2.5. Estrutura Diamétrica

Tamanho: px
Começar a partir da página:

Download "2.5. Estrutura Diamétrica"

Transcrição

1 F:\MEUS-OCS\LIRO_EF_44\CAP_I_ESTRUTURA-PARTE_4.doc 5.5. Estrutura iamétrica A strutura diamétrica é tamém dnominada d distriuição diamétrica ou distriuição dos diâmtros. Concitua-s distriuição diamétrica como sndo a distriuição do númro d árvors por hctar (/ha) ou dnsidad asoluta (A) da comunidad florstal por class d diâmtro (dap). A strutura diamétrica da spéci é a distriuição do númro d árvors por hctar, por spéci por class d dap. Para analisar a distriuição diamétrica, as árvors com dap igual ou maior qu o nívl d inclusão d dap são classificadas contailizadas m classs d dap, com uma dtrminada amplitud. A distriuição diamétrica srv para caractrizar tipologias vgtais (formaçõs florstais, formaçõs campstrs tc), stágios srais ou sucssionais (inicial, médio, scundário avançado primário ou climax), stados d consrvação, rgims d mano, procssos d dinâmicas d crscimnto produção, grupos cológicos d spécis (pionira, scundária inicial, scundária tardia climax), grupos d usos (comrcial, potncial, outros), nfim, é utilizada como guias d cort, sortudo, como vrificador d sustntailidad amintal d mano. As distriuiçõs diamétricas podm sr dos tipos: unimodal (única moda), multimodal (mais d uma moda), normal (média moda mdiana), -invrtido (crscnt, dcrscnt alancada), contínua (indivíduos m todas as classs d diâmtros), dscontínua ou rrática (ausência d indivíduos m uma ou mais class d diâmtro). Os studos rlacionados com a strutura diamétrica d florstas multiânas ou inqüiânas datam d 898, na França, quando F. d Liocourt (MEER (9; LOETSCH t. alii, 97, v., p.6), concituou a distriuição do númro d árvors por hctar (/ha), por class d diâmtro. Liocourt comparou o númro d fusts d sucssivas classs diamétricas ncontrou uma razão (q) constant para o povoamnto florstal m studo. Esta razão é chamada d li d Liocourt foi dnominada, por MEER (9), d florsta alancada. Florsta alancada é aqula ond o númro d árvors m sucssivas classs diamétricas dcrsc numa progrssão gométrica constant (Figura ), isto é, a razão (q) ou Quocint d Liocourt (q) é constant. Como xmplos d florsta alancada mnciona-s: as florstas virgns as m manadas; xtnsas áras com cortura florstal qu aprsntam progrssivamnt quantidads d madira fina maiors do qu madiras intrmdiárias stas, por sua vz, quantidads maiors do qu as madiras grossas; cominação d povoamntos qüiânos totalmnt rgulados d iguais áras. Rssalta-s qu nm toda distriuição diamétrica m -invrtido dcrsc numa progrssão gométrica constant. Estrutura diamétrica alancada é mais uma xcção do qu uma rgra. Contudo, é um concito muito utilizado m mano d florstas naturais inqüiânas, principalmnt, como um guia d cort sltivo. A distriuição diamétrica d uma florsta inqüiâna ou multiâna, qu é a distriuição do númro d árvors por hctar ( ) por class d diâmtro (X ), sgu uma curva dcrscnt na forma d um -invrtido, cua quação pod sr otida a partir do aust slção d modlos d distriuição d diâmtros (Quadro ). A dfinição sustntação da distriuição diamétrica alancada das árvors das spécis qu compõm o stoqu m crscimnto d uma florsta manada é outra qustão 5

2 F:\MEUS-OCS\LIRO_EF_44\CAP_I_ESTRUTURA-PARTE_4.doc 5 fundamntal do mano sustntávl das florstas naturais multiânas. A filosofia principal do mano sustntávl d florstas naturais multiânas, prcitua qu haa uma distriuição diamétrica alancada das árvors do stoqu m crscimnto qu assgur a continuidad d ciclos d colhitas conômico cologicamnt xqüívis qu mantnha a capacidad d sustntação das produçõs futuras, como tamém a rnovação do rcurso florstal. Qual sria sta distriuição diamétrica? Exclusivamnt do ponto d vista conômico, mantr um númro constant d árvors por classs diamétricas (Figura, linha a), sria o idal (LEUSCHER, 984, p.6). Porém, do ponto d vista iológico, a strutura d uma florsta natural inqüiâna tm qu assmlhar-s a um -invrtido (Figura, linha ). Uma anális parcimoniosa da Figura, mostra (linha ) qu muitas árvors nascm, mas nm todas sorvivm, crscm s dsnvolvm até atingir o tamanho a qualidad dsávis, do ponto d vista dos otivos do mano. Portanto, planar, otr sustntar uma distriuição diamétrica horizontal (linha a), significaria mantr um povoamnto florstal dominant compltamnt stocado. Sustntar um povoamnto florstal com stas caractrísticas é muito difícil, snão impraticávis, para as condiçõs tropicais. Por outro lado, do ponto d vista d sustntailidad amintal, é prfitamnt viávl planar, otr sustntar uma strutura diamétrica qu tnha progrssivamnt, maiors númros d árvors nas mnors classs d diâmtro para rpor as saídas dcorrnts d mortalidad d corts d colhita tratamntos silviculturais. QUARO - Modlos d Equação d istriuição d iâmtros d Florstas Inqüiânas. Em qu: A númro d árvors por hctar na -ésima class d dap; X cntro da -ésima class d dap, m cntímtro; númro d árvors por hctar acumulado até a -ésima class d dap; W T númro total d árvors por hctar. o Modlo Rlação Funcional X Exponncial d Myr β β ε Exponncial d Myr X 7,5 β 5 Exponncial d Myr ln ( ) ln( β ) βx ε 4 Potncial d Mrvart β X β 5 Log Potncial d Mrvart ln ( ) ( β ) β ln( ) ln( ε ) 6 Exponncial d Myr ε ε ln i X β β X 7 Log Exponncial d Myr ln ( ) β β ln( ε ) ε i X i 8 Wiull com Rtnção ( ) β X w 9 Wiull Polinomial & GoffWst ln ( ) ( ) X β X β β β β X β X β X ln( ε ) i 5

3 F:\MEUS-OCS\LIRO_EF_44\CAP_I_ESTRUTURA-PARTE_4.doc 5 FIGURA - istriuição iamétrica alancada d uma Florsta Inqüiâna. FIGURA - istriuição iamétrica d uma Florsta Inqüiâna. Uma distriuição diamétrica associada à composição florística ao stoqu volumétrico do povoamnto florstal rmanscnt d uma colhita, tm qu sr planada compatívl com os procssos d dinâmica sucssional, as caractrísticas cológicas dáficas das spécis os otivos do mano, como por xmplo, produzir madiras para srrarias laminação, ou produzir madira para nrgia, posts, dormnts, moirõs tc, ou produzir uma cominação dsss produtos. Quaisqur qu sam os otivos do mano sustntávl, a distriuição diamétrica adquada é aqula qu aprsnta um númro dcrscnt d árvors ( ) por sucssivas classs d diâmtro (X), tal como a linha (Figura ). Mantida tal distriuição, havrá númro suficint d árvors por classs diamétricas para compnsar os fitos d mortalidad natural suprir árvors para corts sltivos. O maior prolma prático é como planar xcutar os corts sltivos, d modo a: mantr a tndência natural da distriuição diamétrica; stimular o crscimnto das árvors das spécis dsávis d valor comrcial, ao msmo tmpo, mlhorar a 5

4 F:\MEUS-OCS\LIRO_EF_44\CAP_I_ESTRUTURA-PARTE_4.doc 5 qualidad do produto ou dos produtos prtndidos; mantr a iodivrsidad; sustntar a strutura diamétrica alancada. Ainda, focado na linha (Figura ), sgundo o procsso d dinâmica d crscimnto m diâmtro, à mdida qu o povoamnto crsc, as árvors sorvivnts crscm m diâmtro os procssos d ingrowth outgrowth gram o movimnto da distriuição diamétrica m dirção às maiors classs d diâmtro. Est procsso dinâmico indica qu um cort sltivo dv sr fito nas maiors classs d diâmtro para mantr uma distriuição adquada ao sistma d mano sltivo aos otivos d produção sustntávl. Sria agradávl qu a distriuição s movimntass smpr no sntido das maiors classs d diâmtro qu a rgnração natural rstituiss a distriuição diamétrica, prfrncialmnt, com indivíduos d spécis d valor comrcial. Entrtanto, tal situação nm smpr ocorr naturalmnt. Então, para stimular o crscimnto a produção das árvors do grupo d spécis dsávis é ncssário aplicar tratamntos silviculturais, d forma a rduzir a comptição por fators d crscimnto liminar os indivíduos com caractrísticas indsávis, disponiilizar sss rcursos para as árvors das spécis comrciais, porém, consrvando-s a iodivrsidad na florsta manada..5.. Estrutura iamétrica alancada uma florsta alancada, o númro d árvors por hctar m sucssivas classs d diâmtro ( ) dcrsc numa progrssão gométrica constant, ou sa: q q q q ou q 4 Uma vz qu a strutura diamétrica é alancada, o númro d árvors m sucssivas classs d diâmtro pod sr drivado d uma séri gométrica, tal como: q q q 4, ou q ; q ; ;, q S a strutura diamétrica sgu sta li, os númros d árvors m sucssivas classs d diâmtro tamém podm sr stimados m função do númro d árvors da primira class d diâmtro ( ) do valor d q, da sguint forma: q q ; ; 4 ou q q S a strutura for dsalancada, a razão q pod sr crscnt ou dcrscnt, ou sa: 4 q ; q ; q ; q4... q A razão q é dcrscnt, quando: 4 5 > q > q ; crscnt, s q < q < < q q > 5

5 F:\MEUS-OCS\LIRO_EF_44\CAP_I_ESTRUTURA-PARTE_4.doc Estimando o Parâmtro da quação Considrando-s qu a rlação funcional ntr o númro d árvors por hctar ( ) o cntro d class d diâmtro ( ) sa dscrita pla quação xponncial d Myr: A, o quocint q d Liocourt é, por dfinição, otido assim: q q q( ) Transformando ssa xprssão multiplicando-a por l n, rsulta m: ( q) ( ) ln() ( ) ln() ln Simplificando, otém a xprssão: ln( q) Q l n( q) ln( q) ln ( q) ) ( l n (q) ( - ) ln(q) Isolando, otém-s: qu é a xprssão utilizada para stimar, m função do Quocint q d Liocourt. Q.5... Estimando o Parâmtro da quação A ára asal (), ou dominância total (ot), m m /ha, d uma florsta inqüiâna alancada, stimada a partir da distriuição diamétrica, é igual à ára sccional corrspondnt ao diâmtro cntro d class d dap, multiplicada plo númro d árvors por hctar ( ) da corrspondnt class, ou sa, ot π π π ntão, pod-s rprsntá-la pla xprssão sguint: π ( ) 4 Q π 4 Q 54

6 F:\MEUS-OCS\LIRO_EF_44\CAP_I_ESTRUTURA-PARTE_4.doc 55 π 4 Colocando m vidência aplicando l n à xprssão d, rsulta m: ln( ) l 4 n Σ Q 4 l n π Σ π qu é a xprssão utilizada para stimar m função d, q Estimando o parâmtro da quação o q q ( q) ln ( ) ( ) ( q) ln( ) ln( ) ln ln q ( q) ln Estimando o parâmtro da quação o π 4 π 4 4 π 55

7 F:\MEUS-OCS\LIRO_EF_44\CAP_I_ESTRUTURA-PARTE_4.doc EXERCÍCIO.5... ados ) Estalcr os parâmtros, q da distriuição diamétrica alancada. ) Estimar os parâmtros da distriuição diamétrica alancada. ) Escrvr a quação:, para stimar a distriuição diamétrica alancada. 4) Aplicar a quação ( ) stimar, rspctivamnt, o númro d árvors por hctar a ára asal por hctar da florsta alancada..5.. Rsultados ), m /ha; 47,5 cm; q,. ) Para stimar tm qu, primiro, montar a tala aaixo, ond consta os cntros d classs d dap, dsd a mnor class até o cntro d class d dap corrspondnt ao diâmtro máximo ( 47,5 cm) da strutura diamétrica alancada, conform stalcido no ítm. Em sguida, stimar o parâmtro, por último,..) ln( q) ln(,), ,5,5,5769 7,5,5769,5, ,5.) 7,5,5 47,5 96, 46.) 4 l n π Σ ln 4 7,448 π 96,46 ) 7,448 -,

8 F:\MEUS-OCS\LIRO_EF_44\CAP_I_ESTRUTURA-PARTE_4.doc 57 4) Estimativas Médias do úmro d Árvors ( ) Ára asal ( ) Otidos Mdiant a Aplicação da Equação da istriuição iamétrica alancada, m qu foi Pré-Fixado a Ára asal Rmanscnt() d m /ha, iâmtro Máximo Rmanscnt () d 47,5 cm Quocint q d, Cntro d Class d dap ( ) 7,5 7,448 -,5769,5 7,448 -,5769 7,5 7,448 -,5769,5 7,448 -, ,7 7,448 -, ,5 7,448 -, ,448 -, ,448 -, ,448 -, ,5 7 4,5 8 47,5 9 () ( m / ha ) 56,8,4 9,8,95 8,694,64 49,46,965,458,4,8,847 4,64,5,9,99,959,7 Total 96,68,.5... Efito da Amplitud d Class d dap Para analisar o fito da amplitud d class d dap sor as stimativas dos parâmtros da distriuição diamétrica alancada ( ), por consguint, sor o númro d árvors por hctar ára asal por hctar da florsta alancada, considra-s qu: ) Para a amplitud d class d dap ( A ) igual a 5, cm, q,,, m ln(,) /há 47,5 cm, as stimativas dos parâmtros são:,5769 5, 7,448 ) S duplicar a amplitud d class, isto é, A, o cm, q q 4, 84 mantivr, m /há 47,5 cm, as stimativas dos parâmtros são: ln( 4,84),5769 8, , 57

9 F:\MEUS-OCS\LIRO_EF_44\CAP_I_ESTRUTURA-PARTE_4.doc 58 ) S triplicar a amplitud d class, isto é, A 5, o cm, q q, 648 mantivr, m /ha 47,5 cm, as stimativas dos parâmtros são: ln(,648),5769 8, , 4) Mdiant o mprgo das quaçõs d distriuição diamétrica alancada otém-s as stimativas médias do númro d árvors (), ára asal (m /ha) volum d fust omrcial (m /ha) osrvados, rmanscnts d colhitas, otidos mdiant a pré-fixação da ára asal rmanscnt() d m /ha, diâmtro máximo rmanscnt () d 47,5 cm, Quocint q d,, para as amplituds d classs d dap d a 5, cm (Quadro ),, cm (Quadro 4) 5, cm (Quadro 5). 58

10 F:\MEUS-OCS\LIRO_EF_44\CAP_I_ESTRUTURA-PARTE_4.doc 59 QUARO - Estimativas Médias do úmro d Árvors (), Ára asal (m /ha) olum d Fust Comrcial (m /ha) Osrvados, Rmanscnts d Colhitas, Otidos Mdiant a Préfixação da Ára asal Rmanscnt() d m /ha, iâmtro Máximo Rmanscnt () d 47,5 cm, Quocint q d, amplitud d class d dap igual a 5, cm Cntro d alors Osrvados alors Rmanscnts Estimativas d Colhitas Class d dap () () m /ha () m /ha (*) (4) (5) m /ha (6) m /ha (7) (8) m /ha (9) m /ha () 7,5 8,5,676 56,4 8,79 97,97 4,9,5 84,688 9, , 45,44,59 7,5,,86 9,64 7,5 4,499,87,5 88,4759 5,47 49,964 4, 9,5,6 7,5 4,89 8,796,4,96 9,47 8,5,5 4,99 5,666,847 6,66 4,44 9, 7,5 5,6457,985 5,5,99, 8,95 4,5,5489 5,455,99,94 9,5,4 47,5,556 5,456,7,74,56,7 5,5,,545,,545 57,5 5,687 9,686 5,69 9,686 6,5,6,785,,785 67,5,,,, 7,5,4 5,6,4 5,6 77,5,464,957,464,957 8,5,597 5,69,5 5,69 Total 4 4,55 76, , 8, ,57 94,976 59

11 F:\MEUS-OCS\LIRO_EF_44\CAP_I_ESTRUTURA-PARTE_4.doc 6 QUARO 4 - Estimativas Médias do úmro d Árvors (), Ára asal (m /ha) olum d Mdiant a Pré-fixação da Ára asal Rmanscnt() d m /ha, iâmtro Máximo Rmanscnt () d 5, cm, Quocint q d 4,84 amplitud d class d dap igual a, cm Cntro d Class d dap ( ) alors Osrvados alors Rmanscnts alors d Colhita () m /ha () m /ha (4) (5) m /ha (6) m /ha (7) (8) m /ha (9) m /ha () () 7 6,6, 69,44 5,4,6 46,557,97,49 6,589 46,79 4,65 4,48 9,88 78,47,7 6,7 65 4,7 4,46 9,474,8 5,66 5,56,89 8,86 4 6,95 8,54 6,89,765 6,57 9,9,4,48 5 4,756 7,999,58,47,56,74,59 5,48 6 6,57,469 6,57,469 7,4 5,,4 5, 8,994 8,465,994 8,465 Total 4 4,58 76,87 869,97, 75, 56,8,58,749 QUARO 5 - Estimativas Médias do úmro d Árvors (), Ára asal (m /ha) olum d Mdiant a Pré-fixação da Ára asal Rmanscnt() d m /ha, iâmtro Máximo Rmanscnt () d 5, cm, Quocint q d 4,84 amplitud d class d dap igual a 5, cm Cntro d Class d dap ( ) alors Osrvados alors Rmanscnts alors d Colhita () m /ha () m /ha (4) (5) m /ha (6) m /ha (7) (8) m /ha (9) m /ha () (),5 4 9,79 5,86 67,8 8,59 9,4 566,99,479 4,69 7,5 5 7,848 59,896 6,5,754 4,78 89,795 4,94 5,6 4,5 9,7,576 5,96,84 6,858,64,878 6, ,5 7,8 6,4,557,45,75 6,44,656 4,79 7,5,885 8,58 87,5,597 5,69 Total 4 4,58 76,87 74,76, 6,75 686,94,5,9 6

AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE. azevedoglauco@unifei.edu.br

AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE. azevedoglauco@unifei.edu.br AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE Glauco José Rodrigus d Azvdo 1, João Zangrandi Filho 1 Univrsidad Fdral d Itajubá/Mcânica, Av. BPS, 1303 Itajubá-MG,

Leia mais

Definição de Termos Técnicos

Definição de Termos Técnicos Dfinição d Trmos Técnicos Eng. Adriano Luiz pada Attack do Brasil - THD - (Total Harmonic Distortion Distorção Harmônica Total) É a rlação ntr a potência da frqüência fundamntal mdida na saída d um sistma

Leia mais

DISTRIBUIÇÃO DE PROBABILIDADE DE VALORES EXTREMOS DA PRECIPITAÇÃO MÁXIMA DE 24 HORAS DE BELÉM DO PARÁ

DISTRIBUIÇÃO DE PROBABILIDADE DE VALORES EXTREMOS DA PRECIPITAÇÃO MÁXIMA DE 24 HORAS DE BELÉM DO PARÁ DISTRIBUIÇÃO DE PROBABILIDADE DE VALORES ETREMOS DA MÁIMA DE 24 HORAS DE BELÉM DO PARÁ Mauro Mndonça da Silva Mstrando UFAL Mació - AL -mail: mmds@ccn.ufal.br Ant Rika Tshima Gonçalvs UFPA Blém-PA -mail:

Leia mais

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL)

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL) 4. Método das Aproimaçõs Sucssivas ou Método d Itração Linar MIL O método da itração linar é um procsso itrativo qu aprsnta vantagns dsvantagns m rlação ao método da bisscção. Sja uma função f contínua

Leia mais

SISTEMA DE PONTO FLUTUANTE

SISTEMA DE PONTO FLUTUANTE Lógica Matmática Computacional - Sistma d Ponto Flutuant SISTEM DE PONTO FLUTUNTE s máquinas utilizam a sguint normalização para rprsntação dos númros: 1d dn * B ± 0d L ond 0 di (B 1), para i = 1,,, n,

Leia mais

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita:

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita: Máquinas Térmicas Para qu um dado sistma raliz um procsso cíclico no qual rtira crta quantidad d nrgia, por calor, d um rsrvatório térmico cd, por trabalho, outra quantidad d nrgia à vizinhança, são ncssários

Leia mais

Dinâmica Longitudinal do Veículo

Dinâmica Longitudinal do Veículo Dinâmica Longitudinal do Vículo 1. Introdução A dinâmica longitudinal do vículo aborda a aclração frnagm do vículo, movndo-s m linha rta. Srão aqui usados os sistmas d coordnadas indicados na figura 1.

Leia mais

Módulo II Resistores, Capacitores e Circuitos

Módulo II Resistores, Capacitores e Circuitos Módulo laudia gina ampos d arvalho Módulo sistors, apacitors ircuitos sistência Elétrica () sistors: sistor é o condutor qu transforma nrgia létrica m calor. omo o rsistor é um condutor d létrons, xistm

Leia mais

Uma característica importante dos núcleos é a razão N/Z. Para o núcleo de

Uma característica importante dos núcleos é a razão N/Z. Para o núcleo de Dsintgração Radioativa Os núclos, m sua grand maioria, são instávis, ou sja, as rspctivas combinaçõs d prótons nêutrons não originam configuraçõs nuclars stávis. Esss núclos, chamados radioativos, s transformam

Leia mais

Proposta de Resolução do Exame Nacional de Física e Química A 11.º ano, 2011, 1.ª fase, versão 1

Proposta de Resolução do Exame Nacional de Física e Química A 11.º ano, 2011, 1.ª fase, versão 1 Proposta d Rsolução do Exam Nacional d ísica Química A 11.º ano, 011, 1.ª fas, vrsão 1 Socidad Portugusa d ísica, Divisão d Educação, 8 d Junho d 011, http://d.spf.pt/moodl/ 1. Movimnto rctilíno uniform

Leia mais

PSICROMETRIA 1. É a quantificação do vapor d água no ar de um ambiente, aberto ou fechado.

PSICROMETRIA 1. É a quantificação do vapor d água no ar de um ambiente, aberto ou fechado. PSICROMETRIA 1 1. O QUE É? É a quantificação do vapor d água no ar d um ambint, abrto ou fchado. 2. PARA QUE SERVE? A importância da quantificação da umidad atmosférica pod sr prcbida quando s qur, dntr

Leia mais

PROVA DE MATEMÁTICA APLICADA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia

PROVA DE MATEMÁTICA APLICADA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia PROVA DE MATEMÁTICA APLICADA VESTIBULAR 013 - FGV CURSO DE ADMINISTRAÇÃO Profa. Maria Antônia C. Gouvia 1. A Editora Progrsso dcidiu promovr o lançamnto do livro Dscobrindo o Pantanal m uma Fira Intrnacional

Leia mais

EC1 - LAB - CIRCÚITOS INTEGRADORES E DIFERENCIADORES

EC1 - LAB - CIRCÚITOS INTEGRADORES E DIFERENCIADORES - - EC - LB - CIRCÚIO INEGRDORE E DIFERENCIDORE Prof: MIMO RGENO CONIDERÇÕE EÓRIC INICII: Imaginmos um circuito composto por uma séri R-C, alimntado por uma tnsão do tipo:. H(t), ainda considrmos qu no

Leia mais

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T.

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T. Pêndulo Simpls Um corpo suspnso por um fio, afastado da posição d quilíbrio sobr a linha vrtical qu passa plo ponto d suspnsão, abandonado, oscila. O corpo o fio formam o objto qu chamamos d pêndulo. Vamos

Leia mais

NOTA SOBRE INDETERMINAÇÕES

NOTA SOBRE INDETERMINAÇÕES NOTA SOBRE INDETERMINAÇÕES HÉLIO BERNARDO LOPES Rsumo. Em domínios divrsos da Matmática, como por igual nas suas aplicaçõs, surgm com alguma frquência indtrminaçõs, d tipos divrsos, no cálculo d its, sja

Leia mais

Programa de Pós-Graduação Processo de Seleção 2 0 Semestre 2008 Exame de Conhecimento em Física

Programa de Pós-Graduação Processo de Seleção 2 0 Semestre 2008 Exame de Conhecimento em Física UNIVERSIDADE FEDERAL DE GOIAS INSTITUTO DE FÍSICA C.P. 131, CEP 74001-970, Goiânia - Goiás - Brazil. Fon/Fax: +55 62 521-1029 Programa d Pós-Graduação Procsso d Slção 2 0 Smstr 2008 Exam d Conhcimnto m

Leia mais

6. Moeda, Preços e Taxa de Câmbio no Longo Prazo

6. Moeda, Preços e Taxa de Câmbio no Longo Prazo 6. Moda, Prços Taxa d Câmbio no Longo Prazo 6. Moda, Prços Taxa d Câmbio no Longo Prazo 6.1. Introdução 6.3. Taxas d Câmbio ominais Rais 6.4. O Princípio da Paridad dos Podrs d Compra Burda & Wyplosz,

Leia mais

CAPÍTULO 06 ESTUDOS DE FILAS EM INTERSEÇÕES NÃO SEMAFORIZADAS

CAPÍTULO 06 ESTUDOS DE FILAS EM INTERSEÇÕES NÃO SEMAFORIZADAS APÍTULO 06 ESTUDOS DE FILAS EM INTERSEÇÕES NÃO SEMAFORIZADAS As filas m intrsçõs não smaforizadas ocorrm dvido aos movimntos não prioritários. O tmpo ncssário para ralização da manobra dpnd d inúmros fators,

Leia mais

CONTINUIDADE A idéia de uma Função Contínua

CONTINUIDADE A idéia de uma Função Contínua CONTINUIDADE A idéia d uma Função Contínua Grosso modo, uma função contínua é uma função qu não aprsnta intrrupção ou sja, uma função qu tm um gráfico qu pod sr dsnhado sm tirar o lápis do papl. Assim,

Leia mais

Resolução. Admitindo x = x. I) Ax = b

Resolução. Admitindo x = x. I) Ax = b Considr uma população d igual númro d homns mulhrs, m qu sjam daltônicos % dos homns 0,% das mulhrs. Indiqu a probabilidad d qu sja mulhr uma pssoa daltônica slcionada ao acaso nssa população. a) b) c)

Leia mais

PRINCÍPIOS E INSTRUÇÕES RELATIVOS ÀS OPERAÇÕES DE CERTIFICADOS DE OPERAÇÕES ESTRUTURADAS (COE) Versão: 27/08/2014 Atualizado em: 27/08/2014

PRINCÍPIOS E INSTRUÇÕES RELATIVOS ÀS OPERAÇÕES DE CERTIFICADOS DE OPERAÇÕES ESTRUTURADAS (COE) Versão: 27/08/2014 Atualizado em: 27/08/2014 F i n a l i d a d O r i n t a r o u s u á r i o p a r a q u s t o b t PRINCÍPIOS E INSTRUÇÕES RELATIVOS ÀS OPERAÇÕES DE CERTIFICADOS DE OPERAÇÕES ESTRUTURADAS (COE) Vrsão: 27/08/2014 Atualizado m: 27/08/2014

Leia mais

PROCEDIMENTO DE MEDIÇÃO DE ILUMINÂNCIA DE EXTERIORES

PROCEDIMENTO DE MEDIÇÃO DE ILUMINÂNCIA DE EXTERIORES PROCEDIMENTO DE MEDIÇÃO DE ILUMINÂNCIA DE EXTERIORES Rodrigo Sousa Frrira 1, João Paulo Viira Bonifácio 1, Daian Rznd Carrijo 1, Marcos Frnando Mnzs Villa 1, Clarissa Valadars Machado 1, Sbastião Camargo

Leia mais

Coordenadas polares. a = d2 r dt 2. Em coordenadas cartesianas, o vetor posição é simplesmente escrito como

Coordenadas polares. a = d2 r dt 2. Em coordenadas cartesianas, o vetor posição é simplesmente escrito como Coordnadas polars Sja o vtor posição d uma partícula d massa m rprsntado por r. S a partícula s mov, ntão su vtor posição dpnd do tmpo, isto é, r = r t), ond rprsntamos a coordnada tmporal pla variávl

Leia mais

Estudo da Transmissão de Sinal em um Cabo co-axial

Estudo da Transmissão de Sinal em um Cabo co-axial Rlatório final d Instrumntação d Ensino F-809 /11/00 Wllington Akira Iwamoto Orintador: Richard Landrs Instituto d Física Glb Wataghin, Unicamp Estudo da Transmissão d Sinal m um Cabo co-axial OBJETIVO

Leia mais

MÓDULO 4 4.8.1 - PROCEDIMENTOS DE TESTES DE ESTANQUEIDADE PARA LINHAS DE ÁGUA, ESGOTO E OUTROS LÍQUIDOS

MÓDULO 4 4.8.1 - PROCEDIMENTOS DE TESTES DE ESTANQUEIDADE PARA LINHAS DE ÁGUA, ESGOTO E OUTROS LÍQUIDOS MÓDULO 4 4.8.1 - PROCEDIMENTOS DE TESTES DE ESTANQUEIDADE PARA LINHAS DE ÁGUA, ESGOTO E OUTROS LÍQUIDOS Normas Aplicávis - NBR 15.950 Sistmas para Distribuição d Água Esgoto sob prssão Tubos d politilno

Leia mais

DISTRIBUIÇÃO DIAMÉTRICA DE Araucaria angustifolia (Bert.) O. Ktze. EM UM FRAGMENTO DE FLORESTA OMBRÓFILA MISTA

DISTRIBUIÇÃO DIAMÉTRICA DE Araucaria angustifolia (Bert.) O. Ktze. EM UM FRAGMENTO DE FLORESTA OMBRÓFILA MISTA DISTRIBUIÇÃO DIAMÉTRICA DE Araucaria angustifolia (Brt.) O. Ktz. EM UM FRAGMENTO DE FLORESTA OMBRÓFILA MISTA DIAMETER DISTRIBUTION OF Araucaria angustifolia (Brt.) O. Ktz. IN A FRAGMENT OF MIXED OMBROPHYLOUS

Leia mais

Experiência n 2 1. Levantamento da Curva Característica da Bomba Centrífuga Radial HERO

Experiência n 2 1. Levantamento da Curva Característica da Bomba Centrífuga Radial HERO 8 Expriência n 1 Lvantamnto da Curva Caractrística da Bomba Cntrífuga Radial HERO 1. Objtivo: A prsnt xpriência tm por objtivo a familiarização do aluno com o lvantamnto d uma CCB (Curva Caractrística

Leia mais

INTRODUÇÃO À ESTATÍSTICA

INTRODUÇÃO À ESTATÍSTICA INTRODUÇÃO À ESTATÍSTICA ERRATA (capítulos 1 a 6 CAP 1 INTRODUÇÃO. DADOS ESTATÍSTICOS Bnto Murtira Carlos Silva Ribiro João Andrad Silva Carlos Pimnta Pág. 10 O xmplo 1.10 trmina a sguir ao quadro 1.7,

Leia mais

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período Rsolução da Prova d Física Tórica Turma C2 d Engnharia Civil Príodo 2005. Problma : Qustõs Dados do problma: m = 500 kg ; v i = 4; 0 m=s ;! a = 5! g d = 2 m. Trabalho ralizado por uma força constant: W

Leia mais

66 (5,99%) 103 (9,35%) Análise Combinatória 35 (3,18%)

66 (5,99%) 103 (9,35%) Análise Combinatória 35 (3,18%) Distribuição das 0 Qustõs do I T A 9 (8,6%) 66 (,99%) Equaçõs Irracionais 09 (0,8%) Equaçõs Exponnciais (,09%) Conjuntos 9 (,6%) Binômio d Nwton (,9%) 0 (9,%) Anális Combinatória (,8%) Go. Analítica Funçõs

Leia mais

NR-35 TRABALHO EM ALTURA

NR-35 TRABALHO EM ALTURA Sgurança Saúd do Trabalho ao su alcanc! NR-35 TRABALHO EM ALTURA PREVENÇÃO Esta é a palavra do dia. TODOS OS DIAS! PRECAUÇÃO: Ato ou fito d prvnir ou d s prvnir; A ação d vitar ou diminuir os riscos através

Leia mais

Edital de seleção de candidatos para o Doutorado em Matemática para o Período 2015.2

Edital de seleção de candidatos para o Doutorado em Matemática para o Período 2015.2 ] Univrsidad Fdral da Paraíba Cntro d Ciências Exatas da Naturza Dpartamnto d Matmática Univrsidad Fdral d Campina Grand Cntro d Ciências Tcnologia Unidad Acadêmica d Matmática Programa Associado d Pós-Graduação

Leia mais

4. RESULTADOS E DISCUSSÃO

4. RESULTADOS E DISCUSSÃO 4. RESULTADOS E DISCUSSÃO O conjunto d dados original aprsntava alguns valors prdidos, uma vz qu houv a mort d plantas nas parclas ants da colta dos dados, grando assim um conjunto d dados dsalancado,

Leia mais

Emerson Marcos Furtado

Emerson Marcos Furtado Emrson Marcos Furtado Mstr m Métodos Numéricos pla Univrsidad Fdral do Paraná (UFPR). Graduado m Matmática pla UFPR. Profssor do Ensino Médio nos stados do Paraná Santa Catarina dsd 1992. Profssor do Curso

Leia mais

ANÁLISE CUSTO - VOLUME - RESULTADOS

ANÁLISE CUSTO - VOLUME - RESULTADOS ANÁLISE CUSTO - VOLUME - RESULTADOS 1 Introdução ao tma Exist todo o intrss na abordagm dst tma, pois prmit a rsolução d um conjunto d situaçõs qu s aprsntam rgularmnt na vida das organizaçõs. Estas qustõs

Leia mais

As Abordagens do Lean Seis Sigma

As Abordagens do Lean Seis Sigma As Abordagns do Lan Sis Julho/2010 Por: Márcio Abraham (mabraham@stcnt..br) Dirtor Prsidnt Doutor m Engnharia d Produção pla Escola Politécnica da Univrsidad d São Paulo, ond lcionou por 10 anos. Mastr

Leia mais

Módulo II Resistores e Circuitos

Módulo II Resistores e Circuitos Módulo Claudia gina Campos d Carvalho Módulo sistors Circuitos sistência Elétrica () sistors: sistor é o condutor qu transforma nrgia létrica m calor. Como o rsistor é um condutor d létrons, xistm aquls

Leia mais

Instituto de Física USP. Física Moderna I. Aula 09. Professora: Mazé Bechara

Instituto de Física USP. Física Moderna I. Aula 09. Professora: Mazé Bechara Instituto d Física USP Física Modrna I Aula 09 Profssora: Mazé Bchara Aula 09 O fito fotolétrico a visão corpuscular da radiação ltromagnética 1. Efito fotolétrico: o qu é, o qu s obsrva xprimntalmnt,

Leia mais

ASSUNTO Nº 4 POLARIDADE INSTANTÂNEA DE TRANSFORMADORES

ASSUNTO Nº 4 POLARIDADE INSTANTÂNEA DE TRANSFORMADORES ASSUNTO Nº 4 POLARIDADE INSTANTÂNEA DE TRANSFORMADORES 17 As associaçõs d pilhas ou batrias m séri ou parallo xigm o domínio d suas rspctivas polaridads, tnsõs corrnts. ALGUMAS SITUAÇÕES CLÁSSICAS (pilhas

Leia mais

03/04/2014. Força central. 3 O problema das forças centrais TÓPICOS FUNDAMENTAIS DE FÍSICA. Redução a problema de um corpo. A importância do problema

03/04/2014. Força central. 3 O problema das forças centrais TÓPICOS FUNDAMENTAIS DE FÍSICA. Redução a problema de um corpo. A importância do problema Força cntral 3 O problma das forças cntrais TÓPICOS FUNDAMENTAIS DE FÍSICA Uma força cntralé uma força (atrativa ou rpulsiva) cuja magnitud dpnd somnt da distância rdo objto à origm é dirigida ao longo

Leia mais

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é:

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é: nrgia no MHS Para studar a nrgia mcânica do oscilador harmônico vamos tomar, como xmplo, o sistma corpo-mola. A nrgia cinética do sistma stá no corpo d massa m. A mola não tm nrgia cinética porqu é uma

Leia mais

Procedimento em duas etapas para o agrupamento de dados de expressão gênica temporal

Procedimento em duas etapas para o agrupamento de dados de expressão gênica temporal Procdimnto m duas tapas para o agrupamnto d dados d xprssão gênica tmporal Moysés Nascimnto Fabyano Fonsca Silva Thlma Sáfadi Ana Carolina Campana Nascimnto Introdução Uma das abordagns mais importants

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

O que são dados categóricos?

O que são dados categóricos? Objtivos: Dscrição d dados catgóricos por tablas gráficos Tst qui-quadrado d adrência Tst qui-quadrado d indpndência Tst qui-quadrado d homognidad O qu são dados catgóricos? São dados dcorrnts da obsrvação

Leia mais

OFICINA 9-2ºSementre / MATEMÁTICA 3ª SÉRIE / QUESTÕES TIPENEM Professores: Edu Vicente / Gabriela / Ulício

OFICINA 9-2ºSementre / MATEMÁTICA 3ª SÉRIE / QUESTÕES TIPENEM Professores: Edu Vicente / Gabriela / Ulício OFICINA 9-2ºSmntr / MATEMÁTICA 3ª SÉRIE / QUESTÕES TIPENEM Profssors: Edu Vicnt / Gabrila / Ulício 1. (Enm 2012) As curvas d ofrta d dmanda d um produto rprsntam, rspctivamnt, as quantidads qu vnddors

Leia mais

A distribuição Beta apresenta

A distribuição Beta apresenta Prof. Lorí Viali, Dr. viali@pucrs.br http://www.pucrs.br/famat/viali/ Bta Cauchy Erlang Exponncial F (Sndkor) Gama Gumbl Laplac Logística Lognormal Normal Parto Qui-quadrado - χ Studnt - t Uniform Wibull

Leia mais

Curso de Engenharia Mecânica Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno:

Curso de Engenharia Mecânica Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno: Curso d Engnharia Mcânica Disciplina: Física 2 Nota: Rubrica Coordnador Profssor: Rudson R Alvs Aluno: Turma: EA3N Smstr: 1 sm/2017 Data: 20/04/2017 Avaliação: 1 a Prova Valor: 10,0 p tos INSTRUÇÕES DA

Leia mais

2 Mbps (2.048 kbps) Telepac/Sapo, Clixgest/Novis e TV Cabo; 512 kbps Cabovisão e OniTelecom. 128 kbps Telepac/Sapo, TV Cabo, Cabovisão e OniTelecom.

2 Mbps (2.048 kbps) Telepac/Sapo, Clixgest/Novis e TV Cabo; 512 kbps Cabovisão e OniTelecom. 128 kbps Telepac/Sapo, TV Cabo, Cabovisão e OniTelecom. 4 CONCLUSÕES Os Indicadors d Rndimnto avaliados nst studo, têm como objctivo a mdição d parâmtros numa situação d acsso a uma qualqur ára na Intrnt. A anális dsts indicadors, nomadamnt Vlocidads d Download

Leia mais

UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA DE ESTRUTURAS. SET 410 Estruturas de concreto armado II

UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA DE ESTRUTURAS. SET 410 Estruturas de concreto armado II UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA DE ESTRUTURAS SET 40 Estruturas d concrto armado II Turma - 008 Concrto armado: projto d pilars d acordo com a NBR

Leia mais

ANEXO V SISTEMA DE AVALIAÇÃO DE DESEMPENHO

ANEXO V SISTEMA DE AVALIAÇÃO DE DESEMPENHO AEXO V SISTEMA DE AVALIAÇÃO DE DESEMPEHO 1. ÍDICES DE AVALIAÇÃO O Sistma d Avaliação d Dsmpnho stá struturado para a avaliação das prmissionárias, d acordo com os sguints índics grais spcíficos constants

Leia mais

2ª série LISTA: Ensino Médio. Aluno(a): Questão 01 - (FUVEST SP)

2ª série LISTA: Ensino Médio. Aluno(a): Questão 01 - (FUVEST SP) Matmática Profssor: Marclo Honório LISTA: 04 2ª séri Ensino Médio Turma: A ( ) / B ( ) Aluno(a): Sgmnto tmático: GEOMETRIA ESPACIAL DIA: MÊS: 05 206 Pirâmids Cilindros Qustão 0 - (FUVEST SP) Três das arstas

Leia mais

Empresa Elétrica Bragantina S.A

Empresa Elétrica Bragantina S.A Emprsa Elétrica Bragantina S.A Programa Anual d Psquisa Dsnvolvimnto - P&D Ciclo 2006-2007 COMUNICADO 002/2007 A Emprsa Elétrica Bragantina S.A, concssionária d srviço público d distribuição d nrgia létrica,

Leia mais

Desta maneira um relacionamento é mostrado em forma de um diagrama vetorial na Figura 1 (b). Ou poderia ser escrito matematicamente como:

Desta maneira um relacionamento é mostrado em forma de um diagrama vetorial na Figura 1 (b). Ou poderia ser escrito matematicamente como: ASSOCIAÇÃO EDUCACIONA DOM BOSCO FACUDADE DE ENGENHAIA DE ESENDE ENGENHAIA EÉICA EEÔNICA Disciplina: aboratório d Circuitos Elétricos Circuitos m Corrnt Altrnada EXPEIMENO 9 IMPEDÂNCIA DE CICUIOS SÉIE E

Leia mais

3. Geometria Analítica Plana

3. Geometria Analítica Plana MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSITICA APOSTILA DE GEOMETRIA ANALÍTICA PLANA PROF VINICIUS 3 Gomtria Analítica Plana 31 Vtors no plano Intuitivamnt,

Leia mais

MANUAL DE APOSENTADORIA E ABONO PERMANÊNCIA INSTITUTO DE PREVIDÊNCIA DOS SERVIDORES PÚBLICOS DO MUNICÍPIO DE GARANHUNS IPSG

MANUAL DE APOSENTADORIA E ABONO PERMANÊNCIA INSTITUTO DE PREVIDÊNCIA DOS SERVIDORES PÚBLICOS DO MUNICÍPIO DE GARANHUNS IPSG MANUAL DE APOSENTADORIA E ABONO PERMANÊNCIA INSTITUTO DE PREVIDÊNCIA DOS SERVIDORES PÚBLICOS DO MUNICÍPIO DE GARANHUNS IPSG SUMÁRIO PARTE I BENEFÍCIO DE APOSENTADORIA 1 - NOÇÕES SOBRE O BENEFÍCIO PREVIDENCIÁRIO

Leia mais

Função do 2 o Grau. Uma aplicação f der emr

Função do 2 o Grau. Uma aplicação f der emr UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA. Dfinição Uma aplicação f

Leia mais

PENSANDO E DESCOBRINDO!!!

PENSANDO E DESCOBRINDO!!! PENSANDO E DESCOBRINDO!!! Sobr o Chuviro Elétrico... Falarmos agora sobr outra facilidad qu a ltricidad os avanços tcnológicos trouxram, trata-s d um aparlho muito usado m nosso dia a dia, o CHUVEIRO ELÉTRICO!

Leia mais

A FERTILIDADE E A CONCEPÇÃO Introdução ao tema

A FERTILIDADE E A CONCEPÇÃO Introdução ao tema A FERTILIDADE E A CONCEPÇÃO Introdução ao tma O ciclo mnstrual tm a missão d prparar o organismo para consguir uma gravidz com êxito. O 1º dia d mnstruação corrspond ao 1º dia do ciclo mnstrual. Habitualmnt,

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MTRIZES ulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz no 06 Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE

Leia mais

CUSTOS IRREVERSÍVEIS, LEIS DE CUSTOS E GERÊNCIA DE PROJETOS - A VIABILIDADE DE UM PROCESSO DE MUDANÇA

CUSTOS IRREVERSÍVEIS, LEIS DE CUSTOS E GERÊNCIA DE PROJETOS - A VIABILIDADE DE UM PROCESSO DE MUDANÇA CUSTOS IRREVERSÍVEIS, LEIS DE CUSTOS E GERÊNCIA DE PROJETOS - A VIABILIDADE DE UM PROCESSO DE MUDANÇA Márcio Botlho da Fonsca Lima Luiz Buno da Silva Rsumo: Est artigo tm o objtivo d xpor a rlvância do

Leia mais

Regime de Previdência dos Servidores Públicos: Equilíbrio Financeiro e Justiça Atuarial

Regime de Previdência dos Servidores Públicos: Equilíbrio Financeiro e Justiça Atuarial Rgim d Prvidência dos Srvidors Públicos: Equilíbrio Financiro Justiça Atuarial Rynaldo Frnands * rfrnan@usp.br rynaldo.frnands@faznda.gov.br Rodovia BR 251, Km 4, Bloco A, Brasília DF Tl (61) 412616 Amaury

Leia mais

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2 Eam Nacional d 0 (. a fas) Prova Escrita d Matmática. o no d Escolaridad Prova 3/Vrsõs GRUPO I Itns Vrsão Vrsão. (C) (). () (C) 3. () (C). (D) (). (C) (). () () 7. () (D) 8. (C) (D) Justificaçõs:. P( )

Leia mais

Resoluções de Exercícios

Resoluções de Exercícios Rsoluçõs d Exrcícios MATEMÁTICA II Conhc Capítulo 07 Funçõs Equaçõs Exponnciais; Funçõs Equaçõs Logarítmicas 01 A) log 2 16 = log 2 2 4 = 4 log 2 2 = 4 B) 64 = 2 6 = 2 6 = 6 log 2 2 = 4 C) 0,125 = = 2

Leia mais

Caderno Algébrico Medição Física

Caderno Algébrico Medição Física Cadrno Algébrico Vrsão 1.0 ÍNDICE MEDIÇÃO FÍSICA 3 1. O Esquma Gral 3 2. Etapas d 5 2.1. Aquisição das informaçõs do SCDE 5 2.2. Intgralização Horária dos Dados Mdidos 6 2.3. Cálculo das Prdas por Rd Compartilhada

Leia mais

Cálculo de Autovalores, Autovetores e Autoespaços Seja o operador linear tal que. Por definição,, com e. Considere o operador identidade tal que.

Cálculo de Autovalores, Autovetores e Autoespaços Seja o operador linear tal que. Por definição,, com e. Considere o operador identidade tal que. AUTOVALORES E AUTOVETORES Dfiniçõs Sja um oprador linar Um vtor, é dito autovtor, vtor próprio ou vtor caractrístico do oprador T, s xistir tal qu O scalar é dnominado autovalor, valor próprio ou valor

Leia mais

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO II/05 UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ECONOMIA 0//5 MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO ECONOMIA DA INFORMAÇÃO E DOS INCENTIVOS APLICADA À ECONOMIA DO SETOR PÚBLICO Prof. Maurício

Leia mais

Representação de Números no Computador e Erros

Representação de Números no Computador e Erros Rprsntação d Númros no Computador Erros Anális Numérica Patrícia Ribiro Artur igul Cruz Escola Suprior d Tcnologia Instituto Politécnico d Stúbal 2015/2016 1 1 vrsão 23 d Fvriro d 2017 Contúdo 1 Introdução...................................

Leia mais

Tabela 1 - Índice de volume de vendas no comércio varejista (Número índice)

Tabela 1 - Índice de volume de vendas no comércio varejista (Número índice) PESQUISA MENSAL DO COMÉRCIO JULHO DE 2012 A psquisa mnsal do comércio, ralizada plo IBGE, rgistrou um crscimnto positivo d 1,36% no comparativo com o mês d julho d 2012 para o volum d vndas varjista. Podmos

Leia mais

Definição de Área entre duas curvas - A área A entre região limitada pelas curvas. x onde f e g são contínuas e x g x

Definição de Área entre duas curvas - A área A entre região limitada pelas curvas. x onde f e g são contínuas e x g x Aula Capítulo 6 Aplicaçõs d Intração (pá. 8) UFPA, d junho d 5 Ára ntr duas curvas Dinição d Ára ntr duas curvas - A ára A ntr rião limitada plas curvas a y plas rtas a,, é ond são contínuas A a d y para

Leia mais

UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 03/12/2011 FILA A Aluno (a): Matrícula: Turma: x é: 4

UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 03/12/2011 FILA A Aluno (a): Matrícula: Turma: x é: 4 UFJF ICE Dpartamnto d Matmática Cálculo I Trcira Avaliação 0/1/011 FILA A Aluno (a): Matrícula: Turma: Instruçõs Grais: 1- A prova pod sr fita a lápis, cto o quadro d rspostas das qustõs d múltipla scolha,

Leia mais

ENGENHARIA DE MANUTENÇÃO. Marcelo Sucena

ENGENHARIA DE MANUTENÇÃO. Marcelo Sucena ENGENHARIA DE MANUTENÇÃO Marclo Sucna http://www.sucna.ng.br msucna@cntral.rj.gov.br / marclo@sucna.ng.br ABR/2008 MÓDULO 1 A VISÃO SISTÊMICA DO TRANSPORTE s A anális dos subsistmas sus componnts é tão

Leia mais

Planejamento de capacidade

Planejamento de capacidade Administração da Produção Opraçõs II Planjamnto d capacidad Planjamnto d capacidad Planjamnto d capacidad é uma atividad crítica dsnvolvida parallamnt ao planjamnto d matriais a) Capacidad insuficint lva

Leia mais

Modelo de Oferta e Demanda Agregada (OA-DA)

Modelo de Oferta e Demanda Agregada (OA-DA) Modlo d Ofrta Dmanda Agrgada (OA-DA) Lops Vasconcllos (2008), capítulo 7 Dornbusch, Fischr Startz (2008), capítulos 5 6 Blanchard (2004), capítulo 7 O modlo OA-DA xamina as condiçõs d quilíbrio dos mrcados

Leia mais

TRABALHO DA FORÇA ELÉTRICA I) RESUMO DAS PRINCIPAIS FÓRMULAS E TEORIAS: A) TABELA -------------------------------------------------------------------------------------------------------------------------------

Leia mais

MATRIZ DA PROVA DE EXAME A NÍVEL DE ESCOLA HISTÓRIA B 10º ANO

MATRIZ DA PROVA DE EXAME A NÍVEL DE ESCOLA HISTÓRIA B 10º ANO MATRIZ DA PROVA DE EXAME A NÍVEL DE ESCOLA AO ABRIGO DO DECRETO-LEI Nº 357/2007, DE 29 DE OUTUBRO (Duração: 90 minutos + 30 minutos d tolrância) HISTÓRIA B 10º ANO (Cursos Cintífico-Humanísticos Dcrto-Li

Leia mais

ANÁLISE DA NORMA NBR 7117 BASEADO NA ESTRATIFICAÇÃO OTIMIZADA DO SOLO A PARTIR DO ALGORITMO DE SUNDE E ALGORITMOS GENÉTICOS

ANÁLISE DA NORMA NBR 7117 BASEADO NA ESTRATIFICAÇÃO OTIMIZADA DO SOLO A PARTIR DO ALGORITMO DE SUNDE E ALGORITMOS GENÉTICOS AÁLISE DA ORMA BR 77 BASEADO A ESTRATIFICAÇÃO OTIMIZADA DO SOLO A PARTIR DO ALGORITMO DE SUDE E ALGORITMOS GEÉTICOS ROOEY RIBEIRO A. COELHO RICARDO SILA THÉ POTES.. Univrsidad Fdral do Cará Cntro d Tcnologia

Leia mais

PRODUTOS GERDAU PARA PAREDES DE CONCRETO

PRODUTOS GERDAU PARA PAREDES DE CONCRETO PRODUTOS GERDAU PARA PAREDES DE CONCRETO SISTEMA CONSTRUTIVO PAREDES DE CONCRETO NBR60 PAREDES DE CONCRETO Sistma construtivo m qu as lajs as pards são moldadas m conjunto, formando um lmnto monolítico.

Leia mais

MATRIZ DE REFERÊNCIA PARA AVALIAÇÃO EM MATEMÁTICA AVALIA BH 1º, 2º E 3º CICLOS DO ENSINO FUNDAMENTAL

MATRIZ DE REFERÊNCIA PARA AVALIAÇÃO EM MATEMÁTICA AVALIA BH 1º, 2º E 3º CICLOS DO ENSINO FUNDAMENTAL MATRIZ DE REFERÊNCIA PARA EM MATEMÁTICA AVALIA BH 1º, 2º E 3º CICLOS DO ENSINO FUNDAMENTAL Na ralização d uma avaliação ducacional m larga scala, é ncssário qu os objtivos da avaliação as habilidads comptências

Leia mais

- Função Exponencial - MATEMÁTICA

- Função Exponencial - MATEMÁTICA Postado m 9 / 07 / - Função Eponncial - Aluno(a): TURMA: FUNÇÃO EXPONENCIAL. Como surgiu a função ponncial? a n a n, a R n N Hoj, a idia d s scrvr. ² ou.. ³ nos parc óbvia, mas a utilização d númros indo

Leia mais

QUALIDADE DE SOFTWARE AULA N.6

QUALIDADE DE SOFTWARE AULA N.6 QUALIDADE DE SOFTWARE AULA N.6 Curso: SISTEMAS DE INFORMAÇÃO Discipli: Qualida Softwar Profa. : Kátia Lops Silva Slis adpatados do Prof. Ricardo Almida Falbo Tópicos Espciais Qualida Softwar 007/ Dpartamnto

Leia mais

Preenchimento de Áreas. Preenchimento de Áreas Algoritmo Scanline. Preenchimento de Áreas. Preenchimento. Teste dentro-fora. Preenchimento.

Preenchimento de Áreas. Preenchimento de Áreas Algoritmo Scanline. Preenchimento de Áreas. Preenchimento. Teste dentro-fora. Preenchimento. Prnchimnto d Áras Algoritmo Scanlin Fonts: Harn & Bakr, Cap. - Apostila CG, Cap. Prnchimnto d Áras Problma d convrsão matricial d áras gométricas Aproimar uma primitiva gométrica por pils Primitivas D

Leia mais

VI - ANÁLISE CUSTO - VOLUME - RESULTADOS

VI - ANÁLISE CUSTO - VOLUME - RESULTADOS VI - ANÁLISE CUSTO - VOLUME - RESULTADOS 6.1 Introdução ao tma Exist todo o intrss na abordagm dst tma, pois prmit a rsolução d um conjunto d situaçõs qu s aprsntam rgularmnt na vida das organizaçõs. Estas

Leia mais

ESTUDO DA TRANSMISSÃO DE CALOR RADIANTE E CONVECTIVO EM CILINDROS CONCÊNTRICOS PELOS MÉTODOS DE MONTE CARLO E RESÍDUOS PONDERADOS.

ESTUDO DA TRANSMISSÃO DE CALOR RADIANTE E CONVECTIVO EM CILINDROS CONCÊNTRICOS PELOS MÉTODOS DE MONTE CARLO E RESÍDUOS PONDERADOS. ESTUDO DA TRANSMISSÃO DE CALOR RADIANTE E CONVECTIVO EM CILINDROS CONCÊNTRICOS PELOS MÉTODOS DE MONTE CARLO E RESÍDUOS PONDERADOS. Carlos Albrto d Almida Villa Univrsidad Estadual d Campinas - UNICAMP

Leia mais

03-05-2015. Sumário. Campo e potencial elétrico. Energia potencial elétrica

03-05-2015. Sumário. Campo e potencial elétrico. Energia potencial elétrica Sumáio Unidad II Elticidad Magntismo 1- - Engia potncial lética. - Potncial lético. - Supfícis quipotnciais. Movimnto d cagas léticas num campo lético unifom. PS 22 Engia potncial lética potncial lético.

Leia mais

Física 3. k = 1/4πε 0 = 9, N.m 2 /C Uma partícula, que se move em linha reta, está sujeita à aceleração a(t), cuja variação

Física 3. k = 1/4πε 0 = 9, N.m 2 /C Uma partícula, que se move em linha reta, está sujeita à aceleração a(t), cuja variação Física 3 Valors d algumas constants físicas clração da gravidad: 10 m/s 2 Dnsidad da água: 1,0 g/cm 3 Calor spcífico da água: 1,0 cal/g C Carga do létron: 1,6 x 10-19 C Vlocidad da luz no vácuo: 3,0 x

Leia mais

3 Modelagem de motores de passo

3 Modelagem de motores de passo 31 3 odlagm d motors d passo Nst capítulo é studado um modlo d motor d passo híbrido. O modlo dsnolido é implmntado no ambint computacional Simulink/TL. Est modlo pod sr utilizado m motors d imã prmannt,

Leia mais

Atrito Fixação - Básica

Atrito Fixação - Básica 1. (Pucpr 2017) Um bloco d massa stá apoiado sobr uma msa plana horizontal prso a uma corda idal. A corda passa por uma polia idal na sua xtrmidad final xist um gancho d massa dsprzívl, conform mostra

Leia mais

AII. ANEXO II COEFICIENTE DE CONDUTIBILIDADE TÉRMICA IN-SITU

AII. ANEXO II COEFICIENTE DE CONDUTIBILIDADE TÉRMICA IN-SITU ANEXO II Coficint d Condutibilidad Térmica In-Situ AII. ANEXO II COEFICIENTE DE CONDUTIBILIDADE TÉRMICA IN-SITU AII.1. JUSTIFICAÇÃO O conhcimnto da rsistência térmica ral dos componnts da nvolvnt do difício

Leia mais

Derivada Escola Naval

Derivada Escola Naval Drivada Escola Naval EN A drivada f () da função f () = l og é: l n (B) 0 l n (E) / l n EN S tm-s qu: f () = s s 0 s < < 0 s < I - f () só não é drivávl para =, = 0 = II - f () só não é contínua para =

Leia mais

4. Escoamento de um Fluido Real

4. Escoamento de um Fluido Real 4. Escoamnto d um Fluido al O scoamnto d um luido ral é mais complxo qu o d um luido idal. A viscosidad dos luidos rais é rsponsávl plas orças d atrito ntr as partículas luidas, bm como ntr stas os contornos

Leia mais

Física A 1. Na figura acima, a corda ideal suporta um homem pendurado num ponto eqüidistante dos dois apoios ( A 1

Física A 1. Na figura acima, a corda ideal suporta um homem pendurado num ponto eqüidistante dos dois apoios ( A 1 Física Vstibular Urj 98 1ª fas Qustão 16 A 1 A 2 θ Na figura acima, a corda idal suporta um homm pndurado num ponto qüidistant dos dois apoios ( A 1 A 2 ), a uma crta altura do solo, formando um ângulo

Leia mais

QUE ESPANHOL É ESSE? Mariano Jeferson Teixeira (Grad /UEPG) Valeska Gracioso Carlos (UEPG)

QUE ESPANHOL É ESSE? Mariano Jeferson Teixeira (Grad /UEPG) Valeska Gracioso Carlos (UEPG) Congrsso Intrnacional d Profssors d Línguas Oficiais do MERCOSUL QUE ESPANHOL É ESSE? Mariano Jfrson Tixira (Grad /UEPG) Valska Gracioso Carlos (UEPG) 1. Introdução Graças á rgulamntaçõs impostas por acordos

Leia mais

Temática Circuitos Eléctricos Capítulo Sistemas Trifásicos LIGAÇÃO DE CARGAS INTRODUÇÃO

Temática Circuitos Eléctricos Capítulo Sistemas Trifásicos LIGAÇÃO DE CARGAS INTRODUÇÃO www.-l.nt Tmática Circuitos Eléctricos Capítulo Sistmas Trifásicos GAÇÃO DE CARGAS NTRODÇÃO Nsta scção, studam-s dois tipos d ligação d cargas trifásicas (ligação m strla ligação m triângulo ou dlta) dduzindo

Leia mais

Lista 9: Integrais: Indefinidas e Definidas e Suas Aplicações

Lista 9: Integrais: Indefinidas e Definidas e Suas Aplicações GOVERNO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CÂMPUS JUAZEIRO/BA COLEG. DE ENG. ELÉTRICA PROF. PEDRO MACÁRIO DE MOURA MATEMÁTICA APLICADA À ADM 5. Lista 9: Intgrais:

Leia mais

RI406 - Análise Macroeconômica

RI406 - Análise Macroeconômica Fdral Univrsity of Roraima, Brazil From th SlctdWorks of Elói Martins Snhoras Fall Novmbr 18, 2008 RI406 - Anális Macroconômica Eloi Martins Snhoras Availabl at: http://works.bprss.com/loi/54/ Anális Macroconômica

Leia mais

FUNÇÃO REAL DE UMA VARIÁVEL REAL

FUNÇÃO REAL DE UMA VARIÁVEL REAL Hwltt-Packard FUNÇÃO REAL DE UMA VARIÁVEL REAL Aulas 01 a 05 Elson Rodrigus, Gabril Carvalho Paulo Luiz Ano: 2016 Sumário INTRODUÇÃO AO PLANO CARTESIANO 2 PRODUTO CARTESIANO 2 Númro d lmntos d 2 Rprsntaçõs

Leia mais

análise das Emissões de GEE no brasil (1990-2012) Setor Agropecuário Documento de Análise Marina Piatto Coordenação Técnica Imaflora

análise das Emissões de GEE no brasil (1990-2012) Setor Agropecuário Documento de Análise Marina Piatto Coordenação Técnica Imaflora Documnto d Anális anális das Emissõs d GEE no brasil (1990-2012) Stor Agropcuário Coordnação Técnica Imaflora Equip Técnica Marina Piatto Rvisão Luis Frnando Guds Pinto Shiguo Watanab Jr Tasso Azvdo Tharic

Leia mais

Modelo dinâmico incluindo Manejo Integrado de Pragas (MIP) e estrutura espacial no combate à Diaphorina Citri

Modelo dinâmico incluindo Manejo Integrado de Pragas (MIP) e estrutura espacial no combate à Diaphorina Citri Modlo dinâmico incluindo Manjo Intgrado d Pragas (MIP) strutura spacial no combat à Diaphorina Citri Maria C. Varrial, Priscila A. Silvira, Instituto d Matmática - UFRGS 9159-9, Porto Algr, RS E-mail:

Leia mais

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo Intgração Múltipla Prof. M.Sc. Armando Paulo da Silva UTFP Campus Cornélio Procópio )INTEGAIS DUPLAS: ESUMO Emplo Emplo Calcul 6 Calcul 6 dd dd O fato das intgrais rsolvidas nos mplos srm iguais Não é

Leia mais

Física Geral I F -128. Aula 6 Força e movimento II

Física Geral I F -128. Aula 6 Força e movimento II Física Gral I F -18 Aula 6 Força movimnto II Forças Fundamntais da Naturza Gravitacional Matéria ( 1/r ) Eltromagné7ca ( 1/r ) Cargas Elétricas, átomos, sólidos Nuclar Fraca Dcaimnto Radioa7vo bta Nuclar

Leia mais