de neurônos na camada oculta, ver Tabela 3, consegue guardar nformação sobre o comportamento da função quadrátca complexa, resultado esse que va ao encontro do trabalho em [3], no qual se verfcou que o modelo de neurôno artfcal de Clfford tem uma capacdade maor de armazenamento de nformação em seus pesos snáptcos, em comparação aos neurônos defndos nos domínos Real e Complexo. Porém, o aumento do custo computaconal é evdente na comparação das épocas de treno, Tabelas 5 e 6, resultados esses á confrmados pelo trabalho em [6]. Neste domíno, a metodologa também demonstra que o aumento de padrões de trenamento melhora a

14 representação da função e consequentemente a exatdão nos dados de saída. Pode-se, também, notar que o aumento ndscrmnado de padrões não ra melhorar substancalmente a representação da função nem o grau de exatdão nos dados de saída, e esta conclusão é constante nos três domínos de atuação. 7. CONCLUSÕES Este trabalho propôs, valdou e demonstrou a metodologa Dreta-Inversa como uma possível solução para: º) estmar a confabldade das saídas das redes na fase de utlzação; e º) estabelecer o número mínmo de padrões a serem utlzados na fase de trenamento, para garantr a convergênca e a generalzação das redes. A metodologa fo desenvolvda para a abordagem de problemas que possuam funções nversas ou que tenham nversa defnda em domínos restrtos, como fo demonstrado na aproxmação da função quadrátca f ( x) = x para os domínos Real, Complexo e de Clfford. Os resultados mostram a efcênca da metodologa nesses três domínos na separação dos resultados confáves dos não-confáves. O modelo de neurôno artfcal de Clfford tem uma capacdade maor de armazenamento de nformação em seus pesos snáptcos, em comparação aos neurônos defndos no domíno Complexo, que, por sua vez, têm uma capacdade maor de armazenamento de nformação em seus pesos snáptcos, em comparação aos neurônos defndos no domíno Real. Os resultados expermentas nos três domínos mostram que o aumento ndscrmnado de padrões não ra melhorar substancalmente a representação da função nem a confabldade, neste trabalho defnda como a exatdão, nos dados de saída. Dexa-se como sugestão para trabalhos futuros a aplcação da metodologa para problemas prátcos em Engenhara, bem como nas áreas onde as RNA e as álgebras de Clfford são utlzadas com frequênca, tas como: vsão computaconal, robótca, controle, etc. 9. REFERÊNCIAS [] Haykn S., Neural Networks. A Comprehensve Foundaton, Macmllan College Publshng, New York, 994. [] Yamasak, K., Ogawa, H., Methods for choosng a tranng set whch prevents over-learnng, Neural Networks, IEEE World Congress on Computatonal Intellgence, vol. pp , 994. [3] Kohav R., A study of cross-valdaton and bootstrap for accuracy estmaton and model selecton, Proceedngs of the Fourteenth Internatonal Jont Conference on Artfcal Intellgence, vol., no., pp.37-43, 995. [4] K. J. Hunt, D. Sbarbaro, R. Zbkowsk, P. J. Gawthrop, Neural networks for control systems--a survey, Automatca, Volume 8, Issue 6, November 99, Pages 083-, ISSN , DOI: 0.06/ (9)90053-I. [5] Hunt, K.J.; Sbarbaro, D.;, Neural networks for nonlnear nternal model control, Control Theory and Applcatons, IEE Proceedngs D, vol.38, no.5, pp , Sep 99. [6] Mnsky, M., Papert, S., Perceptrons, Cambrdge, Mass: MIT Press, 969. [7] Km, T., Complex Backpropagaton Neural Network Usng Elementary Transcendental Actvaton Functons, IEEE Internatonal Conference on Acoustcs, Speech, and Sgnal Processng, pp.8-84, 00. [8] Lawrence J., Introducton to Neural Networks and Expert Systems, Nevada Cty, CA: Calforna Scentfc Software, 99. [9] Cybenko G., Contnuous Valued Neural Networks wth Two Hdden Layers Are Suffcent, Techncal Report, Department of Computer Scence, Tufts Unversty, 988. [0] Hestenes D., Reformng the mathematcal language of physcs, Amercan Journal of Physcs, vol.7, no., pp.04-, 003. [] Qng Y,. Learnng rules for low-dmensonal Clfford neural networks. Master thess, Portland State Unversty, 004. [] Hestenes D. and Sobczyk G., Clfford Algebra to Geometrc Calculus: A Unfed Language for Mathematcs and Physcs, Sprnger, 984. [3] Sommer G., Geometrc computng wth Clfford algebras, publsher: Spnger-Verlag, London, UK,

15 [4] Dorst, L., Mann, S., Geometrc Algebra: A Computatonal Framework for Geometrcal Applcatons (Part ), IEEE Computer Graphcs and Applcatons, vol., no.3, 00. [5] Mann, S., Dorst, L., Bouma, T., The makng of a geometrc algebra package n Matlab, Relatóro Técnco CS-99-7, Unversty of Waterloo, Canada, 6 pages, 999. [6] Buchholz S. and Sommer G., On Clfford neurons and Clfford multlayer perceptrons, Neural Networks Journal, vol., no.7, pp , 008. [7] Arena P., Fortuna L., Re R. and Xbla M. G., Multlayer perceptrons to approxmate quaternon valued functons. Neural Networks, v. 0, n., p , 997. [8] Arena P., Fortuna L., Re R. and Xbla M. G., On the capablty of neural networks wth complex neurons n complex valued functons approxmaton, Internatonal Symposum on Crcuts and Systems, PP.68-7,993. [9] N. Benvenuto and F. Pazza, On the Complex Backpropagaton Algorthm, IEEE Transactons on Sgnal Processng, vol.40, no.4, pp , 99. [0] Henry Leung and Smon Haykn, The Complex Backpropagaton Algorthm, IEEE Transactons on Sgnal Processng, vol.39, no.9, pp.0-04, 99. [] G. M. Georgou and Koutsougeras C, Complex doman backpropagaton, IEEE Transactons on Crcuts and Systems. II: Analog and Dgtal Sgnal Processng, vol.39, no.5, pp , 99. [] Pearson J. and Holloway R. and Bsset D. L., Computaton wth Clfford valued Feed-Forward Networks, Oxford Unversty Press, USA, 999. [3] Needham T., Vsual Complex Analyss, Oxford Unversty Press, USA, 999. [4] Dorst, L., Fontne, D.; Mann, S., Geometrc Algebra for Computer Scence: An Obect-Orented Approach to Geometry (The Morgan Kaufmann Seres n Computer Graphcs), Morgan Kaufmann Publshers Inc., San Francsco,

2 Máquinas de Vetor Suporte 2.1. Introdução

2 Máquinas de Vetor Suporte 2.1. Introdução Máqunas de Vetor Suporte.. Introdução Os fundamentos das Máqunas de Vetor Suporte (SVM) foram desenvolvdos por Vapnk e colaboradores [], [3], [4]. A formulação por ele apresentada se basea no prncípo de

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

Introdução e Organização de Dados Estatísticos

Introdução e Organização de Dados Estatísticos II INTRODUÇÃO E ORGANIZAÇÃO DE DADOS ESTATÍSTICOS 2.1 Defnção de Estatístca Uma coleção de métodos para planejar expermentos, obter dados e organzá-los, resum-los, analsá-los, nterpretá-los e deles extrar

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado)

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado) 5 Aplcação Neste capítulo será apresentada a parte empírca do estudo no qual serão avalados os prncpas regressores, um Modelo de Índce de Dfusão com o resultado dos melhores regressores (aqu chamado de

Leia mais

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF)

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF) PMR 40 - Mecânca Computaconal CAPÍTULO VI Introdução ao Método de Elementos Fntos (MEF). Formulação Teórca - MEF em uma dmensão Consderemos a equação abao que representa a dstrbução de temperatura na barra

Leia mais

IMPLEMENTAÇÃO DE REDES NEURAIS ARTIFICIAIS UTILIZANDO A LINGUAGEM DE PROGRAMAÇÃO JAVA

IMPLEMENTAÇÃO DE REDES NEURAIS ARTIFICIAIS UTILIZANDO A LINGUAGEM DE PROGRAMAÇÃO JAVA IMPLEMENTAÇÃO DE REDES NEURAIS ARTIFICIAIS UTILIZANDO A LINGUAGEM DE PROGRAMAÇÃO JAVA José R. Campos 1, Anna D. P. Lotufo 1, Carlos R. Mnuss 1, Mara L. M. Lopes 1 1 UNESP, Ilha Soltera, Brasl, jrcampos8@gmal.com,

Leia mais

UMA REDE NEURAL ARTIFICIAL HÍBRIDA: MULTI-LAYER PERCEPTRON (MLP) E INTERAC- TIVE ACTIVATION AND COMPETITION (IAC)

UMA REDE NEURAL ARTIFICIAL HÍBRIDA: MULTI-LAYER PERCEPTRON (MLP) E INTERAC- TIVE ACTIVATION AND COMPETITION (IAC) UMA REDE NEURAL ARTIFICIAL HÍBRIDA: MULTI-LAYER PERCEPTRON (MLP) E INTERAC- TIVE ACTIVATION AND COMPETITION (IAC) ANDRÉA T. R. BARBOSA, GLORIA M. CURILEM SALDÍAS, FERNANDO M. DE AZEVEDO Hosptal São Vcente

Leia mais

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar?

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar? Sumáro Sstemas Robótcos Navegação Introdução Onde estou? Para onde vou? Como vou lá chegar? Carlos Carreto Curso de Engenhara Informátca Ano lectvo 2003/2004 Escola Superor de Tecnologa e Gestão da Guarda

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

Regressão e Correlação Linear

Regressão e Correlação Linear Probabldade e Estatístca I Antono Roque Aula 5 Regressão e Correlação Lnear Até o momento, vmos técncas estatístcas em que se estuda uma varável de cada vez, estabelecendo-se sua dstrbução de freqüêncas,

Leia mais

PREVISÃO DO ÍNDICE MERVAL: UMA APLICAÇÃO DE REDES NEURIAS POLINOMIAIS GMDH

PREVISÃO DO ÍNDICE MERVAL: UMA APLICAÇÃO DE REDES NEURIAS POLINOMIAIS GMDH PREVISÃO DO ÍNDICE MERVAL: UMA APLICAÇÃO DE REDES NEURIAS POLINOMIAIS GMDH CAPORAL, Bbana 1 ; CAVALHEIRO, Everton ; CORRÊA, José Carlos 3 ; CUNHA, Carlos 4 Palavras-chave: Econometra; Séres temporas; Co-ntegração;

Leia mais

7. Resolução Numérica de Equações Diferenciais Ordinárias

7. Resolução Numérica de Equações Diferenciais Ordinárias 7. Resolução Numérca de Equações Dferencas Ordnáras Fenômenos físcos em dversas áreas, tas como: mecânca dos fludos, fluo de calor, vbrações, crcutos elétrcos, reações químcas, dentre váras outras, podem

Leia mais

Software para Furação e Rebitagem de Fuselagem de Aeronaves

Software para Furação e Rebitagem de Fuselagem de Aeronaves Anas do 14 O Encontro de Incação Centífca e Pós-Graduação do ITA XIV ENCITA / 2008 Insttuto Tecnológco de Aeronáutca São José dos Campos SP Brasl Outubro 20 a 23 2008. Software para Furação e Rebtagem

Leia mais

www.obconcursos.com.br/portal/v1/carreirafiscal

www.obconcursos.com.br/portal/v1/carreirafiscal www.obconcursos.com.br/portal/v1/carrerafscal Moda Exercíco: Determne o valor modal em cada um dos conjuntos de dados a segur: X: { 3, 4,, 8, 8, 8, 9, 10, 11, 1, 13 } Mo 8 Y: { 10, 11, 11, 13, 13, 13,

Leia mais

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos Despacho Econômco de Sstemas Termoelétrcos e Hdrotérmcos Apresentação Introdução Despacho econômco de sstemas termoelétrcos Despacho econômco de sstemas hdrotérmcos Despacho do sstema braslero Conclusões

Leia mais

Redes Neuronais (Introdução, perceptrões, e MLP)

Redes Neuronais (Introdução, perceptrões, e MLP) Redes neuronas (Perceptrões e MLP) Redes Neuronas (Introdução, perceptrões, e MLP) Vctor Lobo Orgens de AI e Redes Neuronas Programação Imperata Explcta-se o algortmo Conjunto de nstruções S INÍCIO? N?

Leia mais

MAPEAMENTO DA VARIABILIDADE ESPACIAL

MAPEAMENTO DA VARIABILIDADE ESPACIAL IT 90 Prncípos em Agrcultura de Precsão IT Departamento de Engenhara ÁREA DE MECANIZAÇÃO AGRÍCOLA MAPEAMENTO DA VARIABILIDADE ESPACIAL Carlos Alberto Alves Varella Para o mapeamento da varabldade espacal

Leia mais

Cálculo do Conceito ENADE

Cálculo do Conceito ENADE Insttuto aconal de Estudos e Pesqusas Educaconas Aníso Texera IEP Mnstéro da Educação ME álculo do onceto EADE Para descrever o cálculo do onceto Enade, prmeramente é mportante defnr a undade de observação

Leia mais

O Método de Redes Neurais com Função de Ativação de Base Radial para Classificação em Data Mining

O Método de Redes Neurais com Função de Ativação de Base Radial para Classificação em Data Mining O Método de Redes Neuras com Função de Atvação de Base Radal para Classfcação em Data Mnng Ana Paula Scott 1, Mersandra Côrtes de Matos 2, Prscyla Walesa T. A. Smões 2 1 Acadêmco do Curso de Cênca da Computação

Leia mais

Introdução à Análise de Dados nas medidas de grandezas físicas

Introdução à Análise de Dados nas medidas de grandezas físicas Introdução à Análse de Dados nas meddas de grandezas físcas www.chem.wts.ac.za/chem0/ http://uregna.ca/~peresnep/ www.ph.ed.ac.uk/~td/p3lab/analss/ otas baseadas nos apontamentos Análse de Dados do Prof.

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas Unversdade Salvador UNIFACS Cursos de Engenhara Cálculo IV Profa: Ilka ebouças Frere Integras Múltplas Texto 3: A Integral Dupla em Coordenadas Polares Coordenadas Polares Introduzremos agora um novo sstema

Leia mais

Estimativa da Incerteza de Medição da Viscosidade Cinemática pelo Método Manual em Biodiesel

Estimativa da Incerteza de Medição da Viscosidade Cinemática pelo Método Manual em Biodiesel Estmatva da Incerteza de Medção da Vscosdade Cnemátca pelo Método Manual em Bodesel Roberta Quntno Frnhan Chmn 1, Gesamanda Pedrn Brandão 2, Eustáquo Vncus Rbero de Castro 3 1 LabPetro-DQUI-UFES, Vtóra-ES,

Leia mais

TE210 FUNDAMENTOS PARA ANÁLISE DE CIRCUITOS ELÉTRICOS

TE210 FUNDAMENTOS PARA ANÁLISE DE CIRCUITOS ELÉTRICOS TE0 FUNDAMENTOS PARA ANÁLISE DE CIRCUITOS ELÉTRICOS Números Complexos Introdução hstórca. Os números naturas, nteros, raconas, rraconas e reas. A necessdade dos números complexos. Sua relação com o mundo

Leia mais

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem.

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem. Les de Krchhoff Até aqu você aprendeu técncas para resolver crcutos não muto complexos. Bascamente todos os métodos foram baseados na 1 a Le de Ohm. Agora você va aprender as Les de Krchhoff. As Les de

Leia mais

UNIVERSIDADE DO ESTADO DA BAHIA - UNEB DEPARTAMENTO DE CIÊNCIAS EXATAS E DA TERRA COLEGIADO DO CURSO DE DESENHO INDUSTRIAL CAMPUS I - SALVADOR

UNIVERSIDADE DO ESTADO DA BAHIA - UNEB DEPARTAMENTO DE CIÊNCIAS EXATAS E DA TERRA COLEGIADO DO CURSO DE DESENHO INDUSTRIAL CAMPUS I - SALVADOR Matéra / Dscplna: Introdução à Informátca Sstema de Numeração Defnção Um sstema de numeração pode ser defndo como o conjunto dos dígtos utlzados para representar quantdades e as regras que defnem a forma

Leia mais

SOM Hierárquico Aplicado à Compressão de Imagens

SOM Hierárquico Aplicado à Compressão de Imagens Proceedngs of the V Brazlan Conference on Neural Networks - V Congresso Braslero de Redes Neuras pp. 511 516, Aprl 2 5, 2001 - Ro de Janero - RJ - Brazl SOM Herárquco Aplcado à Compressão de Imagens José

Leia mais

PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS DO CEARÁ

PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS DO CEARÁ GOVERNO DO ESTADO DO CEARÁ SECRETARIA DO PLANEJAMENTO E GESTÃO - SEPLAG INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ - IPECE NOTA TÉCNICA Nº 29 PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS

Leia mais

UTILIZAÇÃO DO MÉTODO DE TAGUCHI NA REDUÇÃO DOS CUSTOS DE PROJETOS. Uma equação simplificada para se determinar o lucro de uma empresa é:

UTILIZAÇÃO DO MÉTODO DE TAGUCHI NA REDUÇÃO DOS CUSTOS DE PROJETOS. Uma equação simplificada para se determinar o lucro de uma empresa é: UTILIZAÇÃO DO MÉTODO DE TAGUCHI A REDUÇÃO DOS CUSTOS DE PROJETOS Ademr José Petenate Departamento de Estatístca - Mestrado em Qualdade Unversdade Estadual de Campnas Brasl 1. Introdução Qualdade é hoje

Leia mais

RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS

RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS Defnções RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS Problemas de Valor Incal PVI) Métodos de passo smples Método de Euler Métodos de sére de Talor Métodos de Runge-Kutta Equações de ordem superor Métodos

Leia mais

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG 1 CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnlesteMG Dscplna: Introdução à Intelgênca Artfcal Professor: Luz Carlos Fgueredo GUIA DE LABORATÓRIO LF. 01 Assunto: Lógca Fuzzy Objetvo: Apresentar o

Leia mais

Hoje não tem vitamina, o liquidificador quebrou!

Hoje não tem vitamina, o liquidificador quebrou! A U A UL LA Hoje não tem vtamna, o lqudfcador quebrou! Essa fo a notíca dramátca dada por Crstana no café da manhã, lgeramente amenzada pela promessa de uma breve solução. - Seu pa dsse que arruma à note!

Leia mais

Influência dos Procedimentos de Ensaios e Tratamento de Dados em Análise Probabilística de Estrutura de Contenção

Influência dos Procedimentos de Ensaios e Tratamento de Dados em Análise Probabilística de Estrutura de Contenção Influênca dos Procedmentos de Ensaos e Tratamento de Dados em Análse Probablístca de Estrutura de Contenção Mara Fatma Mranda UENF, Campos dos Goytacazes, RJ, Brasl. Paulo César de Almeda Maa UENF, Campos

Leia mais

Caderno de Exercícios Resolvidos

Caderno de Exercícios Resolvidos Estatístca Descrtva Exercíco 1. Caderno de Exercícos Resolvdos A fgura segunte representa, através de um polígono ntegral, a dstrbução do rendmento nas famílas dos alunos de duas turmas. 1,,75 Turma B

Leia mais

Problemas Associados a Cones de Segunda Ordem

Problemas Associados a Cones de Segunda Ordem Problemas Assocados a Cones de Segunda Ordem Dense S. Trevsol, Mara A. D. Ehrhardt, Insttuto de Matemátca, Estatístca e Computação Centífca, IMECC, UNICAMP, 1383-859, Campnas, SP E-mal: ra8477@me.uncamp.br,

Leia mais

Termodinâmica e Termoquímica

Termodinâmica e Termoquímica Termodnâmca e Termoquímca Introdução A cênca que trata da energa e suas transformações é conhecda como termodnâmca. A termodnâmca fo a mola mestra para a revolução ndustral, portanto o estudo e compreensão

Leia mais

Geração de poses de faces utilizando Active Appearance Model Tupã Negreiros 1, Marcos R. P. Barretto 2, Jun Okamoto 3

Geração de poses de faces utilizando Active Appearance Model Tupã Negreiros 1, Marcos R. P. Barretto 2, Jun Okamoto 3 Geração de poses de faces utlzando Actve Appearance Model Tupã Negreros 1, Marcos R. P. Barretto 2, Jun Okamoto 3 1, 2, 3 Escola Poltécnca da Unversdade de São Paulo (POLI/USP) Caxa Postal 61548 CEP 05508-900

Leia mais

Elaboração: Fevereiro/2008

Elaboração: Fevereiro/2008 Elaboração: Feverero/2008 Últma atualzação: 19/02/2008 E ste Caderno de Fórmulas tem por objetvo esclarecer aos usuáros a metodologa de cálculo e os crtéros de precsão utlzados na atualzação das Letras

Leia mais

Análise Econômica da Aplicação de Motores de Alto Rendimento

Análise Econômica da Aplicação de Motores de Alto Rendimento Análse Econômca da Aplcação de Motores de Alto Rendmento 1. Introdução Nesta apostla são abordados os prncpas aspectos relaconados com a análse econômca da aplcação de motores de alto rendmento. Incalmente

Leia mais

Estimativa dos fluxos turbulentos de calor sensível, calor latente e CO 2, sobre cana-de-açúcar, pelo método do coespectro.

Estimativa dos fluxos turbulentos de calor sensível, calor latente e CO 2, sobre cana-de-açúcar, pelo método do coespectro. Estmatva dos fluxos turbulentos de calor sensível, calor latente e CO 2, sobre cana-de-açúcar, pelo método do coespectro. O. L. L. Moraes 1, H. R. da Rocha 2, M. A. Faus da Slva Das 2, O Cabral 3 1 Departamento

Leia mais

ALGORITMO E PROGRAMAÇÃO

ALGORITMO E PROGRAMAÇÃO ALGORITMO E PROGRAMAÇÃO 1 ALGORITMO É a descrção de um conjunto de ações que, obedecdas, resultam numa sucessão fnta de passos, atngndo um objetvo. 1.1 AÇÃO É um acontecmento que a partr de um estado ncal,

Leia mais

Universidade Federal da Bahia Instituto de Física Departamento de Física da Terra e do Meio Ambiente TEXTOS DE LABORATÓRIO T E O R I A D E E R R O S

Universidade Federal da Bahia Instituto de Física Departamento de Física da Terra e do Meio Ambiente TEXTOS DE LABORATÓRIO T E O R I A D E E R R O S Unversdade Federal da Baha Insttuto de Físca Departamento de Físca da Terra e do Meo Ambente TEXTOS DE LABORATÓRIO T E O R I A D E E R R O S Físca I SALVADOR, BAHIA 013 1 Prefáco Esta apostla é destnada

Leia mais

Variabilidade Espacial do Teor de Água de um Argissolo sob Plantio Convencional de Feijão Irrigado

Variabilidade Espacial do Teor de Água de um Argissolo sob Plantio Convencional de Feijão Irrigado Varabldade Espacal do Teor de Água de um Argssolo sob Planto Convenconal de Fejão Irrgado Elder Sânzo Aguar Cerquera 1 Nerlson Terra Santos 2 Cásso Pnho dos Res 3 1 Introdução O uso da água na rrgação

Leia mais

Capítulo 1. O plano complexo. 1.1. Introdução. Os números complexos começaram por ser introduzidos para dar sentido à 2

Capítulo 1. O plano complexo. 1.1. Introdução. Os números complexos começaram por ser introduzidos para dar sentido à 2 Capítulo O plano compleo Introdução Os números compleos começaram por ser ntrodudos para dar sentdo à resolução de equações polnomas do tpo Como os quadrados de números reas são sempre maores ou guas a

Leia mais

PLANILHAS EXCEL/VBA PARA PROBLEMAS ENVOLVENDO EQUILÍBRIO LÍQUIDO-VAPOR EM SISTEMAS BINÁRIOS

PLANILHAS EXCEL/VBA PARA PROBLEMAS ENVOLVENDO EQUILÍBRIO LÍQUIDO-VAPOR EM SISTEMAS BINÁRIOS PLANILHAS EXCEL/VBA PARA PROBLEMAS ENVOLVENDO EQUILÍBRIO LÍQUIDO-VAPOR EM SISTEMAS BINÁRIOS L. G. Olvera, J. K. S. Negreros, S. P. Nascmento, J. A. Cavalcante, N. A. Costa Unversdade Federal da Paraíba,

Leia mais

MODELAGEM MATEMÁTICA DO PROCESSO DE EVAPORAÇÃO MULTI-EFEITO NA INDÚSTRIA DE PAPEL E CELULOSE

MODELAGEM MATEMÁTICA DO PROCESSO DE EVAPORAÇÃO MULTI-EFEITO NA INDÚSTRIA DE PAPEL E CELULOSE MODELAGEM MATEMÁTICA DO PROCESSO DE EVAPORAÇÃO MULTI-EFEITO NA INDÚSTRIA DE PAPEL E CELULOSE R. L. S. CANEVESI 1, C. L. DIEL 2, K. A. SANTOS 1, C. E. BORBA 1, F. PALÚ 1, E. A. DA SILVA 1 1 Unversdade Estadual

Leia mais

Professor Mauricio Lutz CORRELAÇÃO

Professor Mauricio Lutz CORRELAÇÃO Professor Maurco Lutz 1 CORRELAÇÃO Em mutas stuações, torna-se nteressante e útl estabelecer uma relação entre duas ou mas varáves. A matemátca estabelece város tpos de relações entre varáves, por eemplo,

Leia mais

Redes Neurais Artificiais Aplicadas no Monitoramento da Condição de Ferramentas de Corte Utilizando Algoritmo de Extração das Características SFS

Redes Neurais Artificiais Aplicadas no Monitoramento da Condição de Ferramentas de Corte Utilizando Algoritmo de Extração das Características SFS Proceedngs of the IV Brazlan Conference on Neural Networs - IV Congresso Braslero de Redes Neuras pp. 292-297, July 20-22, 999 - ITA, São José dos Campos - SP - Brazl Redes Neuras Artfcas Aplcadas no Montoramento

Leia mais

REGRESSÃO LOGÍSTICA. Seja Y uma variável aleatória dummy definida como:

REGRESSÃO LOGÍSTICA. Seja Y uma variável aleatória dummy definida como: REGRESSÃO LOGÍSTCA. ntrodução Defnmos varáves categórcas como aquelas varáves que podem ser mensurados usando apenas um número lmtado de valores ou categoras. Esta defnção dstngue varáves categórcas de

Leia mais

As tabelas resumem as informações obtidas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de informações.

As tabelas resumem as informações obtidas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de informações. 1. TABELA DE DISTRIBUIÇÃO DE FREQÜÊNCIA As tabelas resumem as normações obtdas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de normações. As tabelas sem perda de normação

Leia mais

Controle Estatístico de Qualidade. Capítulo 8 (montgomery)

Controle Estatístico de Qualidade. Capítulo 8 (montgomery) Controle Estatístco de Qualdade Capítulo 8 (montgomery) Gráfco CUSUM e da Méda Móvel Exponencalmente Ponderada Introdução Cartas de Controle Shewhart Usa apenas a nformação contda no últmo ponto plotado

Leia mais

Camila Spinassé INTRODUÇÃO À MATEMÁTICA FINANCEIRA PARA ALUNOS NA EDUCAÇÃO DE JOVENS E ADULTOS

Camila Spinassé INTRODUÇÃO À MATEMÁTICA FINANCEIRA PARA ALUNOS NA EDUCAÇÃO DE JOVENS E ADULTOS Camla Spnassé INTRODUÇÃO À MATEMÁTICA FINANCEIRA PARA ALUNOS NA EDUCAÇÃO DE JOVENS E ADULTOS Vtóra Agosto de 2013 Camla Spnassé INTRODUÇÃO À MATEMÁTICA FINANCEIRA PARA ALUNOS NA EDUCAÇÃO DE JOVENS E ADULTOS

Leia mais

7.4 Precificação dos Serviços de Transmissão em Ambiente Desregulamentado

7.4 Precificação dos Serviços de Transmissão em Ambiente Desregulamentado 64 Capítulo 7: Introdução ao Estudo de Mercados de Energa Elétrca 7.4 Precfcação dos Servços de Transmssão em Ambente Desregulamentado A re-estruturação da ndústra de energa elétrca que ocorreu nos últmos

Leia mais

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ110 : Prncípos de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br Potencal químco, m potencal químco CQ110 : Prncípos de FQ Propredades termodnâmcas das soluções

Leia mais

Revisão dos Métodos para o Aumento da Confiabilidade em Sistemas Elétricos de Distribuição

Revisão dos Métodos para o Aumento da Confiabilidade em Sistemas Elétricos de Distribuição CIDEL Argentna 2014 Internatonal Congress on Electrcty Dstrbuton Ttle Revsão dos Métodos para o Aumento da Confabldade em Sstemas Elétrcos de Dstrbução Regstraton Nº: (Abstract) Authors of the paper Name

Leia mais

Expressão da Incerteza de Medição para a Grandeza Energia Elétrica

Expressão da Incerteza de Medição para a Grandeza Energia Elétrica 1 a 5 de Agosto de 006 Belo Horzonte - MG Expressão da ncerteza de Medção para a Grandeza Energa Elétrca Eng. Carlos Alberto Montero Letão CEMG Dstrbução S.A caletao@cemg.com.br Eng. Sérgo Antôno dos Santos

Leia mais

UM MODELO DE ALOCAÇÃO DINÂMICA DE CAMINHÕES VISANDO AO ATENDIMENTO DE METAS DE PRODUÇÃO E QUALIDADE

UM MODELO DE ALOCAÇÃO DINÂMICA DE CAMINHÕES VISANDO AO ATENDIMENTO DE METAS DE PRODUÇÃO E QUALIDADE UM MODELO DE ALOCAÇÃO DINÂMICA DE CAMINHÕES VISANDO AO ATENDIMENTO DE METAS DE PRODUÇÃO E QUALIDADE RESUMO Felppe Perera da Costa, PPGEM/UFOP, Mestrando. felppe@mneral.em.ufop.br Marcone Jamlson Fretas

Leia mais

Metodologia para Eficientizar as Auditorias de SST em serviços contratados Estudo de caso em uma empresa do setor elétrico.

Metodologia para Eficientizar as Auditorias de SST em serviços contratados Estudo de caso em uma empresa do setor elétrico. Metodologa para Efcentzar as Audtoras de SST em servços contratados Estudo de caso em uma empresa do setor elétrco. Autores MARIA CLAUDIA SOUSA DA COSTA METHODIO VAREJÃO DE GODOY CHESF COMPANHIA HIDRO

Leia mais

Fast Multiresolution Image Querying

Fast Multiresolution Image Querying Fast Multresoluton Image Queryng Baseado no artgo proposto por: Charles E. Jacobs Adan Fnkelsten Davd H. Salesn Propõe um método para busca em um banco de dados de magem utlzando uma magem de consulta

Leia mais

Física. Setor B. Índice-controle de Estudo. Prof.: Aula 23 (pág. 86) AD TM TC. Aula 24 (pág. 87) AD TM TC. Aula 25 (pág.

Física. Setor B. Índice-controle de Estudo. Prof.: Aula 23 (pág. 86) AD TM TC. Aula 24 (pág. 87) AD TM TC. Aula 25 (pág. Físca Setor Prof.: Índce-controle de studo ula 23 (pág. 86) D TM TC ula 24 (pág. 87) D TM TC ula 25 (pág. 88) D TM TC ula 26 (pág. 89) D TM TC ula 27 (pág. 91) D TM TC ula 28 (pág. 91) D TM TC evsanglo

Leia mais

Prof. Benjamin Cesar. Onde a(n, i) é o fator de valor atual de uma série de pagamentos. M: montante da renda na data do último depósito.

Prof. Benjamin Cesar. Onde a(n, i) é o fator de valor atual de uma série de pagamentos. M: montante da renda na data do último depósito. Matemátca Fnancera Rendas Certas Prof. Benjamn Cesar Sére de Pagamentos Unforme e Peródca. Rendas Certas Anudades. É uma sequênca de n pagamentos de mesmo valor P, espaçados de um mesmo ntervalo de tempo

Leia mais

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para Objetvos da aula Essa aula objetva fornecer algumas ferramentas descrtvas útes para escolha de uma forma funconal adequada. Por exemplo, qual sera a forma funconal adequada para estudar a relação entre

Leia mais

Estatística stica Descritiva

Estatística stica Descritiva AULA1-AULA5 AULA5 Estatístca stca Descrtva Prof. Vctor Hugo Lachos Davla oo que é a estatístca? Para mutos, a estatístca não passa de conjuntos de tabelas de dados numércos. Os estatístcos são pessoas

Leia mais

Sistemas de Filas: Aula 5. Amedeo R. Odoni 22 de outubro de 2001

Sistemas de Filas: Aula 5. Amedeo R. Odoni 22 de outubro de 2001 Sstemas de Flas: Aula 5 Amedeo R. Odon 22 de outubro de 2001 Teste 1: 29 de outubro Com consulta, 85 mnutos (níco 10:30) Tópcos abordados: capítulo 4, tens 4.1 a 4.7; tem 4.9 (uma olhada rápda no tem 4.9.4)

Leia mais

Avaliação da Tendência de Precipitação Pluviométrica Anual no Estado de Sergipe. Evaluation of the Annual Rainfall Trend in the State of Sergipe

Avaliação da Tendência de Precipitação Pluviométrica Anual no Estado de Sergipe. Evaluation of the Annual Rainfall Trend in the State of Sergipe Avalação da Tendênca de Precptação Pluvométrca Anual no Estado de Sergpe Dandara de Olvera Félx, Inaá Francsco de Sousa 2, Pablo Jónata Santana da Slva Nascmento, Davd Noguera dos Santos 3 Graduandos em

Leia mais

PROBLEMAS SOBRE PONTOS Davi Máximo (UFC) e Samuel Feitosa (UFC)

PROBLEMAS SOBRE PONTOS Davi Máximo (UFC) e Samuel Feitosa (UFC) PROBLEMS SOBRE PONTOS Dav Máxmo (UFC) e Samuel Fetosa (UFC) Nível vançado Dstrbur pontos num plano ou num espaço é uma tarefa que pode ser realzada de forma muto arbtrára Por sso, problemas sobre pontos

Leia mais

AGRUPAMENTO DE CLIENTES COM BASE NA FICHA DE ANAMNESE ODONTOLÓGICA: UMA APLICAÇÃO DA ART2.

AGRUPAMENTO DE CLIENTES COM BASE NA FICHA DE ANAMNESE ODONTOLÓGICA: UMA APLICAÇÃO DA ART2. AGRUPAMENTO DE CLIENTES COM BASE NA FICHA DE ANAMNESE ODONTOLÓGICA: UMA APLICAÇÃO DA ART2. andrey soares Unversdade Federal de Santa Catarna UFSC Campus Unverstáro Trndade Floranópols, SC 88040-900 andrey@nf.ufsc.br

Leia mais

IX CONGRESSO BRASILEIRO DE ENGENHARIA E CIÊNCIAS TÉRMICAS. 9th BRAZILIAN CONGRESS OF THERMAL ENGINEERING AND SCIENCES

IX CONGRESSO BRASILEIRO DE ENGENHARIA E CIÊNCIAS TÉRMICAS. 9th BRAZILIAN CONGRESS OF THERMAL ENGINEERING AND SCIENCES IX CONGRESSO BRASILEIRO DE ENGENHARIA E CIÊNCIAS TÉRMICAS 9th BRAZILIAN CONGRESS OF THERMAL ENGINEERING AND SCIENCES Paper CIT02-0026 METODOLOGIA PARA CORRELAÇÃO DE DADOS CINÉTICOS ENTRE AS TÉCNICAS DE

Leia mais

ELEMENTOS DE CIRCUITOS

ELEMENTOS DE CIRCUITOS MINISTÉRIO D EDUCÇÃO SECRETRI DE EDUCÇÃO PROFISSIONL E TECNOLÓGIC INSTITUTO FEDERL DE EDUCÇÃO, CIÊNCI E TECNOLOGI DE SNT CTRIN CMPUS DE SÃO JOSÉ - ÁRE DE TELECOMUNICÇÕES CURSO TÉCNICO EM TELECOMUNICÇÕES

Leia mais

O Uso do Software Matlab Aplicado à Previsão de Índices da Bolsa de Valores: Um Estudo de Caso no Curso de Engenharia de Produção

O Uso do Software Matlab Aplicado à Previsão de Índices da Bolsa de Valores: Um Estudo de Caso no Curso de Engenharia de Produção O Uso do Software Matlab Aplcado à Prevsão de Índces da Bolsa de Valores: Um Estudo de Caso no Curso de Engenhara de Produção VICENTE, S. A. S. Unversdade Presbterana Mackenze Rua da Consolação, 930 prédo

Leia mais

ANÁLISE DA ESTABILIDADE DE UM BRAÇO ROBÓTICO PARA COLHEITA DE FRUTAS

ANÁLISE DA ESTABILIDADE DE UM BRAÇO ROBÓTICO PARA COLHEITA DE FRUTAS XLIII Congresso Braslero de Engenhara Agrícola - CONBEA 2014 Centro de Convenções Arquteto Rubens Gl de Camllo - Campo Grande -MS 27 a 31 de julho de 2014 ANÁLISE DA ESTABILIDADE DE UM BRAÇO ROBÓTICO PARA

Leia mais

FERRAMENTA DE AUXÍLIO AO DIAGNÓSTICO MÉDICO DURANTE A GRAVIDEZ

FERRAMENTA DE AUXÍLIO AO DIAGNÓSTICO MÉDICO DURANTE A GRAVIDEZ FERRAMENTA DE AUXÍLIO AO DIAGNÓSTICO MÉDICO DURANTE A GRAVIDEZ M. G. F. Costa, C. F. F. Costa Flho, M. C. Das, A. C. S.Fretas. Unversdade do Amazonas Laboratóro de Processamento Dgtal de Imagens Av. Gal.

Leia mais

3.1. Conceitos de força e massa

3.1. Conceitos de força e massa CAPÍTULO 3 Les de Newton 3.1. Concetos de força e massa Uma força representa a acção de um corpo sobre outro,.e. a nteracção físca entre dos corpos. Como grandeza vectoral que é, só fca caracterzada pelo

Leia mais

METROLOGIA E ENSAIOS

METROLOGIA E ENSAIOS METROLOGIA E ENSAIOS Incerteza de Medção Prof. Aleandre Pedott pedott@producao.ufrgs.br Freqüênca de ocorrênca Incerteza da Medção Dstrbução de freqüênca das meddas Erro Sstemátco (Tendênca) Erro de Repettvdade

Leia mais

Exercícios de Física. Prof. Panosso. Fontes de campo magnético

Exercícios de Física. Prof. Panosso. Fontes de campo magnético 1) A fgura mostra um prego de ferro envolto por um fo fno de cobre esmaltado, enrolado mutas vezes ao seu redor. O conjunto pode ser consderado um eletroímã quando as extremdades do fo são conectadas aos

Leia mais

Universidade Federal do Rio Grande do Norte Centro de Tecnologia Programa de Pós-Graduação em Engenharia Elétrica e de Computação

Universidade Federal do Rio Grande do Norte Centro de Tecnologia Programa de Pós-Graduação em Engenharia Elétrica e de Computação Unversdade Federal do Ro Grande do Norte Centro de Tecnologa Programa de Pós-Graduação em Engenhara Elétrca e de Computação IDENTIFICAÇÃO NÃO LINEAR USANDO UMA REDE FUZZY WAVELET NEURAL NETWORK MODIFICADA

Leia mais

CORRELAÇÃO DO EQUILÍBRIO DE FASES DO SISTEMA MULTICOMPONENTE ÉSTERES ETÍLICOS DO ÓLEO DE MURUMURU/DIÓXIDO DE CARBONO COM A EQUAÇÃO SRK

CORRELAÇÃO DO EQUILÍBRIO DE FASES DO SISTEMA MULTICOMPONENTE ÉSTERES ETÍLICOS DO ÓLEO DE MURUMURU/DIÓXIDO DE CARBONO COM A EQUAÇÃO SRK CORRELAÇÃO DO EQUILÍBRIO DE FASES DO SISTEMA MULTICOMPONENTE ÉSTERES ETÍLICOS DO ÓLEO DE MURUMURU/DIÓXIDO DE CARBONO COM A EQUAÇÃO SRK Welsson de Araújo SILVA PRODERNA/ITEC/UFPA waslva89@hotmal.com Fernando

Leia mais

Atribuição Automática de Propagandas a Páginas da Web

Atribuição Automática de Propagandas a Páginas da Web Atrbução Automátca de Propagandas a Págnas da Web Aníso Mendes Lacerda Lara Crstna Rodrgues Coelho Resumo O problema da propaganda dreconada baseada em conteúdo (PDC) consttu-se em atrbur propagandas a

Leia mais

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas PROGRAMA DE PÓS-GRADUAÇÃO EM EGEHARIA DE TRASPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMETO DE EGEHARIA CIVIL ECV DISCIPLIA: TGT41006 FUDAMETOS DE ESTATÍSTICA 3ª AULA: ESTATÍSTICA DESCRITIVA Meddas umércas

Leia mais

ESPELHOS E LENTES ESPELHOS PLANOS

ESPELHOS E LENTES ESPELHOS PLANOS ESPELHOS E LENTES 1 Embora para os povos prmtvos os espelhos tvessem propredades mágcas, orgem de lendas e crendces que estão presentes até hoje, para a físca são apenas superfíces poldas que produzem

Leia mais

SCATTER SEARCH APLICADO AO PROBLEMA DE OTIMIZAÇÃO DA ALOCAÇÃO DE SONDAS DE PRODUÇÃO EM POÇOS DE PETRÓLEO

SCATTER SEARCH APLICADO AO PROBLEMA DE OTIMIZAÇÃO DA ALOCAÇÃO DE SONDAS DE PRODUÇÃO EM POÇOS DE PETRÓLEO ! "#$ " %'&)(*&)+,.- /10.2*&4365879&4/1:.+58;.2*=?5.@A2*3B;.- C)D 5.,.5FE)5.G.+ &4- (IHJ&?,.+ /?=)5.KA:.+5MLN&OHJ5F&4E)2*EOHJ&)(IHJ/)G.- D - ;./);.& SCATTER SEARCH APLICADO AO PROBLEMA DE OTIMIZAÇÃO

Leia mais

Controlo Metrológico de Contadores de Gás

Controlo Metrológico de Contadores de Gás Controlo Metrológco de Contadores de Gás José Mendonça Das (jad@fct.unl.pt), Zulema Lopes Perera (zlp@fct.unl.pt) Departamento de Engenhara Mecânca e Industral, Faculdade de Cêncas e Tecnologa da Unversdade

Leia mais

* Economista do Instituto Federal do Sertão Pernambucano na Pró-Reitoria de Desenvolvimento Institucional PRODI.

* Economista do Instituto Federal do Sertão Pernambucano na Pró-Reitoria de Desenvolvimento Institucional PRODI. O desempenho setoral dos muncípos que compõem o Sertão Pernambucano: uma análse regonal sob a ótca energétca. Carlos Fabano da Slva * Introdução Entre a publcação de Methods of Regonal Analyss de Walter

Leia mais

NODAL Versão 3.0 Programa de Simulação de Tarifas de Uso do Sistema Elétrico MANUAL DO USUÁRIO ANEEL Agência Nacional de Energia Elétrica

NODAL Versão 3.0 Programa de Simulação de Tarifas de Uso do Sistema Elétrico MANUAL DO USUÁRIO ANEEL Agência Nacional de Energia Elétrica NODAL Versão 3.0 Programa de Smulação de Tarfas de Uso do Sstema Elétrco MANUAL DO USUÁRIO ANEEL Agênca Naconal de Energa Elétrca ÍNDICE. INTRODUÇÃO...-.. CONSIDERAÇÕES...-.2. FUNÇÃO DO PROGRAMA...-2.3.

Leia mais

INTRODUÇÃO AO CÁLCULO DE ERROS NAS MEDIDAS DE GRANDEZAS FÍSICAS

INTRODUÇÃO AO CÁLCULO DE ERROS NAS MEDIDAS DE GRANDEZAS FÍSICAS Físca Laboratoral Ano Lectvo 003/04 ITRODUÇÃO AO CÁLCULO DE ERROS AS MEDIDAS DE GRADEAS FÍSICAS. Introdução.... Erros de observação: erros sstemátcos e erros fortutos ou acdentas... 3. Precsão e rgor...3

Leia mais

IV - Descrição e Apresentação dos Dados. Prof. Herondino

IV - Descrição e Apresentação dos Dados. Prof. Herondino IV - Descrção e Apresentação dos Dados Prof. Herondno Dados A palavra "dados" é um termo relatvo, tratamento de dados comumente ocorre por etapas, e os "dados processados" a partr de uma etapa podem ser

Leia mais

UTILIZAÇÃO DE REDES NEURAIS ARTIFICIAIS E REGRESSÃO LINEAR MÚLTIPLA PARA A PREVISÃO DO TEMPO DE DURAÇÃO DE AUDIÊNCIAS TRABALHISTAS

UTILIZAÇÃO DE REDES NEURAIS ARTIFICIAIS E REGRESSÃO LINEAR MÚLTIPLA PARA A PREVISÃO DO TEMPO DE DURAÇÃO DE AUDIÊNCIAS TRABALHISTAS UTILIZAÇÃO DE REDES NEURAIS ARTIFICIAIS E REGRESSÃO LINEAR MÚLTILA ARA A REVISÃO DO TEMO DE DURAÇÃO DE AUDIÊNCIAS TRABALHISTAS Alessandra Memar avanell Unversdade Federal do araná UFR rograma de ós-graduação

Leia mais

Elaboração: Novembro/2005

Elaboração: Novembro/2005 Elaboração: Novembro/2005 Últma atualzação: 18/07/2011 Apresentação E ste Caderno de Fórmulas tem por objetvo nformar aos usuáros a metodologa e os crtéros de precsão dos cálculos referentes às Cédulas

Leia mais

PREVISÃO DE PARTIDAS DE FUTEBOL USANDO MODELOS DINÂMICOS

PREVISÃO DE PARTIDAS DE FUTEBOL USANDO MODELOS DINÂMICOS PREVISÃO DE PRTIDS DE FUTEBOL USNDO MODELOS DINÂMICOS Oswaldo Gomes de Souza Junor Insttuto de Matemátca Unversdade Federal do Ro de Janero junor@dme.ufrj.br Dan Gamerman Insttuto de Matemátca Unversdade

Leia mais

Modelos estatísticos para previsão de partidas de futebol

Modelos estatísticos para previsão de partidas de futebol Modelos estatístcos para prevsão de partdas de futebol Dan Gamerman Insttuto de Matemátca, UFRJ dan@m.ufrj.br X Semana da Matemátca e II Semana da Estatístca da UFOP Ouro Preto, MG 03/11/2010 Algumas perguntas

Leia mais

Controle de qualidade de produto cartográfico aplicado a imagem de alta resolução

Controle de qualidade de produto cartográfico aplicado a imagem de alta resolução Controle de qualdade de produto cartográfco aplcado a magem de alta resolução Nathála de Alcântara Rodrgues Alves¹ Mara Emanuella Frmno Barbosa¹ Sydney de Olvera Das¹ ¹ Insttuto Federal de Educação Cênca

Leia mais

S.A. 1. 2002; TIPLER, P. A.; MOSCA, G.

S.A. 1. 2002; TIPLER, P. A.; MOSCA, G. Rotação Nota Alguns sldes, fguras e exercícos pertencem às seguntes referêncas: HALLIDAY, D., RESNICK, R., WALKER, J. Fundamentos da Físca. V 1. 4a.Edção. Ed. Lvro Técnco Centífco S.A. 00; TIPLER, P. A.;

Leia mais

COMPARATIVO ENTRE MÉTODOS DE CÁLCULO DE PERDAS EM TRANSFORMADORES ALIMENTANDO CARGAS NÃO-LINEARES

COMPARATIVO ENTRE MÉTODOS DE CÁLCULO DE PERDAS EM TRANSFORMADORES ALIMENTANDO CARGAS NÃO-LINEARES COMARAVO ENRE MÉODOS DE CÁLCULO DE ERDAS EM RANSFORMADORES ALMENANDO CARGAS NÃO-LNEARES GUMARÃES, Magno de Bastos EEEC/ UFG/ EQ magnobg@otmal.com. NRODUÇÃO LSA, Luz Roberto EEEC/ UFG lsta@eee.ufg.br NERYS,

Leia mais

Sinais Luminosos 2- CONCEITOS BÁSICOS PARA DIMENSIONAMENTO DE SINAIS LUMINOSOS.

Sinais Luminosos 2- CONCEITOS BÁSICOS PARA DIMENSIONAMENTO DE SINAIS LUMINOSOS. Snas Lumnosos 1-Os prmeros snas lumnosos Os snas lumnosos em cruzamentos surgem pela prmera vez em Londres (Westmnster), no ano de 1868, com um comando manual e com os semáforos a funconarem a gás. Só

Leia mais

Princípios do Cálculo de Incertezas O Método GUM

Princípios do Cálculo de Incertezas O Método GUM Prncípos do Cálculo de Incertezas O Método GUM João Alves e Sousa Laboratóro Regonal de Engenhara Cvl - LREC Rua Agostnho Perera de Olvera, 9000-64 Funchal, Portugal. E-mal: jasousa@lrec.pt Resumo Em anos

Leia mais

Informação. Nota: Tradução feita por Cláudio Afonso Kock e Sérgio Pinheiro de Oliveira.

Informação. Nota: Tradução feita por Cláudio Afonso Kock e Sérgio Pinheiro de Oliveira. Informação Esta publcação é uma tradução do Gua de Calbração EURAMET Gua para a Estmatva da Incerteza em Medções de Dureza (EURAMET/cg-16/v.01, July 007). Os dretos autoras do documento orgnal pertencem

Leia mais

Aula 7: Circuitos. Curso de Física Geral III F-328 1º semestre, 2014

Aula 7: Circuitos. Curso de Física Geral III F-328 1º semestre, 2014 Aula 7: Crcutos Curso de Físca Geral III F-38 º semestre, 04 Ponto essencal Para resolver um crcuto de corrente contínua, é precso entender se as cargas estão ganhando ou perdendo energa potencal elétrca

Leia mais

UM NOVO ALGORITMO GENÉTICO PARA A OTIMIZAÇÃO DE CARTEIRAS DE INVESTIMENTO COM RESTRIÇÕES DE CARDINALIDADE

UM NOVO ALGORITMO GENÉTICO PARA A OTIMIZAÇÃO DE CARTEIRAS DE INVESTIMENTO COM RESTRIÇÕES DE CARDINALIDADE Unversdade Estadual de Campnas Insttuto de Matemátca, Estatístca e Computação Centífca Departamento de Matemátca Aplcada DISSERTAÇÃO DE MESTRADO UM NOVO ALGORITMO GENÉTICO PARA A OTIMIZAÇÃO DE CARTEIRAS

Leia mais

MAE5778 - Teoria da Resposta ao Item

MAE5778 - Teoria da Resposta ao Item MAE5778 - Teora da Resposta ao Item Fernando Henrque Ferraz Perera da Rosa Robson Lunard 1 de feverero de 2005 Lsta 2 1. Na Tabela 1 estão apresentados os parâmetros de 6 tens, na escala (0,1). a b c 1

Leia mais