ADIÇÃO, SUBTRAÇÃO E SIGNIFICADOS

Tamanho: px
Começar a partir da página:

Download "ADIÇÃO, SUBTRAÇÃO E SIGNIFICADOS"

Transcrição

1 ADIÇÃO, SUBTRAÇÃO E SIGNIFICADOS CÉLIA MARIA CAROLINO PIRES Introdução: Fazendo uma breve retrospectiva O ensino das chamadas quatro operações sempre teve grande destaque no trabalho desenvolvido nas séries iniciais. No entanto, nem sempre ele foi conduzido da mesma maneira. Assim por exemplo, nas décadas de 50 e 60, as técnicas operatórias eram aprendidas mediante treino. Os alunos deviam decorar a tabuada e aprendiam a fazer a prova real e a prova dos nove, como formas de verificação de resultados. A aprendizagem das operações era realizada por passos, procurando graduar possíveis dificuldades. O uso das operações para a resolução de problemas vinha somente ao, como uma aplicação das técnicas aprendidas. Em meados da década de 60, período influenciado pelo movimento internacional conhecido como Matemática Moderna, as operações passaram a ser ensinadas com base nos conjuntos. Desse modo, a adição era apresentada por meio da união de dois conjuntos disjuntos e o diagrama de Venn era usado com a intenção de facilitar visualização dessas operações. Nesse período, o cálculo mental passou a ser menos enfatizado e havia uma recomendação contra a memorização da tabuada. A partir de 1980, com as críticas ao movimento Matemática Moderna, as operações passaram a ser trabalhadas a partir de situações problema em que as ideias ou significados nelas presentes eram exploradas: juntar, acrescentar, tirar, comparar, completar, medir etc. Para a compreensão das técnicas operatórias (o vai um, os empréstimos etc.) estimulava-se o uso de materiais como o Material Dourado, as barras Cuisenaire e jogos. Também lançava-se mão de tabelas, esquemas e da representação na reta numérica. Nos anos 90, o estudo das operações articulando os cálculos à resolução de problemas ganha força e as diferentes estratégias de resolução de um problema e de uma operação, inclusive aquelas criadas pelas crianças, passaram a ser valorizadas. As pesquisas sobre o ensino das operações também se ampliaram. Algumas delas mostram, por exemplo, que a dificuldade de um problema não está diretamente relacionada à operação requisitada para a solução. Nem sempre problemas que se resolvem por adição são mais fáceis para as crianças do que outros, resolvidos por subtração. A teoria desenvolvida por Gérard Vergnaud, conhecida como Teoria dos Campos Conceituais, traz como implicação o fato de que problemas aditivos e subtrativos não podem ser classificados separadamente, pois fazem parte de uma mesma família. Evidencia também que a construção dos diferentes significados relacionados às situações-problema demanda tempo e ocorre pela descoberta de diferentes procedimentos de solução. Desse modo, o estudo da adição e da subtração deve ser proposto ao longo dos dois ciclos, juntamente com o estudo dos números e com o desenvolvimento dos procedimentos de cálculo, em função das dificuldades lógicas, específicas a cada tipo de problema, e dos procedimentos de solução de que os alunos dispõem. Na sequencia analisaremos situações que envolvem adição e subtração e, para efeito de análise, distinguiremos quatro grupos.

2 (I). Situações associadas à idéia de combinar dois s para obter um terceiro. Esta é uma das situações mais frequentemente trabalhadas na escola e é comumente identificada pelos professores com a ação de juntar. Vejamos um exemplo: (A) Em classe há 15 meninos e 13 meninas. Quantas crianças há nessa classe? A partir dessa situação é possível formular outras duas, mudando-se a pergunta. As novas situações são comumente identificadas como ações de separar ou tirar. Exemplos: (B) Em uma classe de 28 alunos, há alguns meninos e 13 meninas. Quantos são os meninos? (C) Em uma classe de 28 alunos, 15 são meninos. Quantas são as meninas? No entanto, é importante destacar que muitas crianças resolvem esses problemas, adicionando 15 ao 13 (B) ou 13 ao 15 (C), em função da forte imbricação entre adição e subtração. (II). Situações ligadas à idéia de transformação, ou seja, à alteração de um, que pode ser positiva ou negativa. Nestas situações é como se a criança tivesse que observar cenas sucessivas de um acontecimento e identificar a alteração ocorrida. Vejamos um exemplo: (D) Paulo tinha 20 figurinhas. Ele ganhou 15 figurinhas num jogo. Quantas figurinhas ele tem agora? Transformação (E) Pedro tinha 37 bolinhas. Ele perdeu 12 num jogo. Quantas figurinhas ele tem agora? (transformação negativa). Transformação

3 No caso da situação (D), trata-se de uma transformação positiva e no caso (E) trata-se de uma transformação negativa. Cada uma dessas situações pode gerar outras, mudando-se a pergunta feita. Vejamos: (F) Paulo tinha algumas figurinhas, ganhou 15 no jogo e ficou com 35. Quantas figurinhas ele possuía? Transformação (G) Paulo tinha 20 figurinhas, ganhou algumas e ficou com 35. Quantas figurinhas ele ganhou? Transformação (H) No início de um jogo, Pedro tinha algumas figurinhas. No decorrer do jogo ele perdeu 12 e terminou o jogo com 25 figurinhas. Quantas figurinhas ele possuía no início do jogo? Transformação (I) No início de um jogo Pedro tinha 37 figurinhas. Ele terminou o jogo com 25 figurinhas. O que aconteceu no decorrer do jogo? Transformação É interessante observar que embora duas situações possam ser muito similares, o tipo de pergunta formulada, as tornam muito diferentes para as crianças. Assim, é muito importante diversificar as propostas de trabalho em sala de aula e em especial, não condicionar os alunos a resolver problemas baseados em palavras chave. O fato de no enunciado aparecer a palavra perder em geral leva o aluno a pensar em subtração, o que nem sempre é um raciocínio correto. É o caso, por exemplo, da situação (H). (III). Situações associadas à ideia de comparação. Neste grupo há uma situação já configurada e a questão proposta implica numa comparação. Vejamos alguns exemplos.

4 (J) No de um jogo, Paulo e Carlos conferiram suas figurinhas. Paulo tinha 20 e Carlos tinha 10 a mais que Paulo. Quantas eram as figurinhas de Carlos? (L) Paulo e Carlos conferiram suas figurinhas. Paulo tinha 20 e Carlos tinha 7. Quantas figurinhas Carlos deve ganhar para ter o mesmo número que Paulo? (M)) Paulo tem 20 figurinhas. Carlos tem 13 figurinhas a menos que Paulo. Quantas figurinhas tem Carlos? (IV). Situações em que há mais de uma transformação (positiva ou negativa) Neste tipo de situação há uma sequencia de transformações e para dar a resposta não há necessidade de se saber o que acontece no início nas apenas no decorrer. Esse fato provoca discussões interessantes com os alunos. Vejamos alguns exemplos: (N) No início de uma partida, Ricardo tinha um certo número de pontos. No decorrer do jogo ele ganhou 10 pontos e, em seguida, ganhou 25 pontos. O que aconteceu com seus pontos no do jogo? X + 10 e + 25 (O) No início de uma partida, Ricardo tinha um certo número de pontos. No decorrer do jogo ele perdeu 10 pontos e, em seguida, perdeu 25. O que aconteceu com seus pontos no do jogo? X - 10 e - 25 (P) No início de uma partida, Ricardo tinha um certo número de pontos. No decorrer do jogo ele ganhou 10 pontos e, em seguida, perdeu 25. O que aconteceu com seus pontos no do jogo? X + 10 e - 25

5 (Q) Ricardo iniciou uma partida com 15 pontos de desvantagem. Ele terminou o jogo com 30 pontos de vantagem. O que aconteceu durante o jogo? Como podemos observar, embora todas estas situações façam parte do campo aditivo, elas colocam em evidência níveis diferentes de complexidade. No início da aprendizagem escolar os alunos ainda não dispõem de conhecimentos e competências para resolver todas elas, necessitando de uma ampla experiência com situaçõesproblema que os leve a desenvolver raciocínios mais complexos por meio de tentativas, explorações e reflexões. Evidentemente, a categorização das situações problema é uma ferramenta importante para o trabalho do professor no sentido de diversificá-las e permitir ao aluno a construção de raciocínios adequados a cada situação, mas não deve ser apresentada a eles. Da mesma forma, os quadros que apresentamos no corpo deste texto para explicitar cada situação analisada não devem ser impostos aos alunos, que devem ser incentivados a criar formas de registro que sejam significativas para eles, como podemos ver em algumas produções.

RESOLUÇÃO DE PROBLEMAS DE ESTRUTURA ADITIVA: A COMPREENSÃO DE UMA PROFESSORA DE PRIMEIRA SÉRIE

RESOLUÇÃO DE PROBLEMAS DE ESTRUTURA ADITIVA: A COMPREENSÃO DE UMA PROFESSORA DE PRIMEIRA SÉRIE RESOLUÇÃO DE PROBLEMAS DE ESTRUTURA ADITIVA: A COMPREENSÃO DE UMA PROFESSORA DE PRIMEIRA SÉRIE Resumo GONÇALVES, Alex Oleandro UFPR clauealex@yahoo.com.br Eixo Temático: Educação Matemática Agência Financiadora:

Leia mais

Disciplina: Matemática Período: 1º. Equipe - 3 ano - turmas: 31, 32 e 33.

Disciplina: Matemática Período: 1º. Equipe - 3 ano - turmas: 31, 32 e 33. Número natural; Números e medidas; Contando de 10 em 10; Cem unidades ou uma centena; Centenas, dezenas e unidades; Antecessor e sucessor de um número natural; Comparando números naturais; Identificar

Leia mais

PLANO DE ENSINO DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO 1º BIMESTRE DIRETORIA DE ENSINO REGIÃO CAIEIRAS

PLANO DE ENSINO DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO 1º BIMESTRE DIRETORIA DE ENSINO REGIÃO CAIEIRAS PLANO DE ENSINO DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO 1º BIMESTRE 1-Conjuntos numéricos, regularidades numéricas e/ou geométricas ( conjuntos numéricos; seqüências numéricas e/ou geométricas; termo geral

Leia mais

1º período. Conhecer os algarismos que compõem o SND (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). Diferenciar algarismos e números. e vice-versa.

1º período. Conhecer os algarismos que compõem o SND (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). Diferenciar algarismos e números. e vice-versa. 1º período Os números naturais: Sistema de Numeração Decimal. (SND) Um pouco de história: sistema de numeração dos romanos. Os números naturais Sistema de Numeração Decimal (SND). Unidades e dezenas. Unidades,

Leia mais

METODOLOGIA E PRÁTICA DO ENSINO DA MATEMÁTICA

METODOLOGIA E PRÁTICA DO ENSINO DA MATEMÁTICA Unidade II METODOLOGIA E PRÁTICA DO ENSINO DA MATEMÁTICA E CIÊNCIAS Prof. Me. Guilherme Santinho Jacobik Recursos para o planejamento das aulas Resolução de problemas. Portadores numéricos. Lúdico: Jogos,

Leia mais

Objetivo. tica 3º ano EM. Oficina de Matemática

Objetivo. tica 3º ano EM. Oficina de Matemática Oficina de Matemática tica 3º ano EM Objetivo Análise, interpretação e utilização dos resultados do SAEPE para promoção da equidade e melhoria da qualidade da educação dos estudantes pernambucanos. Prof

Leia mais

Oficina: Jogar para gostar e aprender matemática. Profa. Dra. Adriana M. Corder Molinari dri.molinari@uol.com.br

Oficina: Jogar para gostar e aprender matemática. Profa. Dra. Adriana M. Corder Molinari dri.molinari@uol.com.br Oficina: Jogar para gostar e aprender matemática Profa. Dra. Adriana M. Corder Molinari dri.molinari@uol.com.br 1 Implicações do Jogo Quatro Cores: Para jogar bem, é preciso economia de cores e consideração

Leia mais

Planejamento Anual OBJETIVO GERAL

Planejamento Anual OBJETIVO GERAL Planejamento Anual Componente Curricular: Matemática Ano: 6º ano Ano Letivo: 2016 Professor(s): Eni e Patrícia OBJETIVO GERAL Desenvolver e aprimorar estruturas cognitivas de interpretação, análise, síntese,

Leia mais

Boas situações de Aprendizagens. Atividades. Livro Didático. Currículo oficial de São Paulo

Boas situações de Aprendizagens. Atividades. Livro Didático. Currículo oficial de São Paulo Atividades Boas situações de Aprendizagens Livro Didático Currículo oficial de São Paulo LÓGICA NUMA CONCEPÇÃO QUE SE APOIA EXCLUSIVAMENTE EM CONTEÚDOS E ATIVIDADES Enfoque fragmentado, centrado na transmissão

Leia mais

PROJETO PILOTO O uso do Material Dourado como ferramenta para compreender o Sistema de Numeração Decimal-posicional.

PROJETO PILOTO O uso do Material Dourado como ferramenta para compreender o Sistema de Numeração Decimal-posicional. ESCOLA MUNICIPAL JOAQUIM DO RÊGO CAVALCANTI PROJETO PILOTO O uso do Material Dourado como ferramenta para compreender o Sistema de Numeração Decimal-posicional. Ipojuca/2012 O uso do Material Dourado como

Leia mais

Descritores de Matemática Fundamental I

Descritores de Matemática Fundamental I Descritores de Matemática Fundamental I Tema I. Espaço e Forma Descritores de Matemática Fundamental I Tema I. Espaço e Forma D2 - Identificar propriedades comuns e diferenças entre poliedros e corpos

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA (PIBID) ESCOLA MUNICIPAL HERMANN GMEINNER

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA (PIBID) ESCOLA MUNICIPAL HERMANN GMEINNER UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA (PIBID) ESCOLA MUNICIPAL HERMANN GMEINNER Bolsistas: Jacqueline Cristina de Medeiros Supervisora: Patrícia

Leia mais

Matemática Aplicada às Ciências Sociais

Matemática Aplicada às Ciências Sociais ESCOLA SECUNDÁRIA DE AMORA PLANIFICAÇÃO ANUAL Matemática Aplicada às Ciências Sociais Ensino Regular Curso Geral de Ciências Sociais e Humanas 11º ANO Ano Letivo 2014 / 2015 PLANIFICAÇÃO A LONGO PRAZO

Leia mais

Alfabetização matemática e direitos de aprendizagem no 1º ciclo. Luciana Tenuta lutenuta@gmail.com

Alfabetização matemática e direitos de aprendizagem no 1º ciclo. Luciana Tenuta lutenuta@gmail.com Alfabetização matemática e direitos de aprendizagem no 1º ciclo Luciana Tenuta lutenuta@gmail.com Direitos de Aprendizagem O artigo 32 da LDB estabelece que é necessário garantir o desenvolvimento da capacidade

Leia mais

Sistema de Numeração Decimal

Sistema de Numeração Decimal Sistema de Numeração Decimal Leitura deleite: O valor de cada um Os números no dia-a-dia Para refletir... Como trabalhamos o Sistema de Numeração Decimal na escola? Já perceberam que os Livros didáticos

Leia mais

DIVISÃO: IDEIAS E ALGORITMOS 25/09/2014 FORMAÇÃO DE PROFESSORES 4º ANO MATEMÁTICA

DIVISÃO: IDEIAS E ALGORITMOS 25/09/2014 FORMAÇÃO DE PROFESSORES 4º ANO MATEMÁTICA FORMAÇÃO DE PROFESSORES 4º ANO MATEMÁTICA DIVISÃO: IDEIAS E ALGORITMOS 25/09/2014 Adriana da Silva Santi Coord. Pedagógica de Matemática SMED/Piraquara É comum associar o aprender Matemática a fazer contas

Leia mais

SARESP 2013 RESULTADOS GERAIS DAS REDES MUNICIPAIS

SARESP 2013 RESULTADOS GERAIS DAS REDES MUNICIPAIS SARESP 2013 RESULTADOS GERAIS DAS REDES MUNICIPAIS SARESP 2013 Participação dos Alunos das Redes Municipais Ano/Série Nº de Alunos % de Participação 2º EF 179.705 90,1 3º EF 181.160 90,2 Nº Escolas Nº

Leia mais

Geometria Analítica. Geometria Analítica. Geometria Analítica 15/08/2012. Objetivos gerais da disciplina. Prof. Luiz Antonio do Nascimento

Geometria Analítica. Geometria Analítica. Geometria Analítica 15/08/2012. Objetivos gerais da disciplina. Prof. Luiz Antonio do Nascimento Prof. Luiz Antonio do Nascimento Objetivos gerais da disciplina Desenvolver a capacidade lógica para resolução de problemas, e de tomada de decisões. Fornecer as noções básicas de Geometria Analítica.

Leia mais

Lista de Exercícios - Adição

Lista de Exercícios - Adição Nota: Os exercícios desta aula são referentes ao seguinte vídeo Matemática Zero 2.0 - Aula 4 - Adição - (parte 1 de 2) Endereço: https://www.youtube.com/watch?v=ss7v8dgjz34 Gabaritos nas últimas páginas!

Leia mais

Formação Continuada - Matemática AS OPERAÇÕES E SUAS DIFERENTES IDEIAS

Formação Continuada - Matemática AS OPERAÇÕES E SUAS DIFERENTES IDEIAS Formação Continuada - Matemática AS OPERAÇÕES E SUAS DIFERENTES IDEIAS Professores - 2º ano 5º encontro 19/10/2015 Coordenadora Pedagógica: Adriana da Silva Santi Leitura do texto: Jogos e resoluções de

Leia mais

OPERAÇÕES FUNDAMENTAIS: IDEIAS, SIGNIFICADOS E ALGORÍTMOS

OPERAÇÕES FUNDAMENTAIS: IDEIAS, SIGNIFICADOS E ALGORÍTMOS OPERAÇÕES FUNDAMENTAIS: IDEIAS, SIGNIFICADOS E ALGORÍTMOS Ana Paula Cabral Couto Pereira Universidade Federal Fluminense anaperei@hotmail.com Vinicius Mendes Couto Pereira Universidade Federal Fluminense

Leia mais

Programa de Matemática 2º ano

Programa de Matemática 2º ano Programa de Matemática 2º ano Introdução: A Matemática é uma das ciências mais antigas e é igualmente das mais antigas disciplinas escolares, tendo sempre ocupado, ao longo dos tempos, um lugar de relevo

Leia mais

PERTURBAÇÕES ESPECÍFICAS DE APRENDIZAGEM

PERTURBAÇÕES ESPECÍFICAS DE APRENDIZAGEM Perturbações do Neurodesenvolvimento e do Comportamento PERTURBAÇÕES ESPECÍFICAS DE APRENDIZAGEM APRESENTAÇÃO DE: Carine Fernandes, Cláudia Camponez,Daniel Dias, Fátima Trindade, Mafalda Magalhães, Sara

Leia mais

MATEMÁTICA FINANCEIRA NO ENSINO MÉDIO: APRIMORANDO O DESENPENHO DE ALUNOS E PROFESSORES

MATEMÁTICA FINANCEIRA NO ENSINO MÉDIO: APRIMORANDO O DESENPENHO DE ALUNOS E PROFESSORES MATEMÁTICA FINANCEIRA NO ENSINO MÉDIO: APRIMORANDO O DESENPENHO DE ALUNOS E PROFESSORES Lílian Nasser (CETIQT/SENAI) - lnasser@im.ufrj.br Rosa Cordelia Novellino de Novaes (CEAN) - rsnovellino@yahoo.com.br

Leia mais

Raciocínio Lógico Matemático

Raciocínio Lógico Matemático Raciocínio Lógico Matemático Cap. 5 - Equivalência Lógica Equivalência Lógica Caro aluno, no último capítulo estudamos as implicações lógicas e foi enfatizado que o ponto fundamental da implicação lógica

Leia mais

Unidade 5. A letra como incógnita equações do segundo grau

Unidade 5. A letra como incógnita equações do segundo grau Unidade 5 A letra como incógnita equações do segundo grau Para início de conversa... Vamos avançar um pouco mais nas resoluções de equações. Desta vez, vamos nos focar nas equações do segundo grau. Esses

Leia mais

UM ESTUDO SOBRE O CAMPO CONCEITUAL ADITIVO NOS ANOS INICIAIS DO ENSINO FUNDAMENTAL Teresa Cristina Etcheverria UFRB Agência Financiadora: FAPESB

UM ESTUDO SOBRE O CAMPO CONCEITUAL ADITIVO NOS ANOS INICIAIS DO ENSINO FUNDAMENTAL Teresa Cristina Etcheverria UFRB Agência Financiadora: FAPESB UM ESTUDO SOBRE O CAMPO CONCEITUAL ADITIVO NOS ANOS INICIAIS DO ENSINO FUNDAMENTAL Teresa Cristina Etcheverria UFRB Agência Financiadora: FAPESB INTRODUÇÃO O tema adição e subtração nos anos iniciais,

Leia mais

MATERIAL DE APOIO À PRÁTICA PEDAGÓGICA AS 4 OPERAÇÕES NA RESOLUÇÃO DE PROBLEMAS

MATERIAL DE APOIO À PRÁTICA PEDAGÓGICA AS 4 OPERAÇÕES NA RESOLUÇÃO DE PROBLEMAS Departamento de Orientações Educacionais e Pedagógicas - DOEP MATERIAL DE APOIO À PRÁTICA PEDAGÓGICA AS 4 OPERAÇÕES NA RESOLUÇÃO DE PROBLEMAS Caro (a) educador (a), Bem-vindo (a) à terceira Edição da Olimpíada

Leia mais

Resolução de problemas, diversificar para estimular diferentes habilidades de raciocínio

Resolução de problemas, diversificar para estimular diferentes habilidades de raciocínio Resolução de problemas, diversificar para estimular diferentes habilidades de raciocínio Ler e buscar informações... Segundo Smole & Diniz, em qualquer área do conhecimento, a leitura deve possibilitar

Leia mais

Anterior Sumário Próximo MATRIZES, DETERMINANTES E SISTEMAS

Anterior Sumário Próximo MATRIZES, DETERMINANTES E SISTEMAS Anterior Sumário Próximo MATRIZES, DETERMINANTES E SISTEMAS Clicando em, o usuário é conduzido para uma tela onde os conteúdos estão separados por blocos, que são acessados a medida que clicamos em cada

Leia mais

Professores - 2º ano. 3º encontro 27/07/2015 Coordenadora Pedagógica: Adriana da Silva Santi

Professores - 2º ano. 3º encontro 27/07/2015 Coordenadora Pedagógica: Adriana da Silva Santi Formação Continuada - Matemática DIFERENTES FORMAS DE RESOLVER PROBLEMAS Professores - 2º ano 3º encontro 27/07/2015 Coordenadora Pedagógica: Adriana da Silva Santi Como você tem trabalhado com as operações

Leia mais

PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO

PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO Provas 2º Bimestre 2012 MATEMÁTICA DESCRITORES DESCRITORES DO 2º BIMESTRE DE 2012

Leia mais

Seleção de módulos do Sistema de Ensino Ser 2014

Seleção de módulos do Sistema de Ensino Ser 2014 ABEU COLÉGIOS Disciplina: Matemática Série: 1 ano / Fundamental I (Bimestres) 1 Caderno 1 Seleção de módulos do Sistema de Ensino Ser 2014 Módulos Primeiras Noções - Comparação de tamanhos - Noções de

Leia mais

Professores Regentes: Angela Aparecida Bernegozze Marlei Aparecida Lazarin Asoni Marlene Antonia de Araujo

Professores Regentes: Angela Aparecida Bernegozze Marlei Aparecida Lazarin Asoni Marlene Antonia de Araujo 4 1. IDENTIFICAÇÃO Título do Projeto: Trabalhando a tabuada através de jogos on-line Público Alvo: Alunos do 3º e 5º do Ensino Fundamental Turno: Matutino Disciplinas Envolvidas: Matemática Professores

Leia mais

Potenciação e radiciação

Potenciação e radiciação Sequência didática para a sala de aula 6 MATEMÁTICA Unidade 1 Capítulo 6: (páginas 55 a 58 do livro) 1 Objetivos Associar a potenciação às situações que representam multiplicações de fatores iguais. Perceber

Leia mais

Unidade 10 Análise combinatória. Introdução Princípio Fundamental da contagem Fatorial

Unidade 10 Análise combinatória. Introdução Princípio Fundamental da contagem Fatorial Unidade 10 Análise combinatória Introdução Princípio Fundamental da contagem Fatorial Introdução A escolha do presente que você deseja ganhar em seu aniversário, a decisão de uma grande empresa quando

Leia mais

Planificação Anual de Matemática 5º Ano

Planificação Anual de Matemática 5º Ano Planificação Anual de Matemática 5º Ano DOMÍNI OS CONTEÚDOS METAS AULA S Números naturais Compreender as propriedades e regras das operações e usá-las no cálculo. Propriedades das operações e regras operatórias:

Leia mais

Brincando com operações de adição e subtração; unidade, dezena e centena; horas; números pares e ímpares e sequência numérica

Brincando com operações de adição e subtração; unidade, dezena e centena; horas; números pares e ímpares e sequência numérica PPGECE Brincando com operações de adição e subtração; unidade, dezena e centena; horas; números pares e ímpares e sequência numérica Contextualização Maria Madalena Dullius Adriana Belmonte Bergmann Fernanda

Leia mais

INTERPRETAÇÃO DOS ENUNCIADOS DE PROBLEMAS DE ESTRUTURAS ADITIVAS: Dificuldades enfrentadas por crianças do 2º ano do Ensino Fundamental

INTERPRETAÇÃO DOS ENUNCIADOS DE PROBLEMAS DE ESTRUTURAS ADITIVAS: Dificuldades enfrentadas por crianças do 2º ano do Ensino Fundamental INTERPRETAÇÃO DOS ENUNCIADOS DE PROBLEMAS DE ESTRUTURAS ADITIVAS: Dificuldades enfrentadas por crianças do 2º ano do Ensino Fundamental Priscila Amâncio de Aquino 1 Isis Thayzi Silva de Souza 2 Cristiane

Leia mais

ENSINO DE ADIÇÃO DE FRAÇÕES HETEROGÊNEAS: ALGUMAS REFLEXÕES A PARTIR DE AÇÕES DE MONITORIA 1

ENSINO DE ADIÇÃO DE FRAÇÕES HETEROGÊNEAS: ALGUMAS REFLEXÕES A PARTIR DE AÇÕES DE MONITORIA 1 ENSINO DE ADIÇÃO DE FRAÇÕES HETEROGÊNEAS: ALGUMAS REFLEXÕES A PARTIR DE AÇÕES DE MONITORIA 1 Joici Lunardi 2, Rafael Da Anunciação Gonçalves 3, Isabel Koltermann Battisti 4. 1 Texto produzido a partir

Leia mais

BLOCO: ESPAÇO E FORMA

BLOCO: ESPAÇO E FORMA 2ª Matemática 4º Ano E.F. Competência Objeto de aprendizagem Habilidade BLOCO: ESPAÇO E FORMA C1. Compreender os conceitos relacionados às características, classificações e propriedades das figuras geométricas,

Leia mais

b) Uma mercadoria que custa R$ 37,00 foi paga com uma nota de R$ 50,00. De quanto foi o troco?

b) Uma mercadoria que custa R$ 37,00 foi paga com uma nota de R$ 50,00. De quanto foi o troco? MATEMÁTICA BÁSICA - 01 Recordando operações: Adição, Subtração, Multiplicação, Divisão Vamos lembrar como essas operações são feitas e principalmente, quando devemos utilizá-las na solução de um problema

Leia mais

Atitudes: Manifestação de uma atitude positiva ante a resolução de problemas que implicam a utilização de números inteiros.

Atitudes: Manifestação de uma atitude positiva ante a resolução de problemas que implicam a utilização de números inteiros. Unidade 2. Os números inteiros. Enquadramento curricular em Espanha: Objetos de aprendizagem: Introdução aos números inteiros. Expressar situações da vida quotidiana nas que se utilizem os números inteiros.

Leia mais

DESCRIÇÃO DOS NÍVEIS DA ESCALA DE DESEMPENHO DE MATEMÁTICA SAEB

DESCRIÇÃO DOS NÍVEIS DA ESCALA DE DESEMPENHO DE MATEMÁTICA SAEB DESCRIÇÃO DOS NÍVEIS DA ESCALA DE DESEMPENHO DE MATEMÁTICA SAEB 5º e 9º. Ano do Ensino Fundamental (continua) e exemplos de competência Nível 0 - abaixo de 125 A Prova Brasil não utilizou itens que avaliam

Leia mais

ORIENTAÇÕES CURRICULARES 7º ANO MATEMÁTICA

ORIENTAÇÕES CURRICULARES 7º ANO MATEMÁTICA ORIENTAÇÕES CURRICULARES 7º ANO MATEMÁTICA Objetivos Conteúdos Habilidades Reconhecer números inteiros, e as diferentes formas de representá-los e relacioná-los, apropriando-se deles. Números inteiros:

Leia mais

Prática Pedagógica Matemática

Prática Pedagógica Matemática Prática Pedagógica Matemática Recomendada para o Ensino Fundamental Ciclo II (7 a e 8 a séries) Tempo previsto: 4 aulas Elaboração: Equipe Técnica da CENP Apresentamos, a seguir, sugestões de situações

Leia mais

RACIOCÍNIO LÓGICO Simplif icado

RACIOCÍNIO LÓGICO Simplif icado Sérgio Carvalho Weber Campos RACIOCÍNIO LÓGICO Simplif icado Volume 1 2ª edição Revista, atualizada e ampliada Inclui Gráficos, tabelas e outros elementos visuais para melhor aprendizado Exercícios resolvidos

Leia mais

AS QUATRO OPERAÇÕES FUNDAMENTAIS

AS QUATRO OPERAÇÕES FUNDAMENTAIS CONTEÚDOS E MÉTODOS PARA O ENSINO DA MATEMÁTICA 1 AS QUATRO OPERAÇÕES FUNDAMENTAIS Cada uma das quatro operações tem mais de uma ideia ou mais de um uso na resolução de problemas. Para quem já está acostumado

Leia mais

PLANEJAMENTO (LIVRO INFANTIL) NOME DO LIVRO: O MENINO QUE APRENDEU A VER

PLANEJAMENTO (LIVRO INFANTIL) NOME DO LIVRO: O MENINO QUE APRENDEU A VER PLANEJAMENTO (LIVRO INFANTIL) Professor (a): JANETE FASSINI ALVES NOME DO LIVRO: O MENINO QUE APRENDEU A VER AUTOR: RUTH ROCHA Competências Objetivo Geral Objetivos específicos Estratégias em Língua Portuguesa

Leia mais

Nome: Sexo: ( )F ( )M. 1. Você cursou ou cursa Inglês em uma escola de idiomas ou com professor particular? Sim ( ) Não ( )

Nome: Sexo: ( )F ( )M. 1. Você cursou ou cursa Inglês em uma escola de idiomas ou com professor particular? Sim ( ) Não ( ) 1º Questionário para coleta de dados Nome: Sexo: ( )F ( )M 1. Você cursou ou cursa Inglês em uma escola de idiomas ou com professor particular? Sim ( ) Não ( ) 2. Por quanto tempo? Menos de 1 ano ( ) Entre

Leia mais

Programação Linear - Parte 4

Programação Linear - Parte 4 Mestrado em Modelagem e Otimização - CAC/UFG Programação Linear - Parte 4 Profs. Thiago Alves de Queiroz Muris Lage Júnior 1/2014 Thiago Queiroz (DM) Parte 4 1/2014 1 / 18 Solução Inicial O método simplex

Leia mais

Versão 2 COTAÇÕES. 13... 5 pontos. 6... 4 pontos 7... 7 pontos. 5... 6 pontos. 8... 9 pontos. 9... 8 pontos

Versão 2 COTAÇÕES. 13... 5 pontos. 6... 4 pontos 7... 7 pontos. 5... 6 pontos. 8... 9 pontos. 9... 8 pontos Teste Intermédio de Matemática Versão 2 Teste Intermédio Matemática Versão 2 Duração do Teste: 90 minutos 07.02.2011 9.º Ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de Janeiro 1. 2. COTAÇÕES 1.1....

Leia mais

OPERAÇÕES NA RESOLUÇÃO DE PROBLEMAS Síntese do Caderno 04

OPERAÇÕES NA RESOLUÇÃO DE PROBLEMAS Síntese do Caderno 04 Ministério da Educação OPERAÇÕES NA RESOLUÇÃO DE PROBLEMAS Síntese do Caderno 04 Síntese Operações na resolução de problemas INICIANDO A CONVERSA O caderno 4 dá continuidade ao trabalho desenvolvido nos

Leia mais

FRAÇÃO Definição e Operações

FRAÇÃO Definição e Operações FRAÇÃO Definição e Operações DEFINIÇÃO: Fração é uma forma de se representar uma quantidade a partir de um valor, que é dividido por um determinado número de partes iguais. Como é que você representaria

Leia mais

PLANEJAMENTO 2016. Disciplina: Matemática Série: 6º Ano Ensino: Fundamental Prof.: Rafael

PLANEJAMENTO 2016. Disciplina: Matemática Série: 6º Ano Ensino: Fundamental Prof.: Rafael Disciplina: Matemática Série: 6º Ano Ensino: Fundamental Prof.: Rafael 1ª UNIDADE II ) Compreensão de fenômenos Contagem 1. Números pra quê? 2. Sistemas de numeração 3. O conjunto dos números naturais

Leia mais

Trabalhando Matemática: percepções contemporâneas

Trabalhando Matemática: percepções contemporâneas COMO ALUNOS DO 2º ANO DO ENSINO FUNDAMENTAL COMPREENDEM E PRODUZEM PROBLEMAS MULTIPLICATIVOS? Educação Matemática na Educação Infantil e nos Anos Iniciais do Ensino Fundamental GT 09 RESUMO No presente

Leia mais

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL FARROUPILHA CAMPUS ALEGRETE PIBID

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL FARROUPILHA CAMPUS ALEGRETE PIBID PROPOSTA DIDÁTICA 1. Dados de Identificação 1.1 Nome do bolsista: Bianca Bitencourt da Silva 1.2 Público alvo: 8º e 9º anos 1.3 Duração: 2,5 horas 1.4 Conteúdo desenvolvido: Operações com números inteiros

Leia mais

Resolução de Problemas. Orientador(a): Giselle Costa Alunos: André Parducci Elidiel Dantas

Resolução de Problemas. Orientador(a): Giselle Costa Alunos: André Parducci Elidiel Dantas Resolução de Problemas Orientador(a): Giselle Costa Alunos: André Parducci Elidiel Dantas Introdução Das tendências metodológicas, para o ensino da matemática, entendemos que, por meio da resolução de

Leia mais

Planificação Anual Departamento 1.º Ciclo

Planificação Anual Departamento 1.º Ciclo Modelo Dep-01 Agrupamento de Escolas do Castêlo da Maia Planificação Anual Departamento 1.º Ciclo Ano 3º Ano letivo 2013.2014 Disciplina: Matemática Turmas: 3º ano Professores: todos os docentes do 3º

Leia mais

Números inteiros Z ± 7º Ano / 2013

Números inteiros Z ± 7º Ano / 2013 Números inteiros Z ± 7º Ano / 2013 Sobre a origem dos sinais A idéia sobre os sinais vem dos comerciantes da época. Os matemáticos encontraram a melhor notação para expressar esse novo tipo de número.

Leia mais

ANÁLISE DAS PRINCIPAIS DIFICULDADES DOS ALUNOS DO ENSINO MÉDIO EM MATEMÁTICA: REGISTROS IDENTIFICADOS PELOS BOLSISTAS PIBID NA ESCOLA-CAMPO 1

ANÁLISE DAS PRINCIPAIS DIFICULDADES DOS ALUNOS DO ENSINO MÉDIO EM MATEMÁTICA: REGISTROS IDENTIFICADOS PELOS BOLSISTAS PIBID NA ESCOLA-CAMPO 1 ANÁLISE DAS PRINCIPAIS DIFICULDADES DOS ALUNOS DO ENSINO MÉDIO EM MATEMÁTICA: REGISTROS IDENTIFICADOS PELOS BOLSISTAS PIBID NA ESCOLA-CAMPO 1 Alexandre Da Silva 2, Taís Maiara Conrad 3, Camila Nicola Boeri

Leia mais

AGRUPAMENTO de ESCOLAS de PEDRÓGÃO GRANDE CONSELHO de DOCENTES Planificação Trimestral - 1.º Ano /2016 Matemática 1.º Período 65 dias letivos

AGRUPAMENTO de ESCOLAS de PEDRÓGÃO GRANDE CONSELHO de DOCENTES Planificação Trimestral - 1.º Ano /2016 Matemática 1.º Período 65 dias letivos Números naturais Correspondências um a um e comparação do número de elementos de dois conjuntos; Contagens de até vinte objetos; O conjunto vazio e o número zero; Números naturais até 9; contagens progressivas

Leia mais

PROJETO DE RECUPERAÇÃO EM MATEMÁTICA Manual do Professor Módulo 3 Números Inteiros e Racionais Negativos

PROJETO DE RECUPERAÇÃO EM MATEMÁTICA Manual do Professor Módulo 3 Números Inteiros e Racionais Negativos PROJETO DE RECUPERAÇÃO EM MATEMÁTICA Manual do Professor Módulo 3 Números Inteiros e Racionais Negativos Prezado(a) Professor(a) Este manual de orientações tem a finalidade de sugerir um planejamento das

Leia mais

OPERAÇÕES FUNDAMENTAIS

OPERAÇÕES FUNDAMENTAIS OPERAÇÕES FUNDAMENTAIS CÁLCULO DA ADIÇÃO E SUBTRAÇÃO: Operação aritmética, que consiste em adicionar ou retirar um número. a) 2254 + 1258 = 3512 1 1 2 2 5 4 3 5 1 2 Para o cálculo da adição, ordenamos

Leia mais

O PROBLEMA DE ESTUDO NA METODOLOGIA DA PROBLEMATIZAÇÃO

O PROBLEMA DE ESTUDO NA METODOLOGIA DA PROBLEMATIZAÇÃO O PROBLEMA DE ESTUDO NA METODOLOGIA DA PROBLEMATIZAÇÃO Neusi Aparecida Navas Berbel Este breve texto tem a finalidade de contribuir com aqueles que se interessam em aplicar a Metodologia da Problematização

Leia mais

Raciocínio Lógico Matemático Cap. 8 Sequências Lógicas e Suas Leis de Formação

Raciocínio Lógico Matemático Cap. 8 Sequências Lógicas e Suas Leis de Formação Raciocínio Lógico Matemático Cap. 8 Sequências Lógicas e Suas Leis de Formação Sequências Lógicas e Suas Leis de Formação Estudaremos, neste capítulo, várias sequências lógicas e buscaremos explorar quais

Leia mais

ADIÇÃO E SUBTRAÇÃO: o suporte didático influencia a aprendizagem do estudante?

ADIÇÃO E SUBTRAÇÃO: o suporte didático influencia a aprendizagem do estudante? ADIÇÃO E SUBTRAÇÃO: o suporte didático influencia a aprendizagem do estudante? Universidade Estadual de Santa Cruz GOVERNO DO ESTADO DA BAHIA Jaques Wagner - Governador SECRETARIA DE EDUCAÇÃO Osvaldo Barreto

Leia mais

Ler, interpretar e resolver problemas

Ler, interpretar e resolver problemas Ler, interpretar e resolver problemas Dentre as várias atividades propostas nas aulas de Matemática, uma, em especial, é anunciada por professores como indicação de bons resultados ou como preocupação

Leia mais

O SOROBAN COMO INSTRUMENTO PARA O DESENVOLVIMENTO DAS OPERAÇÕES MATEMÁTICAS

O SOROBAN COMO INSTRUMENTO PARA O DESENVOLVIMENTO DAS OPERAÇÕES MATEMÁTICAS O SOROBAN COMO INSTRUMENTO PARA O DESENVOLVIMENTO DAS OPERAÇÕES MATEMÁTICAS Resumo Alexandre Gonçalves de Lima¹ Amauri Soares da Silva Filho² Este trabalho aborda características do Soroban, e suas funções,

Leia mais

Semana 7 Resolução de Sistemas Lineares

Semana 7 Resolução de Sistemas Lineares 1 CÁLCULO NUMÉRICO Semana 7 Resolução de Sistemas Lineares Professor Luciano Nóbrega UNIDADE 1 2 INTRODUÇÃO Considere o problema de determinar as componentes horizontais e verticais das forças que atuam

Leia mais

Público Alvo: Empresas de micro e pequeno porte do setor de Tecnologia da Informação.

Público Alvo: Empresas de micro e pequeno porte do setor de Tecnologia da Informação. GESTÃO COMERCIAL Entidade Proponente: IEL/NR Minas Gerais e SEBRAE Minas Público Alvo: Empresas de micro e pequeno porte do setor de Tecnologia da Informação. OBJETIVOS Geral: Apresentar abordagens integradas

Leia mais

COORDENAÇÃO DE ATIVIDADES COMPLEMENTARES OFICINAS 2015 MATRÍCULAS: DE 25 DE FEVEREIRO A 06 DE MARÇO

COORDENAÇÃO DE ATIVIDADES COMPLEMENTARES OFICINAS 2015 MATRÍCULAS: DE 25 DE FEVEREIRO A 06 DE MARÇO COORDENAÇÃO DE ATIVIDADES COMPLEMENTARES OFICINAS 2015 MATRÍCULAS: DE 25 DE FEVEREIRO A 06 DE MARÇO LÍNGUA ESTRANGEIRA ALEMÃO Prof.ª Luciane Probst Unidade de Ensino I Prédio Pedro Fabro, Sala 303 Unidade

Leia mais

Aula 6 Contextualização

Aula 6 Contextualização Gestão Financeira Aula 6 Contextualização Prof. Esp. Roger Luciano Francisco Fluxo de Caixa Fluxo de caixa é o conjunto de movimentações, de entradas e saídas de dinheiro, de um período determinado nas

Leia mais

Capítulo VI Circuitos Aritméticos

Capítulo VI Circuitos Aritméticos Capítulo VI Circuitos Aritméticos Introdução No capítulo anterior estudamos a soma e subtração de números binários. Neste capítulo estudaremos como as operações aritméticas de soma e subtração entre números

Leia mais

Gerenciamento de Integração. Prof. Anderson Valadares

Gerenciamento de Integração. Prof. Anderson Valadares Gerenciamento de Integração Prof. Anderson Valadares 1. Conceito A área de conhecimento em gerenciamento de integração do projeto inclui processos e as atividades necessárias para identificar, definir,

Leia mais

PLANO DE ENSINO DA DISCIPLINA

PLANO DE ENSINO DA DISCIPLINA PLANO DE ENSINO DA DISCIPLINA Docente: FABIO LUIS BACCARIN Telefones: (43) 3422-0725 / 9116-4048 E-mail: fbaccarin@fecea.br Nome da Disciplina: Álgebra Elementar Curso: Licenciatura em Matemática Carga

Leia mais

A raiz quadrada. Qual é o número positivo que elevado ao 16 = 4

A raiz quadrada. Qual é o número positivo que elevado ao 16 = 4 A UA UL LA A raiz quadrada Introdução Qual é o número positivo que elevado ao quadrado dá 16? Basta pensar um pouco para descobrir que esse número é 4. 4 2 = 4 4 = 16 O número 4 é então chamado raiz quadrada

Leia mais

Estágios de desenvolvimento. Profa. Cibelle Celestino Silva IFSC USP

Estágios de desenvolvimento. Profa. Cibelle Celestino Silva IFSC USP Estágios de desenvolvimento Profa. Cibelle Celestino Silva IFSC USP Para Piaget, as mudanças cognitivas resultam de um processo de desenvolvimento. - processo coerente de sucessivas mudanças qualitativas

Leia mais

PLANIFICAÇÃO ANUAL 2015/2016 MATEMÁTICA- 3º ANO. Calendarização Domínio/ Subdomínio Objetivos gerais Descritores de desempenho Números e Operações

PLANIFICAÇÃO ANUAL 2015/2016 MATEMÁTICA- 3º ANO. Calendarização Domínio/ Subdomínio Objetivos gerais Descritores de desempenho Números e Operações PLANIFICAÇÃO ANUAL 2015/2016 MATEMÁTICA- 3º ANO Calendarização Domínio/ Subdomínio Objetivos gerais Descritores de desempenho Números e Operações Conhecer os números Números naturais ordinais 1.Utilizar

Leia mais

Teoria Geral da Administração II. Teoria Matemática

Teoria Geral da Administração II. Teoria Matemática Teoria Geral da Administração II Teoria Matemática : Teoria Matemática A TGA recebeu muitas contribuições da Matemática sob a forma de modelos matemáticos para proporcionar soluções de problemas empresariais.

Leia mais

OFICINA: APROXIMAÇÕES NO CÁLCULO DE ÁREAS AUTORES: ANA PAULA PEREIRA E JULIANA DE MELO PEREIRA

OFICINA: APROXIMAÇÕES NO CÁLCULO DE ÁREAS AUTORES: ANA PAULA PEREIRA E JULIANA DE MELO PEREIRA OFICINA: APROXIMAÇÕES NO CÁLCULO DE ÁREAS AUTORES: ANA PAULA PEREIRA E JULIANA DE MELO PEREIRA Resumo: O Programa de Pós Graduação em Ensino de Ciências Naturais e Matemática tem em seu currículo o componente

Leia mais

Aula 01 Introdução Custo de um algoritmo, Funções de complexidad e Recursão

Aula 01 Introdução Custo de um algoritmo, Funções de complexidad e Recursão MC3305 Algoritmos e Estruturas de Dados II Aula 01 Introdução Custo de um algoritmo, Funções de complexidad e Recursão Prof. Jesús P. Mena-Chalco jesus.mena@ufabc.edu.br 2Q-2015 1 Custo de um algoritmo

Leia mais

ICEI Índice de Confiança do Empresário Industrial Julho/07 Interiorização da Sondagem

ICEI Índice de Confiança do Empresário Industrial Julho/07 Interiorização da Sondagem Resultado do ICEI - Índice de Confiança do Empresário Industrial - nas Regionais FIESP Projeto de de Opinião CNI (DEPAR/DEPECON) Introdução A Sondagem Industrial é uma pesquisa qualitativa realizada trimestralmente

Leia mais

Métodos Formais. Agenda. Relações Binárias Relações e Banco de Dados Operações nas Relações Resumo Relações Funções. Relações e Funções

Métodos Formais. Agenda. Relações Binárias Relações e Banco de Dados Operações nas Relações Resumo Relações Funções. Relações e Funções Métodos Formais Relações e Funções por Mauro Silva Agenda Relações Binárias Relações e Banco de Dados Operações nas Relações Resumo Relações Funções MF - Relações e Funções 2 1 Relações Binárias Definição

Leia mais

CENTRO DE ENSINO FUNDAMENTAL DOS ANOS INICIAIS CEFAI ROTEIRO DE AVALIAÇÃO DIAGNÓSTICA DE CONHECIMENTOS MATEMÁTICOS

CENTRO DE ENSINO FUNDAMENTAL DOS ANOS INICIAIS CEFAI ROTEIRO DE AVALIAÇÃO DIAGNÓSTICA DE CONHECIMENTOS MATEMÁTICOS CENTRO DE ENSINO FUNDAMENTAL DOS ANOS INICIAIS CEFAI ROTEIRO DE AVALIAÇÃO DIAGNÓSTICA DE CONHECIMENTOS MATEMÁTICOS 2014 1 ROTEIRO DE AVALIAÇÃO DIAGNÓSTICA DE CONHECIMENTOS MATEMÁTICOS JANEIRO DE 2014 1.

Leia mais

CONTEÚDOS PARA A PROVA DE RECUPERAÇÃO SEMESTRAL AGOSTO / 2016 MATEMÁTICA

CONTEÚDOS PARA A PROVA DE RECUPERAÇÃO SEMESTRAL AGOSTO / 2016 MATEMÁTICA CONTEÚDOS PARA A PROVA DE RECUPERAÇÃO SEMESTRAL AGOSTO / 2016 ANO: 6º A e B Prof: Zezinho e Admir MATEMÁTICA PROGRAMA II DATA DA PROVA: 09 / 08 / 2016 HORÁRIO: 14h GRUPO 2 - ORIGEM E EVOLUÇÃO CAPÍTULO

Leia mais

INCLUSÃO NO ENSINO DE FÍSICA: ACÚSTICA PARA SURDOS

INCLUSÃO NO ENSINO DE FÍSICA: ACÚSTICA PARA SURDOS INCLUSÃO NO ENSINO DE FÍSICA: ACÚSTICA PARA SURDOS Jederson Willian Pereira de Castro Helena Libardi Escola Estadual Sinhá Andrade SEE/MG Universidade Federal de Lavras Eixo Temático: Pesquisa e inovação

Leia mais

A CONSTRUÇÃO DO SIGNIFICADO DE PROBLEMAS DE DIVISÃO

A CONSTRUÇÃO DO SIGNIFICADO DE PROBLEMAS DE DIVISÃO OLIVEIRA, Izabella; PESSOA, Cristiane & BORBA, Rute. A construção do significado de problemas de divisão. Anais do Encontro Pernambucano de Educação Matemática - EPEM. Recife, UFPE, 1999. A CONSTRUÇÃO

Leia mais

Usando potências de 10

Usando potências de 10 Usando potências de 10 A UUL AL A Nesta aula, vamos ver que todo número positivo pode ser escrito como uma potência de base 10. Por exemplo, vamos aprender que o número 15 pode ser escrito como 10 1,176.

Leia mais

Os jogos online como ferramentas na resolução de problemas com o uso de tecnologias digitais

Os jogos online como ferramentas na resolução de problemas com o uso de tecnologias digitais Os jogos online como ferramentas na resolução de problemas com o uso de tecnologias digitais Neiva Althaus 1, Maria Madalena Dullius 2, Nélia Maria Pontes Amado 3 1 Mestranda em Ensino de Ciências Exatas

Leia mais

======================================================================

====================================================================== Gráficos Os gráficos constituem uma forma clara e objetiva de apresentar dados estatísticos. A intenção é a de proporcionar aos leitores em geral a compreensão e a veracidade dos fatos. São recursos utilizados

Leia mais

O JOGO COMO METODOLOGIA DO ENSINO DE MATEMÁTICA (MULTIPLICAÇÃO - TABUADA)

O JOGO COMO METODOLOGIA DO ENSINO DE MATEMÁTICA (MULTIPLICAÇÃO - TABUADA) O JOGO COMO METODOLOGIA DO ENSINO DE MATEMÁTICA (MULTIPLICAÇÃO - TABUADA) 3º ANO Adriana da Silva Santi Coordenação Pedagógica de Matemática Piraquara Março/2015 1 JOGOS PARA O ENSINO DA MULTIPLICAÇÃO

Leia mais

Maquiavel ( 1469 1527 )

Maquiavel ( 1469 1527 ) Maquiavel ( 1469 1527 ) Maquiavel tentou ir ao cerne da questão e tratar a política não como uma parte da filosofia moral ou ética, mas simplesmente em termos práticos e realistas. Ao colocar a utilidade

Leia mais

Nome do autor E-mail para contato Escola Município / Estado Conteúdo Série Relato

Nome do autor E-mail para contato Escola Município / Estado Conteúdo Série Relato Nome do autor: Valmir Pereira dos Santos E-mail para contato: valmirefabio@hotmail.com Escola: Colégio Estadual Professor Jaime Rodrigues Município / Estado: Guaira / Paraná Conteúdo: Sólidos Geométricos

Leia mais

SOLUÇÃO DA PROVA DE MATEMÁTICA E RACIOCÍNIO LÓGICO DO INSS - 2008 TÉCNICO DO SEGURO SOCIAL PROVA BRANCA.

SOLUÇÃO DA PROVA DE MATEMÁTICA E RACIOCÍNIO LÓGICO DO INSS - 2008 TÉCNICO DO SEGURO SOCIAL PROVA BRANCA. SOLUÇÃO DA PROVA DE MATEMÁTICA E RACIOCÍNIO LÓGICO DO INSS - 2008 TÉCNICO DO SEGURO SOCIAL PROVA BRANCA. Professor Joselias www.concurseiros.org Março de 2008. Um dos indicadores de saúde comumente utilizados

Leia mais

Deve ainda ser tido em consideração o Despacho Normativo n.º 24-A/2012, de 6 de dezembro, bem como o Despacho n.º 15971/2012, de 14 de dezembro..

Deve ainda ser tido em consideração o Despacho Normativo n.º 24-A/2012, de 6 de dezembro, bem como o Despacho n.º 15971/2012, de 14 de dezembro.. PROVA DE EQUIVALÊNCIA À FREQUÊNCIA Decreto-Lei n.º 139/2012, de 5 de julho Prova Escrita de Físico-Química 9º Ano de Escolaridade Prova 11 / 1ª Fase Duração da Prova: 90 minutos. Informações da prova INTRODUÇÃO

Leia mais

Operações com Números Naturais TP3. Sistema Nacional de Formação de Profissionais da Educação Básica

Operações com Números Naturais TP3. Sistema Nacional de Formação de Profissionais da Educação Básica Operações com Números Naturais MATEMÁTICA MATEMÁTICA Operações com Números Naturais TP3 TP3 GESTAR I Sistema Nacional de Formação de Profissionais da Educação Básica I PROGRAMA GESTÃO DA APRENDIZAGEM

Leia mais

Proporção Simples: um estudo de caso sobre o raciocínio de estudantes brasileiros do Ensino Fundamental

Proporção Simples: um estudo de caso sobre o raciocínio de estudantes brasileiros do Ensino Fundamental Proporção Simples: um estudo de caso sobre o raciocínio de estudantes brasileiros do Ensino Marlí Schmitt Zanella Programa de Pós-Graduação em Educação para a Ciência e a Matemática, Universidade Estadual

Leia mais

Em linguagem matemática, essa proprieade pode ser escrita da seguinte maneira: x. 1 = x Onde x representa um número natural qualquer.

Em linguagem matemática, essa proprieade pode ser escrita da seguinte maneira: x. 1 = x Onde x representa um número natural qualquer. MATEMÁTICA BÁSICA 5 EXPRESSÕES ALGÉBRICAS - EQUAÇÕES A expressão numérica é aquela que apresenta uma sequência de operações e de números. Também já sabemos que as letras são usadas em Matemática para representar

Leia mais

=...= 1,0 = 1,00 = 1,000...

=...= 1,0 = 1,00 = 1,000... OPERAÇÕES COM NÚMEROS DECIMAIS EXATOS Os números decimais exatos correspondem a frações decimais. Por exemplo, o número 1,27 corresponde à fração127/100. 127 = 1,27 100 onde 1 representa a parte inteira

Leia mais