Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download ""

Transcrição

1 2 a fase da OBMEP 2013: Questão 1 - Nível 1 Professor José Hilário Goianésia, 4 de setembro de 2014

2 Questão 1 - N1-2 a fase OBMEP 2013 Ariadne brinca com números de dois ou mais algarismos. Ela soma, aos pares, os algarismos do número, da esquerda para a direita, e escreve os resultados em ordem; em seguida, ela repete a brincadeira com o novo número e assim por diante. Se ela chegar a um número com um único algarismo, a brincadeira acaba.

3 Questão 1 - N1-2 a fase OBMEP 2013 Ariadne brinca com números de dois ou mais algarismos. Ela soma, aos pares, os algarismos do número, da esquerda para a direita, e escreve os resultados em ordem; em seguida, ela repete a brincadeira com o novo número e assim por diante. Se ela chegar a um número com um único algarismo, a brincadeira acaba.

4 Questão 1 - N1-2 a fase OBMEP 2013 Ariadne brinca com números de dois ou mais algarismos. Ela soma, aos pares, os algarismos do número, da esquerda para a direita, e escreve os resultados em ordem; em seguida, ela repete a brincadeira com o novo número e assim por diante. Se ela chegar a um número com um único algarismo, a brincadeira acaba.

5 Questão 1 - N1-2 a fase OBMEP 2013 Ariadne brinca com números de dois ou mais algarismos. Ela soma, aos pares, os algarismos do número, da esquerda para a direita, e escreve os resultados em ordem; em seguida, ela repete a brincadeira com o novo número e assim por diante. Se ela chegar a um número com um único algarismo, a brincadeira acaba.

6 Questão 1 - N1-2 a fase OBMEP 2013 Ariadne brinca com números de dois ou mais algarismos. Ela soma, aos pares, os algarismos do número, da esquerda para a direita, e escreve os resultados em ordem; em seguida, ela repete a brincadeira com o novo número e assim por diante. Se ela chegar a um número com um único algarismo, a brincadeira acaba.

7 Questão 1 - N1-2 a fase OBMEP 2013 Ariadne brinca com números de dois ou mais algarismos. Ela soma, aos pares, os algarismos do número, da esquerda para a direita, e escreve os resultados em ordem; em seguida, ela repete a brincadeira com o novo número e assim por diante. Se ela chegar a um número com um único algarismo, a brincadeira acaba.

8 Questão 1 - N1-2 a fase OBMEP 2013 Ariadne brinca com números de dois ou mais algarismos. Ela soma, aos pares, os algarismos do número, da esquerda para a direita, e escreve os resultados em ordem; em seguida, ela repete a brincadeira com o novo número e assim por diante. Se ela chegar a um número com um único algarismo, a brincadeira acaba.

9 Questão 1 - N1-2 a fase OBMEP 2013 Ariadne brinca com números de dois ou mais algarismos. Ela soma, aos pares, os algarismos do número, da esquerda para a direita, e escreve os resultados em ordem; em seguida, ela repete a brincadeira com o novo número e assim por diante. Se ela chegar a um número com um único algarismo, a brincadeira acaba.

10 Questão 1 - N1-2 a fase OBMEP 2013 Ariadne brinca com números de dois ou mais algarismos. Ela soma, aos pares, os algarismos do número, da esquerda para a direita, e escreve os resultados em ordem; em seguida, ela repete a brincadeira com o novo número e assim por diante. Se ela chegar a um número com um único algarismo, a brincadeira acaba. Por exemplo, com 294 Ariadne obtém:

11 Questão 1 - N1-2 a fase OBMEP 2013 Ariadne brinca com números de dois ou mais algarismos. Ela soma, aos pares, os algarismos do número, da esquerda para a direita, e escreve os resultados em ordem; em seguida, ela repete a brincadeira com o novo número e assim por diante. Se ela chegar a um número com um único algarismo, a brincadeira acaba. Por exemplo, com 294 Ariadne obtém: = =

12 Questão 1 - N1-2 a fase OBMEP 2013 Ariadne brinca com números de dois ou mais algarismos. Ela soma, aos pares, os algarismos do número, da esquerda para a direita, e escreve os resultados em ordem; em seguida, ela repete a brincadeira com o novo número e assim por diante. Se ela chegar a um número com um único algarismo, a brincadeira acaba. Por exemplo, com 294 Ariadne obtém: = = =

13 Questão 1 - N1-2 a fase OBMEP 2013 Ariadne brinca com números de dois ou mais algarismos. Ela soma, aos pares, os algarismos do número, da esquerda para a direita, e escreve os resultados em ordem; em seguida, ela repete a brincadeira com o novo número e assim por diante. Se ela chegar a um número com um único algarismo, a brincadeira acaba. Por exemplo, com 294 Ariadne obtém: = =

14 Questão 1 - N1-2 a fase OBMEP 2013 Ariadne brinca com números de dois ou mais algarismos. Ela soma, aos pares, os algarismos do número, da esquerda para a direita, e escreve os resultados em ordem; em seguida, ela repete a brincadeira com o novo número e assim por diante. Se ela chegar a um número com um único algarismo, a brincadeira acaba. Por exemplo, com 294 Ariadne obtém: =

15 Questão 1 - N1-2 a fase OBMEP 2013 Ariadne brinca com números de dois ou mais algarismos. Ela soma, aos pares, os algarismos do número, da esquerda para a direita, e escreve os resultados em ordem; em seguida, ela repete a brincadeira com o novo número e assim por diante. Se ela chegar a um número com um único algarismo, a brincadeira acaba. Por exemplo, com 294 Ariadne obtém: =

16 Questão 1a - N1-2 a fase OBMEP 2013 a) Escreva a sequência que começa com 4125.

17 Questão 1a - N1-2 a fase OBMEP 2013 a) Escreva a sequência que começa com A sequência é: 4125

18 Questão 1a - N1-2 a fase OBMEP 2013 a) Escreva a sequência que começa com A sequência é:

19 Questão 1a - N1-2 a fase OBMEP 2013 a) Escreva a sequência que começa com 4125 A sequência é:

20 Questão 1a - N1-2 a fase OBMEP 2013 a) Escreva a sequência que começa com A sequência é:

21 Questão 1a - N1-2 a fase OBMEP 2013 a) Escreva a sequência que começa com A sequência é:

22 Questão 1a - N1-2 a fase OBMEP 2013 a) Escreva a sequência que começa com A sequência é:

23 Questão 1b - N1-2 a fase OBMEP 2013 b) Escreva os seis primeiros números da sequência que começa com 995.

24 Questão 1b - N1-2 a fase OBMEP 2013 b) Escreva os seis primeiros números da sequência que começa com 995. Os seis primeiros termos são: 995

25 Questão 1b - N1-2 a fase OBMEP 2013 b) Escreva os seis primeiros números da sequência que começa com 995. Os seis primeiros termos são:

26 Questão 1b - N1-2 a fase OBMEP 2013 b) Escreva os seis primeiros números da sequência que começa com 995. Os seis primeiros termos são:

27 Questão 1b - N1-2 a fase OBMEP 2013 b) Escreva os seis primeiros números da sequência que começa com 995. Os seis primeiros termos são:

28 Questão 1b - N1-2 a fase OBMEP 2013 b) Escreva os seis primeiros números da sequência que começa com 995. Os seis primeiros termos são:

29 Questão 1b - N1-2 a fase OBMEP 2013 b) Escreva os seis primeiros números da sequência que começa com 995. Os seis primeiros termos são:

30 Questão 1c - N1-2 a fase OBMEP 2013 c) Qual é o 103 o número da sequência que começa com 33333?

31 Questão 1c - N1-2 a fase OBMEP 2013 c) Qual é o 103 o número da sequência que começa com 33333? Observe que os primeiros termos da sequência são: 33333

32 Questão 1c - N1-2 a fase OBMEP 2013 c) Qual é o 103 o número da sequência que começa com 33333? Observe que os primeiros termos da sequência são:

33 Questão 1c - N1-2 a fase OBMEP 2013 c) Qual é o 103 o número da sequência que começa com 33333? Observe que os primeiros termos da sequência são:

34 Questão 1c - N1-2 a fase OBMEP 2013 c) Qual é o 103 o número da sequência que começa com 33333? Observe que os primeiros termos da sequência são:

35 Questão 1c - N1-2 a fase OBMEP 2013 c) Qual é o 103 o número da sequência que começa com 33333? Observe que os primeiros termos da sequência são:

36 Questão 1c - N1-2 a fase OBMEP 2013 c) Qual é o 103 o número da sequência que começa com 33333? Observe que os primeiros termos da sequência são: e que os termos se repetem de três em três.

37 Questão 1c - N1-2 a fase OBMEP 2013 c) Qual é o 103 o número da sequência que começa com 33333? Os primeiros termos da sequência são: e que os termos se repetem de três em três. Como 103 = , segue que o 103 o termo dessa sequência é

SOLUÇÕES N2 2015. item a) O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2.

SOLUÇÕES N2 2015. item a) O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2. Solução da prova da 1 a fase OBMEP 2015 Nível 1 1 SOLUÇÕES N2 2015 N2Q1 Solução O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2. Com um

Leia mais

Apontamentos de matemática 5.º ano - Múltiplos e divisores

Apontamentos de matemática 5.º ano - Múltiplos e divisores Múltiplos e divisores (revisão do 1.º ciclo) Os múltiplos de um número inteiro obtêm-se multiplicando esse número pela sequência dos números inteiros. Exemplos: Alguns múltiplos de 6 são: 0, 6, 12, 18,

Leia mais

2 a fase da OBMEP 2013: Questão 1 - Nível 3 Professor José Hilário www.ime.ufg.br/obmep e-mail: jhilario@ufg.br Goianésia, 4 de setembro de 2014 Na figura temos um aparelho com três discos C (centenas),

Leia mais

Um número é divisível por 2 quando termina em 0, 2, 4, 6 ou 8, isto é, se for um número par.

Um número é divisível por 2 quando termina em 0, 2, 4, 6 ou 8, isto é, se for um número par. Critérios de divisibilidade Divisibilidade por 1 Todos os números inteiros são divisíveis por 1. 1 : 1 = 1 2 : 1 = 2 3 : 1 = 3 Divisibilidade por 2 Um número é divisível por 2 quando termina em 0, 2, 4,

Leia mais

12 26, 62, 34, 43 21 37, 73 30 56, 65

12 26, 62, 34, 43 21 37, 73 30 56, 65 1 Questão 1 Solução a) Primeiro multiplicamos os algarismos de 79, obtendo 7 9 = 63, e depois somamos os algarismos desse produto, obtendo 6 + 3 = 9. Logo o transformado de é 79 é 9. b) A brincadeira de

Leia mais

Solução da prova da 2a fase OBMEP 2014 Nível 2. Questão 1. item a)

Solução da prova da 2a fase OBMEP 2014 Nível 2. Questão 1. item a) Questão 1 Cada nova pilha tem dois cubinhos a mais em sua base. Assim, como a terceira pilha tem 5 cubinhos em sua base, a quarta pilha tem 5 + 2 = 7 cubinhos e a quinta pilha tem 7 + 2 = 9 cubinhos em

Leia mais

XXXII Olimpíada Brasileira de Matemática. GABARITO Segunda Fase

XXXII Olimpíada Brasileira de Matemática. GABARITO Segunda Fase XXXII Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 1 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta correta e a pontuação

Leia mais

Lista de Exercícios Critérios de Divisibilidade

Lista de Exercícios Critérios de Divisibilidade Nota: Os exercícios desta aula são referentes ao seguinte vídeo Matemática Zero 2.0 - Aula 10 - Critérios de - (parte 1 de 2) Endereço: https://www.youtube.com/watch?v=1f1qlke27me Gabaritos nas últimas

Leia mais

QUESTÃO 3 ALTERNATIVA E 24 é o maior número que aparece na figura. Indicamos abaixo a sequência de operações e seu resultado. 24 2 12 6 144.

QUESTÃO 3 ALTERNATIVA E 24 é o maior número que aparece na figura. Indicamos abaixo a sequência de operações e seu resultado. 24 2 12 6 144. OBMEP 009 Nível 1 1 QUESTÃO 1 Na imagem que aparece no espelho do Benjamim, o ponteiro dos minutos aponta para o algarismo, enquanto que o ponteiro das horas está entre o algarismo 6 e o traço correspondente

Leia mais

Tudo vem dos sonhos. Primeiro sonhamos, depois fazemos.

Tudo vem dos sonhos. Primeiro sonhamos, depois fazemos. Nível 1 5 a e 6 a séries do Ensino Fundamental 2ª FASE - 8 de outubro de 2005 Cole aqui a etiqueta com os dados do aluno. Nome do(a) aluno(a): Assinatura do(a) aluno(a): Parabéns pelo seu desempenho na

Leia mais

CENTRO EDUCACIONAL NOVO MUNDO Matemática

CENTRO EDUCACIONAL NOVO MUNDO  Matemática Desafio de Matemática 3 ano EF 2D 2014 1/ 6 CENTRO EDUCACIONAL NOVO MUNDO www.cenm.com.br 2 o DESAFIO CENM - 2014 Matemática Direção: Ano: 3 Ef 1. Em uma sala de aula, a professora realizou uma pesquisa

Leia mais

Matemática Aplicada. A Quais são a velocidade máxima e a velocidade mínima registradas entre 12:00 horas e 18:00 horas?

Matemática Aplicada. A Quais são a velocidade máxima e a velocidade mínima registradas entre 12:00 horas e 18:00 horas? Matemática Aplicada 1 Em certo mês, o Departamento de Estradas registrou a velocidade do trânsito em uma rodovia. A partir dos dados, é possível estimar que, por exemplo, entre 12:00 horas e 18:00 horas

Leia mais

Cole aqui a etiqueta com os dados do aluno. Nível

Cole aqui a etiqueta com os dados do aluno. Nível Cole aqui a etiqueta com os dados do aluno. Nível 1 6º e 7º anos do Ensino Fundamental 2ª FASE 14 de setembro de 2013 Nome completo do aluno Endereço completo do aluno (Rua, Av., nº) Complemento Bairro

Leia mais

Representação de Circuitos Lógicos

Representação de Circuitos Lógicos 1 Representação de Circuitos Lógicos Formas de representação de um circuito lógico: Representação gráfica de uma rede de portas lógicas Expressão booleana Tabela verdade 3 representações são equivalentes:

Leia mais

Potenciação e radiciação

Potenciação e radiciação Sequência didática para a sala de aula 6 MATEMÁTICA Unidade 1 Capítulo 6: (páginas 55 a 58 do livro) 1 Objetivos Associar a potenciação às situações que representam multiplicações de fatores iguais. Perceber

Leia mais

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo A UA UL LA Frações e números decimais Introdução Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos de um bolo se dividirmos esse bolo em cinco partes iguais e tomarmos

Leia mais

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo A UA UL LA Frações e números decimais Introdução Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos de um bolo se dividirmos esse bolo em cinco partes iguais e tomarmos

Leia mais

Canguru de Matemática Brasil 2016 Nível PE Respostas

Canguru de Matemática Brasil 2016 Nível PE Respostas Canguru de Matemática Brasil 2016 Nível PE Respostas Problemas de 3 pontos 1. Qual letra do quadro ao lado não está na palavra LAGOA? (A) B (B) L (C) G (D) N (E) O 1. Alternativa D A letra N não aparece

Leia mais

PROVA COMENTADA PELOS PROFESSORES DO CURSO POSITIVO Vestibular ITA 2016 QUÍMICA

PROVA COMENTADA PELOS PROFESSORES DO CURSO POSITIVO Vestibular ITA 2016 QUÍMICA 01. Alternativa: A 02. Alternativa: E 03. Alternativa: SEM RESPOSTA 04. Alternativa: E PROVA COMENTADA PELOS 05. Alternativa: C 06. A soma do n ọ de prótons com o n ọ de nêutrons é definido como número

Leia mais

RESOLUÇÃO DAS CHARADAS

RESOLUÇÃO DAS CHARADAS RESOLUÇÃO DAS CHARADAS Tarefa 04 3M Usar Média, Mediana e Moda, que usamos na matemática. Após isso, somar as operações. Com o resultado obtido, pegar a letra correspondente no alfabeto. No final, organizar

Leia mais

MATEMÁTICA PROVA 3º BIMESTRE 6º ANO

MATEMÁTICA PROVA 3º BIMESTRE 6º ANO PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO MATEMÁTICA PROVA 3º BIMESTRE 6º ANO 2010 QUESTÃO 1 A rua em que Carlos mora é muito

Leia mais

Nome: N.º: endereço: data: telefone: PARA QUEM CURSA O 6 Ọ ANO EM 2014. Disciplina:

Nome: N.º: endereço: data: telefone:   PARA QUEM CURSA O 6 Ọ ANO EM 2014. Disciplina: Nome: N.º: endereço: data: telefone: E-mail: Colégio PARA QUEM CURSA O Ọ ANO EM 0 Disciplina: MateMática Prova: desafio nota: QUESTÃO (PUC-0) Suponha que a professora Dona Marocas tenha pedido a seus alunos

Leia mais

Professores do Ensino Básico - Variante de Educação Física. Disciplina: Matemática Data: Ficha de trabalho: 3

Professores do Ensino Básico - Variante de Educação Física. Disciplina: Matemática Data: Ficha de trabalho: 3 Instituto Politécnico de Bragança Escola Superior de Educação Professores do Ensino Básico - Variante de Educação Física Disciplina: Data: Ficha de trabalho: 3 Conteúdos: números, modelos para a numeração

Leia mais

OBI2013 Caderno de Tarefas

OBI2013 Caderno de Tarefas OBI2013 Caderno de Tarefas Modalidade Iniciação Nível 1, Fase 2 31 de agosto de 2013 A PROVA TEM DURAÇÃO DE 2 HORAS Promoção: Patrocínio: Olimpíada Brasileira de Informática OBI2013 1 Instruções LEIA ATENTAMENTE

Leia mais

Oficina de Jogos. Jorge Sabatucci. Universidade Federal de Minas Gerais

Oficina de Jogos. Jorge Sabatucci. Universidade Federal de Minas Gerais Oficina de Jogos Jorge Sabatucci Universidade Federal de Minas Gerais 1 o Colóquio da Região Sudeste Abril de 2011 Prefácio Neste encontro trabalharemos com algumas atividades utilizadas no projeto VISITAS

Leia mais

NDMAT Núcleo de Desenvolvimentos Matemáticos

NDMAT Núcleo de Desenvolvimentos Matemáticos 01) Em um edifício residencial com 54 apartamentos, 36 condôminos pagam taxa de condomínio de R$ 180,00; para os demais, essa taxa é de R$ 240,00. Qual é o valor da taxa média de condomínio nesse edifício?

Leia mais

Circuitos Aritméticos

Circuitos Aritméticos Circuitos Aritméticos Semi-Somador Quando queremos proceder à realização de uma soma em binário, utilizamos várias somas de dois bits para poderemos chegar ao resultado final da operação. Podemos, então,

Leia mais

Unidade 1 Números e sistemas de numeração

Unidade 1 Números e sistemas de numeração Sugestões de atividades Unidade 1 Números e sistemas de numeração 6 MATEMÁTICA 1 Matemática 1. Para escrever um número, utilizamos símbolos: os algarismos. Escreva o maior e o menor número natural possível

Leia mais

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) Qual é a menor das raízes da equação Questão 2 (OBMEP RJ adaptada) Mariana entrou na sala e viu

Leia mais

Projeto Jovem Nota 10 Conjuntos Numéricos Lista 3 Professor Marco Costa 1. Represente geometricamente os números racionais:

Projeto Jovem Nota 10 Conjuntos Numéricos Lista 3 Professor Marco Costa 1. Represente geometricamente os números racionais: 1 Projeto Jovem Nota 10 1. Represente geometricamente os números racionais: 2/3, -4/5, 5/4, -7/4 e -12/4 2. A fração irredutível 7/64 pode ser transformada em um decimal exato? Justifique sua resposta.

Leia mais

UM POUCO MAIS DE FORMATAÇÃO

UM POUCO MAIS DE FORMATAÇÃO UM POUCO MAIS DE FORMATAÇÃO Ao digitar os dados na planilha abaixo, observamos que o conteúdo da célula B5 ultrapassa seus limites invadindo os campos das células C5 e D5. Observe que na barra de fórmulas

Leia mais

PROVA DE MATEMÁTICA. Marque no cartão-resposta anexo, a única opção correta correspondente a cada questão.

PROVA DE MATEMÁTICA. Marque no cartão-resposta anexo, a única opção correta correspondente a cada questão. CONCURSO DE ADMISSÃO 5 a SÉRIE/ENS.FUND/CMF. MATEMÁTICA 2005/06 PÁG - 02 PROVA DE MATEMÁTICA Marque no cartão-resposta anexo, a única opção correta correspondente a cada questão. 1. Na tabela abaixo, disponha

Leia mais

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) Uma placa decorativa consiste num quadrado branco de 4 metros de lado, pintado de forma simétrica

Leia mais

Números escritos em notação científica

Números escritos em notação científica Notação Científica Números escritos em notação científica Escrever um número em notação científica tem muitas vantagens: Para números muito grandes ou muito pequenos poderem ser escritos de forma abreviada.

Leia mais

ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA PROGRESSÃO PARCIAL 2.º ANO DO ENSINO MÉDIO TRABALHO DOS ESTUDOS ORIENTADOS AO LONGO DO 1.

ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA PROGRESSÃO PARCIAL 2.º ANO DO ENSINO MÉDIO TRABALHO DOS ESTUDOS ORIENTADOS AO LONGO DO 1. ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA PROGRESSÃO PARCIAL 2.º ANO DO ENSINO MÉDIO TRABALHO DOS ESTUDOS ORIENTADOS AO LONGO DO 1.º SEMESTRE Aluno: Série: Data: Disciplina: MATEMÁTICA Turno: Valor:

Leia mais

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 3ª Série do Ensino Médio Turma 2º bimestre de 2015 Data / / Escola Aluno

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 3ª Série do Ensino Médio Turma 2º bimestre de 2015 Data / / Escola Aluno AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 3ª Série do Ensino Médio Turma 2º bimestre de 2015 Data / / Escola Aluno Questão 1 O perímetro de um piso retangular de cerâmica mede 14 m e sua área, 12

Leia mais

XXXII OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 1 6 o ou 7 o ano

XXXII OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 1 6 o ou 7 o ano XXXII OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 1 6 o ou 7 o ano Esta prova também corresponde à prova da Primeira Fase da Olimpíada Regional nos Estados de: AL BA ES GO MG PA RS RN SC A duração

Leia mais

Lista de Exercícios - Adição

Lista de Exercícios - Adição Nota: Os exercícios desta aula são referentes ao seguinte vídeo Matemática Zero 2.0 - Aula 4 - Adição - (parte 1 de 2) Endereço: https://www.youtube.com/watch?v=ss7v8dgjz34 Gabaritos nas últimas páginas!

Leia mais

Canguru Matemático sem Fronteiras 2015

Canguru Matemático sem Fronteiras 2015 anguru Matemático sem Fronteiras 2015 http://www.mat.uc.pt/canguru/ ategoria: Mini-Escolar - nível III Destinatários: alunos do 4. o ano de escolaridade ome: Turma: Duração: 1h 30min anguru Matemático.

Leia mais

PREPARATÓRIO PROFMAT/ AULA 3

PREPARATÓRIO PROFMAT/ AULA 3 PREPARATÓRIO PROFMAT/ AULA 3 Números, Progressões e Lógica Prof. Ronaldo Busse Números Uma questão presente nos exames de seleção até aqui foi a comparação entre grandezas numéricas. O procedimento indicado

Leia mais

38 a OLIMPÍADA BRASILEIRA DE MATEMÁ TICA

38 a OLIMPÍADA BRASILEIRA DE MATEMÁ TICA 38 a OLIMPÍADA BRASILEIRA DE MATEMÁ TICA Primeira Fase Nível 2 (8 o ou 9 o ano) Sexta-feira, 17 de junho de 2016. Caro(a) aluno(a): A duração da prova é de 3 horas. Você poderá, se necessário, solicitar

Leia mais

Professor: André Rabelo Curso: Engenharia da Computação Disciplina: Lógica Digital Período: 3º Data Entrega: 21/03/2012 Valor: 15 pts Objetivos:

Professor: André Rabelo Curso: Engenharia da Computação Disciplina: Lógica Digital Período: 3º Data Entrega: 21/03/2012 Valor: 15 pts Objetivos: Professor: André Rabelo Curso: Engenharia da Computação Disciplina: Lógica Digital Período: 3º Data Entrega: 21/03/2012 Valor: 15 pts Objetivos: Pesquisar e aprofundar os conhecimentos em Lógica Digital

Leia mais

Sugestões de atividades. Unidade 5 Frações MATEMÁTICA

Sugestões de atividades. Unidade 5 Frações MATEMÁTICA Sugestões de atividades Unidade 5 Frações MATEMÁTICA Matemática. Considerando as frações indicadas a seguir, escreva V para as afirmações verdadeiras e F para as falsas. Qual é o resultado da adição?.

Leia mais

Sugestão de Avaliação. Praticando. Edição Renovada. Matemática. 6 o ano 1 o bimestre Unidades 1, 2 e 3

Sugestão de Avaliação. Praticando. Edição Renovada. Matemática. 6 o ano 1 o bimestre Unidades 1, 2 e 3 Sugestão de Avaliação Edição Renovada Praticando 6 Matemática 6 o ano 1 o bimestre Unidades 1, e 3 Nome: n o : Série/Turma: Escola: Professor: Data: / / a) 1 Que números são estes? Escreva-os utilizando

Leia mais

PROFMAT AV3 MA 11 2011. (1,0) (a) Prove isto: Se um número natural não é o quadrado de um outro número natural, sua raiz quadrada é irracional.

PROFMAT AV3 MA 11 2011. (1,0) (a) Prove isto: Se um número natural não é o quadrado de um outro número natural, sua raiz quadrada é irracional. Questão 1. (1,0) (a) Prove isto: Se um número natural não é o quadrado de um outro número natural, sua raiz quadrada é irracional. (1,0) (b) Mostre que 2 + 5 é irracional. (a) Seja n N. Se p q Q é tal

Leia mais

5. O Mapa de Karnaugh

5. O Mapa de Karnaugh Objetivos 5. O Mapa de Karnaugh Usar um mapa de Karnaugh para simplificar expressões Booleanas Usar um mapa de Karnaugh para simplificar funções de tabela-verdade Utilizar condições don t care para simplificar

Leia mais

Projeto Jovem Nota 10 Análise Combinatória Lista A Professor Marco Costa

Projeto Jovem Nota 10 Análise Combinatória Lista A Professor Marco Costa 1 1. (Cesgranrio) Durante a Copa do Mundo, que foi disputada por 24 países, as tampinhas de Coca- Cola traziam palpites sobre os países que se classificariam nos três primeiros lugares (por exemplo: 1º

Leia mais

Os dados quantitativos também podem ser de natureza discreta ou contínua.

Os dados quantitativos também podem ser de natureza discreta ou contínua. Natureza dos Dados Às informações obtidas acerca das características de um conjunto dá-se o nome de dado estatístico. Os dados estatísticos podem ser de dois tipos: qualitativos ou quantitativos. Dado

Leia mais

CAMPEONATOS José Armando Barbosa Filho

CAMPEONATOS José Armando Barbosa Filho CAMPEONATOS José Armando Barbosa Filho Nível Iniciante Há uma grande variedade de problemas de olimpíadas que envolvem campeonatos. A principio, para simplificar o problema, vamos analisar casos onde cada

Leia mais

Actividade de enriquecimento. Algoritmo da raiz quadrada

Actividade de enriquecimento. Algoritmo da raiz quadrada Actividade de enriquecimento Algoritmo da raiz quadrada Nota: Apresenta-se uma actividade de enriquecimento e de um possível trabalho conjunto com as disciplinas da área de informática: os alunos poderão

Leia mais

O Mágico das Arábias. Série Matemática na Escola

O Mágico das Arábias. Série Matemática na Escola O Mágico das Arábias Série Matemática na Escola Objetivos 1. Apresentar uma aplicação curiosa de operações aritméticas; 2. Reforçar o sistema decimal; 3. Mostrar outros sistemas numerais com base diferente.

Leia mais

PROVA RESOLVIDA DA PETROBRAS 2011 ADMINISTRADOR JUNIOR. Professor Joselias http://professorjoselias.blogspot.com

PROVA RESOLVIDA DA PETROBRAS 2011 ADMINISTRADOR JUNIOR. Professor Joselias http://professorjoselias.blogspot.com PROVA RESOLVIDA DA PETROBRAS 2011 ADMINISTRADOR JUNIOR 1) (Concurso Petrobras 2011 Administrador Junior) Considere uma sequência infinita de retângulos, cada um deles com base medindo 1cm e tais que o

Leia mais

Alguns Apontamentos Sobre Cálculo Combinatório

Alguns Apontamentos Sobre Cálculo Combinatório Alguns Apontamentos Sobre Cálculo Combinatório 1 O objectivo do Cálculo Combinatório é resolver problemas do tipo: quantas matriculas de carro é possível fazer em Portugal ; quantos números de telefone

Leia mais

Determinantes. Vamos associar a cada matriz quadrada A um número a que chamaremos determinante. a11 a Uma matriz de ordem 2, A =

Determinantes. Vamos associar a cada matriz quadrada A um número a que chamaremos determinante. a11 a Uma matriz de ordem 2, A = Determinantes Vamos associar a cada matriz quadrada A um número a que chamaremos determinante de A. [ ] a11 a Uma matriz de ordem 2, A 12, é invertível se e só se a 21 a 22 a 11 a 22 a 21 a 12 0, como

Leia mais

(PROVA DE MATEMÁTICA DO CONCURSO DE ADMISSÃO À 5ª SÉRIE CMB ANO 2005 / 06) MÚLTIPLA-ESCOLHA. (Marque com um X a única alternativa certa)

(PROVA DE MATEMÁTICA DO CONCURSO DE ADMISSÃO À 5ª SÉRIE CMB ANO 2005 / 06) MÚLTIPLA-ESCOLHA. (Marque com um X a única alternativa certa) MÚLTIPLA-ESCOLHA (Marque com um X a única alternativa certa) QUESTÃO 01. Um aluno da 5ª série do CMB saiu de casa e fez compras em quatro lojas, cada uma num bairro diferente. Em cada uma, gastou a metade

Leia mais

Álgebra Linear Computacional

Álgebra Linear Computacional Álgebra Linear Computacional Geovan Tavares, Hélio Lopes e Sinésio Pesco. PUC-Rio Departamento de Matemática Laboratório Matmidia http://www.matmidia.mat.puc-rio.br Sistemas de Equações Lineares Espaços

Leia mais

Medidas de Tendência Central

Medidas de Tendência Central Média, Mediana e Moda 1 Coletando Dados A coleta de dados produz um conjunto de escores de uma ou mais variáveis Para chegar à distribuição dos escores, estes têm de ser arrumados / ordenados do menor

Leia mais

Exercícios: Vetores e Matrizes

Exercícios: Vetores e Matrizes Universidade Federal de Uberlândia - UFU Faculdade de Computação - FACOM Lista de exercícios de programação em linguagem C Exercícios: Vetores e Matrizes 1 Vetores 1. Escreva um programa que leia 10 números

Leia mais

XXXII Olimpíada Brasileira de Matemática GABARITO Segunda Fase

XXXII Olimpíada Brasileira de Matemática GABARITO Segunda Fase XXXII Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível Segunda Fase Parte A PARTE A Na parte A serão atribuídos 4 pontos para cada resposta correta e a pontuação máxima para essa

Leia mais

MATEMÁTICA - 2 o ANO MÓDULO 01 PONTO, RETA E PLANO

MATEMÁTICA - 2 o ANO MÓDULO 01 PONTO, RETA E PLANO MATEMÁTICA - 2 o ANO MÓDULO 01 PONTO, RETA E PLANO r s A E B D C F α G H A B r r s r s α r P s s r α A α B C α P B r A α r α P α r P P α r A B r α A B r r r P α A B α A B F F α α=β α β = α = β α β α β

Leia mais

Sistema de Numeração Decimal

Sistema de Numeração Decimal Sistema de Numeração Decimal Leitura deleite: O valor de cada um Os números no dia-a-dia Para refletir... Como trabalhamos o Sistema de Numeração Decimal na escola? Já perceberam que os Livros didáticos

Leia mais

Metodologias de Programação

Metodologias de Programação Metodologias de Programação Bloco 1 José Paulo 1 Formador José António Paulo E-mail: questoes@netcabo.pt Telemóvel: 96 347 80 25 Objectivos Iniciar o desenvolvimento de raciocínios algorítmicos Linguagem

Leia mais

11. Resolve as seguintes expressões numéricas: 1 2 1

11. Resolve as seguintes expressões numéricas: 1 2 1 Escola Secundária de Lousada Ficha de Trabalho de Matemática do7º nº Data /0 / 0 Assunto: Preparação para a Prova I Lições nº, Data da Realização : / 0 / 0 Duração: 90 minutos Conteúdos Números inteiros:

Leia mais

Teoria dos Números. A soma de dois números pares é sempre um número par. O produto de dois números pares é sempre um número par.

Teoria dos Números. A soma de dois números pares é sempre um número par. O produto de dois números pares é sempre um número par. Teoria dos Números Resultado obtido nas aulas de Teoria dos Números. Números pares e números ímpares. A soma de dois números pares é sempre um número par. O produto de dois números pares é sempre um número

Leia mais

CONCURSO DE ADMISSÃO 2010/2011 PROVA DE MATEMÁTICA 6º ANO DO ENSINO FUNDAMENTAL CONFERÊNCIA:

CONCURSO DE ADMISSÃO 2010/2011 PROVA DE MATEMÁTICA 6º ANO DO ENSINO FUNDAMENTAL CONFERÊNCIA: CONCURSO DE ADMISSÃO 2010/2011 PROVA DE MATEMÁTICA 6º ANO DO ENSINO FUNDAMENTAL CONFERÊNCIA: Chefe da Subcomissão de Matemática Dir Ens CPOR / CMBH PÁGINA 1 RESPONDA AS QUESTÕES DE 01 A 20 E TRANSCREVA

Leia mais

Lista de Exercícios MMC e MDC

Lista de Exercícios MMC e MDC Nota: Os exercícios desta aula são referentes ao seguinte vídeo Matemática Zero 2.0 - Aula 11 MMC e MDC (parte 1 de 1) Endereço: https://www.youtube.com/watch?v=l2k66gp-sm4 Gabarito e Resolução nas últimas

Leia mais

MATEMÁTICA ENSINO FUNDAMENTAL

MATEMÁTICA ENSINO FUNDAMENTAL CEEJA MAX DADÁ GALLIZZI PRAIA GRANDE - SP PARABÉNS!!! VOCÊ JÁ É UM VENCEDOR! Voltar a estudar é uma vitória que poucos podem dizer que conseguiram. É para você, caro aluno, que desenvolvemos esse material.

Leia mais

Matemática Revisão de Decimais

Matemática Revisão de Decimais Matemática Revisão de Decimais Aluno: Ficha: Turma: Data: Material\Fundamental_II\Matemática\F7\F_078 1) Complete o quadro abaixo: Escrita de Números Decimais com algarismos por extenso 1,3 dezoito milésimos

Leia mais

Que algarismos devem ser colocados nos pontinhos da conta abaixo? ... 34 x 41... O. IS x 12 = 180 300-180 = 120

Que algarismos devem ser colocados nos pontinhos da conta abaixo? ... 34 x 41... O. IS x 12 = 180 300-180 = 120 Que algarismos devem ser colocados nos pontinhos da conta abaixo?... 34 x 41... O Invente um problema que tenha como solução os cálculos abaixo: IS x 12 = 180 300-180 = 120 Em diversas situações do nosso

Leia mais

Definição de determinantes de primeira e segunda ordens. Seja A uma matriz quadrada. Representa-se o determinante de A por det(a) ou A.

Definição de determinantes de primeira e segunda ordens. Seja A uma matriz quadrada. Representa-se o determinante de A por det(a) ou A. Determinantes A cada matriz quadrada de números reais, pode associar-se um número real, que se designa por determinante da matriz Definição de determinantes de primeira e segunda ordens Seja A uma matriz

Leia mais

Brincando com operações de adição e subtração; unidade, dezena e centena; horas; números pares e ímpares e sequência numérica

Brincando com operações de adição e subtração; unidade, dezena e centena; horas; números pares e ímpares e sequência numérica PPGECE Brincando com operações de adição e subtração; unidade, dezena e centena; horas; números pares e ímpares e sequência numérica Contextualização Maria Madalena Dullius Adriana Belmonte Bergmann Fernanda

Leia mais

Relatório das Provas da 2ª. Fase - Vestibular 2016

Relatório das Provas da 2ª. Fase - Vestibular 2016 Relatório das Provas da 2ª. Fase - Vestibular 2016 Resumo Executivo O presente relatório apresenta os resultados da segunda fase do Vestibular UNICAMP 2016 constituída por três provas. Esta etapa do vestibular

Leia mais

Matemática Discreta. Leandro Colombi Resendo. Matemática Discreta Bacharel em Sistemas de Informações

Matemática Discreta. Leandro Colombi Resendo. Matemática Discreta Bacharel em Sistemas de Informações Matemática Discreta Leandro Colombi Resendo Grafos e Árvores Grafos e Suas Representações Árvores e suas Representações Árvores de Decisão Códigos de Huffman Definição: Uma árvore é um grafo conexo acíclico

Leia mais

PROVA DE MATEMÁTICA CONCURSO DE ADMISSÃO 2013/2014 1º ANO DO ENSINO MÉDIO

PROVA DE MATEMÁTICA CONCURSO DE ADMISSÃO 2013/2014 1º ANO DO ENSINO MÉDIO CONCURSO DE ADMISSÃO 2013/2014 PROVA DE MATEMÁTICA 1º ANO DO ENSINO MÉDIO CONFERÊNCIA: Membro da CEOCP (Mat / 1º EM) Presidente da CEI Dir Ens CPOR / CMBH PÁGINA 1 RESPONDA AS QUESTÕES DE 1 A 20 E TRANSCREVA

Leia mais

OPERAÇÕES FUNDAMENTAIS

OPERAÇÕES FUNDAMENTAIS OPERAÇÕES FUNDAMENTAIS CÁLCULO DA ADIÇÃO E SUBTRAÇÃO: Operação aritmética, que consiste em adicionar ou retirar um número. a) 2254 + 1258 = 3512 1 1 2 2 5 4 3 5 1 2 Para o cálculo da adição, ordenamos

Leia mais

UNIGRANRIO

UNIGRANRIO 1) UNIGRANRIO Dados os polinômios p1 = x 2 5x + 6, p2 = 2x² 6x + 7 e p3 = x² 3x + 4. A respeito destes polinômios, sabe-se que p3 = ap1 + bp2. Dessa forma, pode-se afirmar que a b vale: a) 1 b) 2 c) 3

Leia mais

MATEMÁTICA PROF. JOSÉ LUÍS NÚMEROS DECIMAIS

MATEMÁTICA PROF. JOSÉ LUÍS NÚMEROS DECIMAIS NÚMEROS DECIMAIS Em todo numero decimal: CONVENÇÃO BÁSICA DO SISTEMA DECIMAL a parte inteira é separada da parte decimal por uma vírgula; um algarismo situado a direita de outro tem um valor significativo

Leia mais

Congruências Lineares

Congruências Lineares Filipe Rodrigues de S Moreira Graduando em Engenharia Mecânica Instituto Tecnológico de Aeronáutica (ITA) Agosto 006 Congruências Lineares Introdução A idéia de se estudar congruências lineares pode vir

Leia mais

PRINCÍPIOS DA MULTIPLICAÇÃO, DA ADIÇÃO E DA INCLUSÃO-

PRINCÍPIOS DA MULTIPLICAÇÃO, DA ADIÇÃO E DA INCLUSÃO- Matemática Discreta 2009.10 Exercícios CAP2 pg 1 PRINCÍPIOS DA MULTIPLICAÇÃO, DA ADIÇÃO E DA INCLUSÃO- EXCLUSÃO 1. Quantas sequências com 5 letras podem ser escritas usando as letras A,B,C? 2. Quantos

Leia mais

AV2 - MA 12-2011 UMA SOLUÇÃO

AV2 - MA 12-2011 UMA SOLUÇÃO Questão 1. Considere os caminhos no plano iniciados no ponto (0, 0) com deslocamentos paralelos aos eixos coordenados, sempre de uma unidade e no sentido positivo dos eixos x e y (não se descarta a possibilidade

Leia mais

Tanto neste nosso jogo de ler e escrever, leitor amigo, como em qualquer outro jogo, o melhor é sempre obedecer às regras.

Tanto neste nosso jogo de ler e escrever, leitor amigo, como em qualquer outro jogo, o melhor é sempre obedecer às regras. Nível 1 5ª e 6ª séries (6º e 7º anos) do Ensino Fundamental 2ª FASE 08 de novembro de 2008 Cole aqui a etiqueta com os dados do aluno. Parabéns pelo seu desempenho na 1ª Fase da OBMEP. É com grande satisfação

Leia mais

JOGOS NO ENSINO DE MATEMÁTICA - UMA ABORDAGEM METODOLÓGICA - 4º ANO. Adriana da Silva Santi Coordenação Pedagógica de Matemática

JOGOS NO ENSINO DE MATEMÁTICA - UMA ABORDAGEM METODOLÓGICA - 4º ANO. Adriana da Silva Santi Coordenação Pedagógica de Matemática JOGOS NO ENSINO DE MATEMÁTICA - UMA ABORDAGEM METODOLÓGICA - 4º ANO Adriana da Silva Santi Coordenação Pedagógica de Matemática Piraquara Junho/2014 1 JOGOS Os cinco jogos apresentados neste material exploram

Leia mais

GRANDEZAS PROPORCIONAIS Matemática Financeira. HERCULES SARTI Mestre

GRANDEZAS PROPORCIONAIS Matemática Financeira. HERCULES SARTI Mestre GRANDEZAS PROPORCIONAIS Matemática Financeira HERCULES SARTI Mestre Profº. Hércules Sarti Bacharel e Licenciado em Matemática. Mestre em Educação Matemática. 16 anos no Ensino Superior. Disciplinas: Estatística,

Leia mais

Inglês. COTAÇÕES (Parte II) Atividade A... 50 pontos. Atividade B... 50 pontos. Teste Intermédio de Inglês. Parte II Produção e interação escritas

Inglês. COTAÇÕES (Parte II) Atividade A... 50 pontos. Atividade B... 50 pontos. Teste Intermédio de Inglês. Parte II Produção e interação escritas Teste Intermédio de Inglês Parte II Produção e interação escritas Teste Intermédio Inglês Duração do Teste: 40 minutos (Parte II) 22.02.2013 9.º Ano de Escolaridade COTAÇÕES (Parte II) Atividade A... 50

Leia mais

QUESTÕES COMENTADAS DE RACIOCÍNIO LÓGICO-MATEMÁTICO FCC LISTA 3

QUESTÕES COMENTADAS DE RACIOCÍNIO LÓGICO-MATEMÁTICO FCC LISTA 3 QUESTÕES COMENTADAS DE RACIOCÍNIO LÓGICO-MATEMÁTICO FCC LISTA 3 1. (TRT ª região 004 Técnico Judiciário) Sistematicamente, Fábio e Cíntia vão a um mesmo restaurante: Fábio a cada 1 dias e Cíntia a cada

Leia mais

Correção dos Exercícios

Correção dos Exercícios Faculdade Novo Milênio Engenharia da Computação Engenharia de Telecomunicações Algoritmos I 2006/1 Correção dos Exercícios Questão 1: Construa um algoritmo que, tendo como dados de entrada dois pontos

Leia mais

Aquele que toma a realidade e faz um sonho é um artista. Também será artista aquele que do sonho faz a realidade.

Aquele que toma a realidade e faz um sonho é um artista. Também será artista aquele que do sonho faz a realidade. Nível 2 7 a e 8 a séries do Ensino Fundamental 2ª FASE - 8 de outubro de 2005 Cole aqui a etiqueta com os dados do aluno. Nome do(a) aluno(a): Assinatura do(a) aluno(a): Parabéns pelo seu desempenho na

Leia mais

AV1 - MA 14-2011. (1,0) (a) Determine o maior número natural que divide todos os produtos de três números naturais consecutivos.

AV1 - MA 14-2011. (1,0) (a) Determine o maior número natural que divide todos os produtos de três números naturais consecutivos. Questão 1 (1,0) (a) Determine o maior número natural que divide todos os rodutos de três números naturais consecutivos (1,0) (b) Resonda à mesma questão no caso do roduto de quatro números naturais consecutivos

Leia mais

Lista de Exercícios - Programação I (Pascal/ Python)

Lista de Exercícios - Programação I (Pascal/ Python) ENTRADA E SAÍDA Lista de Exercícios - Programação I (Pascal/ Python) 1) Escreva um programa que imprima seu nome na tela. 2) Escreva um programa que imprima o valor guardado em uma variável. 3) Escreva

Leia mais

Matemática Ficha de Apoio Modelos de Probabilidade - Introdução

Matemática Ficha de Apoio Modelos de Probabilidade - Introdução Matemática Ficha de Apoio Modelos de Probabilidade - Introdução 12ºano Introdução às probabilidades No final desta unidade, cada aluno deverá ser capaz de: - Identificar acontecimentos com conjuntos e

Leia mais

Então ao todo ela pode se vestir de 3+3=6 modos diferentes. Veja estas possibilidades na figura a seguir.

Então ao todo ela pode se vestir de 3+3=6 modos diferentes. Veja estas possibilidades na figura a seguir. Contagem 5: resolução de exercícios Desde a primeira aula de contagem estamos estudando o princípio multiplicativo e o princípio aditivo. Também estudamos o conceito de permutação e nas últimas aulas foram

Leia mais

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO Caro aluno, Disponibilizo abaixo a resolução resumida das 10 questões de Matemática da prova de Escrevente do Tribunal de Justiça de São Paulo. Em

Leia mais

Canguru Matemático sem Fronteiras 2014

Canguru Matemático sem Fronteiras 2014 http://www.mat.uc.pt/canguru/ Destinatários: alunos do 12. ano de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões

Leia mais

PUC-Rio Desafio em Matemática 21 de outubro de 2012

PUC-Rio Desafio em Matemática 21 de outubro de 2012 PUC-Rio Desafio em Matemática 21 de outubro de 2012 Nome: GABARITO Assinatura: Inscrição: Identidade: Questão Valor Nota Revisão 1 1,0 2 1,0 3 1,5 4 1,5 5 1,5 6 1,5 7 2,0 Nota final 10,0 Instruções Mantenha

Leia mais

Ficha Prática 5: Cap 3.Princípios Elementares de Contagem

Ficha Prática 5: Cap 3.Princípios Elementares de Contagem Matemática Discreta - 2010/11 Cursos: Engenharia Informática, Informática de Gestão DEPARTAMENTO de MATEMÁTICA ESCOLA SUPERIOR de TECNOLOGIA e de GESTÃO - INSTITUTO POLITÉCNICO de BRAGANÇA Ficha Prática

Leia mais

tipo e tamanho e com os "mesmos" elementos do vetor A, ou seja, B[i] = A[i].

tipo e tamanho e com os mesmos elementos do vetor A, ou seja, B[i] = A[i]. INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA SUL-RIO- GRANDENSE CAMPUS SAPUCAIA DO SUL PROFESSOR: RICARDO LUIS DOS SANTOS EXERCÍCIO DE REVISÃO E FIXAÇÃO DE CONTEÚDO - ARRAYS 1. Criar um vetor A

Leia mais

1 CONJUNTO DOS NÚMEROS NATURAIS: IN

1 CONJUNTO DOS NÚMEROS NATURAIS: IN 1 CONJUNTO DOS NÚMEROS NATURAIS: IN Os números naturais surgiram da necessidade de contar objetos. Por isso, às vezes são chamados de números de contagem. Representa-se o conjunto dos números naturais

Leia mais

XXXI OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º. ou 9º. anos) GABARITO

XXXI OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º. ou 9º. anos) GABARITO XXXI OLIMPÍ RSILEIR E MTEMÁTI PRIMEIR FSE NÍVEL (º ou 9º anos) GRITO GRITO NÍVEL ) 6) ) 6) ) E ) 7) ) 7) ) ) ) ) E ) ) 4) 9) 4) E 9) 4) ) 0) ) 0) ) ada questão da Primeira Fase vale ponto (Total de pontos

Leia mais

6 o ANO DO ENSINO FUNDAMENTAL PROVA DE MATEMÁTICA INSTRUÇÕES AOS CANDIDATOS

6 o ANO DO ENSINO FUNDAMENTAL PROVA DE MATEMÁTICA INSTRUÇÕES AOS CANDIDATOS MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DECEx - DEPA COLÉGIO MILITAR DE FORTALEZA CASA DE EUDORO CORRÊA CONCURSO DE ADMISSÃO 2009/2010 6 o ANO DO ENSINO FUNDAMENTAL PROVA DE MATEMÁTICA INSTRUÇÕES AOS

Leia mais

Lista Análise Combinatória

Lista Análise Combinatória NOME: ANO: 2º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Lista Análise Combinatória Exercícios básicos 1. Quatro times de futebol (Vasco, Atlético, Corinthians e Internacional) disputam um torneio. Quantas

Leia mais