CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 5 RETA

Tamanho: px
Começar a partir da página:

Download "CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 5 RETA"

Transcrição

1 Lui Fancisc da Cu Depatament de Matemática Unesp/Bauu CAPÍTULO RETA Definiçã: Seja () uma eta que cntém um pnt A e tem a dieçã de um vet v, cm v. Paa que um pnt X d R petença à eta () deve ce que s vetes AX e v sejam paalels. Assim, eiste um escala t R tal que: AX tv X A tv X A tv. Esta epessã é chamada de equaçã vetial da eta. Obseve que, paa escevems a equaçã vetial de uma eta ():X A tv, sempe necessitams cnhece um pnt A de () e um vet v paalel a ela. O vet v é chamad de vet diet da eta () e chamad de paâmet. t R é A AX X () v P um aima imptante da gemetia plana, dis pnts distints, A e B, deteminam uma eta. Lg, pdems esceve a equaçã vetial da eta quand se cnhece dis pnts petencentes a ela, da seguinte fma: pdems cnsidea vet diet da eta () cm send vet AB u BA, pis ambs sã paalels a eta (), assim cm pdems esclhe qualque um ds pnts A u B e esceve que ( ):X A t AB u ( ):X A t BA u ( ):X B t AB u ainda ( ):X B t BA. A AB B () A AB B ()

2 Lui Fancisc da Cu Depatament de Matemática Unesp/Bauu P eempl: cnsidee a eta () deteminada pels pnts A(,,) e B(-,,). Entã pdems esceve que ( ):X A t AB, t R ( ):X (,,) t (, ) que é a equaçã vetial da eta (). Assim, paa cada val eal d paâmet t substituíd na equaçã vetial da eta vams bte seus infinits pnts, u seja: paa t X (,,) (, ) X (,,) () ; paa t X (,,) (, ) X (,,) () ; paa t X (,,) ( ) (, ) X (9,7, ) () ; Assim p diante.. Equações da Reta Equações Paaméticas da Reta Sejam X(,, ) e A(,, ) nde, A é pnt cnhecid da eta e X epesenta qualque pnt da eta, paa algum val de t R. Seja v (,, ) vet diet da eta (). Assim, sua equaçã vetial é ():X A tv. Substituind as cdenadas de cada element da eta teems: (,, ) (,, ) (,, ) t (): t t t, t R. Esta fma de esceve é chamada de equações paaméticas da eta (). Equações Siméticas da Reta Das equações paaméticas (): t t, pdems esceve: t t t t. Entã: (): paa, e. Esta fma de esceve a equaçã da eta é chamada de equações siméticas.. Cndiçã de alinhament de tês pnts Sejam P (,, ), P (,,) e P(,,) tês pnts clineaes, u seja, alinhads. Lg, eles petencem à mesma eta (). Seja () a eta

3 Lui Fancisc da Cu Depatament de Matemática Unesp/Bauu deteminada pels pnts P e P. Entã ( ):X P tp P. Na fma simética ():. Cm P petence à eta (), ele satisfa a equaçã de (), u seja:. Esta elaçã é chamada de cndiçã de alinhament de tês pnts, desde que, e. Eempl (): Dadas as etas na fma simética, destaca pnt e vet diet de cada uma. a) b) (): (s): c) ( m): e Sluçã: Lembe que, uma eta está na fma simética quand sua equaçã é escita cm (): paa, e, u seja, quand s ceficientes das vaiáveis, e sã tds iguais a. Neste cas, as cdenadas (,, ), que apaecem n numead destas ppções sã as cdenadas d pnt A da eta e as cdenadas (,, ) sã as cdenadas d vet diet. a) A(,, ) ( ) : v (,,) b) A eta (s) nã está adequadamente escita na fma simética. Faend: (s) : A(,,) ( s) : v,,. Aga, na fma simética, vem: c) Neste cas em que tems um tem, escevend a equaçã na fma paamética, vem: ( m) : e

4 Lui Fancisc da Cu Depatament de Matemática Unesp/Bauu t t t t t (m) : t t A,, v,, Eempl (): Dada a eta ( ) : X (,, ) t(,, ), veifica se s pnts P(,7,- ) e Q(-,-8,-) petencem à eta. Sluçã: Se um pnt petence a uma eta, ele deve satisfae a equaçã simética da eta. () : 7 P () () : 8 Q (). Cndiçã de cplanaidade ente duas etas Diems que duas etas sã cplanaes se elas estã cntidas n mesm plan. Cas nã eista um plan que as cntém diems que elas nã sã cplanaes. P eempl: as etas e sã cplanaes, pis estã cntidas n mesm plan β. As etas e nã sã cplanaes, pis estã cntidas em plans distints. O mesm ce ente as etas e, sã etas nã cplanaes. α β Sejam ( ): X A tv e ( ): X A tv duas etas cplanaes cm A (a,b,c), A (a,b, c), v (,, ) e v (,,). Nte que, se as etas sã cplanaes, entã s vetes v, v e AA sã cplanaes. A v ( ) A A A v ( )

5 Lui Fancisc da Cu Depatament de Matemática Unesp/Bauu Lg, a cndiçã de cplanaidade ente as etas é a mesma cndiçã de cplanaidade ente s vetes v, v e AA. Ptant: a a b b c c [A A,v,v]. Psições Relativas ente duas etas As psições elativas ente duas etas ( ) e ( ) sã divididas em dis cass: I- Retas cplanaes. Se ( ) e ( ) sã etas cplanaes entã suas psições elativas sã: paalelas u cncentes; II- Retas nã cplanaes. Se ( ) e ( ) sã etas nã cplanaes a única psiçã elativa ente elas é evesas. Eistem alguns cass paticulaes cm: Retas cincidentes é um cas paticula quand as etas sã paalelas. Retas pependiculaes é um cas paticula quand as etas sã cncentes. Retas tgnais é um cas paticula quand as etas sã evesas. Paa uma melh discussã das psições elativas ente duas etas e, de uma fma fácil e ápida distingui um cas d ut, vams analisa cada psiçã elativa ente duas etas ( ) e ( ). Cnsidee duas etas ( ) : X A tv e ( ) : X A tv. I - Retas cplanaes: Se as etas ( ) e ( ) sã cplanaes entã A A,v,v ] [. ) Retas Paalelas: Sã etas cplanaes, nã se inteceptam e ângul ente θ. Analisand a dependência linea ente s vetes pdems cnclui: elas é { v, v} LD (paalels) { v, AA} LI (nã paalels) { v, AA} LI (nã paalels) A A Usaems a ntaçã ( ) ( ) paa indica etas paalelas. A A v v ( ) ( )

6 Lui Fancisc da Cu Depatament de Matemática Unesp/Bauu ) Retas Cincidentes: Sã etas cplanaes, uma está psicinada inteiamente sbe a uta, a inteseçã ente elas é uma delas e ângul ente elas é Analisand a dependência linea ente s vetes pdems cnclui: { v, v} LD (paalels) A A v v { v, AA} LD (paalels) ( ) ( ) { v, AA} LD (paalels) θ. Usaems a ntaçã ( ) ( ) paa indica etas cincidentes. ) Retas Cncentes: Sã etas cplanaes, se inteceptam num pnt P e ângul ente elas é θ 9 ente s vetes pdems cnclui: { v, v} LI (nã paalels) v v. Analisand a dependência linea e pdut escala v P θ ( ) ( ) v ) Retas Pependiculaes: Sã etas cplanaes, se inteceptam num pnt P e ângul ente elas é ente s vetes pdems cnclui: { v, v} LI (nã paalels) v v θ 9. Analisand a dependência linea e pdut escala ( ) ( ) v v P θ Usaems a ntaçã ( ) ( ) paa indica etas pependiculaes. II - Retas nã cplanaes: Se as etas ( ) e ( ) nã sã cplanaes entã AA, v, v ] [. ) Retas Revesas: Sã etas nã cplanaes, nã se inteceptam e ângul ente elas é θ 9 vetes pdems cnclui: { v, v} LI (nã paalels) v v. Analisand a dependência linea e pdut escala ente s ( ) ( ) v v v θ

7 Lui Fancisc da Cu Depatament de Matemática Unesp/Bauu ) Retas Otgnais: Sã etas nã cplanaes, nã se inteceptam e ângul ente elas é θ 9 vetes pdems cnclui: { v, v} LI (nã paalels) v v. Analisand a dependência linea e pdut escala ente s v ( ) ( ) v θ v Cm base a análise feita acima, sugeims seguinte esum paa distinguims as psições elativas ente duas etas ( ) e ( ). Resum: Sejam ( ): X A tv e ( ): X A tv. I - Retas Cplanaes [ A A,v,v] ) Retas Paalelas: { v, v} LD (paalels) e { v,aa } LI (nã paalels). ) Retas Cincidentes: { v, v} LD (paalels) e { v,aa } LD (paalels). ) Retas Cncentes: { v, v} LI (nã paalels) e v v. ) Retas Pependiculaes: { v, v} LI (nã paalels) e v v. II - Retas nã Cplanaes [ AA,v,v] ) Retas Revesas: v v ) Retas Otgnais: v v Eempl (): Dadas as etas () : e (s) : veifica a psiçã elativa ente elas e detemina a inteseçã se huve., A(,,) A(,, ) Sluçã: Paa a eta () tems: e paa (s) tems:. v (,, ) v (,,) Vams detemina [ AA, v, v] paa sabems se as etas sã u nã 6 cplanaes. Entã: [ A A,v,v]. Lg as etas sã cplanaes. Cm { v, v} LI (nã paalels) e v v, as etas sã cncentes e eiste a inteseçã ente elas que é um pnt P(,,). Paa detemina a

8 Lui Fancisc da Cu Depatament de Matemática Unesp/Bauu inteseçã devems iguala as equações das etas () e (s). Assim, das etas () e (s) pdems esceve: (): e (s): e 7. Vltand a equaçã de () u (s) e faend, teems, e -. Ptant, a inteseçã de () cm (s) é pnt P(,,-). Eempl (): Detemine s pnts de fus da eta ) : (. Sluçã: Pnts de fu de uma eta, sã s pnts P, P e P, inteseçã da eta cm s plans cdenads, e, espectivamente. Paa detemina pnt nde a eta "fua" plan, basta fae a cdenada na equaçã da eta e detemina as utas cdenadas e. Analgamente paa e, paa detemina s pnts de fu sbe s plans e. Assim: ) (,, P (,,) P,) (, P Vams epesenta estes pnts n R e também a eta (). () P P P -

9 Lui Fancisc da Cu Depatament de Matemática Unesp/Bauu Eempl (): Detemine a equaçã da eta (s) que é pependicula à eta ( ) : X (,,) t(,, ) e passa pel pnt M(,,-). Sluçã: Vams detemina pnt Q(,,) que a inteseçã das etas () e (s) e esceve a equaçã da (s) que passa pels pnts M e Q da seguinte fma ( s): X M t QM. Pela figua pdems nta que vet QA é paalel a vet v, e tgnal a vet QM. Entã: QA // v QA α v (,, ) α (,, ) M α α Q: α α α α QM v QM v A QA Q QM v () (,, ) (,, ) 8 (s) ( α ) ( α) α 8 α Deteminand pnt Q: 8 Q,,. Assim vet 8 QM,, 6 9,, 9. Cm QMé vet diet da eta (s), pdems tma qualque vet paalel a ele paa se vet diet da eta (s). Em paticula seja u QM (,, ). Ptant a eta (s) seá escita cm X M t u, u seja, ( s) : X (,, ) t (,, ). Na fma simética (s) :. Eecícis Ppsts ) Veifica a psiçã elativa ente as etas e detemina a inteseçã quand huve: a) () : e (s) : Resp:a) Retas pependiculaes e () (s)p(-,,-) b) () : e (s) :

10 Lui Fancisc da Cu Depatament de Matemática Unesp/Bauu Resp:a) Retas evesas e nã eiste () (s) ) Detemine a equaçã da eta supte da altua elativa a lad BC d tiângul de vétices A(,,), B(,,) e C(,6,). ( ): X (,,) t(,,) Resp: ) Os pnts médis ds lads de um tiângul sã s pnts M(,,), N(,,-) e P(,-,). Detemine a equaçã da eta supte d lad deste tiângul que cntém pnt M. Resp: X(,,)t(,7,-) ) Esceva a equações siméticas da eta que passa pel pnt A(,-,) e é paalela a ei O. Resp: e t ) Detemine s vales de k paa que as etas sejam cplanaes: () : k e k (s) :. Resp: k u k COMENTÁRIOS IMPORTANTES ) É muit cmum e até natual que se intdua estud da eta quand ela é definida pimeiamente n R. Muitas vees, a eta é apesentada a alun cm gáfic da funçã linea f () a b, sempe epesentada n R (n plan) e nã de uma fma gemética u vetial. Os cuidads que se deve tma, neste capítul, sã: a) Nós estams tabalhand sempe n R (as definições sã difeentes quand tabalhams cm R ); b) A eta aqui definida (n R ), tem uma definiçã vetial e uma intepetaçã gemética (nã apenas gáfic da funçã linea). ) Quand estams n R a funçã linea f () a b, cm a pópia epesentaçã di, tems cm funçã de, u seja: f(). Assim, a equaçã de uma eta é, p eempl:. N R a funçã linea é epessa na fma a b e c d, tant cm sã funções de. Lg, a equaçã da eta é, p eempl: e. Nte que esta fma de esceve a equaçã da eta vem da fma simética, pis: Lg. e. ) É muit imptante alun sabe destaca da equaçã simética da eta seu pnt e seu vet diet. Ptant, lhe eempl () e patique um puc.

11 Lui Fancisc da Cu Depatament de Matemática Unesp/Bauu ) Atençã às psições elativas ente etas. É muit cmum alun afima que as etas sã tgnais (petencem a plans difeentes) e acha a inteseçã. Oa, cm iss é pssível? Na vedade nã é pssível. ) Out e muit cmum é die que as etas sã pependiculaes u cncentes e nã sã cplanaes. Oa, iss nã é pssível. Reveja estes cnceits nvamente e pense antes de afima alguma cisa. 6) Deve-se nta que uma eta é cnstituída de pnts. Cm estams intduind s cnceits vetiais paa definims e tabalhams cm as etas, é muit cmum, quand utiliams as equações da eta, cnfundi que sã pnts da eta e que sã vetes paalels u cntids na eta. P eempl: Cnsidee a eta de equaçã simética ():. Cm é cmum epesenta um vet epessand smente suas cdenadas p v (,, ), iss pde causa cnfusã cm as cdenadas, e ds pnts da eta, u seja, as cdenadas, e que apaecem na equaçã simética (bem cm nas utas equações), sã as cdenadas ds pnts da eta e nã de um vet paalel u cntid nela. Um vet só seá paalel u estaá cntid na eta se f múltipl (u seja, paalel) a vet diet da eta. N entant, paa que um pnt petença à eta é necessái que ele satisfaça a equaçã da eta. Nte que pnt P(,,) (), pis:, mas vet v (,, ) nã é paalel à eta, pis vet diet da eta é u (,, ) que nã é múltipl d vet v (,, ). Já vet w (,,6 ) é paalel à eta, pis é múltipl d vet diet, u seja, w u, mas pnt de cdenadas Q(,,6) (), pis: 6.

CAPÍTULO IV - POSIÇÕES RELATIVAS DE UMA RETA E UM PLANO E DE DUAS RETAS

CAPÍTULO IV - POSIÇÕES RELATIVAS DE UMA RETA E UM PLANO E DE DUAS RETAS CAÍTULO IV - OSIÇÕES RELATIVAS DE UMA RETA E UM LANO E DE DUAS RETAS 41 sições elativas de uma eta e um plan As psições de uma eta a) paalela a ( // ) :X = R + t v, t IR R e um plan sã: v n // v n = 0

Leia mais

CAPÍTULO 7 DISTÂNCIAS E ÂNGULOS

CAPÍTULO 7 DISTÂNCIAS E ÂNGULOS Luiz Fancisc da Cuz epatament de Matemática Unesp/Bauu CPÍTULO 7 ISTÂNCIS E ÂNGULOS 1 ISTÂNCIS Tds s cnceits vetiais que sã necessáis paa cálcul de distâncias e ânguls, de ceta fma, já fam estudads ns

Leia mais

CAPÍTULO I EQUAÇÕES DA RETA

CAPÍTULO I EQUAÇÕES DA RETA CAPÍTULO I EQUAÇÕES DA RETA Equaçã vetial Um ds aximas da gemetia euclidiana diz que dis pnts distints deteminam uma eta Seja a eta deteminada pels pnts P e P P P Um pnt P petence à eta se, e smente se,

Leia mais

Universidade Federal da Bahia Departamento de Matemática

Universidade Federal da Bahia Departamento de Matemática Retas e Plans Univesidade Fedeal da Bahia Depatament de Matemática 000 Intduçã Este text é uma vesã evisada e atualizada d text " Retas e Plans" de autia das pfessas Ana Maia Sants Csta, Heliacy Celh Suza

Leia mais

CAPÍTULO VI - DISTÂNCIA

CAPÍTULO VI - DISTÂNCIA CAPÍTULO VI - DISTÂNCIA 61 Ditância ente di pnt A ditância ente um pnt A e um pnt B B é indicada p d(a,b) e definida p AB A Cnideand A (a1, a, a3 ) e B(b1, b, b 3 ) tem que: d(a, B) = AB = (b1 a1, b a,

Leia mais

I, determine a matriz inversa de A. Como A 3 3 A = 2 I; fatorando o membro esquerdo dessa igualdade por A, temos a expressão

I, determine a matriz inversa de A. Como A 3 3 A = 2 I; fatorando o membro esquerdo dessa igualdade por A, temos a expressão VTB 008 ª ETAPA Sluçã Cmentada da Prva de Matemática 0 Em uma turma de aluns que estudam Gemetria, há 00 aluns Dentre estes, 0% fram aprvads pr média e s demais ficaram em recuperaçã Dentre s que ficaram

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 6 PLANO. v r 1

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 6 PLANO. v r 1 Luiz Fancisco a Cuz Depatamento e Matemática Unesp/Bauu CAPÍTULO 6 PLANO Definição: Seja A um ponto qualque o plano e v e v ois vetoes LI (ou seja, não paalelos), mas ambos paalelos ao plano. Seja X um

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 VETORES NO PLANO E NO ESPAÇO

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 VETORES NO PLANO E NO ESPAÇO Lui Fancisco da Cu Depatamento de Matemática Unesp/Bauu CAPÍTULO VETORES NO PLANO E NO ESPAÇO Vetoes no plano O plano geomético, também chamado de R, simbolicamente escevemos: R RR {(,), e R}, é o conunto

Leia mais

E d A E d A E d A E d A

E d A E d A E d A E d A X R Í I OS: Lei de Gauss 1. Uma supefície fechada, na fma de um cilind et, encnta-se imes em um camp elétic unifme. O eix d cilind é paalel a camp elétic. Usand a fma integal paa flux d camp elétic, mste

Leia mais

singular GEOMETRIA ANALÍTICA 2º E.M. Tarde Colégio Técnico Noturno Profª Liana (Lista de exercícios elaborada pelo professor DANRLEY)

singular GEOMETRIA ANALÍTICA 2º E.M. Tarde Colégio Técnico Noturno Profª Liana (Lista de exercícios elaborada pelo professor DANRLEY) 1 singula GEOMETRIA ANALÍTICA 2º E.M. Tade Colégio Técnico Notuno Pofª Liana (Lista de eecícios elaboada pelo pofesso DANRLEY) SISTEMA CARTESIANO ORTOGONAL 2 1) Indique a que quadante petence cada ponto:

Leia mais

Objetivo. Estudo do efeito de sistemas de forças concorrentes.

Objetivo. Estudo do efeito de sistemas de forças concorrentes. Univesidade Fedeal de Alagas Cent de Tecnlgia Cus de Engenhaia Civil Disciplina: Mecânica ds Sólids 1 Códig: ECIV018 Pfess: Eduad Nbe Lages Estática das Patículas Maceió/AL Objetiv Estud d efeit de sistemas

Leia mais

CONSTRUINDO O LOGOTIPO DA OLIMPÍADA BRASILEIRA DE MATEMÁTICA NO GEOGEBRA

CONSTRUINDO O LOGOTIPO DA OLIMPÍADA BRASILEIRA DE MATEMÁTICA NO GEOGEBRA CONSTRUINDO O LOGOTIPO DA OLIMPÍADA BRASILEIRA DE MATEMÁTICA NO GEOGEBRA Maiana Man Bas - Valdeni Sliani Fanc maianamanba@gmail.cm - vsfanc@uem.b Univesidade Estadual d Paaná/FECILCAM Univesidade Estadual

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru Luiz Fancisco da Cuz Depatamento de Matemática Unesp/Bauu EXERCÍCIOS SOBRE CÁLCULO VETOTIL E GEOMETRI NLÍTIC 01) Demonste vetoialmente que o segmento que une os pontos médios dos lados não paalelos de

Leia mais

5 Estudo analítico de retas e planos

5 Estudo analítico de retas e planos GA3X1 - Geometia Analítica e Álgeba Linea 5 Estudo analítico de etas e planos 5.1 Equações de eta Definição (Veto dieto de uma eta): Qualque veto não-nulo paalelo a uma eta chama-se veto dieto dessa eta.

Leia mais

PARTE IV COORDENADAS POLARES

PARTE IV COORDENADAS POLARES PARTE IV CRDENADAS PLARES Existem váios sistemas de coodenadas planas e espaciais que, dependendo da áea de aplicação, podem ajuda a simplifica e esolve impotantes poblemas geométicos ou físicos. Nesta

Leia mais

GEOMETRIA ESPACIAL DE POSIÇÃO. - Ponto: - Reta: - Plano: - Espaço: Dois pontos distintos determinam uma reta. ou. Posições Relativas

GEOMETRIA ESPACIAL DE POSIÇÃO. - Ponto: - Reta: - Plano: - Espaço: Dois pontos distintos determinam uma reta. ou. Posições Relativas GEOMETRIA ESPACIAL DE POSIÇÃO Conceitos Pimitivos: - Ponto: - Reta: - Plano: - Espaço: A B Postulados de Existência: Existem infinitos pontos, infinitas etas, infinitos planos e um único espaço. Algumas

Leia mais

Campo Elétrico. 4πε o FATECSP Campo Elétrico

Campo Elétrico. 4πε o FATECSP Campo Elétrico . Camp létic FATCSP - 0 Camp létic Pdems mapea a tempeatua a ed de um fn utiliand-se de um temômet paa bte uma distibuiçã de tempeatuas cnhecid cm camp de tempeatua d fn. Da mesma fma camp elétic em tn

Leia mais

4.4 Mais da geometria analítica de retas e planos

4.4 Mais da geometria analítica de retas e planos 07 4.4 Mais da geometia analítica de etas e planos Equações da eta na foma simética Lembemos que uma eta, no planos casos acima, a foma simética é um caso paticula da equação na eta na foma geal ou no

Leia mais

Credenciamento Portaria MEC 3.613, de D.O.U

Credenciamento Portaria MEC 3.613, de D.O.U edenciamento Potaia ME 3.63, de 8..4 - D.O.U. 9..4. MATEMÁTIA, LIENIATURA / Geometia Analítica Unidade de apendizagem Geometia Analítica em meio digital Pof. Lucas Nunes Ogliai Quest(iii) - [8/9/4] onteúdos

Leia mais

CAPÍTULO VIII. Análise de Circuitos RL e RC

CAPÍTULO VIII. Análise de Circuitos RL e RC CAPÍTUO VIII Análise de Circuits e 8.1 Intrduçã Neste capítul serã estudads alguns circuits simples que utilizam elements armazenadres. Primeiramente, serã analisads s circuits (que pssuem apenas um resistr

Leia mais

Material Teórico - Sistemas Lineares e Geometria Anaĺıtica. Sistemas com Três Variáveis - Parte 2. Terceiro Ano do Ensino Médio

Material Teórico - Sistemas Lineares e Geometria Anaĺıtica. Sistemas com Três Variáveis - Parte 2. Terceiro Ano do Ensino Médio Mateial Teóico - Sistemas Lineaes e Geometia Anaĺıtica Sistemas com Tês Vaiáveis - Pate 2 Teceio Ano do Ensino Médio Auto: Pof. Fabício Siqueia Benevides Reviso: Pof. Antonio Caminha M. Neto 1 Sistemas

Leia mais

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa A. alternativa D. alternativa B. alternativa A

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa A. alternativa D. alternativa B. alternativa A Questã TIPO DE PROVA: A Um bjet é vendid em uma lja pr R$ 6,00. O dn da lja, mesm pagand um impst de 0% sbre preç de venda, btém um lucr de 0% sbre preç de cust. O preç de cust desse bjet é: a) R$ 6,00

Leia mais

Matemática B Extensivo V. 6

Matemática B Extensivo V. 6 Matemática Etensivo V. 6 Eecícios ) Seja: + e s a eta pependicula a : omo s, temos: m s m s Logo, a equação da eta s é dada po: m ( ) ( ) ( ) + + + ) + + Temos ainda: m + + m m omo as etas acima são paalelas,

Leia mais

Testes Propostos de Geometria Plana: Ângulos

Testes Propostos de Geometria Plana: Ângulos u de Matemática Tete Ppt de Gemetia Plana: Ângul 01. Sejam, e epectivamente a medida d cmplement, uplement e eplement d ângul de 40, têm-e 05. i ângul adjacente ã cmplementae. ntã, ângul fmad pela bietize

Leia mais

Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta

Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta Questã O númer de gls marcads ns 6 jgs da primeira rdada de um campenat de futebl fi 5,,,, 0 e. Na segunda rdada, serã realizads mais 5 jgs. Qual deve ser númer ttal de gls marcads nessa rdada para que

Leia mais

UFJF CONCURSO VESTIBULAR 2012 REFERÊNCIA DE CORREÇÃO DA PROVA DE MATEMÁTICA. e uma das raízes é x = 1

UFJF CONCURSO VESTIBULAR 2012 REFERÊNCIA DE CORREÇÃO DA PROVA DE MATEMÁTICA. e uma das raízes é x = 1 UFJF ONURSO VESTIULR REFERÊNI DE ORREÇÃO D PROV DE MTEMÁTI 4 Questão Seja P( = ax + bx + cx + dx + e um polinômio com coeficientes eais em que b = e uma das aízes é x = Sabe-se que a < b < c < d < e fomam

Leia mais

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 6- º ano. Este material é um complemento da obra Matemática 6. uso escolar. Venda proibida.

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 6- º ano. Este material é um complemento da obra Matemática 6. uso escolar. Venda proibida. 6 ENSINO FUNDMENTL 6- º ano Matemática tividades complementaes Este mateial é um complemento da oba Matemática 6 Paa Vive Juntos. Repodução pemitida somente paa uso escola. Venda poibida. Samuel Casal

Leia mais

MAT1514 Matemática na Educação Básica

MAT1514 Matemática na Educação Básica MAT54 Matemática na Educação Básica TG7 Uma Intodução ao Cálculo de olumes Gabaito Demonste que o volume de um bloco etangula cujas medidas das aestas são númeos acionais é o poduto das tês dimensões esposta:

Leia mais

MATEMÁTICA. 248 = 800 mg de cálcio. 1600 k2. k 2 1600 k2

MATEMÁTICA. 248 = 800 mg de cálcio. 1600 k2. k 2 1600 k2 (9) 35-0 www.elitecampinas.cm.br O ELITE RESOLVE A UNICAMP 005 SEGUNDA FASE MATEMÁTICA MATEMÁTICA ATENÇÃO: Escreva a resluçã COMPLETA de cada questã n espaç a ela reservad. Nã basta escrever apenas resultad

Leia mais

BRDE AOCP 2012. 01. Complete o elemento faltante, considerando a sequência a seguir: 1 2 4 8? 32 64 (A) 26 (B) 12 (C) 20 (D) 16 (E) 34.

BRDE AOCP 2012. 01. Complete o elemento faltante, considerando a sequência a seguir: 1 2 4 8? 32 64 (A) 26 (B) 12 (C) 20 (D) 16 (E) 34. BRDE AOCP 01 01. Cmplete element faltante, cnsiderand a sequência a seguir: (A) 6 (B) 1 (C) 0 (D) 16 (E) 4 Resluçã: 1 4 8? 64 Observe que, td númer subsequente é dbr d númer anterir: 1 4 8 16 4 8 16 64...

Leia mais

é igual a f c f x f c f c h f c 2.1. Como g é derivável em tem um máximo relativo em x 1, então Resposta: A

é igual a f c f x f c f c h f c 2.1. Como g é derivável em tem um máximo relativo em x 1, então Resposta: A Pepaa o Eame 03 07 Matemática A Página 84. A taa de vaiação instantânea da função f em c é igual a f c e é dada po: c f f c f c h f c f lim lim c c ch h0 h Resposta: D... Como g é deivável em tem um máimo

Leia mais

Circunferência e círculo

Circunferência e círculo Cicunfeência e cículo evolução da humanidade foi aceleada po algumas descobetas e invenções. Ente elas, podemos cita a impensa de Johannes Gutenbeg (1400-1468), na lemanha, po volta de 1450, que pemitiu

Leia mais

DISCIPLINA ELETRICIDADE E MAGNETISMO LEI DE AMPÈRE

DISCIPLINA ELETRICIDADE E MAGNETISMO LEI DE AMPÈRE DISCIPLINA ELETICIDADE E MAGNETISMO LEI DE AMPÈE A LEI DE AMPÈE Agoa, vamos estuda o campo magnético poduzido po uma coente elética que pecoe um fio. Pimeio vamos utiliza uma técnica, análoga a Lei de

Leia mais

CAPÍTULO 3 DEPENDÊNCIA LINEAR

CAPÍTULO 3 DEPENDÊNCIA LINEAR Luiz Fancisco da Cuz Depatamento de Matemática Unesp/Bauu CAPÍTULO 3 DEPENDÊNCIA LINEAR Combinação Linea 2 n Definição: Seja {,,..., } um conjunto com n etoes. Dizemos que um eto u é combinação linea desses

Leia mais

Figura 13-Balança de torção

Figura 13-Balança de torção Capítul-Cagas eléticas, islantes e cndutes ças eléticas A Lei de Culmb Augustin Culmb aceditava na teia de açã a distância paa a eleticidade Ele inventa e cnstói em 785 uma balança de tçã paa estuda a

Leia mais

4.3. DIVISÃO DA CIRCUNFERÊNCIA EM ARCOS IGUAIS: PROCESSOS EXATOS

4.3. DIVISÃO DA CIRCUNFERÊNCIA EM ARCOS IGUAIS: PROCESSOS EXATOS ELEMENTOS DE GEOMETRIA 105 05. Detemine gaficamente a medida apximada em gaus de um ac de cm de cmpiment em uma cicunfeência de,5cm de ai. 06. Numa cicunfeência de ai qualque, define-se um adian (1ad)

Leia mais

Aula 31 Área de Superfícies - parte II

Aula 31 Área de Superfícies - parte II MÓDULO - UL 1 ula 1 Áea de Supefícies - pate II Objetivos Defini sólidos de evolução. Detemina áeas de algumas supefícies de evolução. Intodução Considee um plano e uma linha simples L contida nesse plano.

Leia mais

Questão 1. Questão 2. Questão 3. alternativa C. alternativa E

Questão 1. Questão 2. Questão 3. alternativa C. alternativa E Questão 1 Dois pilotos iniciaam simultaneamente a disputa de uma pova de automobilismo numa pista cuja extensão total é de, km. Enquanto Máio leva 1,1 minuto paa da uma volta completa na pista, Júlio demoa

Leia mais

Gabarito Extensivo MATEMÁTICA volume 1 Frente D

Gabarito Extensivo MATEMÁTICA volume 1 Frente D Gabarit Extensiv MATEMÁTICA vlume 1 Frente D 01) 8x 40 6x 0 8x 6x 0 + 40 x 0 x 10 8x 40 8.10 40 80 40 40 6x 0 6.10 0 60 0 40 0) Pnteir pequen (hras): 30-1 hra 60 minuts 1 -? 30 60 1 x x 4 min Prtant, 1h4min

Leia mais

CAPÍTULO 10 TRANSLAÇÃO E ROTAÇÃO DE EIXOS

CAPÍTULO 10 TRANSLAÇÃO E ROTAÇÃO DE EIXOS CAPÍTULO 0 TRANSLAÇÃO E ROTAÇÃO DE EIXOS TRANSLAÇÃO DE EIXOS NO R Sejam O e O s eis primitivs, d Sistema Cartesian de Eis Crdenads cm rigem O(0,0). Sejam O e O s nvs eis crdenads cm rigem O (h,k), depis

Leia mais

O perímetro da circunferência

O perímetro da circunferência Univesidade de Basília Depatamento de Matemática Cálculo 1 O peímeto da cicunfeência O peímeto de um polígono de n lados é a soma do compimento dos seus lados. Dado um polígono qualque, você pode sempe

Leia mais

ARITMÉTICA DE PONTO FLUTUANTE/ERROS EM OPERAÇÕES NUMÉRICAS

ARITMÉTICA DE PONTO FLUTUANTE/ERROS EM OPERAÇÕES NUMÉRICAS ARITMÉTICA DE PONTO FLUTUANTE/ERROS EM OPERAÇÕES NUMÉRICAS. Intodução O conjunto dos númeos epesentáveis em uma máquina (computadoes, calculadoas,...) é finito, e potanto disceto, ou seja não é possível

Leia mais

5ª LISTA DE EXERCÍCIOS - CINEMÁTICA

5ª LISTA DE EXERCÍCIOS - CINEMÁTICA UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE FÍSICA DEPARTAMENTO DE FÍSICA DA TERRA E DO MEIO AMBIENTE CURSO: FÍSICA GERAL E EXPERIMENTAL I E SEMESTRE: 2008.1 5ª LISTA DE EXERCÍCIOS - CINEMÁTICA Cnsidee

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA CAPÍTULO 1 VETORES

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA CAPÍTULO 1 VETORES ÁLULO VETORIL E GEOMETRI NLÍTI Luiz Fancisco da uz Depatamento de Matemática Unesp/auu ÁLULO VETORIL E GEOMETRI NLÍTI 1 PÍTULO 1 VETORES cedita-se que as pimeias noções intuitivas sobe opeações com segmentos

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 GEOM. ANALÍTICA PONTO E RET

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 GEOM. ANALÍTICA PONTO E RET INTRODUÇÃO... NOÇÕES BÁSICAS... POSIÇÃO DE UM PONTO EM RELAÇÃO AO SISTEMA... DISTÂNCIA ENTRE DOIS PONTOS... 5 RAZÃO DE SECÇÃO... DIVISÃO DE UM SEGMENTO NUMA RAZÃO DADA... 4 PONTO MÉDIO DE UM SEGMENTO...

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 10/08/13 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 10/08/13 PROFESSOR: MALTEZ ESOLUÇÃO DA AALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 0/08/ POFESSO: MALTEZ QUESTÃO 0 A secção tansvesal de um cilindo cicula eto é um quadado com áea de m. O volume desse cilindo, em m, é: A

Leia mais

MATRIZES. Em uma matriz M de m linhas e n colunas podemos representar seus elementos da seguinte maneira:

MATRIZES. Em uma matriz M de m linhas e n colunas podemos representar seus elementos da seguinte maneira: MATRIZES Definiçã Chm-se mtriz d tip m x n (m IN* e n IN*) td tel M frmd pr númers reis distriuíds em m linhs e n cluns. Em um mtriz M de m linhs e n cluns pdems representr seus elements d seguinte mneir:

Leia mais

AT4 DESENHO GEOMÉTRICO SEQUÊNCIA DE CONSTRUÇÕES GEOMÉTRICAS

AT4 DESENHO GEOMÉTRICO SEQUÊNCIA DE CONSTRUÇÕES GEOMÉTRICAS L M NNI MINTL a U/USa epatamento de ngenhaia ivil da USa xpessão áfica paa ngenhaia T4 SN MÉTI SQUÊNI NSTUÇÕS MÉTIS ste texto teóico apesenta uma séie de constuções geométicas () que são consideadas básicas.

Leia mais

4 Métodos de previsão cobertura em áreas urbanas

4 Métodos de previsão cobertura em áreas urbanas 4 Métds de pevisã cbetua em áeas ubanas 4.1. Intduçã Em egiões ubanas teen sbe qual se dá à ppagaçã apesenta tpgafia vaiada, vegetaçã e cnstuções distibuídas de fma aleatóia. Emba cálcul da peda de ppagaçã

Leia mais

)25d$0$*1e7,&$62%5( &21'8725(6

)25d$0$*1e7,&$62%5( &21'8725(6 73 )5d$0$*1e7,&$6%5( &1'875(6 Ao final deste capítulo você deveá se capaz de: ½ Explica a ação de um campo magnético sobe um conduto conduzindo coente. ½ Calcula foças sobe condutoes pecoidos po coentes,

Leia mais

ENGENHARIA FÍSICA FENÔMENOS DE TRANSPORTE B

ENGENHARIA FÍSICA FENÔMENOS DE TRANSPORTE B ENGENHARIA FÍSICA FENÔMENOS DE TRANSPORTE B Pf. D. Ségi R. Mnt segi.mnt@usp.b smnt@dequi.eel.usp.b TRANSFERÊNCIA DE CALOR ENGENHARIA FÍSICA AULA 7 RAIO CRÍTICO DE ISOLAMENTO 2 Cnsidee um tub de pequen

Leia mais

Problemas sobre Indução Electromagnética

Problemas sobre Indução Electromagnética Faculdade de Engenhaia Poblemas sobe Indução Electomagnética ÓPTICA E ELECTROMAGNETISMO MIB Maia Inês Babosa de Cavalho Setembo de 7 Faculdade de Engenhaia ÓPTICA E ELECTROMAGNETISMO MIB 7/8 LEI DE INDUÇÃO

Leia mais

MOVIMENTO DE SÓLIDOS EM CONTACTO PERMANENTE

MOVIMENTO DE SÓLIDOS EM CONTACTO PERMANENTE 1 1 Genealidades Consideemos o caso epesentado na figua, em que o copo 2 contacta com o copo 1, num ponto Q. Teemos então, sobepostos neste instante, um ponto Q 2 e um ponto Q 1, petencentes, espectivamente

Leia mais

SISTEMA DE COORDENADAS

SISTEMA DE COORDENADAS ELETROMAGNETISMO I 1 0 ANÁLISE VETORIAL Este capítulo ofeece uma ecapitulação aos conhecimentos de álgeba vetoial, já vistos em outos cusos. Estando po isto numeado com o eo, não fa pate de fato dos nossos

Leia mais

QUESTÕES COMENTADAS DE MECÂNICA

QUESTÕES COMENTADAS DE MECÂNICA QUSTÕS OMNTS MÂNI Prf. Ináci envegnú Mrsch MOM ept. ng. ivil UFRGS 1) etermine valr da frça F 2, figura (1), que é rtgnal à reta O, para que smatóri ds mments em O seja igual a zer. 2 16 F 2 Sluçã: Transprta-se

Leia mais

Aula 6: Aplicações da Lei de Gauss

Aula 6: Aplicações da Lei de Gauss Univesidade Fedeal do Paaná eto de Ciências xatas Depatamento de Física Física III Pof. D. Ricado Luiz Viana Refeências bibliogáficas: H. 25-7, 25-9, 25-1, 25-11. 2-5 T. 19- Aula 6: Aplicações da Lei de

Leia mais

GEOMETRIA DINÂMICA E O ESTUDO DE TANGENTES AO CÍRCULO

GEOMETRIA DINÂMICA E O ESTUDO DE TANGENTES AO CÍRCULO GEMETRIA DINÂMICA E ESTUD DE TANGENTES A CÍRCUL Luiz Calos Guimaães, Elizabeth Belfot e Leo Akio Yokoyama Instituto de Matemática UFRJ lcg@labma.ufj.b, beth@im.ufj.b, leoakyo@yahoo.com.b INTRDUÇÃ: CÍRCULS,

Leia mais

Caderno 2: 75 minutos. Tolerância: 15 minutos. Não é permitido o uso de calculadora.

Caderno 2: 75 minutos. Tolerância: 15 minutos. Não é permitido o uso de calculadora. Eame Final Nacional de Matemática A Pova 635 Época Especial Ensino Secundáio 018 1.º Ano de Escolaidade Deceto-Lei n.º 139/01, de 5 de julho Duação da Pova (Cadeno 1 + Cadeno ): 150 minutos. Toleância:

Leia mais

F G. m 2. Figura 32- Lei da gravitação Universal de Newton e Lei de Coulomb.

F G. m 2. Figura 32- Lei da gravitação Universal de Newton e Lei de Coulomb. apítul 3-Ptencal eletc PÍTULO 3 POTEIL ELÉTRIO Intduçã Sabems ue é pssível ntduz cncet de enega ptencal gavtacnal pue a fça gavtacnal é cnsevatva Le de Gavtaçã Unvesal de ewtn e a Le de ulmb sã mut paecdas

Leia mais

Vetores Cartesianos. Marcio Varela

Vetores Cartesianos. Marcio Varela Vetoes Catesianos Macio Vaela Sistemas de Coodenadas Utilizando a Rega da Mão Dieita. Esse sistema seá usado paa desenvolve a teoia da álgeba vetoial. Componentes Retangulaes de um Veto Um veto pode te

Leia mais

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano Escola Secundáia/ da Sé-Lamego Ficha de Tabalho de Matemática Ano Lectivo 00/04 Geometia - Revisões º Ano Nome: Nº: Tuma: A egião do espaço definida, num efeencial otonomado, po + + = é: [A] a cicunfeência

Leia mais

MATEMÁTICA 3 A SÉRIE - E. MÉDIO

MATEMÁTICA 3 A SÉRIE - E. MÉDIO 1 MTEMÁTIC 3 SÉRIE - E. MÉDIO Pof. Rogéio Rodigues ELEMENTOS PRIMITIVOS / ÂNGULOS NOME :... NÚMERO :... TURM :... 2 I) ELEMENTOS PRIMITIVOS ÂNGULOS Os elementos pimitivos da Geometia são O Ponto, eta e

Leia mais

LEI DE GAUSS. Figura 102-Lei de Gauss Na figura acima, o fluxo de linhas de força através de A 1

LEI DE GAUSS. Figura 102-Lei de Gauss Na figura acima, o fluxo de linhas de força através de A 1 Capítul 9-Lei de Gauss LI D GUSS Quand se clca fubá (u simila) na supefície de um óle viscs nde existem cagas eléticas apaecem linhas. Faaday pecebeu que a dieçã da linha em cada pnt d espaç ea a dieçã

Leia mais

5/21/2015. Prof. Marcio R. Loos. Revisão: Campo Magnético. Revisão: Campo Magnético. Ímãs existem apenas em pares de polos N e S (não há monopolos*).

5/21/2015. Prof. Marcio R. Loos. Revisão: Campo Magnético. Revisão: Campo Magnético. Ímãs existem apenas em pares de polos N e S (não há monopolos*). 5/1/15 Físca Geal III Aula Teóca 16 (Cap. 1 pate 1/): 1) evsã: Camp Magnétc ) Le de t-savat ) devd a um f etlíne lng ) Lnhas de camp pduzds p um f 5) n cent de cuvatua de um ac de f 6) Fça ente centes

Leia mais

Provas finais. Prova final 1 1 Prova final 2 6 Soluções das Provas finais 10

Provas finais. Prova final 1 1 Prova final 2 6 Soluções das Provas finais 10 Pova final Pova final 6 Soluções das 0 Pova final ESCOLA: NOME: N. O : TURMA: DATA: Cadeno (com calculadoa) 5 minutos Gupo I Paa cada uma das questões deste gupo, selecione a opção coeta de ente as altenativas

Leia mais

Testes para comparação de médias

Testes para comparação de médias 7 /03/018 Rtei de Aula Aula 5 Expeimentaçã Ztécnica Pfa. Da. Amanda Liz Pacífic Manfim Peticaai Tete paa cmpaaçã de média Cntate de média: Y = c 1 m 1 + c m + + c I m I e i=1 c i = c 1 + c + +c I = 0 I

Leia mais

Introdução. capítulo 1. Objetivos de aprendizagem

Introdução. capítulo 1. Objetivos de aprendizagem capítulo 1 Intodução Neste capítulo, apesentamos os entes geométicos fundamentais a sabe, o ponto, a eta e o plano e conceitos elacionados que condicionam a compeensão do estante deste livo. Objetivos

Leia mais

INSTRUÇOES: Responda no espaço próprio da questão e use o verso da página como rascunho. lim(1 + x) = e (limites fundamentais) calcule o limite

INSTRUÇOES: Responda no espaço próprio da questão e use o verso da página como rascunho. lim(1 + x) = e (limites fundamentais) calcule o limite a FASE DO CONCURSO VESTIBULAR DO BACHARELADO EM ESTATÍSTICA a PROVA DA DISCIPLINA: CE65 ELEMENTOS BÁSICOS PARA ESTATÍSTICA 6/5/8 INSTRUÇOES: Responda no espaço pópio da questão e use o veso da página como

Leia mais

O resultado dessa derivada é então f (2) = lim = lim

O resultado dessa derivada é então f (2) = lim = lim Tets de Cálcul Prf. Adelm R. de Jesus I. A NOÇÃO DE DERIVADA DE UMA FUNÇÃO EM UM PONTO Dada uma funçã yf() e um pnt pdems definir duas variações: a variaçã de, chamada, e a variaçã de y, chamada y. Tems

Leia mais

Matemática B Semi-Extensivo V. 1. Exercícios

Matemática B Semi-Extensivo V. 1. Exercícios Matemática B Semi-Etensiv V. Eercícis 0) E Cm DBC é isósceles, tems DC 8. Em ADC sen 60º AC DC 0) B sen 60º 6 cs 60º y y y 6 Perímetr + 6 + 6 8 + 6 6( + ) 0) AC 8 AC 6 tg y y y tg 0) D 8. h 8 h 6 d 8 +

Leia mais

+, a velocidade de reação resultante será expressa

+, a velocidade de reação resultante será expressa 3. - Velocidade de eação velocidade de eação ou taxa de eação de fomação de podutos depende da concentação, pessão e tempeatua dos eagentes e podutos da eação. É uma gandeza extensiva po que tem unidades

Leia mais

Instruções sobre a placa de interface ISDN BRI 1 porta (WIC-1B-U-V2, WIC-1B-U ou WIC36-1B- U)

Instruções sobre a placa de interface ISDN BRI 1 porta (WIC-1B-U-V2, WIC-1B-U ou WIC36-1B- U) Instuções sbe a placa de inteface ISDN BRI 1 p (-1B--V2, -1B- u 36-1B- ) Índice Intduçã Antes de Cmeça Cnvenções Pé-equisits Cmpnentes tilizads Númes de pdut Recuss Supte à platafma Infmações Relacinad

Leia mais

PROPRIEDADES DAS EQUAÇÕES POLINOMIAIS RECÍPROCAS

PROPRIEDADES DAS EQUAÇÕES POLINOMIAIS RECÍPROCAS RAÍZES RECÍPROCAS Pof. Macelo Renato Equação Polinomial Recípoca, ou simplesmente "Equação ecípoca", é aquela que, se possui "x " como aiz, então seu ecípoco ("/x ") também seá aiz da equação. Exemplo:

Leia mais

Cap03 - Estudo da força de interação entre corpos eletrizados

Cap03 - Estudo da força de interação entre corpos eletrizados ap03 - Estudo da foça de inteação ente copos eletizados 3.1 INTRODUÇÃO S.J.Toise omo foi dito na intodução, a Física utiliza como método de tabalho a medida das qandezas envolvidas em cada fenômeno que

Leia mais

FORÇA ENTRE CARGAS ELÉTRICAS E O CAMPO ELETROSTÁTICO

FORÇA ENTRE CARGAS ELÉTRICAS E O CAMPO ELETROSTÁTICO LTOMAGNTISMO I FOÇA NT CAGAS LÉTICAS O CAMPO LTOSTÁTICO Os pimeios fenômenos de oigem eletostática foam obsevados pelos gegos, 5 séculos antes de Cisto. les obsevaam que pedaços de âmba (elekta), quando

Leia mais

/(,'(%,276$9$57()/8;2 0$*1e7,&2

/(,'(%,276$9$57()/8;2 0$*1e7,&2 67 /(,'(%,76$9$57()/8; 0$*1e7,& Ao final deste capítulo você deveá se capaz de: ½ Explica a elação ente coente elética e campo magnético. ½ Equaciona a elação ente coente elética e campo magnético, atavés

Leia mais

XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (7 a. e 8 a. Ensino Fundamental) GABARITO

XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (7 a. e 8 a. Ensino Fundamental) GABARITO GABARITO NÍVEL XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (7 a. e 8 a. Ensin Fundamental) GABARITO ) D 6) A ) D 6) C ) C ) C 7) C ) C 7) B ) E ) C 8) A ) E 8) C ) D 4) A 9) B 4) C 9)

Leia mais

Geometria de Posição. Continuação. Prof. Jarbas

Geometria de Posição. Continuação. Prof. Jarbas Geometia de Poição Continuação Pof. Jaba POSIÇÕES RELATIVAS ENTRE DUAS RETAS NO ESPAÇO O que ão eta coplanae? São eta contida num memo plano. O que ão eta evea? São eta que não etão contida num memo plano.

Leia mais

PROVA COMENTADA E RESOLVIDA PELOS PROFESSORES DO CURSO POSITIVO

PROVA COMENTADA E RESOLVIDA PELOS PROFESSORES DO CURSO POSITIVO Vestibula AFA 010 Pova de Matemática COMENTÁRIO GERAL DOS PROFESSORES DO CURSO POSITIVO A pova de Matemática da AFA em 010 apesentou-se excessivamente algébica. Paa o equílibio que se espea nesta seleção,

Leia mais

j^qbjžqf`^=^mif`^a^=

j^qbjžqf`^=^mif`^a^= j^qbjžqf`^^mif`^a^ N Walter tinha dinheir na pupança e distribuiu uma parte as três filhs A mais velh deu / d que tinha na pupança D que sbru, deu /4 a filh d mei A mais nv deu / d que restu ^ Que prcentagem

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 GEOM. ANALÍTICA ESTUDO DO PONTO

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 GEOM. ANALÍTICA ESTUDO DO PONTO INTRODUÇÃO... NOÇÕES BÁSICAS... POSIÇÃO DE UM PONTO EM RELAÇÃO AO SISTEMA...4 DISTÂNCIA ENTRE DOIS PONTOS...6 RAZÃO DE SECÇÃO... 5 DIVISÃO DE UM SEGMENTO NUMA RAZÃO DADA... 6 PONTO MÉDIO DE UM SEGMENTO...

Leia mais

). c) Por três pontos não colineares passam três retas não simultaneamente (P 3

). c) Por três pontos não colineares passam três retas não simultaneamente (P 3 Resolução das atividades complementaes Matemática M7 Geometia p. 6 Sejam tês pontos distintos, e não colineaes no espaço. a) Quantas etas passam po? infinitas b) Quantas etas passam po e po? uma única

Leia mais

Proposta de teste de avaliação 4 Matemática 9

Proposta de teste de avaliação 4 Matemática 9 Prpsta de teste de avaliaçã 4 Matemática 9 Nme da Escla An letiv 0-0 Matemática 9.º an Nme d Alun Turma N.º Data Prfessr - - 0 Na resluçã ds itens da parte A pdes utilizar a calculadra. Na resluçã ds itens

Leia mais

GEOMETRIA. Noções básicas de Geometria que deves reter:

GEOMETRIA. Noções básicas de Geometria que deves reter: Noçõe báica de Geometia que deve ete: nte de iniciae qualque tabalho geomético, deve conhece o conjunto de intumento que deveá te empe: lgun cuidado a te: 1 Mante égua e equado limpo. 2 Não ua x-acto ou

Leia mais

Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta. ATENÇÃO: Escreva a resolução COM- PLETA de cada questão no espaço reservado

Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta. ATENÇÃO: Escreva a resolução COM- PLETA de cada questão no espaço reservado ATENÇÃO: Escreva a resluçã COM- PLETA de cada questã n espaç reservad para a mesma. Nã basta escrever apenas resultad final: é necessári mstrar s cálculs racicíni utilizad. Questã Caminhand sempre cm a

Leia mais

Engenharia Electrotécnica e de Computadores Exercícios de Electromagnetismo Ficha 1

Engenharia Electrotécnica e de Computadores Exercícios de Electromagnetismo Ficha 1 Instituto Escola Supeio Politécnico de Tecnologia ÁREA INTERDEPARTAMENTAL Ano lectivo 010-011 011 Engenhaia Electotécnica e de Computadoes Eecícios de Electomagnetismo Ficha 1 Conhecimentos e capacidades

Leia mais

Aula 05 Fontes Independentes e Dependentes

Aula 05 Fontes Independentes e Dependentes Campus I Jã Pessa Disciplina: Análise de Circuits Curs Técnic Integrad em Eletrônica Prfª: Rafaelle Felician 1. Mdels de Circuits Eletrônics Intrduçã Aula 05 Fntes Independentes e Dependentes Uma das funções

Leia mais

Aula 7-1 Campos Magnéticos produzidos por Correntes Lei de Biot-Savart Física Geral e Experimental III Prof. Cláudio Graça Capítulo 7

Aula 7-1 Campos Magnéticos produzidos por Correntes Lei de Biot-Savart Física Geral e Experimental III Prof. Cláudio Graça Capítulo 7 Aul 7-1 Cmps Mgnétics pduzids p Centes Lei de Bit-Svt Físic Gel e Expeimentl III Pf. Cláudi Gç Cpítul 7 Cmp B p cente elétic Expeiênci de Oested Fi n iníci d sécul XIX (em 180) que físic dinmquês Hns Chistin

Leia mais

Energia Potencial Elétrica

Energia Potencial Elétrica Enegia Ptencial Elética Q - Cm encnta tabalh ealizad p uma fça F sbe um bjet que se deslca ente dis pnts P e P? P P - W P F.d P Q - O que se pde dize sbe tabalh ealizad p esta fça F em difeentes tajetóias

Leia mais

SUPERFÍCIE E CURVA. F(x, y, z) = 0

SUPERFÍCIE E CURVA. F(x, y, z) = 0 SUPERFÍIE E URVA SUPERFÍIE E URVA As superfícies sã estudadas numa área chamada de Gemetria Diferencial, desta frma nã se dispõe até nível da Gemetria Analítica de base matemática para estabelecer cnceit

Leia mais

Em geometria, são usados símbolos e termos que devemos nos familiarizar:

Em geometria, são usados símbolos e termos que devemos nos familiarizar: IFS - ampus Sã Jsé Área de Refrigeraçã e ndicinament de r Prf. Gilsn ELEENTS E GEETRI Gemetria significa (em greg) medida de terra; ge = terra e metria = medida. nss redr estams cercads de frmas gemétricas,

Leia mais

MATEMÁTICA - 3o ciclo

MATEMÁTICA - 3o ciclo MATEMÁTICA - o ciclo Função afim e equação da eta ( o ano) Eecícios de povas nacionais e testes intemédios. Considea, num efeencial catesiano, a eta definida pela equação = +. Seja s a eta que é paalela

Leia mais

. B(x 2, y 2 ). A(x 1, y 1 )

. B(x 2, y 2 ). A(x 1, y 1 ) Estudo da Reta no R 2 Condição de alinhamento de três pontos: Sabemos que por dois pontos distintos passa uma única reta, ou seja, dados A(x 1, y 1 ) e B(x 2, y 2 ), eles estão sempre alinhados. y. B(x

Leia mais

Carga Elétrica e Campo Elétrico

Carga Elétrica e Campo Elétrico Aula 1_ Caga lética e Campo lético Física Geal e peimental III Pof. Cláudio Gaça Capítulo 1 Pincípios fundamentais da letostática 1. Consevação da caga elética. Quantização da caga elética 3. Lei de Coulomb

Leia mais

Termodinâmica. Termologia

Termodinâmica. Termologia ermdinâmica ermlgia nceits Básics A ermlgia é a parte da ísica que estuda calr e tds s fenômens térmics. ermmetria é a parte da ermlgia que estuda a temperatura e suas medidas. alr é energia térmica em

Leia mais

Cap014 - Campo magnético gerado por corrente elétrica

Cap014 - Campo magnético gerado por corrente elétrica ap014 - ampo magnético geado po coente elética 14.1 NTRODUÇÃO S.J.Toise Até agoa os fenômenos eléticos e magnéticos foam apesentados como fatos isolados. Veemos a pati de agoa que os mesmos fazem pate

Leia mais

Matemática e suas Tecnologias

Matemática e suas Tecnologias Matemática 8A. b A medida de cada lado do pimeio quadado é igual à medida de cada diagonal do segundo quadado. Sendo x a medida de cada lado do segundo quadado, temos: x x x Potanto, a azão da PG é igual

Leia mais

Transformações 2D. Soraia Raupp Musse

Transformações 2D. Soraia Raupp Musse Tansfomações 2D Soaia Raupp Musse Tansfomações 2D - Tanslação Posição inicial Tanslação Posição final 2 Tansfomações 2D - Tanslação Cada vétice é modificado + t + t Utiliza-se vetoes paa epesenta a tansfomação

Leia mais

MOVIMENTO RETILÍNEO UNIFORMEMENTE VARIADO (MRUV)

MOVIMENTO RETILÍNEO UNIFORMEMENTE VARIADO (MRUV) MOVIMENTO RETILÍNEO UNIFORMEMENTE VARIADO (MRUV) 3.1 - INTRODUÇÃO A partir de agra, passarems a estudar um tip de miment em que a elcidade nã é mais cnstante. N MRUV passa a existir a aceleraçã cnstante,

Leia mais