CADERNO DE OFICINA COM ATIVIDADES DE GEOMETRIA

Tamanho: px
Começar a partir da página:

Download "CADERNO DE OFICINA COM ATIVIDADES DE GEOMETRIA"

Transcrição

1 APÊNDICE A - CADERNO DE OFICINA COM ATIVIDADES DE GEOMETRIA PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS MESTRADO EM ENSINO DE CIÊNCIAS E MATEMÁTICA CADERNO DE OFICINA COM ATIVIDADES DE GEOMETRIA AUTORES: Lúcia Helena da Cunha Ferreira João Bosco Laudares Colaboradores: Adilson Tadeu da Cunha Ferreira Ayllana da Cunha Ferreira Thiago Freire Alves Ferreira Belo Horizonte 2010

2 PREFÁCIO Esse produto é resultado de uma pesquisa realizada no mestrado de Ciências e Matemática da PUC - Minas e componente da Dissertação de Mestrado da Professora Lúcia Helena da Cunha Ferreira e orientada pelo Professor Dr. João Bosco Laudares. As atividades apresentadas nesse caderno de oficina se referem ao desenvolvimento do pensamento geométrico com o estudo de vistas de uma figura e sua perspectiva, exploração dos sólidos de revolução na obtenção pelos alunos da habilidade de visualização. Este material constitui um produto criado a partir de atividades referenciadas na Teoria de van Hiele (1986) e elaboradas segundo os parâmetros de João Pedro da Ponte (2003) para a atividade investigativa em oficinas pedagógicas. Os métodos de ensino e aprendizagem utilizados privilegiaram a manipulação de material concreto e o uso de um software livre denominado POLY. O objetivo geral é de proporcionar um percurso para o estudante estudar Geometria a partir do domínio de espaço e manipulação de figura, quanto a sua identificação, o reconhecimento de suas propriedades seja pela descoberta por meio da investigação, seja pela dedução, consoante aos níveis crescente de dificuldade de van Hiele (1986). A estrutura do conteúdo trabalhado foi organizada por quatro oficinas constituída pela sequência de atividades seguintes: 1ª- Identificação de figuras nos espaços bi e tri dimensionais e cálculo de área de figuras planas e espaciais (revisão); 2ª- Representação de vistas de uma figura e sua perspectiva; 3ª- Geração de sólidos de revolução com o uso de material concreto; 4ª- O uso do software POLY no trabalho com poliedros. Os autores

3 INTRODUÇÃO Caro leitor, As atividades disponibilizadas neste livro foram elaboradas especialmente para desenvolver a criatividade e a visualização espacial para o desenvolvimento do pensamento geométrico. Cada seqüência apresenta-se seguida de seus objetivos para que o leitor possa compreender a lógica utilizada no desenvolvimento das tarefas. Contudo, outros focos podem ser estabelecidos de acordo com o nível de ensino aplicado e/ou objetivos delimitados.

4 SUMÁRIO OFICINA I Atividade Atividade Atividade Atividade Atividade Área do Retângulo Área do Quadrado Área do paralelogramo Área do triângulo Área do hexágono regular Área do losango Área do trapézio Atividade OFICINA II Atividade Atividade Atividade Atividade OFICINA III Atividade Atividade Atividade Atividade OFICINA IV Poliedros Atividade

5 101 OFICINA I Identificação de figuras nos espaços bidimensional e tridimensional e cálculo de área de figuras planas e espaciais (revisão) - Objetivos. Estabelecer relações do cotidiano do aluno com as formas geométricas;. Desenvolver a capacidade de observar diferenças ou semelhança da forma dos objetos;. Calcular a área das principais figuras planas;. Visualizar as figuras planas e espaciais.

6 102 Atividade 1.1 Os objetos desenhados abaixo podem receber o nome de figuras geométricas bidimensionais ou tridimensionais. Complete com o nome geométrico correto. Se você souber outros nomes para a mesma figura, escreva-os também. Utilize o espaço destinado para o nome. Classifique também em bidimensional e tridimensional: OBJETO NOME BIDIMENSIONAL OU TRIDIMENSIONAL OBJETO NOME BIDIMENSIONAL OU TRIDIMENSIONA L

7 103 Atividade 1.2 A figura a seguir mostra um conjunto de segmentos consecutivos e não-colineares: AB, BC, CD, DE e EA, contidos num mesmo plano. Eles não se cruzam e formam uma figura fechada. B A C E D POLÍGONO Nº DE VÉRTICES Nº DE LADOS Nº DE ÂNGULOS INTERNOS Atividade Desenhe os seguintes polígonos: quadrilátero, hexágono, pentágono e octógono; A partir de um dos vértices trace todas as diagonais possíveis.

8 Quantos triângulos que foram formados em cada um dos polígonos? Quadrilátero: Hexágono: Pentágono: Octógono: Discuta com seu colega e verifique qual a relação entre o número de lados e o número de triângulos que foi formado em cada um dos polígonos. Registre suas conclusões: Calcule a soma dos ângulos internos de cada polígono e registre no espaço abaixo. Lembre-se que a soma dos ângulos internos de cada triângulo é de Sendo n o número de lados, escreva a fórmula que nos permite calcular a soma dos ângulos internos de cada polígono? Registre a maneira que você usou para chegar a fórmula: Atividade 1.4 Medir uma área é compará-la com uma unidade de área. Para medir uma área: 1º passo - Escolhemos uma área para unidade de medida. Como por exemplo, a unidade a seguir:

9 2º passo - Determina-se o número de vezes que a unidade escolhida cabe nessa área. Esse número é a medida da área. 105 A medida da área é de 3 unidades No quadriculado, a medida do lado de cada quadradinho é 1,0 cm. Observe o espaço ocupado pelas figuras desenhadas nesse quadriculado e calcule a sua área.

10 Enumere as figuras anteriores e registre as áreas encontradas: Figura 1 Figura 2 Figura 3 Figura 4 Figura 5 Atividade Área do Retângulo Usualmente chama-se um dos lados de um retângulo de comprimento (ou base) e o outro de largura (ou altura) e indica-se da seguinte forma:

11 107 b h b = medida do comprimento (ou da base) h = medida da largura (ou altura) Cubra o retângulo a seguir com quadradinhos de 1 cm de lado, ou seja, com quadrados de 1 cm 2 de área. Observe que esse retângulo contém 4 vezes 2 quadradinhos de 1cm de lado. Então a área deste retângulo é igual a Calcula-se a área, multiplicando-se: x Daí a fórmula da área do retângulo é: A = x. - Área do Quadrado Todo quadrado é um retângulo cujos lados possuem medidas iguais. Assim, chamamos de l a medida do lado do quadrado.

12 Área do quadrado é: A = x ou A =. - Área do paralelogramo Observe paralelogramo: A partir de suas observações e conclusões, qual a fórmula que nos permite calcular a área do paralelogramo, sendo b(base) e h(altura)? A = - Área do triângulo Desenhe um triângulo qualquer Qual a relação entre a área do retângulo e a área do triângulo? Podemos afirmar então que a área do triângulo é da área do retângulo.

13 Sendo b(base) e h(altura), escreva a fórmula que nos permite calcular a área do triângulo: A =. Observe agora o triângulo eqüilátero: Que tipo especial é o triângulo AHC e ABH? Obtenha a altura do triangulo ABC:h= (1) Substitua a altura que você encontrou no item anterior na fórmula encontrada para área de triângulo: A área do triângulo eqüilátero será dada pela fórmula: A =

14 110 - Área do hexágono regular Qual a medida de cada ângulo central do hexágono regular? Qual a relação entre o raio da circunferência circunscrita ao hexágono regular e a medida do seu lado? O hexágono regular é formado por 6 triângulos do tipo Sendo a o lado do hexágono regular, a sua área será dada pela fórmula: A =.

15 111 - Área do losango: Observe o losango ABCD e responda: Observe os triângulos: ANB, AOB, BOC, BQC, COD, DPC, AOD E AMD e registre as suas conclusões Qual a relação entre a diagonal DB e a base do retângulo PQ e a diagonal AC e a altura do retângulo? Qual a relação entre a área do losango ABCD e o retângulo MNQP? Se D (diagonal maior) e d ( diagonal menor) do losango, qual a fórmula da área do losango: A =

16 112 - Área do trapézio: Agora você mesmo vai construir um trapézio. Não se esqueça de relacioná-lo a um dos polígonos que já estudamos A partir da sua intuição e dos seus conhecimentos matemáticos, escreva a fórmula da área de um trapézio. A =. Atividade 1.6 Resolva os problemas usando os conhecimentos adquiridos nestas atividades: Determina a área total da superfície do embrulho representado na figura.

17 1.6.2 Os embrulhos da figura seguinte foram feitos com papel e atados com um fio. Cada um deles contém oito cubos todos iguais. 113 a) Em qual dos embrulhos se gastou maior quantidade de fio? b) E em qual se gastou maior quantidade de papel? c) Quantos embrulhos diferentes você conseguirá fazer se você tiver que embrulhar 12 cubos?. d) Com 8 cubos podemos fazer três tipos de embrulho. Que quantidade de cubos permite fazer apenas um só tipo de embrulho? A Francisca está construindo uma barra em que o padrão é formado por triângulos e quadrados, tal como está representado na figura seguinte.

18 a) Quantos quadrados e quantos triângulos cinzentos são necessários para obter uma barra com 78 cm de comprimento? 114 b) De quantos quadrados e quantos triângulos cinzentos necessitaria a Francisca se quisesse construir uma barra para colocar à volta de uma toalha com 1,08 m por 1,98 m?

19 115 OFICINA II Representação de vistas de uma figura e sua perspectiva - Objetivos. Visualizar a figura em suas diferentes formas;. Possibilitar ao aluno uma desenvoltura tanto nas suas formas de pensar e visualizar;. Desenvolver a sua noção de espaço e perspectivas;. Representar as vistas de um objeto dado na sua totalidade;. Reconhecer figuras geométricas idênticas em diversas posições;. Construir uma figura completa, através das vistas. Atividade Observe o desenho da casa a seguir: Um engenheiro realizou os seguintes desenhos dessa casa nas diferentes posições (P,Q e R) conforme apresentação a seguir:

20 116 (P) (Q) (R) Complete a tabela identificando qual a posição do engenheiro ao fazer o desenho DESENHO P Q R POSIÇÃO Os sólidos seguintes têm as arestas escondidas. Trace a figura completa, à direita de cada um deles e traceje as arestas escondidas.

21 117

22 Três objetos diferentes estão representados, pela vista superior, como ilustração a seguir. Sabendo que ele foi construído utilizando cubos, descubra-os e registre as características de cada um deles. A parte em negrito está vazia: Atividade Observe as figuras espaciais a seguir:

23 Apenas utilizando a visualização, quantos cubinhos há em cada sólido? (a) (c) (b) (d) Identifique os sólidos que não têm a forma de um cubo e registre quantos cubinhos faltam para completar as figuras? Existe relação entre o número de cubinho de uma das dimensões (largura, altura ou comprimento) do cubo com o total de cubinhos que formam o cubo?

24 Dos objetos dados, existe a possibilidade de encaixe entre eles? Se existir, quais são elas? Dos sólidos dados, desenhe de cada um deles, as vistas (como o objeto é visto): CIMA BAIXO LATERAL ESQUERDO LATERAL DIREITO FRENTE TRÁS Atividade 2.3 As embalagens, a seguir, são as representações de alguns sólidos geométricos:

25 Desenhe as embalagens, dadas anteriormente, usando apenas os contornos delas: Imagine essas embalagens descoladas (abertas). Desenhe, no espaço a seguir, as superfícies planas de cada uma das embalagens acima Observe os desenhos a seguir das vistas ( superior, inferior,frente,trás e lateral) de algumas figuras espaciais:

26 122 CIMA BAIXO LATERAL ESQUERDO LATERAL DIREITO FRENTE TRÁS a b c Desenhe, no espaço a seguir, as figuras geométricas resultante de cada uma delas: a) b) c) Atividade 2.4 Na figura a seguir, pequenos cubos estão unidos uns aos outros pelas faces, formando diversas figuras tridimensionais. Algumas dessas figuras são iguais entre si (iguais significa aqui congruentes, ou seja,

27 que se podem levar a superposição). Utilizando as letras de cada uma das figuras, liste as que são congruentes. 123

28 124 OFICINA III Geração de sólidos de revolução com o uso de material concreto - Objetivos. Estabelecer o conceito de sólidos de revolução através de manipulação (rotação) de figuras planas;. Desenvolver a capacidade de associar uma figura gerada com o sólido de revolução;. Reconhecer um sólido quando representado por vistas ou seu desenvolvimento no plano. - Materiais das atividades. Pedaço de isopor (20 cm x 20 cm). Conjunto de bandeirinhas. Objetos do cotidiano: que lembrem sólidos geométricos, tais como: rolo de papel higiênico, latas, caixas, etc. Sólidos geométricos: com forma de cilindro, cilindro vazado, cone, tronco de cone, esfera, confeccionado em isopor ou papel cartão.. Rampa: construída com papelão ou madeira, com uma inclinação de cerca de 45 ;. Folha com figuras planas que compõem a superfície do cilindro, do cone e demais sólidos que serão apresentados nas atividades. Atividade 3.1 Nesta atividade serão utilizados alguns objetos do cotidiano, as bandeirinhas abaixo e a rampa.

29 125 Conjunto de bandeirinhas: Encaixe cada uma das bandeirinhas no isopor e gire 360. Identifique as figuras espaciais formadas pelo giro das bandeirinhas e as desenhe no espaço abaixo Dentre os objetos do cotidiano que se encontram sobre a mesa, separe aqueles que se parece com as figuras espaciais que você viu ao girar a bandeirinha. Chame esse conjunto de A e o conjunto formado pelos objetos restantes chame de B Coloque sobre a rampa cada um dos objetos A. É possível fazê-lo rolar sobre essa rampa? Registre sua opinião: Repita o que foi feito no item anterior, usando agora os elementos do conjunto B, isto é, aqueles que você não conseguiu associar a nenhuma bandeirinha Discuta com seus colegas se existe alguma característica comum quanto à superfície externa dos objetos dos conjuntos A e B. Registre as suas conclusões.

30 Observando os objetos do conjunto B, você consegue desenhar alguma bandeirinha que gere cada um deles? Considerando que as bandeirinhas quando rotacionadas geram os sólidos de revolução, ponha uma bandeirinha de cada vez fixada no isopor e tente localizar dentre os sólidos a sua frente, aquele que corresponde ao gerado pela bandeirinha Coloque sobre cada desenho da folha recebida, o sólido correspondente ao gerado pela bandeirinha Discuta com seus colegas o que vocês observam quanto a posição do sólido gerado quando altera a posição do mastro da bandeirinha de vertical para horizontal em relação a fixação no isopor. Registre as suas conclusões. Atividade 3.2 Agora, serão utilizadas as bandeirinhas abaixo:

31 Existe alguma característica comum aos retângulos que formam as bandeirinhas? E quanto à posição em que as figuras geométricas planas forma fixadas no mastro? Registre sua opinião: Discuta com seus colegas se as três bandeirinhas retangulares geram sólidos de revolução iguais, e que tenham as mesmas medidas. Registre as suas conclusões. Atividade 3.3 Utilizaremos agora as seguintes bandeirinhas: Existe alguma característica comum aos triângulos que formam as bandeirinhas? E quanto à posição em que as figuras foram fixadas ao mastro? Coloque essas três bandeirinhas para rotacionar com o mastro fixado ao isopor. Discuta com os seus colegas se existe alguma característica comum com relação aos sólidos gerados. Você conseguiria

32 128 dividir em conjuntos estes sólidos gerados considerando aqueles que representam apenas uma forma pontiaguda? Registre as suas conclusões. Atividade 3.4 Utilizaremos agora as seguintes bandeirinhas: Existe alguma característica comum à duas figuras com a forma de semicírculo que formam as bandeirinhas? Coloque as três bandeirinhas com o mastro fixado no isopor e gire. Os sólidos gerados são os mesmos?

33 3.4.3 O que você pode afirmar com relação aos sólidos de revolução gerados pelas duas bandeirinhas congruentes, ou seja, pelos dois semicírculos? Discuta com seus colegas se existe alguma semelhança quanto aos sólidos de revolução gerados pela bandeirinha com a forma de semicírculo, cujo eixo de rotação encontra-se na extremidade reta da mesma, e a bandeirinha com a forma de um círculo. Registre as suas conclusões Crie uma bandeirinha, cole no mastro em diversas posições e identifique a figura espacial gerada. Faça o seu desenho no espaço a seguir. (das bandeirinhas e das figuras espaciais formadas) A partir de suas observações e conclusões como você definiria os seguintes sólidos de revolução: CONE: CILINDRO: ESFERA:

34 130 OFICINA IV O uso do software POLY no trabalho com poliedros

35 131 - Objetivos. Estimular a percepção visual dos figuras espaciais através da planificação de uma figura tridimensional usando o software POLY;. Introduzir os conceitos de vértice, arestas e faces deduzindo a relação de Euler;. Reconhecer os sólidos de Arquimedes e deduzir a relação entre arestas e vértice da base. - Poliedros 1- Definições Poliedro é uma reunião de um número finito de polígonos planos, de tal forma que a interseção de dois polígonos distintos seja uma aresta comum, um vértice comum, ou vazia (LIMA, 1991). Os polígonos são denominados faces do poliedro. Os lados e os vértices dos polígonos denominam-se respectivamente, arestas e vértices do poliedro. B P

36 132 A Um poliedro é convexo se qualquer reta não paralela a nenhuma de suas faces o corta em no máximo, dois pontos (LIMA, et. al., 2002). Ou, equivalentemente, um poliedro é convexo quando cada lado de um polígono é também lado de um, e apenas um outro polígono e, além disso, o plano que contém um desses polígonos deixa todos os outros em um mesmo semi -espaço (Figura P e A). Existem poliedros não-convexos, como por exemplo, o da figura B. Um poliedro é convexo se qualquer reta não paralela a nenhuma de suas faces o corta em no máximo, dois pontos (LIMA, et. al., 2002). Ou, equivalentemente, um poliedro é convexo quando cada lado de um polígono é também lado de um, e apenas um outro polígono e, além disso, o plano que contém um desses polígonos deixa todos os outros em um mesmo semi -espaço ( figura P e A). Existem poliedros não-convexos, como por exemplo, o da figura B. 2- Classificação de Poliedros O software Poly permite visualizar poliedros convexos, além de planificá-los e rotacioná-los. Os poliedros são apresentados nas seguintes categorias: platônicos, sólidos de Arquimedes, prismas e anti-prismas, sólidos de Jonhson, deltaedros, sólidos de Catalan, dipirâmides e deltoedros, esferas e domos geodésicos. A facilidade oferecida pelo software em copiar e colar figuras em um editor de texto é outro fator positivo do mesmo.

37 133 Atividade Explore livremente o programa do software Poly. 2 Clique no botão que permite visualizar Sólidos Platônicos. Na tela já aparecerá um tetraedro ( tetraedro regular). Com o botão direito ( ou esquerdo) do mouse pressionado, movimente o sólido e: 2.1 Determine: - Número de faces (F) - Número de arestas: (A) - Número de vértices: ( V) 2.2 Compare a soma V + F com A e registre as suas conclusões: 2.3 Planifique o sólido utilizando os recursos do software, e confira suas respostas 3 Repita a atividade 2 para : 3.1 Cubo: Determine: - número de faces (F) - número de arestas: (A) - Número de vértices: ( V)

38 Compare a soma V + F com A e registre as suas conclusões: Planifique o sólido utilizando os recursos do software, e confira suas respostas. 3.2 Octaedro: Determine: - número de faces (F) - número de arestas: (A) - Número de vértices: ( V) Compare a soma V + F com A e registre as suas conclusões: Planifique o sólido utilizando os recursos do software, e confira suas respostas. 3.3 Dodecaedro: Determine: - número de faces (F) - número de arestas: (A) - Número de vértices: ( V)

39 Compare a soma V + F com A e registre as suas conclusões: Planifique o sólido utilizando os recursos do software, e confira suas respostas 4 Discuta suas observações a respeito do número de vértices, faces e arestas e formalize a relação que você encontrou entre esses elementos. Essa relação que você encontrou é chamada de RELAÇÃO DE EULER; 5 Clique em sólidos platônicos e selecione Icosaedro. Observe que este sólido é composto de 20 triângulos eqüiláteros. 5.1 Determine o número de arestas deste sólido, sem contar uma a uma. Registre o número encontrado: 5.2 Utilize a Relação de Euler e determine o número de vértices: 6 Clique em Sólidos de Arquimedes. Na tela aparecerá um tetraedro truncado. Observe que este sólido é composto de 4 triângulos eqüiláteros e 4 hexágonos regulares.

40 Determine o número de arestas deste sólido, sem contar uma a uma e registre o número que você encontrou: 6.2 Utilize a Relação de Euler e determine o número de vértices. 7 Clique no botão que permite visualizar o sólido montado com as arestas realçadas e confira a sua resposta 8 Clique em Prismas e Antiprismas. Na tela aparecera um prisma triangular. Observe o sólido e determine: 8.1 número de faces(f) 8.2 número de arestas: (A) 8.3 número de vértices: (V) 8.4 Verifique se a relação de Euler é válida para o sólido analisado. Registre o que você observou: 9 A partir da visualização (software Poly), dos prismas indicados a seguir, preencha a seguinte tabela:

41 137 Número de arestas da base de um prisma Número de vértice de um prisma Número de arestas de um prisma Número de faces de um prisma 9.1 Determine uma relação entre o número de arestas da base, o número de vértices, arestas laterais, faces e registre o que você observou a partir da tabela dada: 9.2 Considere um prisma cujo número de arestas da base é n. Expresse, em função de n, o número de: Faces: Arestas: Vértices: 9.3 A partir das relações estabelecidas anteriormente, identifique o prisma que possui: 14 vértices: 8 faces: 12 arestas.: 9.4 A partir das relações estabelecidas anteriormente, identifique o prisma que possui: 14 vértices: 8 faces: 12 arestas:

Estudando Poliedros com Auxílio do Software Poly

Estudando Poliedros com Auxílio do Software Poly DIRETORIA DE PESQUISA E PÓS-GRADUAÇÃO/GERÊNCIA DE PESQUISA PROJETO: TECNOLOGIAS DE INFORMAÇÃO E COMUNICAÇÃO NO PROCESSO DE ENSINO E APRENDIZAGEM DE MATEMÁTICA Estudando Poliedros com Auxílio do Software

Leia mais

O mundo à nossa volta é povoado de formas as mais variadas tanto nos elementos da natureza como nos de objetos construídos pelo homem.

O mundo à nossa volta é povoado de formas as mais variadas tanto nos elementos da natureza como nos de objetos construídos pelo homem. TRIDIMENSIONALIDADE O mundo à nossa volta é povoado de formas as mais variadas tanto nos elementos da natureza como nos de objetos construídos pelo homem. As formas tridimensionais são aquelas que têm

Leia mais

Geometria Espacial Elementos de Geometria Espacial Prof. Fabiano

Geometria Espacial Elementos de Geometria Espacial Prof. Fabiano Geometria Espacial Elementos de Geometria Espacial Prof. Fabiano A Geometria espacial (euclidiana) funciona como uma ampliação da Geometria plana (euclidiana) e trata dos métodos apropriados para o estudo

Leia mais

CRIANDO, VENDO E ENTENDENDO SÓLIDOS DE REVOLUÇÃO

CRIANDO, VENDO E ENTENDENDO SÓLIDOS DE REVOLUÇÃO 35 36 1. Introdução CRIANDO, VENDO E ENTENDENDO SÓLIDOS DE REVOLUÇÃO Ana Maria Kaleff Luciana Almeida Sá Maria Inês Martins de Toledo Departamento de Geometria Universidade Federal Fluminense RJ Segundo

Leia mais

Colégio Universitas06 Data: 7 Mai 2013. Professor(a): Adriana Santos. Exercícios extras

Colégio Universitas06 Data: 7 Mai 2013. Professor(a): Adriana Santos. Exercícios extras Colégio Universitas06 Data: 7 Mai 2013 Professor(a): Adriana Santos Aluno(a): Nota: nº: Exercícios extras 1 Escreva se cada objeto desenhado dá ideia de sólido geométrico, região plana ou contorno. Em

Leia mais

Figuras geométricas. Se olhar ao seu redor, você verá que os objetos. Nossa aula. Figuras geométricas elementares

Figuras geométricas. Se olhar ao seu redor, você verá que os objetos. Nossa aula. Figuras geométricas elementares A UU L AL A Figuras geométricas Se olhar ao seu redor, você verá que os objetos têm forma, tamanho e outras características próprias. As figuras geométricas foram criadas a partir da observação das formas

Leia mais

Prof. Jorge. Estudo de Polígonos

Prof. Jorge. Estudo de Polígonos Estudo de Polígonos Enchendo a piscina A piscina de um clube de minha cidade, vista de cima, tem formato retangular. O comprimento dela é de 18 m. o fundo é uma rampa reta. Vista lateralmente, ela tem

Leia mais

Colégio Anglo de Sete Lagoas Professor: Luiz Daniel (31) 2106-1750

Colégio Anglo de Sete Lagoas Professor: Luiz Daniel (31) 2106-1750 Lista de exercícios de Geometria Espacial PRISMAS 1) Calcular a medida da diagonal de um paralelepípedo retângulo de dimensões 10 cm, 8 cm e 6 cm 10 2 cm 2) Determine a capacidade em dm 3 de um paralelepípedo

Leia mais

MATEMÁTICA PARA CONCURSOS II

MATEMÁTICA PARA CONCURSOS II 1 MATEMÁTICA PARA CONCURSOS II Fonte: http://www.migmeg.com.br/ MÓDULO II Estudaremos neste módulo geometria espacial e volume dos principais sólidos geométricos. Mas antes de começar a aula, segue uma

Leia mais

GEOMETRIA BÁSICA 2011-2 GGM00161-TURMA M2. Dirce Uesu Pesco Geometria Espacial 08/11/2011

GEOMETRIA BÁSICA 2011-2 GGM00161-TURMA M2. Dirce Uesu Pesco Geometria Espacial 08/11/2011 GEOMETRIA BÁSICA 2011-2 GGM00161-TURMA M2 Dirce Uesu Pesco Geometria Espacial 08/11/2011 Definição : Considere dois planos paralelos α e β e um segmento de reta PQ, cuja reta suporte r intercepta o plano

Leia mais

Caderno de Respostas

Caderno de Respostas Caderno de Respostas DESENHO TÉCNICO BÁSICO Prof. Dr.Roberto Alcarria do Nascimento Ms. Luís Renato do Nascimento CAPÍTULO 1: ELEMENTOS BÁSICOS DO DESENHO TÉCNICO 1. A figura ilustra um cubo ao lado de

Leia mais

Relação de Euler nos prismas V= número de vértices A= número de arestas F= número de faces

Relação de Euler nos prismas V= número de vértices A= número de arestas F= número de faces Prismas A reunião dos infinitos segmentos, paralelos a s, que têm um de seus extremos no polígono ABCDEF contido em e outro extremo pertencente ao plano, constitui um sólido geométrico chamado prisma.

Leia mais

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge.

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge. Matemática 2 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um paralelepípedo retângulo acoplado a um prisma triangular. 1,6m 1m 1,4m Calcule o volume da estrutura, em dm 3, e indique

Leia mais

Os Sólidos de Platão. Colégio Santa Maria Matemática III Geometria Espacial Sólidos Geométricos Prof.º Wladimir

Os Sólidos de Platão. Colégio Santa Maria Matemática III Geometria Espacial Sólidos Geométricos Prof.º Wladimir Sólidos Geométricos As figuras geométricas espaciais também recebem o nome de sólidos geométricos, que são divididos em: poliedros e corpos redondos. Vamos abordar as definições e propriedades dos poliedros.

Leia mais

COLÉGIO PEDRO II DEPARTAMENTO DE MATEMÁTICA UNIDADE ESCOLAR HUMAITÁ II. Notas de aula de Matemática. 3º ano/ensino Médio. Prof.

COLÉGIO PEDRO II DEPARTAMENTO DE MATEMÁTICA UNIDADE ESCOLAR HUMAITÁ II. Notas de aula de Matemática. 3º ano/ensino Médio. Prof. COLÉGIO PEDRO II DEPARTAMENTO DE MATEMÁTICA UNIDADE ESCOLAR HUMAITÁ II Notas de aula de Matemática 3º ano/ensino Médio Prof. Andrezinho NOÇÕES DE GEOMETRIA ESPACIAL Notas de aula de Matemática Prof. André

Leia mais

Abordagem de geometria no ensino médio partindo de poliedros

Abordagem de geometria no ensino médio partindo de poliedros Abordagem de geometria no ensino médio partindo de poliedros José Luiz Magalhães de Freitas INMA/UFMS e-mail: joseluizufms2@gmail.com Marilena Bittar INMA/UFMS e-mail: marilenabittar@gmail.com O objetivo

Leia mais

Geometria Métrica Espacial. Geometria Métrica Espacial

Geometria Métrica Espacial. Geometria Métrica Espacial UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA 1. Prismas Geometria Métrica

Leia mais

TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO

TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO OBSERVAÇÕES: 1) AS QUESTÕES OBRIGATORIAMENTE DEVEM SER ENTREGUES EM UMA FOLHA A PARTE COM

Leia mais

Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos

Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos Geometria Plana: Áreas de regiões poligonais Triângulo e região triangular O conceito de região poligonal

Leia mais

PRISMAS Prisma é um poliedro com duas bases paralelas formadas por polígonos iguais e faces laterais que são paralelogramos.

PRISMAS Prisma é um poliedro com duas bases paralelas formadas por polígonos iguais e faces laterais que são paralelogramos. GEOMETRIA ESPACIAL Geometria Espacial é o estudo da geometria no espaço tridimensional (as 3 dimensões são: largura, comprimento e profundidade). Essas figuras recebem o nome de sólidos geométricos ou

Leia mais

APOSTILA 2015 DESENHO GEOMÉTRICO PROFESSOR: DENYS YOSHIDA DESENHO GEOMÉTRICO 2º ANO - ENSINO MÉDIO - 2015 1

APOSTILA 2015 DESENHO GEOMÉTRICO PROFESSOR: DENYS YOSHIDA DESENHO GEOMÉTRICO 2º ANO - ENSINO MÉDIO - 2015 1 APOSTILA 015 DESENHO GEOMÉTRICO PROFESSOR: DENYS YOSHIDA DESENHO GEOMÉTRICO º ANO - ENSINO MÉDIO - 015 1 Sumário 1.Geometria Espacial...4 1.1 Definições básicas da Geometria Espacial...4 1. Posições de

Leia mais

Mariângela Assumpção de Castro Chang Kuo Rodrigues

Mariângela Assumpção de Castro Chang Kuo Rodrigues Mariângela Assumpção de Castro Chang Kuo Rodrigues 1 APRESENTAÇÃO A ideia deste caderno de atividades surgiu de um trabalho de pesquisa realizado para dissertação do Mestrado Profissional em Educação Matemática,

Leia mais

Trabalho 4: Os Sólidos Geométricos

Trabalho 4: Os Sólidos Geométricos Departamento de Matemática Mestrado em Ensino de Matemática no 3º Ciclo do Ensino Básico e no Ensino Secundário Trabalho 4: Os Sólidos Geométricos Meios Computacionais no Ensino Professor: Jaime Carvalho

Leia mais

POLÍGONOS E FIGURAS GEOMÉTRICAS ESPACIAIS

POLÍGONOS E FIGURAS GEOMÉTRICAS ESPACIAIS http://apostilas.netsaber.com.br/ver_apostila.php?c=622 ANGELO ROBERTO BONFIETI JUNIOR - MATRÍCULA 97003133 - BM3 01-011 POLÍGONOS E FIGURAS GEOMÉTRICAS ESPACIAIS ANGELO ROBERTO BONFIETI JUNIOR - MATRÍCULA

Leia mais

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%)

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%) Distribuição das.08 Questões do I T A 9 (8,97%) 0 (9,9%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais (, 0 (9,6%) Geo. Analítica Conjuntos (,96%) Geo. Espacial Funções Binômio de Newton

Leia mais

Escola da Imaculada. Estudo da Pirâmide. Aluno (a): Professora: Jucélia 2º ano ensino médio

Escola da Imaculada. Estudo da Pirâmide. Aluno (a): Professora: Jucélia 2º ano ensino médio Escola da Imaculada Estudo da Pirâmide Aluno (a): Professora: Jucélia 2º ano ensino médio Estudo da Pirâmide 1- Definição As pirâmides são poliedros cuja base é uma região poligonal e as faces laterais

Leia mais

1 COMO ESTUDAR GEOMETRIA

1 COMO ESTUDAR GEOMETRIA Matemática 2 Pedro Paulo GEOMETRIA ESPACIAL I 1 COMO ESTUDAR GEOMETRIA Só relembrando a primeira aula de Geometria Plana, aqui vão algumas dicas bem úteis para abordagem geral de uma questão de geometria:

Leia mais

Aula 12 Áreas de Superfícies Planas

Aula 12 Áreas de Superfícies Planas MODULO 1 - AULA 1 Aula 1 Áreas de Superfícies Planas Superfície de um polígono é a reunião do polígono com o seu interior. A figura mostra uma superfície retangular. Área de uma superfície é um número

Leia mais

Atividade: uma pletora de poliedros

Atividade: uma pletora de poliedros Atividade: uma pletora de poliedros Aluno(a): Turma: Professor(a): Parte 01 (exercício de visualização) No software, você encontrará a categoria dos Cosmogramas de Leonardo, que são modelos dos sólidos

Leia mais

Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br Breve Introdução Histórica aos Sólidos Platônicos

Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br Breve Introdução Histórica aos Sólidos Platônicos Breve Introdução Histórica aos Sólidos Platônicos Cerca de 600 A.C. nas colônias gregas da Jônia, na costa oeste da Turquia, surgem dois dos principais matemáticos gregos: Tales de Mileto e Pitágoras de

Leia mais

Unidade 9 - Prisma. Introdução Definição de um prisma. Denominação de um prisma. Prisma regular Área de um prisma. Volume de um prisma

Unidade 9 - Prisma. Introdução Definição de um prisma. Denominação de um prisma. Prisma regular Área de um prisma. Volume de um prisma Unidade 9 - Prisma Introdução Definição de um prisma Denominação de um prisma Prisma regular Área de um prisma Volume de um prisma Introdução Após a abordagem genérica de poliedros, destacaremos alguns

Leia mais

POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS

POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS 7º ANO POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS Áreas de alguns quadriláteros Nuno Marreiros Recorda Área do retângulo Para todo e qualquer retângulo de base (b) e altura (h), pode-se escrever: Área do Retângulo

Leia mais

Definição de Polígono

Definição de Polígono Definição de Polígono Figura plana limitada por segmentos de recta, chamados lados dos polígonos onde cada segmento de recta, intersecta exactamente dois outros extremos; se os lados forem todos iguais

Leia mais

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano Geometria Sólidos geométricos e volumes Prisma, pirâmide, cilindro, cone e esfera Planificação e construção de modelos de sólidos geométricos Volume do cubo, do paralelepípedo e do cilindro Unidades de

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 25/05/13 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 25/05/13 PROFESSOR: MALTEZ RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 5/05/ PROFESSOR: MALTEZ QUESTÃO 0 O piso de uma cozinha retangular de m de largura e m de comprimento deverá ser revestido por cerâmicas

Leia mais

GEOMETRIA GRÁFICA TIPO A GEOMETRIA GRÁFICA TIPO B

GEOMETRIA GRÁFICA TIPO A GEOMETRIA GRÁFICA TIPO B 1 GEOMETRIA GRÁFICA TIPO A GEOMETRIA GRÁFICA 1. Considere um quadrilátero RSTU, satisfazendo RS = ST = TU = UR, como o exemplo ilustrado abaixo. Considerando esses dados, podemos afirmar que: 0-0) SU é

Leia mais

MONTAGEM DO DODECAEDRO REGULAR COM TUBOS DE CANETA PARA APRENDIZAGEM DO VOLUME UTILIZANDO CABRI 3D

MONTAGEM DO DODECAEDRO REGULAR COM TUBOS DE CANETA PARA APRENDIZAGEM DO VOLUME UTILIZANDO CABRI 3D MONTAGEM DO DODECAEDRO REGULAR COM TUBOS DE CANETA PARA APRENDIZAGEM DO VOLUME UTILIZANDO CABRI 3D Resumo: Amarildo Aparecido dos Santos Pontifícia Universidade Católica de São Paulo amarosja@terra.com.br

Leia mais

Atividade 01 Ponto, reta e segmento 01

Atividade 01 Ponto, reta e segmento 01 Atividade 01 Ponto, reta e segmento 01 1. Crie dois pontos livres. Movimente-os. 2. Construa uma reta passando por estes dois pontos. 3. Construa mais dois pontos livres em qualquer lugar da tela, e o

Leia mais

Geometria Área de Quadriláteros

Geometria Área de Quadriláteros ENEM Geometria Área de Quadriláteros Wallace Alves da Silva DICAS MATEMÁTICAS [Escolha a data] Áreas de quadriláteros Olá Galera, 1 QUADRILÁTEROS Quadrilátero é um polígono com quatro lados. A soma dos

Leia mais

Áreas e Aplicações em Geometria

Áreas e Aplicações em Geometria 1. Introdução Áreas e Aplicações em Geometria Davi Lopes Olimpíada Brasileira de Matemática 18ª Semana Olímpica São José do Rio Preto, SP Nesse breve material, veremos uma rápida revisão sobre áreas das

Leia mais

QUADRILÁTEROS. Um quadrilátero é um polígono de quatro lados. Pode ser dito que é porção do plano limitada por uma poligonal fechada,

QUADRILÁTEROS. Um quadrilátero é um polígono de quatro lados. Pode ser dito que é porção do plano limitada por uma poligonal fechada, QUADRILÁTEROS Um quadrilátero é um polígono de quatro lados. Pode ser dito que é porção do plano limitada por uma poligonal fechada, A B C Lados: AB BC CD AD Vértices: A B C D Diagonais: AC BD D Algumas

Leia mais

PLANO DE TRABALHO 1 MATEMÁTICA 4º ANO GEOMETRIA. Adriana da Silva Santi Coordenação Pedagógica de Matemática

PLANO DE TRABALHO 1 MATEMÁTICA 4º ANO GEOMETRIA. Adriana da Silva Santi Coordenação Pedagógica de Matemática PLANO DE TRABALHO 1 MATEMÁTICA 4º ANO GEOMETRIA Adriana da Silva Santi Coordenação Pedagógica de Matemática Piraquara Abril/2015 1 CONTEÚDOS - Poliedros: prismas e pirâmides. - Corpos Redondos: cone, cilindro

Leia mais

Matemática e lógica CONGRUÈNCIA E SEMELHANÇA DE POLÍGoNOS

Matemática e lógica CONGRUÈNCIA E SEMELHANÇA DE POLÍGoNOS - - Matemática e lógica CONGRUÈNCIA E SEMELHANÇA DE POLÍGoNOS ABRINDO NOSSO DIÁLOGO Observando ao nosso redor, vemos inúmeras figuras que parecem iguais ou semelhantes. As simetrias, as ampliações e as

Leia mais

Matriz de Referência de Matemática da 8ª série do Ensino Fundamental. Comentários sobre os Temas e seus Descritores Exemplos de Itens

Matriz de Referência de Matemática da 8ª série do Ensino Fundamental. Comentários sobre os Temas e seus Descritores Exemplos de Itens Matriz de Referência de Matemática da 8ª série do Ensino Fundamental TEMA I ESPAÇO E FORMA Comentários sobre os Temas e seus Descritores Exemplos de Itens Os conceitos geométricos constituem parte importante

Leia mais

UM MÓDULO DE ATIVIDADES PARA O ENSINO-APRENDIZAGEM DAS FÓRMULAS DE ÁREA DOS PRINCIPAIS POLÍGONOS CONVEXOS

UM MÓDULO DE ATIVIDADES PARA O ENSINO-APRENDIZAGEM DAS FÓRMULAS DE ÁREA DOS PRINCIPAIS POLÍGONOS CONVEXOS UM MÓDULO DE ATIVIDADES PARA O ENSINO-APRENDIZAGEM DAS FÓRMULAS DE ÁREA DOS PRINCIPAIS POLÍGONOS CONVEXOS Cristiane Fernandes de Souza, Ms. UFRN cristianesouza.fernandes@bol.com.br Introdução O estudo

Leia mais

Sólidos geométricos (Revisões)

Sólidos geométricos (Revisões) Curso de Educação e Formação Assistente Administrativo DISCIPLINA: Matemática Aplicada FICHA DE TRABALHO Nº 15 MÓDULO: 8 TURMA: A1/A2 DATA: 2006/2007 Sólidos geométricos (Revisões) Já conhecemos os nomes

Leia mais

Informática no Ensino de Matemática Prof. José Carlos de Souza Junior

Informática no Ensino de Matemática Prof. José Carlos de Souza Junior Informática no Ensino de Matemática Prof. José Carlos de Souza Junior http://www.unifal-mg.edu.br/matematica/?q=disc jc Aula 05 - Desvendando o GeoGebra PARTE 04 - COMO APAGAR OBJETOS. Ao iniciar o GeoGebra,

Leia mais

ENSINANDO ÁREA NO ENSINO FUNDAMENTAL

ENSINANDO ÁREA NO ENSINO FUNDAMENTAL ENSINANDO ÁREA NO ENSINO FUNDAMENTAL Rita de Cássia Pavani LAMAS 1 Alexsandra Ribeiro CÁCERES 2 Fabiana Mara da COSTA 3 Inaiá Marina Constantino PEREIRA 4 Juliana MAURI 4 Resumo: No ensino fundamental

Leia mais

Abelhas Matemáticas. Série Matemática na Escola

Abelhas Matemáticas. Série Matemática na Escola Abelhas Matemáticas Série Matemática na Escola Objetivos 1. Mostrar que os alvéolos hexagonais das abelhas têm a forma ótima em relação à capacidade para armazenar mel; 2. Interpretar uma situação contextualizada

Leia mais

CONTEÚDOS METAS / DESCRITORES RECURSOS

CONTEÚDOS METAS / DESCRITORES RECURSOS AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO Escola Básica e Secundária Dr. Vieira de Carvalho Departamento de Matemática e Ciências Experimentais Planificação Anual de Matemática 6º Ano Ano Letivo 2015/2016

Leia mais

Ensino Fundamental, 7º Ano Formas geométricas espaciais: prisma e pirâmide - conceitos iniciais

Ensino Fundamental, 7º Ano Formas geométricas espaciais: prisma e pirâmide - conceitos iniciais Ensino Fundamental, 7º Ano Formas geométricas espaciais: prisma e pirâmide - conceitos iniciais Você já deve ter observado embalagens e objetos que têm relação com figuras chamadas sólidos geométricos.

Leia mais

Matemática Régis Cortes GEOMETRIA ESPACIAL

Matemática Régis Cortes GEOMETRIA ESPACIAL GEOMETRIA ESPACIAL 1 GEOMETRIA ESPACIAL PIRÂMIDE g g = apótema da pirâmide ; a p = apótema da base h g 2 = h 2 + a p 2 a p Al = p. g At = Al + Ab V = Ab. h 3 triangular quadrangular pentagonal hexagonal

Leia mais

Perspectiva isométrica de modelos com elementos diversos

Perspectiva isométrica de modelos com elementos diversos Perspectiva isométrica de modelos com elementos diversos Introdução Algumas peças apresentam partes arredondadas, elementos arredondados ou furos, como mostram os exemplos abaixo: parte arredondada furo

Leia mais

SÓLIDOS GEOMÉTRICOS. da - 2. Sólidos de. geométricos. Rodrigo. Roberto. Tetraedro (4) Hexaedro (6) Octaedro (8) Dudecaedro (12) Icosaedro (20)

SÓLIDOS GEOMÉTRICOS. da - 2. Sólidos de. geométricos. Rodrigo. Roberto. Tetraedro (4) Hexaedro (6) Octaedro (8) Dudecaedro (12) Icosaedro (20) Sólidos Geométricos Poliedros Sólidos de Revolução SÓLIOS GEOMÉTRICOS Regulares Irregulares Cone Cilindro Tetraedro (4) Hexaedro (6) Octaedro (8) udecaedro (12) Icosaedro (20) Prisma Pirâmide Reto Oblíquo

Leia mais

Desenho Técnico. Desenho Projetivo e Perspectiva Isométrica

Desenho Técnico. Desenho Projetivo e Perspectiva Isométrica Desenho Técnico Assunto: Aula 3 - Desenho Projetivo e Perspectiva Isométrica Professor: Emerson Gonçalves Coelho Aluno(A): Data: / / Turma: Desenho Projetivo e Perspectiva Isométrica Quando olhamos para

Leia mais

Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada

Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada MATEMÁTICA APLICADA 1. SISTEMA ANGULAR INTERNACIONAL...2 2.

Leia mais

REGINA APARECIDA DE OLIVEIRA ASSESSORIA PEDAGÓGICA DE MATEMÁTICA LONDRINA, SETEMBRO DE 2011.

REGINA APARECIDA DE OLIVEIRA ASSESSORIA PEDAGÓGICA DE MATEMÁTICA LONDRINA, SETEMBRO DE 2011. REGINA APARECIDA DE OLIVEIRA ASSESSORIA PEDAGÓGICA DE MATEMÁTICA LONDRINA, SETEMBRO DE 2011. 2 Planejamento de aula abordando alguns conteúdos de Geometria. Sugestão para: Educação Infantil e 1º ano. Tema

Leia mais

Explorando Poliedros

Explorando Poliedros Reforço escolar M ate mática Explorando Poliedros Dinâmica 6 2ª Série 1º Bimestre Matemática Ensino Médio 2ª Geométrico Introdução à geometria espacial Aluno PRIMEIRA ETAPA COMPARTILHAR IDEIAS ATIVIDADE

Leia mais

9 PROJEÇÕES ORTOGONAIS. 9.1 Introdução

9 PROJEÇÕES ORTOGONAIS. 9.1 Introdução 9 PROJEÇÕES ORTOGONAIS 57 9.1 Introdução Tanto o desenho em perspectivas como o desenho através de vista se valem da projeção para fazer suas representações. A diferença é que no desenho em perspectiva

Leia mais

DESENVOLVIMENTO DO PENSAMENTO GEOMÉTRICO NA VISUALIZAÇÃO DE FIGURAS ESPACIAIS, POR MEIO DA METODOLOGIA DE OFICINAS

DESENVOLVIMENTO DO PENSAMENTO GEOMÉTRICO NA VISUALIZAÇÃO DE FIGURAS ESPACIAIS, POR MEIO DA METODOLOGIA DE OFICINAS DESENVOLVIMENTO DO PENSAMENTO GEOMÉTRICO NA VISUALIZAÇÃO DE FIGURAS ESPACIAIS, POR MEIO DA METODOLOGIA DE OFICINAS Lúcia Helena da Cunha Ferreira Pontifícia Universidade Católica de Minas Gerais PUC/MG

Leia mais

MAT 240- Lista de Exercícios. 1. Dado o ABC, seja G o baricentro deste triângulo e M o ponto médio do lado BC. Prove que AG = 2GM.

MAT 240- Lista de Exercícios. 1. Dado o ABC, seja G o baricentro deste triângulo e M o ponto médio do lado BC. Prove que AG = 2GM. 1 MAT 240- Lista de Exercícios 1. Dado o ABC, seja G o baricentro deste triângulo e M o ponto médio do lado BC. Prove que AG = 2GM. 2. Seja G o baricentro e O o circuncentro do ABC. Na reta que contém

Leia mais

Prova de Aferição de Matemática

Prova de Aferição de Matemática PROVA DE AFERIÇÃO DO ENSINO BÁSICO 2008 A PREENCHER PELO ALUNO Rubrica do Professor Aplicador Nome A PREENCHER PELO AGRUPAMENTO Número convencional do Aluno Número convencional do Aluno A PREENCHER PELA

Leia mais

Uma Proposta para o Ensino de Geometria Espacial de Posição na EJA

Uma Proposta para o Ensino de Geometria Espacial de Posição na EJA 2013: Trabalho de Conclusão de Curso do Mestrado Profissional em Matemática PROFMAT Universidade Federal de São João del-rei UFSJ Sociedade Brasileira de Matemática SBM Uma Proposta para o Ensino de Geometria

Leia mais

CAP/UERJ 2ª SÉRIE DO ENSINO MÉDIO PROF. ILYDIO SÁ

CAP/UERJ 2ª SÉRIE DO ENSINO MÉDIO PROF. ILYDIO SÁ CP/URJ ª SÉRI DO NSINO MÉDIO PROF. ILYDIO SÁ 1 LUNO () : Nº GOMTRI SPCIL PRISMS XRCÍCIOS 01) Qual o volume de um cubo de área 54 cm? 0) diagonal de uma face de um cubo tem medida 5 cm. Qual a área do cubo?

Leia mais

VÊ, FAZ, APRENDE. Geometria 1º CEB GUIÃO DO PROFESSOR

VÊ, FAZ, APRENDE. Geometria 1º CEB GUIÃO DO PROFESSOR GUIÃO DO PROFESSOR VÊ, FAZ, APRENDE Geometria Exploração de conteúdos Preparação da visita Caderno do professor Caderno do aluno Recursos online 1º CEB Introdução O ensino e a aprendizagem da Geometria

Leia mais

Atividade extra. Exercício 1. Matemática e suas Tecnologias Matemática

Atividade extra. Exercício 1. Matemática e suas Tecnologias Matemática Atividade extra Exercício 1 O Tangram é um quebra cabeças com 7 peças de diferentes tamanhos, e com elas podemos montar mais de 1400 figuras, como exemplos, temos as figuras abaixo. Fonte: fundacaobunge.org.br

Leia mais

A Turma da Tabuada 3

A Turma da Tabuada 3 A Turma da Tabuada 3 Resumo Aprender brincando e brincando para aprender melhor. É dessa forma que a turma da tabuada nos levará a mais uma grande aventura pelo mundo do espaço e das formas. Na primeira

Leia mais

PROEJA Matemática V Geometria dos Sólidos

PROEJA Matemática V Geometria dos Sólidos Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande PROEJA Matemática V Geometria dos Sólidos 011/ Profª Debora Bastos Maat teemáát ticcaa V Emeennt taa Geometria dos

Leia mais

O quadrado ABCD, inscrito no círculo de raio r é formado por 4 triângulos retângulos (AOB, BOC, COD e DOA),

O quadrado ABCD, inscrito no círculo de raio r é formado por 4 triângulos retângulos (AOB, BOC, COD e DOA), 0 - (UERN) A AVALIAÇÃO UNIDADE I -05 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA. MARIA ANTÔNIA C. GOUVEIA Em uma sorveteria, há x sabores de sorvete e y sabores de cobertura.

Leia mais

CONSTRUÇÃO DE DOMOS GEODÉSICOS. Palavras-chave: resolução de problemas, geometria plana, poliedros convexos.

CONSTRUÇÃO DE DOMOS GEODÉSICOS. Palavras-chave: resolução de problemas, geometria plana, poliedros convexos. 1 CONSTRUÇÃO DE DOMOS GEODÉSICOS Guy Grebot 1, Universidade de Brasília, guy@mat.unb.br Kevin Szczpanski 1, Universidade de Brasília, kevinszczpanski@hotmail.com RESUMO Este minicurso apresenta resultados

Leia mais

Desenho e Projeto de Tubulação Industrial Nível II

Desenho e Projeto de Tubulação Industrial Nível II Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 04 SUPERFÍCIE E ÁREA Medir uma superfície é compará-la com outra, tomada como unidade. O resultado da comparação é um número positivo, ao

Leia mais

RETÂNGULO ÁREAS DE FIGURAS PLANAS PARALELOGRAMO. Exemplo: Calcule a área de um terreno retangular cuja basemede 3meaaltura 45m.

RETÂNGULO ÁREAS DE FIGURAS PLANAS PARALELOGRAMO. Exemplo: Calcule a área de um terreno retangular cuja basemede 3meaaltura 45m. ÁREAS DE FIGURAS PLANAS RETÂNGULO PARALELOGRAMO Exemplo: Calcule a área de um paralelogramo que tem,4 cmdebasee1,3cmdealtura. Resposta: A= B h A=,4x1,3 A=3,1 cm² 01. Calcule a área do paralelogramo, sabendo-se

Leia mais

AULA 2 - ÁREAS. h sen a h a sen b h a b sen A. L L sen60 A

AULA 2 - ÁREAS. h sen a h a sen b h a b sen A. L L sen60 A AULA - ÁREAS Área de um Triângulo - A área de um triângulo pode ser calculada a partir de dois lados consecutivos e o ângulo entre eles. h sen a h a sen b h a b sen A - A área de um triângulo eqüilátero

Leia mais

Polígonos e Quadriláteros. Caderno de Atividades

Polígonos e Quadriláteros. Caderno de Atividades Polígonos e Quadriláteros Caderno de Atividades Organização: Roselene Alves Amâncio Orientação: Dra. Eliane Scheid Gazire 2013 Sumário 1. Introdução...3 2. O desenvolvimento do pensamento geométrico...3

Leia mais

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura.

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura. NOME: ANO: º Nº: POFESSO(A): Ana Luiza Ozores DATA: Algumas definições Áreas: Quadrado: EVISÃO Lista 07 Áreas, Polígonos e Circunferência A, onde representa o lado etângulo: A b h, onde b representa a

Leia mais

Oficina Ensinando Geometria com Auxílio do Software GEOGEBRA. Professor Responsável: Ivan José Coser Tutora: Rafaela Seabra Cardoso Leal

Oficina Ensinando Geometria com Auxílio do Software GEOGEBRA. Professor Responsável: Ivan José Coser Tutora: Rafaela Seabra Cardoso Leal Universidade Tecnológica Federal do Paraná Câmpus Apucarana Projeto Novos Talentos Edital CAPES 55/12 Oficina Ensinando Geometria com Auxílio do Software GEOGEBRA Professor Responsável: Ivan José Coser

Leia mais

MATERIAIS CONCRETOS E SOFTWARE MATEMÁTICO: UMA APRENDIZAGEM SIGNIFICATIVA PARA O ENSINO DE GEOMETRIA NO ENSINO FUNDAMENTAL II

MATERIAIS CONCRETOS E SOFTWARE MATEMÁTICO: UMA APRENDIZAGEM SIGNIFICATIVA PARA O ENSINO DE GEOMETRIA NO ENSINO FUNDAMENTAL II 1 MATERIAIS CONCRETOS E SOFTWARE MATEMÁTICO: UMA APRENDIZAGEM SIGNIFICATIVA PARA O ENSINO DE GEOMETRIA NO ENSINO FUNDAMENTAL II Joseleide dos Santos Sardinha - UEFS (leidejoissi@hotmail.com ) Alex Almeida

Leia mais

Resoluções Prova Anglo

Resoluções Prova Anglo Resoluções Prova Anglo F- TIPO D-7 Matemática (P-2) Ensino Fundamental 7º ano DESCRITORES, RESOLUÇÕES E COMENTÁRIOS A Prova Anglo é um dos instrumentos para avaliar o desempenho dos alunos do 7 o ano das

Leia mais

GEOMETRIA ESPACIAL. Rio de Janeiro / 2007 TODOS OS DIREITOS RESERVADOS À UNIVERSIDADE CASTELO BRANCO

GEOMETRIA ESPACIAL. Rio de Janeiro / 2007 TODOS OS DIREITOS RESERVADOS À UNIVERSIDADE CASTELO BRANCO VICE-REITORIA DE ENSINO DE GRADUAÇÃO E CORPO DISCENTE COORDENAÇÃO DE EDUCAÇÃO A DISTÂNCIA GEOMETRIA ESPACIAL Rio de Janeiro / 2007 TODOS OS DIREITOS RESERVADOS À UNIVERSIDADE CASTELO BRANCO UNIVERSIDADE

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 16/06/12 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 16/06/12 PROFESSOR: MALTEZ RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 6/06/ PROFESSOR: MALTEZ Uma pirâmide quadrangular regular possui área da base igual a 6 e altura igual a. A área total da pirâmide é igual

Leia mais

CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA

CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA 6ºANO CONTEÚDOS-1º TRIMESTRE Números naturais; Diferença entre número e algarismos; Posição relativa do algarismo dentro do número; Leitura do número; Sucessor e antecessor;

Leia mais

Atividades com o GeoGebra: possibilidades para o ensino e aprendizagem da Geometria no Fundamental

Atividades com o GeoGebra: possibilidades para o ensino e aprendizagem da Geometria no Fundamental Atividades com o GeoGebra: possibilidades para o ensino e aprendizagem da Geometria no Maria da Conceição Alves Bezerra Universidade Federal da Paraíba Brasil mcabst@hotmail.com Cibelle Castro de Assis

Leia mais

Unidade didáctica: circunferência e polígonos. Matemática 9º ano

Unidade didáctica: circunferência e polígonos. Matemática 9º ano Unidade didáctica: circunferência e polígonos Matemática 9º ano POLÍGONOS. Ângulos de um polígono DEFINIÇÃO: Um polígono é uma superfície plana limitada por uma linha poligonal fechada. Em qualquer polígono

Leia mais

Soluções das Questões de Matemática da Universidade do Estado do Rio de Janeiro UERJ

Soluções das Questões de Matemática da Universidade do Estado do Rio de Janeiro UERJ Soluções das Questões de Matemática da Universidade do Estado do Rio de Janeiro UERJ 1º Exame de Qualificação 011 Questão 6 Vestibular 011 Observe a representação do trecho de um circuito elétrico entre

Leia mais

Software Régua e Compasso

Software Régua e Compasso 1 COORDENAÇÃO DE PESQUISA E PÓS-GRADUAÇÃO CPPG TECNOLOGIAS DE INFORMAÇÃO E COMUNICAÇÃO NO PROCESSO DE ENSINO- APRENDIZAGEM DE MATEMÁTICA 1ª Parte - Consulta Rápida Software Régua e Compasso A primeira

Leia mais

Teorema de Pitágoras

Teorema de Pitágoras Teorema de Pitágoras Proposta de sequência de tarefas para o 8.º ano - 3.º ciclo Autores: Professores das turmas piloto do 8º ano 3º ciclo de escolaridade Ano Lectivo 2009 / 2010 Novembro de 2010 Novo

Leia mais

Matéria: Matemática Assunto: Comprimento ou Perímetro Prof. Dudan

Matéria: Matemática Assunto: Comprimento ou Perímetro Prof. Dudan Matéria: Matemática Assunto: Comprimento ou Perímetro Prof. Dudan Matemática Comprimento ou Perímetro Um exemplo claro do uso do conhecimento matemático nessas simples situações é quando precisamos saber

Leia mais

Geometria Euclidiana Plana Parte I

Geometria Euclidiana Plana Parte I CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Geometria Euclidiana Plana Parte I Joyce Danielle de Araújo - Engenharia de Produção Lucas Araújo dos Santos - Engenharia de Produção O que veremos

Leia mais

Resoluções Prova Anglo

Resoluções Prova Anglo Resoluções Prova Anglo F- TIPO D-6 Matemática (P-2) Ensino Fundamental 6º ano DESCRITORES, RESOLUÇÕES E COMENTÁRIOS A Prova Anglo é um dos instrumentos para avali ar o desempenho dos alunos do 6 o ano

Leia mais

Comprovação dos índices de refração

Comprovação dos índices de refração Comprovação dos índices de refração 1 recipiente de vidro; 1 bastão de vidro, e Glicerina. 1. Encha até a metade o recipiente com glicerina, depois basta afundar o bastão de vidro na glicerina e pronto!

Leia mais

a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36

a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36 MATEMÁTICA Se Amélia der R$ 3,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade

Leia mais

Planificação de Matemática -6ºAno

Planificação de Matemática -6ºAno DGEstE - Direção-Geral de Estabelecimentos Escolares Direção de Serviços Região Alentejo Agrupamento de Escolas de Moura código n.º 135471 Escola Básica nº 1 de Moura (EB23) código n.º 342294 Planificação

Leia mais

Apresentação. Este é o terceiro e último livro do módulo

Apresentação. Este é o terceiro e último livro do módulo Apresentação Este é o terceiro e último livro do módulo de Leitura e interpretação de desenho técnico mecânico. Estudando as aulas deste livro - Dimensionamento -, você ficará sabendo como se lida com

Leia mais

b) 2. c) 4. d) 8. e) 3 π. 5. (Ita 2014) Uma pirâmide de altura h= 1cm e

b) 2. c) 4. d) 8. e) 3 π. 5. (Ita 2014) Uma pirâmide de altura h= 1cm e Geometria Espacial 1. (Uerj 015) Um funil, com a forma de cone circular reto, é utilizado na passagem de óleo para um recipiente com a forma de cilindro circular reto. O funil e o recipiente possuem a

Leia mais

Visualizando formas geométricas

Visualizando formas geométricas Módulo 1 Unidade 6 Visualizando formas geométricas Para início de conversa... Você já observou com atenção tudo que encontra ao seu redor? As formas de tudo que o cerca? Nesta unidade, faremos um estudo

Leia mais

X Encontro Nacional de Educação Matemática Educação Matemática, Cultura e Diversidade Salvador BA, 7 a 9 de Julho de 2010

X Encontro Nacional de Educação Matemática Educação Matemática, Cultura e Diversidade Salvador BA, 7 a 9 de Julho de 2010 O ENSINO DE GEOMETRIA UTILIZANDO ORIGAMI: UMA EXPERIÊNCIA NO ENSINO MÉDIO COM INCLUSÃO DE ALUNOS PORTADORES DE DEFICIÊNCIA AUDITIVA Lilian Milena Ramos Carvalho Universidade Federal de Mato Grosso do Sul

Leia mais

Unidade 4 Formas geométricas planas

Unidade 4 Formas geométricas planas Sugestões de atividades Unidade 4 Formas geométricas planas 6 MTMÁTI 1 Matemática 1. O relógio, representado abaixo, indica exatamente 8 horas. TracieGrant/Shutterstock c) um ângulo de 120 ; d) um ângulo

Leia mais

Prismas e cilindros. Módulo 3 Unidade 23. Para início de conversa... Matemática e suas Tecnologias Matemática

Prismas e cilindros. Módulo 3 Unidade 23. Para início de conversa... Matemática e suas Tecnologias Matemática Módulo 3 Unidade 23 Prismas e cilindros Para início de conversa... Figura 1: De cima para baixo e da esquerda para a direita: caixa de presente, comida japonesa, rolo de feno, dados, prédio triangular

Leia mais

Quinta lista de exercícios.

Quinta lista de exercícios. MA092 Geometria plana e analítica Segundo semestre de 2015 Quinta lista de exercícios. Triângulos retângulos. Polígonos regulares. Áreas de superfícies planas. 1. Qual deve ser o comprimento de uma escada

Leia mais

Tecnologias de Informação e Comunicação no Estudo de Temas Matemáticos

Tecnologias de Informação e Comunicação no Estudo de Temas Matemáticos Tecnologias de Informação e Comunicação no Estudo de Temas Matemáticos Silvia Cristina F. Batista Gilmara Teixeira Barcelos Flávio de Freitas Afonso 1 Centro Federal de Educação Tecnológica de Campos CEFET-Campos

Leia mais