TE084-Antenas PROF. CÉSAR AUGUSTO DARTORA - UFPR CURITIBA-PR

Tamanho: px
Começar a partir da página:

Download "TE084-Antenas PROF. CÉSAR AUGUSTO DARTORA - UFPR CURITIBA-PR"

Transcrição

1 TE084-Antenas A RADIAÇÃO DO DIPOLO ELÉTRICO PROF. CÉSAR AUGUSTO DARTORA - UFPR CADARTORA@ELETRICA.UFPR.BR CURITIBA-PR

2 Roteiro da Aula: A antena dipolo elétrico e a aproximação do dipolo curto Cálculo dos potenciais e dos campos Campo Próximo e Campo de Radiação Potência e Densidade de Potência Eletromagnética Radiada Teoria Básica da Radiação Eletromagnética A Radiação do Dipolo Elétrico 2/24

3 O Dipolo Elétrico Antenas são elementos capazes de radiar energia na forma eletromagnética de forma eficiente. A antena mais simples é o chamado dipolo elétrico, ilustrado na figura abaixo: A Radiação do Dipolo Elétrico 3/24

4 quando d << λ há duas formas de aproximação da corrente I(z): Aproximação do Dipolo Ideal { I0 para d/2 z d/2 I(z) = 0 para z > d/2 (1) Aproximação do Dipolo Curto (a que usaremos aqui): Como os extremos são abertos, a corrente elétrica neles deve ser nula de tal modo que a distribuição de corrente no dipolo curto é aproximada por: I(z) = { I0 (1 2z/d) para z > 0 I 0 (1 + 2z/d) para z > 0 (2) sendo o vetor densidade de corrente da forma: onde δ(.) são as funções delta de Dirac. J(x) = I(z)δ(x)δ(y)â z (3) A Radiação do Dipolo Elétrico 4/24

5 Note que a área correspondente à integral d/2 d/2 I(z )dz será I 0 d para a aproximação Dipolo Ideal e no nosso caso, para o Dipolo Curto: d/2 d/2 I(z )dz = I 0d 2 A Radiação do Dipolo Elétrico 5/24

6 Determinação do Potencial A Na aproximação em que r << r temos: e i(ωt kr) A(x,t) = µ 0 J(r )e 4π r V Substituindo J(x ) na equação acima tem-se e i(ωt kr) ik ˆn r dv (4) A(x,t) = µ 0 I(z )δ(x )δ(y ik ˆn r )â z e dv (5) 4π r V Lembrando que dv = dx dy dz e os vetores cartesianos são uniformes no espaço, â z (x) = â z (x ) podemos sacá-lo da integral, e ainda das propriedades de funções delta de Dirac: δ(α β)dα = 1 obtem-se facilmente: δ(α β) f (α)dα = f (β) A(x,t) = µ 0 e i(ωt kr) d/2 I(z )e ik cosθ z dz â z (6) 4π r d/2 A Radiação do Dipolo Elétrico 6/24

7 Assumindo que d << λ, podemos aproximar a exponencial na integral: e ik cosθ z 1 + ik cosθ z Lembrando que: k = 2π λ na primeira aproximação podemos negligenciar o fator kz uma vez que max( z ) = d/2 e d << λ, portanto max(k cosθ z ) = kd 2 = πd λ << 1 e ik cosθ z 1 No caso do dipolo curto esta é uma boa aproximação. Há casos em que aproximar a exponencial pela unidade dá resultados nulos, devendo-se então ir para o termo seguinte da série. (Vide o caso do dipolo magnético). A Radiação do Dipolo Elétrico 7/24

8 Fazendo a aproximação mencionada anteriormente tem-se: A = µ 0e i(ωt kr) 4πr d/2 d/2 I(z )dz â z (7) Resolvendo a integral, basta lembrar que tem-se a área da figura de distribuição de corrente, conforme comentado anteriormente, ou seja d/2 d/2 I(z )dz = I 0d 2, ficamos com: A = µ 0I 0 d 8πr ei(ωt kr) â z (8) A Radiação do Dipolo Elétrico 8/24

9 É convencional trabalhar o potencial vetor e os campos em coordenadas esféricas. Lembre que: A = µ 0I 0 d 8πr ei(ωt kr) [ (â z â r )â r + (â z â θ )â θ + (â z â ϕ )â ϕ ] Do cálculo vetorial: (9) â z â r = cosθ â z â θ = sinθ â z â ϕ = 0 (Coordenadas esféricas são mais convenientes para tratar a radiação de uma antena). A = µ 0I 0 d 8πr ei(ωt kr) [cosθâ r sinθâ θ ] (10) A Radiação do Dipolo Elétrico 9/24

10 Cálculo dos campos E e B Lembremos que: B = A (11) E = φ iωa = c2 iω B (12) Para não ser necessário o cálculo de φ devemos determinar primeiramente o campo B e depois E. Calculando o campo magnético: B = A = 1 ( r sinθ θ (A ϕ sinθ) A ) θ â r + ϕ + 1 ( 1 A r r sinθ ϕ ) r (ra ϕ) â θ + 1 ( r r (ra θ) A ) r â ϕ θ sendo as componentes de A em coordenadas esféricas: A r = µ 0I 0 d 8πr ei(ωt kr) cosθ A θ = µ 0I 0 d 8πr ei(ωt kr) sinθ A ϕ = 0 A Radiação do Dipolo Elétrico 10/24

11 Uma vez que A ϕ = 0 e todas as derivadas em relação a ϕ também são nulas (observe que nesse caso A não varia com ϕ): B = 1 r ( r (ra θ) A ) r â ϕ (13) θ Agora calculando as derivadas: r (ra θ) = ikµ 0I 0 d 8π ei(ωt kr)sinθ A r θ = µ 0I 0 d 8πr ei(ωt kr) sinθ e substituindo em (13) nos dá: B = µ 0I 0 d 8π ( ik r + 1 ) e i(ωt kr) sinθâ r 2 ϕ (14) A Radiação do Dipolo Elétrico 11/24

12 Calculando o campo elétrico, também devemos avaliar um rotacional, de modo que E = i B ωµ 0 ε = c2 iω B + 1 r B = 1 ( r sinθ θ (B ϕ sinθ) B θ ϕ ( 1 B r sinθ ϕ ) r (rb ϕ) â θ + 1 r ) â r + ( r (rb θ) B r θ ) â ϕ Nesse caso só temos componente do campo B na direção ϕ simplificando o rotacional para: Temos então: B = 1 r sinθ θ (B ϕ sinθ)â r 1 r r (rb ϕ)â θ E = 1 iωµ 0 ε ( 1 r sinθ θ (B ϕ sinθ)â r 1 r ) r (rb ϕ)â θ A Radiação do Dipolo Elétrico 12/24

13 Exercício: Demonstre, calculando as derivadas e utilizando as relações: ω = ck Z 0 = µ0 ε 0 = cµ 0 que o campo elétrico resultante será dado por E = Z 0I 0 d [ 8π ei(ωt kr) +sinθ ( 1 2cosθ ( ik r + 1 r ikr 3 r ikr )â 3 ] θ ) â r + (15) A Radiação do Dipolo Elétrico 13/24

14 Vemos que o campo elétrico possui componentes E r e E θ. Somente E θ possui dependência do tipo 1/r, e que irá contribuir para o campo distante, conforme veremos adiante. É possível perceber também que os campos possuem termos variando com 1/r, 1/r 2 e 1/r 3. Em cada região do espaço algum desses termos é predominante, permitindo definir regiões de campo. Tomemos como referência a componente do campo elétrico E θ, que possui as três dependências: E θ (1/r) = Z 0I 0 d 8π ei(ωt kr)ik r sinθ E θ (1/r 2 ) = Z 0I 0 d 1 8π ei(ωt kr) r sinθ 2 E θ (1/r 3 ) = Z 0I 0 d 1 8π ei(ωt kr) ikr sinθ 3 Em módulo temos as seguintes relações entre as componentes: E θ (1/r 2 ) E θ (1/r) = 1 kr, E θ (1/r 3 ) E θ (1/r) = 1, (kr) 2 E θ (1/r 2 ) E θ (1/r 3 ) = 1 kr (16) A Radiação do Dipolo Elétrico 14/24

15 Região 1 Campo Próximo - A região mais próxima da fonte. Para este caso, o termo 1/r 3 é dominante. Para que isso aconteça devemos ter 1/(kr) >> 1 de tal forma que a condição obtida, fazendo uso de k = 2π/λ, onde λ é o comprimento de onda, é: r << λ 2π ou seja, a região de campo próximo é aquela em que o ponto de observação está a uma distância da fonte que é muito menor que o comprimento de onda. Neste caso a solução dos campos é aquela obtida através da eletrostática e magnetostática. No nosso caso, os campos são aqueles gerados por um dipolo elétrico(ver algum livro de eletromagnetismo, que o campo estático de um dipolo elétrico varia com 1/r 3 ). Os termos em 1/r 2 são menores também do que os termo em 1/r 3. O campo magnético nessa região tem um efeito muito menor. Podemos dizer que a contribuição fundamental é dos campos elétricos com dependência em 1/r 3. Outro ponto importante é que não há uma relação fixa entre campo elétrico e magnético nessa região. Região 2 Zona Intermediária - É uma região intermediária de distâncias, também dita zona de indução. Vale a relação 1/(kr) 1, ou seja as distâncias A Radiação do Dipolo Elétrico 15/24

16 são da ordem do comprimento de onda λ. r λ 2π Nessa região todas as componentes de campo tem uma contribuição não negligível para o campo total. Região 3 Campo Distante - A situação se inverte em relação ao campo próximo. Como veremos aqui sim há uma relação constante entre o campo elétrico e o campo magnético. É a região dominada pelos campos de radiação, conforme veremos. As distâncias são maiores que o comprimento de onda, e o termo de campos dominante é aquele que varia com 1/r. Temos: r >> λ 2π Região de Campo Próximo Conforme haviamos falado, o termo dominante é aquele que envolve a dependência 1/r 3. Na verdade o campo gerado na região próxima é predominantemente elétrico, sendo aquele gerado por um dipolo elétrico: I 0 d E [2cosθâ 8π(iωε)r 3ei(ωt kr) r + sinθâ θ ] A Radiação do Dipolo Elétrico 16/24

17 B µ 0I 0 d 8πr 2 ei(ωt kr) sinθâ ϕ sendo o campo magnético menor em importância do que o campo elétrico, e pode ser tranquilamente negligenciado. Verifique em livros de Teoria Eletromagnética, que definindo o momento de dipolo elétrico na forma p = I 0d 2iω Por este motivo esta antena é dita de dipolo. Como ela tem extremos em aberto, as cargas oscilam entre os dois extremos, formando um dipolo variante no tempo. O momento do dipolo formado é o que foi escrito acima. Calculando o Vetor de Poynting para os Campos Próximos, temos: S rms = 1 2 R{E H } E após a substituição dos campos, vemos que não há parte real, somente reativa, por isso os termos de campo próximo dão contribuição nula para a irradiação de energia eletromagnética. Alguém poderia pensar em tomar o termo em 1/r 2 do campo elétrico, aí resultando um vetor de Poynting não nulo. Mas o fato é que o fluxo de divergência do Poynting é nulo para termos que tem dependência em r na forma 1/r n e n > 2. No caso dos campos próximos sem levar em conta termos de 1/r 2 no campo elétrico A Radiação do Dipolo Elétrico 17/24

18 a dependência em r é 1/r 5 (levando 1/r 2 dá dependência 1/r 4 ). Quando fazemos a integral do fluxo temos a potência irradiada: P = S S rms ˆndS Não confundir ds que é superfície com S rms, que é o vetor de Poynting. O vetor ˆn aponta na direção da superfície. Se quisermos integrar em uma esfera de raio arbitrário, para ver qual o fluxo está saindo desta esfera, temos: P = π 0 dθ e para o termo em 1/r 5 tem-se: 2π 0 dϕ S rms â r r 2 sinθ P 2π 1 r 3 Fazendo r, ou seja, a superfície é fechada, arbitrária, mas de raio infinito, temos o valor nulo para a potência. A potência irradiada é aquela que vai para infinito, e nesse caso, a potência que vai para infinito é zero, portanto, os campos próximos, como dito anteriormente não contribuem para a energia irradiada. Campo Distante ou Campo de Radiação A Radiação do Dipolo Elétrico 18/24

19 Aqui iremos mostrar que os campos ditos campos na região distante são os que contribuem para a energia irradiada. Levando em conta nos campos somente os termos em 1/r temos: E = I ( ) 0d iωµ0 e i(ωt kr) sinθâ θ (17) 8π r B = µ ( ) 0I 0 d ik e i(ωt kr) sinθâ ϕ (18) 8π r Somente observando os campos dados por (17) e (18) podemos concluir de antemão que são ortogonais entre si e apresentam uma relação de proporção constante, sendo o campo elétrico na direção θ e o campo magnético na direção ϕ. Podemos observar que a relação entre as amplitudes de ambos é: E θ B ϕ = I 0 ( d iωµ0 8π r µ 0 I 0 ( d ik 8π r E θ ) sinθ ) = ω sinθ k = 1 B ϕ µ0 ε = c (19) onde c é a velocidade da luz no meio com permissividade ε. Estamos tratando meios não magnéticos, mas para que sejam, somente substibuimos A Radiação do Dipolo Elétrico 19/24

20 µ 0 por µ. A relação entre E θ e H ϕ é a impedância do meio, e podemos concluir da propria relação (19): E θ E θ = µ 0 = µ 0 H ϕ B ϕ µ0 ε = µ µ0 0c = ε = Z 0 (20) Sabemos então que E θ e B ϕ mantém uma relação constante na região de campo distante. Vamos mostrar agora, que esses campos são irradiados. Calculemos primeiramente o vetor de Poynting: S rms = 1 2 R{E H } = 1 R{E B } 2µ 0 S rms = 1 { ( ) ( ( )} I0 d iωµ0 R e i(ωt kr) µ0 I 0 d ik sinθâ θ )e i(ωt kr) sinθâ ϕ 2µ 0 8π r 8π r S rms = 1 { I0 d ( ωµ0 ) ( ( ) )} µ0 I 0 d k R sinθ sinθ â θ â ϕ 2µ 0 8π r 8π r S rms = 1 I 2 ( ) 0 d2 kωµ0 sin 2 θâ 2(8π) 2 r 2 r Agora fazemos uso de k = 2π/λ e ω = ck = 2πc/λ então temos kωµ 0 = (2π) 2 cµ 0 /λ 2, e ainda µ 0 c = Z 0, desse modo kωµ 0 = (2π)2 λ 2 Z 0 A Radiação do Dipolo Elétrico 20/24

21 e o resultado final para o Vetor de Poynting, que representa a densidade de potência que atravessa uma superfície: S rms = Z 0I0 2 ( ) 2 d 1 32 λ r 2 sin2 θâ r (21) Queremos saber agora qual a potência irradiada, para isso temos que integrar o vetor de Poynting: P = π 0 P = S 2π dθ dϕ Z 0I P = 2πZ 0I ( d λ ) 2 π P = 2πZ 0I0 2 ( d 32 λ Agora temos, de tabela de Integrais: π S rms ˆndS ( ) 2 d 1 λ r 2 sin2 θâ r â r r 2 sinθ 0 dθ 1 r 2 sin2 θr 2 sinθ = ) 2 π 0 dθsin 3 θ = 0 sin 3 θdθ = 4 3 A Radiação do Dipolo Elétrico 21/24

22 e obtemos o resultado final: P = πz 0I ( ) 2 d (22) λ Vemos que mesmo fazendo r, a potência não é anulada, ou seja, esta potência deixou a fonte emissora, foi radiada. Uma vez tendo sido radiada, essa energia é perdida pela fonte, e convertida em ondas eletromagnéticas que se propagam ao infinito, a menos que seja absorvida por outras cargas, meios materiais, etc. Uma vez radiada tem independência da fonte. Se a fonte for desligada os campos próximos deixam de existir, mas a energia que foi radiada pela fonte antes do desligamento segue viajando, já que a integral do fluxo do vetor de Poynting não se anula. Os campos radiados influenciam a grandes distâncias. São estes os desejados em sistemas de comunicações, mas são campos desse tipo que geram interferências a longas distâncias. Podemos definir ainda uma resistência de irradiação, já que a fonte perde energia na forma de ondas que se desprendem da fonte, e vão ao infinito na forma: P = 1 2 RI2 0 A Radiação do Dipolo Elétrico 22/24

23 ou R = 2P I0 2 e daqui tiramos, no caso do dipolo curto: R = πz 0 6 Se usarmos Z 0 = 120π Ω temos: ( ) 2 d (23) λ R = 20π 2 ( d λ) 2 Ω (24) Lembrando ainda que d é o tamanho total do dipolo. Se o dipolo tem tamanho igual a décima parte do comprimento de ondas, obtemos: R = π2 5 Ω o que significa dizer que a resistência de perdas por radiação é de aproximadamente 2Ω. Em geral essas perdas podem ser desprezadas em circuitos elétricos onde o tamanho do circuito é muito pequeno comparado ao comprimento de onda do sinal eletromagnético que percorre o circuito. Mas existem antenas com grandes resistências de radiação. O dipolo de meia onda chega A Radiação do Dipolo Elétrico 23/24

24 a mais de 50Ω. (Vale lembrar que existe ainda uma parte reativa e diz-se então impedância da antena, mas tal discussão foge ao escopo da disciplina). Uma vez que o campo é radiado, este se propaga pelo espaço até ser recebido por antenas receptoras para ser processado. A Radiação do Dipolo Elétrico 24/24

TE053-Ondas Eletromagnéticas PROF. CÉSAR AUGUSTO DARTORA - UFPR CURITIBA-PR

TE053-Ondas Eletromagnéticas PROF. CÉSAR AUGUSTO DARTORA - UFPR   CURITIBA-PR TE053-Ondas Eletromagnéticas A RADIAÇÃO DO DIPOLO ELÉTRICO PROF. CÉSAR AUGUSTO DARTORA - UFPR E-MAIL: CADARTORA@ELETRICA.UFPR.BR CURITIBA-PR Roteiro da Aula: A antena dipolo elétrico e a aproximação do

Leia mais

Lei de Gauss. 2.1 Fluxo Elétrico. O fluxo Φ E de um campo vetorial E constante perpendicular Φ E = EA (2.1)

Lei de Gauss. 2.1 Fluxo Elétrico. O fluxo Φ E de um campo vetorial E constante perpendicular Φ E = EA (2.1) Capítulo 2 Lei de Gauss 2.1 Fluxo Elétrico O fluxo Φ E de um campo vetorial E constante perpendicular a uma superfície é definido como Φ E = E (2.1) Fluxo mede o quanto o campo atravessa a superfície.

Leia mais

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 14

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 14 Ondas 5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Introdução: elementos básicos sobre ondas De maneira geral, uma onda é qualquer sinal que se transmite de um ponto a outro

Leia mais

FÍSICA (Eletromagnetismo) CAMPOS ELÉTRICOS

FÍSICA (Eletromagnetismo) CAMPOS ELÉTRICOS FÍSICA (Eletromagnetismo) CAMPOS ELÉTRICOS 1 O CONCEITO DE CAMPO Suponhamos que se fixe, num determinado ponto, uma partícula com carga positiva, q1, e a seguir coloquemos em suas proximidades uma segunda

Leia mais

Potencial Eletrostático

Potencial Eletrostático Capítulo 4 Potencial Eletrostático 4.1 Introdução A utilização do campo elétrico, como visto no capítulo anterior, para resolução de problemas pode ser bastante complexa, principalmente devido ao fato

Leia mais

Ondas Eletromagnéticas

Ondas Eletromagnéticas Capítulo 1 Ondas Eletromagnéticas 1.1 Equações de Maxwell As equações de Maxwell descrevem a produção e propagação de campos eletromagnéticos. Na forma diferencial são dadas por E = ρ ǫ 0 (Lei de Gauss)

Leia mais

Lei de Gauss e Condutores em Equilíbrio Eletrostático

Lei de Gauss e Condutores em Equilíbrio Eletrostático Lei de Gauss e Condutores em Equilíbrio Eletrostático 2008 Fluxo Elétrico: Está relacionado com o número líquido de linhas de força que atravessam uma superfície. φ e = EA 1 ou φ e = EA 2 cosθ = E ˆnA2

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 7

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 7 Potencial Elétrico Quando estudamos campo elétrico nas aulas passadas, vimos que ele pode ser definido em termos da força elétrica que uma carga q exerce sobre uma carga de prova q 0. Essa força é, pela

Leia mais

Mudança de Coordenadas

Mudança de Coordenadas Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Mudança de Coordenadas Na aula 3 discutimos como usar coordenadas polares em integrais duplas, seja pela região ser mais bem adaptada

Leia mais

1 Propagação em sistemas rádio móveis

1 Propagação em sistemas rádio móveis 1 Propagação em sistemas rádio móveis Para se chegar a expressões de atenuação de propagação que melhor descrevam as situações reais encontradas, vai-se acrescentando complexidade ao problema inicial (espaço

Leia mais

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 16

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 16 A Equação de Onda em Uma Dimensão Ondas transversais em uma corda esticada Já vimos no estudo sobre oscilações que os físicos gostam de usar modelos simples como protótipos de certos comportamentos básicos

Leia mais

5. Derivada. Definição: Se uma função f é definida em um intervalo aberto contendo x 0, então a derivada de f

5. Derivada. Definição: Se uma função f é definida em um intervalo aberto contendo x 0, então a derivada de f 5 Derivada O conceito de derivada está intimamente relacionado à taa de variação instantânea de uma função, o qual está presente no cotidiano das pessoas, através, por eemplo, da determinação da taa de

Leia mais

aplicada à força sentida por uma carga q 0, devida à N cargas q 1 q 2 q n

aplicada à força sentida por uma carga q 0, devida à N cargas q 1 q 2 q n Eletricidade O Campo eléctrico Consideremos a equação aplicada à força sentida por uma carga q 0, devida à N cargas q 1 q 2 q n onde é a distância desde a carga até o ponto do espaço onde se encontra a

Leia mais

y dx + (x 1) dy (a) Primeiramente encontremos uma parametrização para a curva m = (8 + 8 cos t)(2)dt = 16π + 16sen t = 16π

y dx + (x 1) dy (a) Primeiramente encontremos uma parametrização para a curva m = (8 + 8 cos t)(2)dt = 16π + 16sen t = 16π MAT 2455 álculo Diferencial e Integral para Engenharia III Prova 2 14/5/213 Turma A Questão 1. a) 1, ponto) Um o tem o formato da curva {x, y) R 2 : x 2) 2 + y 2 = 4, y }. Se sua densidade de massa é dada

Leia mais

ROLAMENTO, TORQUE E MOMENTUM ANGULAR Física Geral I (1108030) - Capítulo 08

ROLAMENTO, TORQUE E MOMENTUM ANGULAR Física Geral I (1108030) - Capítulo 08 ROLAMENTO, TORQUE E MOMENTUM ANGULAR Física Geral I (1108030) - Capítulo 08 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 21 Sumário Rolamento Rolamento como rotação e translação combinados e como uma

Leia mais

POTENCIAIS ELETROMAGNÉTICOS E TEORIA DA

POTENCIAIS ELETROMAGNÉTICOS E TEORIA DA TE053-Ondas Eletromagnéticas POTENCIAIS ELETROMAGNÉTICOS E TEORIA DA RADIAÇÃO ELETROMAGNÉTICA PROF. CÉSAR AUGUSTO DARTORA - UFPR E-MAIL: CADARTORA@ELETRICA.UFPR.BR CURITIBA-PR Roteiro da Aula: Potenciais

Leia mais

Fundamentos da Eletrostática Aula 17 O Campo Elétrico no interior de um Dielétrico

Fundamentos da Eletrostática Aula 17 O Campo Elétrico no interior de um Dielétrico Densidades de cargas polarizadas Fundamentos da Eletrostática Aula 17 O Campo Elétrico no interior de um Dielétrico Prof. Alex G. Dias Prof. Alysson F. Ferrari Na aula passada, mostramos que o potencial

Leia mais

A magnetostática. A lei de Biot e Savart O potencial escalar magnético. A lei da indução de Faraday.

A magnetostática. A lei de Biot e Savart O potencial escalar magnético. A lei da indução de Faraday. A magnetostática Nesta aula discutiremos algumas leis e conceitos físicos que são muito úteis para o entendimento do eletromagnetismo e se apresentam em várias inovações a aplicações tecnológicas. São

Leia mais

CIRCUITOS DE CORRENTE ALTERNADA

CIRCUITOS DE CORRENTE ALTERNADA CRCUTOS DE CORRENTE ALTERNADA NTRODUÇÃO As correntes e tensões na maioria dos circuitos não são estacionárias, possuindo uma variação com o tempo. A forma mais simples da variação temporal de tensão (corrente)

Leia mais

GEOMETRIA ANALÍTICA II

GEOMETRIA ANALÍTICA II Conteúdo 1 O PLANO 3 1.1 Equação Geral do Plano............................ 3 1.2 Determinação de um Plano........................... 7 1.3 Equação Paramétrica do Plano........................ 11 1.4 Ângulo

Leia mais

+++++++ - - - - - - -

+++++++ - - - - - - - www.pascal.com.br Prof. Edson Osni Ramos 3. (UEPG - 99) ε = 2 - - - - - - - d = 0,2 cm = 0,002 m Entre as placas do capacitor não há corrente elétrico (existe um dielétrico). Nesse caso, o capacitor está

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano 2015-2 a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano 2015-2 a Fase Prova Escrita de MATEMÁTICA A - o Ano 205-2 a Fase Proposta de resolução GRUPO I. O valor médio da variável aleatória X é: µ a + 2 2a + 0, Como, numa distribuição de probabilidades de uma variável aleatória,

Leia mais

Ondas Eletromagnéticas. Cap. 33

Ondas Eletromagnéticas. Cap. 33 Ondas Eletromagnéticas. Cap. 33 33.1 Introdução As ondas eletromagnéticas estão presentes no nosso dia a dia. Por meio destas ondas, informações do mundo são recebidas (tv, Internet, telefonia, rádio,

Leia mais

- Cálculo 1 - Limites -

- Cálculo 1 - Limites - - Cálculo - Limites -. Calcule, se eistirem, os seguintes ites: (a) ( 3 3); (b) 4 8; 3 + + 3 (c) + 5 (d) 3 (e) 3. Faça o esboço do gráfico de f() = entre 4 f() e f(4)? 3. Seja f a função definida por f()

Leia mais

MICROFONE E ALTIFALANTE

MICROFONE E ALTIFALANTE MICROFONE E ALTIFALANTE Um microfone é um transdutor que transforma energia mecânica (onda sonora) em energia elétrica (sinal elétrico de corrente alternada). O altifalante é um transdutor que transforma

Leia mais

Capítulo 7. 1. Bissetrizes de duas retas concorrentes. Proposição 1

Capítulo 7. 1. Bissetrizes de duas retas concorrentes. Proposição 1 Capítulo 7 Na aula anterior definimos o produto interno entre dois vetores e vimos como determinar a equação de uma reta no plano de diversas formas. Nesta aula, vamos determinar as bissetrizes de duas

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L NOTAS DA VIGÉSIMA PRIMEIRA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, abordaremos a técnica de integração conhecida como frações parciais. Esta técnica pode ser utilizada para

Leia mais

A Equação de Onda em Uma Dimensão (continuação)

A Equação de Onda em Uma Dimensão (continuação) A Equação de Onda em Uma Dimensão (continuação) Energia em uma onda mecânica Consideremos novamente o problema da onda transversal propagando-se em uma corda vibrante em uma dimensão (lembrese, a corda

Leia mais

Eletrodinâmica: Leis de Faraday e Lenz

Eletrodinâmica: Leis de Faraday e Lenz Secretaria de Educação Profissional e Tecnológica Instituto Federal de Santa Catarina Campus São José Área de Telecomunicações ELM20704 Eletromagnetismo Professor: Bruno Fontana da Silva 2014-1 Eletrodinâmica:

Leia mais

Erros e Incertezas. Rafael Alves Batista Instituto de Física Gleb Wataghin Universidade Estadual de Campinas (Dated: 10 de Julho de 2011.

Erros e Incertezas. Rafael Alves Batista Instituto de Física Gleb Wataghin Universidade Estadual de Campinas (Dated: 10 de Julho de 2011. Rafael Alves Batista Instituto de Física Gleb Wataghin Universidade Estadual de Campinas (Dated: 10 de Julho de 2011.) I. INTRODUÇÃO Quando se faz um experimento, deseja-se comparar o resultado obtido

Leia mais

CINEMÁTICA DO PONTO MATERIAL

CINEMÁTICA DO PONTO MATERIAL 1.0 Conceitos CINEMÁTICA DO PONTO MATERIAL Cinemática é a parte da Mecânica que descreve os movimentos. Ponto material é um corpo móvel cujas dimensões não interferem no estudo em questão. Trajetória é

Leia mais

Capítulo 4. Retas e Planos. 4.1 A reta

Capítulo 4. Retas e Planos. 4.1 A reta Capítulo 4 Retas e Planos Neste capítulo veremos como utilizar a teoria dos vetores para caracterizar retas e planos, a saber, suas equações, posições relativas, ângulos e distâncias. 4.1 A reta Sejam

Leia mais

Aula 01 TEOREMAS DA ANÁLISE DE CIRCUITOS. Aula 1_Teoremas da Análise de Circuitos.doc. Página 1 de 8

Aula 01 TEOREMAS DA ANÁLISE DE CIRCUITOS. Aula 1_Teoremas da Análise de Circuitos.doc. Página 1 de 8 ESCOLA TÉCNICA ESTADUAL ZONA SUL CURSO TÉCNICO EM ELETRÔNICA II. CIRCUITOS ELÉTRICOS Aula 0 TEOREMAS DA ANÁLISE DE CIRCUITOS Prof. Marcio Leite Página de 8 0 TEOREMA DA ANÁLISE DE CIRCUITOS.0 Introdução

Leia mais

Apostila 1 Física. Capítulo 3. A Natureza das Ondas. Página 302. Gnomo

Apostila 1 Física. Capítulo 3. A Natureza das Ondas. Página 302. Gnomo Apostila 1 Física Capítulo 3 Página 302 A Natureza das Ondas Classificação quanto a natureza Ondas Mecânicas São ondas relacionadas à oscilação das partículas do meio. Portanto, exige a presença de meio

Leia mais

De modo análogo as integrais duplas, podemos introduzir novas variáveis de integração na integral tripla.

De modo análogo as integrais duplas, podemos introduzir novas variáveis de integração na integral tripla. 8 Mudança de variável em integrais riplas 38 De modo análogo as integrais duplas, podemos introduzir novas variáveis de integração na integral tripla. I f ( dxddz Introduzindo novas variáveis de integração

Leia mais

Proposta de resolução da Prova de Matemática A (código 635) 2ª fase. 19 de Julho de 2010

Proposta de resolução da Prova de Matemática A (código 635) 2ª fase. 19 de Julho de 2010 Proposta de resolução da Prova de Matemática A (código 65) ª fase 9 de Julho de 00 Grupo I. Como só existem bolas de dois tipos na caixa e a probabilidade de sair bola azul é, existem tantas bolas roxas

Leia mais

1 = Pontuação: Os itens A e B valem três pontos cada; o item C vale quatro pontos.

1 = Pontuação: Os itens A e B valem três pontos cada; o item C vale quatro pontos. Física 0. Duas pessoas pegam simultaneamente escadas rolantes, paralelas, de mesmo comprimento l, em uma loja, sendo que uma delas desce e a outra sobe. escada que desce tem velocidade V = m/s e a que

Leia mais

F602 Eletromagnetismo II

F602 Eletromagnetismo II 1 F602 Eletromagnetismo II Turma C 2 ọ Semestre - 2010 Márcio José Menon Capítulo II LEIS DE CONSERVAÇÃO ÍNDICE 1. Introdução: Leis de Conservação Locais 2. Conservação da Carga Elétrica - Revisão 3. Conservação

Leia mais

Campo Magnético. Prof a. Michelle Mendes Santos michelle.mendes@ifmg.edu.br

Campo Magnético. Prof a. Michelle Mendes Santos michelle.mendes@ifmg.edu.br Campo Magnético Prof a. Michelle Mendes Santos michelle.mendes@ifmg.edu.br O Magnetismo O magnetismo é um efeito observado e estudado há mais de 2000 anos. O magnetismo descreve o comportamento de objetos

Leia mais

ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA (UFCG- CUITÉ)

ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA (UFCG- CUITÉ) P L A N O S PARALELOS AOS EIXOS E AOS PLANOS COORDENADOS Casos Particulares A equação ax + by + cz = d na qual a, b e c não são nulos, é a equação de um plano π, sendo v = ( a, b, c) um vetor normal a

Leia mais

Equações paramétricas da Reta

Equações paramétricas da Reta 39 6.Retas e Planos Equações de Retas e Planos Equações da Reta Vamos supor que uma reta r é paralela a um vetor V = a, b, c) não nulo e que passa por um ponto P = x, y, z ). Um ponto P = x, pertence a

Leia mais

Campo Magnético Girante de Máquinas CA

Campo Magnético Girante de Máquinas CA Apostila 3 Disciplina de Conversão de Energia B 1. Introdução Campo Magnético Girante de Máquinas CA Nesta apostila são descritas de forma sucinta as equações e os princípios relativos ao campo magnético

Leia mais

Lista de Exercícios Campo Elétrico

Lista de Exercícios Campo Elétrico Considere k o = 9,0. 10 9 N. m 2 /C 2 Lista de Exercícios Campo Elétrico 1. Uma partícula de carga q = 2,5. 10-8 C e massa m = 5,0. 10-4 kg, colocada num determinado ponto P de uma região onde existe um

Leia mais

O cilindro deitado. Eduardo Colli

O cilindro deitado. Eduardo Colli O cilindro deitado Eduardo Colli São poucas as chamadas funções elementares : potências e raízes, exponenciais, logaritmos, funções trigonométricas e suas inversas, funções trigonométricas hiperbólicas

Leia mais

Probabilidade III. Ulisses U. dos Anjos. Departamento de Estatística Universidade Federal da Paraíba. Período 2014.1

Probabilidade III. Ulisses U. dos Anjos. Departamento de Estatística Universidade Federal da Paraíba. Período 2014.1 Probabilidade III Ulisses U. dos Anjos Departamento de Estatística Universidade Federal da Paraíba Período 2014.1 Ulisses Umbelino (DE-UFPB) Probabilidade III Período 2014.1 1 / 42 Sumário 1 Apresentação

Leia mais

3.3 Qual o menor caminho até a Escola? 28 CAPÍTULO 3. CICLOS E CAMINHOS

3.3 Qual o menor caminho até a Escola? 28 CAPÍTULO 3. CICLOS E CAMINHOS 2 CAPÍTULO. CICLOS E CAMINHOS solução para um problema tem se modificado. Em vez de procurarmos um número, uma resposta (o que em muitos casos é necessário), procuramos um algoritmo, isto é, uma série

Leia mais

Resposta Questão 2. a) O N O b) Linear

Resposta Questão 2. a) O N O b) Linear GABARITO DA PROVA DO PROCESSO DE SELEÇÃO PARA O PROGRAMA DE PÓS-GRADUAÇÃO 1 SEMESTRE DE 2016 FÍSICA E QUÍMICA DE MATERIAIS UNIVERSIDADE FEDERAL DE SÃO JOÃO DEL REI Resposta Questão 1. A amônia apresenta

Leia mais

ESTUDO DE UM MOVIMENTO 519EE TEORIA

ESTUDO DE UM MOVIMENTO 519EE TEORIA 1 TEORIA 1. INTRODUÇÃO Observe a seguinte sequência de fotos: Figura 1: Exemplos de vários tipos de movimento. O que tem a ver as situações do dia a dia ilustradas na figura 1 acima com os conceitos da

Leia mais

Matemática Básica Intervalos

Matemática Básica Intervalos Matemática Básica Intervalos 03 1. Intervalos Intervalos são conjuntos infinitos de números reais. Geometricamente correspondem a segmentos de reta sobre um eixo coordenado. Por exemplo, dados dois números

Leia mais

Curso: REDES DE COMPUTADORES Disciplina: ELETRICIDADE

Curso: REDES DE COMPUTADORES Disciplina: ELETRICIDADE Curso: REDES DE COMPUTADORES Disciplina: ELETRICIDADE Carga-Horária: 60 h (80h/a) Professor: Jean Carlos da Silva Galdino Sala: 04 Aluno: Turma Lista de exercícios VII Parte I Ondas eletromagnéticas Para

Leia mais

FÍSICA III Lista de Problemas 10 Momento de dipolo magnético e torque; lei de Faraday

FÍSICA III Lista de Problemas 10 Momento de dipolo magnético e torque; lei de Faraday FÍSICA III Lista de Problemas 10 Momento de dipolo magnético e torque; lei de Faraday A C Tort 5 de Junho de 2008 Problema 1 O campo de um dipolo elétrico é dado por, veja suas notas de aula: E = 1 4πǫ

Leia mais

1) Cálculo do tempo de subida do objeto: V y. = V 0y. + γt s 0 = 4 10t s. t s. = 0,4s. 2) Cálculo do tempo total de vôo : t total.

1) Cálculo do tempo de subida do objeto: V y. = V 0y. + γt s 0 = 4 10t s. t s. = 0,4s. 2) Cálculo do tempo total de vôo : t total. 46 e FÍSICA No interior de um ônibus que trafega em uma estrada retilínea e horizontal, com velocidade constante de 90 km/h, um passageiro sentado lança verticalmente para cima um pequeno objeto com velocidade

Leia mais

Álgebra Linear - Exercícios (Determinantes)

Álgebra Linear - Exercícios (Determinantes) Álgebra Linear - Exercícios (Determinantes) Índice 1 Teoria dos Determinantes 3 11 Propriedades 3 12 CálculodeDeterminantes 6 13 DeterminanteseRegularidade 8 14 TeoremadeLaplace 11 15 Miscelânea 16 2 1

Leia mais

Aula 2 - Revisão. Claudemir Claudino 2014 1 Semestre

Aula 2 - Revisão. Claudemir Claudino 2014 1 Semestre Aula 2 - Revisão I Parte Revisão de Conceitos Básicos da Matemática aplicada à Resistência dos Materiais I: Relações Trigonométricas, Áreas, Volumes, Limite, Derivada, Integral, Vetores. II Parte Revisão

Leia mais

1.1 UFPR 2014. Rumo Curso Pré Vestibular Assistencial - RCPVA Disciplina: Matemática Professor: Vinícius Nicolau 04 de Novembro de 2014

1.1 UFPR 2014. Rumo Curso Pré Vestibular Assistencial - RCPVA Disciplina: Matemática Professor: Vinícius Nicolau 04 de Novembro de 2014 Sumário 1 Questões de Vestibular 1 1.1 UFPR 2014.................................... 1 1.1.1 Questão 1................................. 1 1.1.2 Questão 2................................. 2 1.1.3 Questão

Leia mais

Vestibular Comentado - UVA/2011.1

Vestibular Comentado - UVA/2011.1 Vestibular Comentado - UVA/011.1 FÍSICA Comentários: Profs.... 11. Um atirador ouve o ruído de uma bala atingindo seu alvo 3s após o disparo da arma. A velocidade de disparo da bala é 680 m/s e a do som

Leia mais

UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA CONTROLE E AUTOMAÇÃO. Professor Leonardo Gonsioroski

UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA CONTROLE E AUTOMAÇÃO. Professor Leonardo Gonsioroski UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA CONTROLE E AUTOMAÇÃO Definições Comunicações sem fio utilizam-se de ondas eletromagnéticas para o envio de sinais através de longas distâncias.

Leia mais

Curvas no Plano e no Espaço*

Curvas no Plano e no Espaço* Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Curvas no Plano e no Espaço* *Esta segunda versăo corresponde ao que efetivamente foi apresentado na aula de 22/09. É justo dizer

Leia mais

Ensino: Médio Professor: Renato Data:, de 2010. Trabalho de Recuperação de Física (1 e 2º Bimestres) Instruções:

Ensino: Médio Professor: Renato Data:, de 2010. Trabalho de Recuperação de Física (1 e 2º Bimestres) Instruções: Uma Escola ensando em Você luno(a): nº Série: 3 ano Disciplina: Física Ensino: Médio rofessor: Renato Data:, de 010 Trabalho de Recuperação de Física (1 e º imestres) Instruções: 1. O trabalho deverá ser

Leia mais

1 Exercícios de Aplicações da Integral

1 Exercícios de Aplicações da Integral Cálculo I (5/) IM UFRJ Lista 6: Aplicações de Integral Prof. Milton Lopes e Prof. Marco Cabral Versão 9.5.5 Eercícios de Aplicações da Integral. Eercícios de Fiação Fi.: Esboce o gráco e calcule a área

Leia mais

Resolução do exemplo 8.6a - pág 61 Apresente, analítica e geometricamente, a solução dos seguintes sistemas lineares.

Resolução do exemplo 8.6a - pág 61 Apresente, analítica e geometricamente, a solução dos seguintes sistemas lineares. Solução dos Exercícios de ALGA 2ª Avaliação EXEMPLO 8., pág. 61- Uma reta L passa pelos pontos P 0 (, -2, 1) e P 1 (5, 1, 0). Determine as equações paramétricas, vetorial e simétrica dessa reta. Determine

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano 2011-2 a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano 2011-2 a Fase Prova Escrita de MATEMÁTICA A - 1o Ano 011 - a Fase Proposta de resolução GRUPO I 1. Como no lote existem em total de 30 caixas, ao selecionar 4, podemos obter um conjunto de 30 C 4 amostras diferentes,

Leia mais

Ondas EM no Espaço Livre (Vácuo)

Ondas EM no Espaço Livre (Vácuo) Secretaria de Educação Profissional e Tecnológica Instituto Federal de Santa Catarina Campus São José Área de Telecomunicações ELM20704 Eletromagnetismo Professor: Bruno Fontana da Silva 2014-1 Ondas EM

Leia mais

Departamento de Matemática da Universidade de Coimbra Álgebra Linear e Geometria Analítica Engenharia Civil Ano lectivo 2005/2006 Folha 1.

Departamento de Matemática da Universidade de Coimbra Álgebra Linear e Geometria Analítica Engenharia Civil Ano lectivo 2005/2006 Folha 1. Departamento de Matemática da Universidade de Coimbra Álgebra Linear e Geometria Analítica Engenharia Civil Ano lectivo 2005/2006 Folha 1 Matrizes 1 Considere as matrizes A = 1 2 3 2 3 1 3 1 2 Calcule

Leia mais

RESPOSTA: C. a) só a I. b) só a II. c) só a III. d) mais de uma. e) N.d.a. RESPOSTA: C

RESPOSTA: C. a) só a I. b) só a II. c) só a III. d) mais de uma. e) N.d.a. RESPOSTA: C 1. (ITA - 1969) Usando L para comprimento, T para tempo e M para massa, as dimensões de energia e quantidade de movimento linear correspondem a: Energia Quantidade de Movimento a) M L T -1... M 2 L T -2

Leia mais

6.2. Volumes. Nesta seção aprenderemos a usar a integração para encontrar o volume de um sólido. APLICAÇÕES DE INTEGRAÇÃO

6.2. Volumes. Nesta seção aprenderemos a usar a integração para encontrar o volume de um sólido. APLICAÇÕES DE INTEGRAÇÃO APLICAÇÕES DE INTEGRAÇÃO 6.2 Volumes Nesta seção aprenderemos a usar a integração para encontrar o volume de um sólido. SÓLIDOS IRREGULARES Começamos interceptando S com um plano e obtemos uma região plana

Leia mais

Antenas. Dipolo de meia onda. Antena isotrópica

Antenas. Dipolo de meia onda. Antena isotrópica Antenas São dispositivos passivos, que transmitem ou recebem radiações electromagnéticas. As formulações matemáticas de alguns parâmetros podem ser bastante complexas e, nestes casos, são dados apenas

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ - UFPR Setor de Tecnologia Departamento de Engenharia Elétrica. Disciplina: TE053 - Ondas Eletromagnéticas

UNIVERSIDADE FEDERAL DO PARANÁ - UFPR Setor de Tecnologia Departamento de Engenharia Elétrica. Disciplina: TE053 - Ondas Eletromagnéticas UNIVERSIDADE FEDERAL DO PARANÁ - UFPR Setor de Tecnologia Departamento de Engenharia Elétrica 4 a LISTA DE EXERCÍCIOS Disciplina: TE053 - Ondas Eletromagnéticas Professor: César Augusto Dartora 1 *1) Mostre

Leia mais

INF01 118 Técnicas Digitais para Computação. Conceitos Básicos de Circuitos Elétricos. Aula 2

INF01 118 Técnicas Digitais para Computação. Conceitos Básicos de Circuitos Elétricos. Aula 2 INF01 118 Técnicas Digitais para Computação Conceitos Básicos de Circuitos Elétricos Aula 2 1. Grandezas Elétricas 1.1 Carga A grandeza fundamental em circuitos elétricos é a carga elétrica Q. As cargas

Leia mais

Amplificador a transistor

Amplificador a transistor Amplificador a transistor Amplificador significa ampliar um sinal ou um som através da amplitude. Tipos de amplificadores Os amplificadores podem ser divididos em várias categorias: Quanto à amplitude

Leia mais

Geometria Analítica e Vetorial - Daniel Miranda, Rafael Grisi, Sinuê Lodovici

Geometria Analítica e Vetorial - Daniel Miranda, Rafael Grisi, Sinuê Lodovici 3 R E TA S E P L A N O S Dando continuidade ao nosso estudo sobre lugares geométricos e suas equações, vamos nos concentrar agora no estudo de dois elementos geométricos fundamentais da geometria as retas

Leia mais

Quinto roteiro de exercícios no Scilab Cálculo Numérico

Quinto roteiro de exercícios no Scilab Cálculo Numérico Quinto roteiro de exercícios no Scilab Cálculo Numérico Rodrigo Fresneda 4 de maio de 2012 1 Equações Diferenciais Ordinárias Equação diferencial é uma equação que contém derivadas de uma função desconhecida.

Leia mais

A forma geral de uma equação de estado é: p = f ( T,

A forma geral de uma equação de estado é: p = f ( T, Aula: 01 Temática: O Gás Ideal Em nossa primeira aula, estudaremos o estado mais simples da matéria, o gás, que é capaz de encher qualquer recipiente que o contenha. Iniciaremos por uma descrição idealizada

Leia mais

06-11-2015. Sumário. Da Terra à Lua. Movimentos no espaço 02/11/2015

06-11-2015. Sumário. Da Terra à Lua. Movimentos no espaço 02/11/2015 Sumário UNIDADE TEMÁTICA 1 Movimentos na Terra e no Espaço. Correção do 1º Teste de Avaliação. Movimentos no espaço. Os satélites geoestacionários. - O Movimentos de satélites. - Características e aplicações

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano 2015 - Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano 2015 - Época especial Prova Escrita de MATEMÁTICA A - 1o Ano 015 - Época especial Proposta de resolução GRUPO I 1. Como P A B = P A + P B P A B, substituindo os valores conhecidos, podemos calcular P A: 0,7 = P A + 0,4 0, 0,7

Leia mais

Turbina eólica: conceitos

Turbina eólica: conceitos Turbina eólica: conceitos Introdução A turbina eólica, ou aerogerador, é uma máquina eólica que absorve parte da potência cinética do vento através de um rotor aerodinâmico, convertendo em potência mecânica

Leia mais

Projeto pelo Lugar das Raízes

Projeto pelo Lugar das Raízes Projeto pelo Lugar das Raízes 0.1 Introdução Controle 1 Prof. Paulo Roberto Brero de Campos Neste apostila serão estudadas formas para se fazer o projeto de um sistema realimentado, utilizando-se o Lugar

Leia mais

Novo Espaço Matemática A 11.º ano Proposta de Teste Intermédio [Novembro 2015]

Novo Espaço Matemática A 11.º ano Proposta de Teste Intermédio [Novembro 2015] Proposta de Teste Intermédio [Novembro 05] Nome: Ano / Turma: N.º: Data: - - Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado. Para cada resposta, identifica

Leia mais

2-ELETROMAGNETISMO (Página 24 a 115 da apostila Fundamentos do Eletromagnetismo, do professor Fernando Luiz Rosa ( Mussoi

2-ELETROMAGNETISMO (Página 24 a 115 da apostila Fundamentos do Eletromagnetismo, do professor Fernando Luiz Rosa ( Mussoi 2-ELETROMAGNETISMO (Página 24 a 115 da apostila Fundamentos do Eletromagnetismo, do professor Fernando Luiz Rosa ( Mussoi Disciplina de Eletromagnetismo 1 COMPETÊNCIAS Conhecer as leis fundamentais do

Leia mais

Prof. Michel Sadalla Filho

Prof. Michel Sadalla Filho MECÂNICA APLICADA Prof. Michel Sadalla Filho MOMENTO DE UMA FORÇA + EQUILÍBRIO DE UMA BARRA (No Plano XY) Referência HIBBELER, R. C. Mecânica Estática. 10 ed. São Paulo: Pearson Education do Brasil, 2005,

Leia mais

CORRENTE E RESITÊNCIA

CORRENTE E RESITÊNCIA CORRENTE E RESITÊNCIA Até o momento estudamos cargas em repouso - a eletrostática. A partir de agora concentramos nossa atenção nas cargas em movmento, isto é, na corrente elétrica. Corrente elétrica :

Leia mais

Álgebra Linear I - Aula 20

Álgebra Linear I - Aula 20 Álgebra Linear I - Aula 0 1 Matriz de Mudança de Base Bases Ortonormais 3 Matrizes Ortogonais 1 Matriz de Mudança de Base Os próximos problemas que estudaremos são os seguintes (na verdade são o mesmo

Leia mais

PARTE 11 VETOR GRADIENTE:

PARTE 11 VETOR GRADIENTE: PARTE 11 VETOR GRADIENTE: INTERPRETAÇÃO GEOMÉTRICA 11.1 Introdução Dada a função real de n variáveis reais, f : Domf) R n R X = 1,,..., n ) f 1,,..., n ), se f possui todas as derivadas parciais de primeira

Leia mais

Por que as antenas são parabólicas?

Por que as antenas são parabólicas? Por que as antenas são parabólicas? Adaptado do artigo de Eduardo Wagner A palavra parábola está, para os estudantes do ensino médio, associada ao gráfico da função polinomial do segundo grau. Embora quase

Leia mais

O Plano. Equação Geral do Plano:

O Plano. Equação Geral do Plano: O Plano Equação Geral do Plano: Seja A(x 1, y 1, z 1 ) um ponto pertencente a um plano π e n = (a, b, c), n 0, um vetor normal (ortogonal) ao plano (figura ao lado). Como n π, n é ortogonal a todo vetor

Leia mais

UMC CURSO BÁSICO DE ENGENHARIA EXERCÍCIOS DE ELETRICIDADE BÁSICA. a 25º C e o coeficiente de temperatura α = 0,004Ω

UMC CURSO BÁSICO DE ENGENHARIA EXERCÍCIOS DE ELETRICIDADE BÁSICA. a 25º C e o coeficiente de temperatura α = 0,004Ω rof. José oberto Marques UMC CUSO BÁSCO DE ENGENHAA EXECÍCOS DE ELETCDADE BÁSCA 1) Um condutor de eletricidade de cobre tem formato circular 6mm de diâmetro e 50m de comprimento. Se esse condutor conduz

Leia mais

Análise de Regressão. Notas de Aula

Análise de Regressão. Notas de Aula Análise de Regressão Notas de Aula 2 Modelos de Regressão Modelos de regressão são modelos matemáticos que relacionam o comportamento de uma variável Y com outra X. Quando a função f que relaciona duas

Leia mais

4.1 Experimento 1: Cuba Eletrostática: Carga, Campo e Potenciais Elétricos

4.1 Experimento 1: Cuba Eletrostática: Carga, Campo e Potenciais Elétricos 14 4. Roteiros da Primeira Sequência 4.1 Experimento 1: Cuba Eletrostática: Carga, Campo e Potenciais Elétricos 4.1.1 Objetivos Fundamentar o conceito de carga elétrica. Trabalhar com os conceitos de campo

Leia mais

Coeficiente de Assimetria e Curtose. Rinaldo Artes. Padronização., tem as seguintes propriedades: Momentos

Coeficiente de Assimetria e Curtose. Rinaldo Artes. Padronização., tem as seguintes propriedades: Momentos Coeficiente de Assimetria e Curtose Rinaldo Artes 2014 Padronização Seja X uma variável aleatória com E(X)=µ e Var(X)=σ 2. Então a variável aleatória Z, definida como =, tem as seguintes propriedades:

Leia mais

Escola Secundária de Casquilhos Teste Sumativo 2- Física e Química A 11º ANO 10/12/2013 90 minutos

Escola Secundária de Casquilhos Teste Sumativo 2- Física e Química A 11º ANO 10/12/2013 90 minutos Escola Secundária de Casquilhos Teste Sumativo 2- Física e Química A 11º ANO 10/12/2013 90 minutos NOME Nº Turma Informação Professor Enc. de Educação TABELA DE CONSTANTES Velocidade de propagação da luz

Leia mais

3 Modelo Cinemático do Veículo

3 Modelo Cinemático do Veículo 3 Modelo Cinemático do Veículo Nesse capítulo se faz uma breve apresentação do modelo cinemático do veículo, descrito em (Speranza,Spinola, 2005) e em seguida projeta-se a malha de controle onde são feitos

Leia mais

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO PRIMEIRA PROVA (P1) 02/05/2012

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO PRIMEIRA PROVA (P1) 02/05/2012 1 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO INSTITUTO DE FÍSICA FÍSICA III 2012/1 PRIMEIRA PROVA (P1) 02/05/2012 VERSÃO: A INSTRUÇÕES: LEIA COM CUIDADO! 1. Preencha CORRETA, LEGÍVEL E TOTALMENTE os campos

Leia mais

Eletromagnetismo Licenciatura. 17 a aula. Professor Alvaro Vannucci

Eletromagnetismo Licenciatura. 17 a aula. Professor Alvaro Vannucci Eletromagnetismo Licenciatura 17 a aula Professor Alvaro Vannucci Nas últimas aulas temos estudado... Emissão de Radiação Eletromagnética por cargas aceleradas: 1 1 qa sin S E B EB rˆ rˆ 16 c r De forma

Leia mais

Capítulo 4: Análise de Sistemas: 1ª e 2ª Leis da Termodinâmica

Capítulo 4: Análise de Sistemas: 1ª e 2ª Leis da Termodinâmica Capítulo 4: Análise de Sistemas: ª e ª Leis da Termodinâmica A primeira lei da termodinâmica Alguns casos particulares Primeira lei em um ciclo termodinâmico Primeira lei da termodinâmica quantidade líquida

Leia mais

TEOREMAS DE THÉVENIN E NORTON http://www.ezuim.com/downloads.html

TEOREMAS DE THÉVENIN E NORTON http://www.ezuim.com/downloads.html TEOREMAS DE THÉVENIN E NORTON http://www.ezuim.com/downloads.html THÉVENIN O teorema de Thévenin estabelece que qualquer circuito linear visto de um ponto, pode ser representado por uma fonte de tensão

Leia mais

Lista de exercícios de Física / 2 Bimestre Unidades 1, 2 e 3

Lista de exercícios de Física / 2 Bimestre Unidades 1, 2 e 3 Nota Lista de exercícios de Física / 2 Bimestre Unidades 1, 2 e 3 Data: 18 de maio de 2012 Curso: Ensino Médio 3 ano A Professora: Luciana M.A. Teixeira Nome: Nº Instruções gerais Para a resolução desta

Leia mais

Eletricidade Aplicada

Eletricidade Aplicada Eletricidade Aplicada Profa. Grace S. Deaecto Instituto de Ciência e Tecnologia / UNIFESP 12231-280, São J. dos Campos, SP, Brasil. grace.deaecto@unifesp.br Novembro, 2012 Profa. Grace S. Deaecto Eletricidade

Leia mais

Caro (a) Aluno (a): Este texto apresenta uma revisão sobre movimento circular uniforme MCU. Bom estudo e Boa Sorte!

Caro (a) Aluno (a): Este texto apresenta uma revisão sobre movimento circular uniforme MCU. Bom estudo e Boa Sorte! TEXTO DE EVISÃO 15 Movimento Circular Caro (a) Aluno (a): Este texto apresenta uma revisão sobre movimento circular uniforme MCU. om estudo e oa Sorte! 1 - Movimento Circular: Descrição do Movimento Circular

Leia mais

Sobre Desenvolvimentos em Séries de Potências, Séries de Taylor e Fórmula de Taylor

Sobre Desenvolvimentos em Séries de Potências, Séries de Taylor e Fórmula de Taylor Sobre Desenvolvimentos em Séries de Potências, Séries de Taylor e Fórmula de Taylor Pedro Lopes Departamento de Matemática Instituto Superior Técnico o. Semestre 005/006 Estas notas constituem um material

Leia mais

Aluno: Assinatura: DRE: Professor: Turma: Seção Nota original Iniciais Nota de revisão

Aluno: Assinatura: DRE: Professor: Turma: Seção Nota original Iniciais Nota de revisão Universidade Federal do Rio de Janeiro Instituto de Física Física III 2010/2 Segunda Prova (P2) 25/11/2010 Versão: A Aluno: Assinatura: DRE: Professor: Turma: Seção Nota original Iniciais Nota de revisão

Leia mais