Valores eternos. a + c² - 3x, para a = 3, c = 0 e x = 4 MATÉRIA PROFESSOR(A)

Tamanho: px
Começar a partir da página:

Download "Valores eternos. a + c² - 3x, para a = 3, c = 0 e x = 4 MATÉRIA PROFESSOR(A) ---- ----"

Transcrição

1 Valores eternos. TD Recuperação ALUNO(A) MATÉRIA Matemática I PROFESSOR(A) Steve ANO SEMESTRE DATA 8º 1º Julho/2013 TOTAL DE ESCORES ESCORES OBTIDOS Considere que x é a fração geratriz da dízima periódica 0, e que y é a fração geratriz da dízima periódica 1, Nessas condições, assinale a opção que apresenta o valor numérico da expressão 9x + 18y: a) 20 b) 25 c) 30 d) 32 e) Marque V para as alternativas verdadeiras ou F para as falsas: a) ( ) A união entre o conjunto dos números inteiros e o conjunto dos números racionais resulta no conjunto dos números reais. b) ( ) Todo número inteiro é natural, mas nem todo natural é inteiro. c) ( ) Se um número inteiro é negativo ele pode ou não ser racional. d) ( ) A raiz quadrada de um número primo é exata. e) ( ) Potências com bases negativas podem ser positivas. 3. Calcule o valor numérico de cada uma das expressões algébricas de acordo com os valores dados: a) 3a 3 + 3b 2, para a = 3 e b = -1 b) 2(x y) 3, para x = -2 e y = 1 c) 4x² - 9b 3 + ab 4, para x = -3, b = -2 e a = 1 d) 5 a + c² - 3x, para a = 3, c = 0 e x = 4

2 4. Cada item abaixo apresenta um monômio. Determine o coeficiente, a parte literal e o grau de cada um desses monômios: a) 23ab 3 c b) -2xyzk 5 c) cd 2 5. Calcule o valor de n para que os monômios 3x 3n a 4 z 7 e -6z 8 b 9 k n tenham grau igual. 6. Determine a expressão algébrica que representa o perímetro das figuras abaixo: a) Quadrado b) Retângulo c) Trapézio

3 7. Utilizando as letras x e y determine uma expressão algébrica que represente o que se pede em cada item abaixo: a) A diferença entre dois números. b) O dobro da soma de dois números. c) O triplo da diferença de dois números. d) A raiz quadrada da soma de dois números. 8. Assinale a opção que apresenta um monômio com as seguintes características: I. Na parte literal aparecem apenas as variáveis a e x II. A variável a apresenta o menor número natural maior que 9 como expoente III. A variável x tem expoente igual ao dobro do expoente da variável a IV. O coeficiente é igual ao grau do monômio. a) 8a 8 x 4 b) 10a 10 x 20 c) 12a 4 x 8 d) 30a 10 x 20 e) 20a 10 x Considere os seguintes monômios: A = 2x 2 yz, B = -xyz 3 e C = xyz. Marque a opção que apresenta os valores de A 2, A B e B C. a) A 2 = 4x 2 yz 4, A B = -x 2 y 2 z 4 e B C = -z 2 b) A 2 = 4x 2 yz, A B = -x 2 y 2 z 4 e B C = -z c) A 2 = 4x 2 yz, A B = -2x 3 y 2 z e B C = -z 2 d) A 2 = 4x 4 y 2 z 2, A B = -x 2 yz 4 e B C = -z e) A 2 = 4x 4 y 2 z 2, A B = -2x 3 y 2 z 4 e B C = -z Utilizando o que estudamos em sala sobre monômios, marque a opção FALSA: a) O grau de um monômio é a soma dos expoentes das variáveis. b) O valor numérico de um monômio depende dos valores atribuídos às variáveis. c) O coeficiente de um monômio é igual ao maior expoente das variáveis. d) Para representar variáveis pode ser usada qualquer letra. e) Monômios semelhantes são aqueles que possuem a mesma parte literal. 11. Considere dois números a e b tais que a² + b² = 15 e ab = 7. Nessas condições, utilizando seus conhecimentos em produtos notáveis, o valor exato de (a + b)² é: (APRESENTE OS CÁLCULOS, SEM ELES A QUESTÃO NÃO SERÁ CONSIDERADA) a) 25 b) 26 c) 27 d) 28 e) 29

4 12. Utilize as formas de fatoração aprendidas em sala e fatore cada um dos polinômios a seguir: a) 4b + 8c + 10d b) 14by + 9bya 2bx c) K²a k²b + 6a 6b d) 22y + 11x + 2yd + dx 13. É possível fatorar a diferença entre dois quadrados. Usando esse tipo de fatoração, acharemos que o valor de 1977² ² será igual a: (APRESENTE OS CÁLCULOS, SEM ELES A QUESTÃO NÃO SERÁ CONSIDERADA) a) b) c) d) e) Desenvolva cada um dos produtos notáveis abaixo: a) (a + b)² b) (2x y)² c) (2a + x) (2a x) 15. O produto entre a soma e a diferença de dois números é igual a 28. Quanto é a diferença entre os quadrados desses números? a) 14 b) 8 c) 20 d) 28 e) Impossível responder.

5 16. Qual monômio deve ser adicionado a (a+ 4b)² para obtermos 3a² + 8ab + 16b²? (APRESENTE OS CÁLCULOS, SEM ELES A QUESTÃO NÃO SERÁ CONSIDERADA) a) a² b) 2a² c) a d) 2a e) 3a² 17. Considere dois números x e y tais que x² + y² = 22 e xy = 8. Nessas condições, utilizando seus conhecimentos em produtos notáveis, o valor exato de (x - y)² é: (APRESENTE OS CÁLCULOS, SEM ELES A QUESTÃO NÃO SERÁ CONSIDERADA) a) 5 b) 6 c) 7 d) 8 e) Quando dividimos o polinômio 3x³ - 2x² + x 1 pelo binômio x 2 obtemos qual o quociente? (APRESENTE OS CÁLCULOS, SEM ELES A QUESTÃO NÃO SERÁ CONSIDERADA) a) 3x² + 4x + 9 b) 3x² - 4x + 9 c) 3x² + 4x - 9 d) 3x² - 4x - 9 e) -3x² + 4x Efetue a multiplicação entre os polinômios abaixo: a) (2x 3y) (4a + 2b) b) (7k + 6m) (5n + 3g) 20. Determine o grau de cada polinômio a seguir: a) 4xy³ - 2abc + 9cdf b) 7x²y²z³ - 8x³a³ + 6abc³d³

A hora é agora 8º ano!!!

A hora é agora 8º ano!!! A hora é agora 8º ano!!! 1- Desenvolva os seguintes produtos notáveis: a) (1 x)³ = b) (1 + 3x)²= c) (3x 4)(3x + 4) = d) (3 + x)² + (3 x)² = 2- Desenvolvendo a expressão (x 3)² + (x + 3)², obteremos o seguinte

Leia mais

3- O resto da divisão do polinômio 8x² +6x+5 pelo polinômio 2x+1 é: 4- Calcule o quadrado da soma e o quadrado da diferença nos seguintes itens.

3- O resto da divisão do polinômio 8x² +6x+5 pelo polinômio 2x+1 é: 4- Calcule o quadrado da soma e o quadrado da diferença nos seguintes itens. Atividade de fixação(2º semestre) 1-O retângulo abaixo tem a medida de um dos lados e a área representada por polinômio. Determine o polinômio que representa a medida do outro lado. A=4x +12x +4x² x 4x

Leia mais

Considere as situações:

Considere as situações: Considere as situações: 1ª situação: Observe as dimensões da figura a seguir. Qual a expressão que representa a sua área? X X x 2 ou x. x 2ª situação: Deseja se cercar um terreno de forma retangular cujo

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - 4 HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 04 GABARITO COMENTADO 40 40 ) Sabendo que O B M = 40 O B = B M M = O, 40 O B+ M = 46 + M = 46 M 46M + 40 =

Leia mais

CONTEÚDOS PARA A PROVA DE RECUPERAÇÃO SEMESTRAL AGOSTO / 2016 MATEMÁTICA

CONTEÚDOS PARA A PROVA DE RECUPERAÇÃO SEMESTRAL AGOSTO / 2016 MATEMÁTICA CONTEÚDOS PARA A PROVA DE RECUPERAÇÃO SEMESTRAL AGOSTO / 2016 ANO: 6º A e B Prof: Zezinho e Admir MATEMÁTICA PROGRAMA II DATA DA PROVA: 09 / 08 / 2016 HORÁRIO: 14h GRUPO 2 - ORIGEM E EVOLUÇÃO CAPÍTULO

Leia mais

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) Qual é a menor das raízes da equação Questão 2 (OBMEP RJ adaptada) Mariana entrou na sala e viu

Leia mais

ATIVIDADE DE MATEMÁTICA (PARA CASA) Data de entrega 18/04/2012

ATIVIDADE DE MATEMÁTICA (PARA CASA) Data de entrega 18/04/2012 OSASCO, DE DE 01 NOME: PROF. 8º ANO ATIVIDADE DE MATEMÁTICA (PARA CASA) Data de entrega 18/04/01 1. Deseja-se fixar o comprimento e a largura de uma sala de modo que a sua área seja 36 m. a) Se a largura

Leia mais

LISTA DE EXERCÍCIOS MATEMÁTICA

LISTA DE EXERCÍCIOS MATEMÁTICA LISTA DE EXERCÍCIOS MATEMÁTICA P E P - º BIMESTRE 9º ANO Aluno (a): Turno: Turma: Unidade Data: / /05 EXERCÍCIOS P Potenciação/Radiciação QUESTÃO 0 Calcule as seguintes potências: A. B. 0 6 C. (-) D. E.

Leia mais

EXERCÍCIOS PREPARATÓRIOS PARA AS DISCIPLINAS INTRODUTÓRIAS DA MATEMÁTICA

EXERCÍCIOS PREPARATÓRIOS PARA AS DISCIPLINAS INTRODUTÓRIAS DA MATEMÁTICA UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIÊNCIAS E TECNOLOGIA UNIDADE ACADÊMICA DE MATEMÁTICA PROGRAMA DE EDUCAÇÃO TUTORIAL TUTOR: Prof. Dr. Daniel Cordeiro de Morais Filho BOLSISTA: Tiago Alves

Leia mais

C O L É G I O F R A N C O - B R A S I L E I R O

C O L É G I O F R A N C O - B R A S I L E I R O C O L É G I O F R A N C O - B R A S I L E I R O Nome: N.º: Turma: Professor: ELIZABETH E JOSIMAR Ano: 8º Data: / 07 / 01 EXERCÍCIOS DE RECUPERAÇÃO DE MATEMÁTICA ÁLGEBRA 1) Classifique em verdadeiro (V)

Leia mais

1-) Transforme os seguintes números decimais em frações decimais: a) 0,5 = b) 0,072. c) 347,28= d) 0,481 =

1-) Transforme os seguintes números decimais em frações decimais: a) 0,5 = b) 0,072. c) 347,28= d) 0,481 = 1-) Transforme os seguintes números decimais em frações decimais: a) 0,5 = b) 0,072 c) 347,28= d) 0,481 = 2-) Transforme as seguintes frações decimais em números decimais: 46 a) 100000 c) 13745 100 b)

Leia mais

2º Lista de Exercícios Mat.Básica. Equação do 1 grau

2º Lista de Exercícios Mat.Básica. Equação do 1 grau 2º Lista de Exercícios Mat.Básica Equação do 1 grau 7) Um indivíduo fez uma viagem de 630 km. Teria gasto menos quatro dias se tivesse caminhado mais 10 km por dia. Quantos dias gastou na viagem e quantos

Leia mais

As expressões que apresentam letras, além de operações e números são chamadas expressões algébricas. As letras são as variáveis.

As expressões que apresentam letras, além de operações e números são chamadas expressões algébricas. As letras são as variáveis. 1 Aula 3 Expressões algébricas. Produtos notáveis. Fatoração. Objetivos: Conceituar variáveis. Enumerar as propriedades operacionais das expressões algébricas. Fatorar expressões algébricas. Simplificar

Leia mais

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE CURSO DE MATEMÁTICA BÁSICA Fatoração Equação do 1º Grau Equação do 2º Grau Aula 02: Fatoração Fatorar é transformar uma soma em um produto. Fator comum: Agrupamentos: Fatoração Quadrado Perfeito Fatoração

Leia mais

Disciplina: MATEMÁTICA Trimestre: 1º Professora: Ana Eudóxia Alux Bessa Série: 8º Turma: 81,82,83 e 84

Disciplina: MATEMÁTICA Trimestre: 1º Professora: Ana Eudóxia Alux Bessa Série: 8º Turma: 81,82,83 e 84 COLÉGIO LA SALLE BRASÍLIA SGAS Q. 906 Conj. E C.P. 320 Fone: (061) 3443-7878 CEP: 70390-060 - BRASÍLIA - DISTRITO FEDERAL Disciplina: MATEMÁTICA Trimestre: 1º Professora: Ana Eudóxia Alux Bessa Série:

Leia mais

ORIENTAÇÕES: 1) Considere as expressões algébricas dos quadros abaixo: Responda às perguntas:

ORIENTAÇÕES: 1) Considere as expressões algébricas dos quadros abaixo: Responda às perguntas: 6ª LISTA DE EXERCÍCIOS COMPLEMENTARES DE MATEMÁTICA POLINÔMIOS E OPERAÇÕES COM POLINÔMIOS ORIENTAÇÕES: Ensino Fundamental 8 Ano Realize os exercícios em folhas de fichário com a identificação completa,

Leia mais

Sendo o polinômio P(x), de grau quatro e divisível por Q(x) = x 3, o resto de sua divisão por D(x) = x 5 é

Sendo o polinômio P(x), de grau quatro e divisível por Q(x) = x 3, o resto de sua divisão por D(x) = x 5 é Questão 01) O polinômio p(x) = x 3 + x 2 3ax 4a é divisível pelo polinômio q(x) = x 2 x 4. Qual o valor de a? a) a = 2 b) a = 1 c) a = 0 d) a = 1 e) a = 2 TEXTO: 1 Para fazer um estudo sobre certo polinômio

Leia mais

Roteiro da aula. MA091 Matemática básica. Quadrados perfeitos. Raiz quadrada. Aula 8 Raízes. Francisco A. M. Gomes. Março de 2016

Roteiro da aula. MA091 Matemática básica. Quadrados perfeitos. Raiz quadrada. Aula 8 Raízes. Francisco A. M. Gomes. Março de 2016 Roteiro da aula MA09 Matemática básica Aula 8 Francisco A. M. Gomes UNICAMP - IMECC Março de 206 2 Francisco A. M. Gomes (UNICAMP - IMECC) MA09 Matemática básica Março de 206 / 22 Francisco A. M. Gomes

Leia mais

3) A variável m representa o preço de uma maçã e a variável p o preço de uma pera. Sueli comprou 7 maçãs e 3 peras.

3) A variável m representa o preço de uma maçã e a variável p o preço de uma pera. Sueli comprou 7 maçãs e 3 peras. ª LISTA DE EXERCÍCIOS COMPLEMENTARES DE MATEMÁTICA EXPRESSÕES ALGÉBRICAS Ensino Fundamental 8 Ano Agora vamos colocar em prática os seus conhecimentos matemáticos e tudo o que estudamos em aula sobre expressões

Leia mais

AULA 1 EQUAÇÕES E SISTEMAS DO 1º GRAU

AULA 1 EQUAÇÕES E SISTEMAS DO 1º GRAU AULA EQUAÇÕES E SISTEMAS DO º GRAU EQUAÇÕES DO º GRAU Uma equação é classificada como sendo do º grau quando puder ser escrita na forma ax + b 0 onde a e b são reais com a 0. Uma equação do º grau admite

Leia mais

Plano 7 - Jogo do Alvo Junho/2015

Plano 7 - Jogo do Alvo Junho/2015 ESCOLA EMEF PROFª MARIA MARGARIDA ZAMBON BENINI Plano 7 - Jogo do Alvo Junho/2015 Bolsistas: Mévelin Maus e Natacha Subtil Supervisora: Marlete Basso Romam Disciplina: Matemática Série: 8º ano Ensino Fundamental

Leia mais

= 0, 4343 = 0, 43 = 1, 0222 = 1, 02

= 0, 4343 = 0, 43 = 1, 0222 = 1, 02 1 Conjuntos Numéricos Neste capítulo, serão apresentados conjuntos cujos elementos são números e, por isso, são denominados conjuntos numéricos. 1.1 Números Naturais (N) O conjunto dos números naturais

Leia mais

Gabarito - Colégio Naval 2016/2017 Matemática Prova Amarela

Gabarito - Colégio Naval 2016/2017 Matemática Prova Amarela Gabarito - Colégio Naval 016/017 PROFESSORES: Carlos Eduardo (Cadu) André Felipe Bruno Pedra Jean Pierre QUESTÃO 1 Considere uma circunferência de centro O e raio r. Prolonga-se o diâmetro AB de um comprimento

Leia mais

CONJUNTOS NUMÉRICOS. Exercícios resolvidos Sendo A=[1;7] e B=[3;9[, determine os conjuntos abaixo:

CONJUNTOS NUMÉRICOS. Exercícios resolvidos Sendo A=[1;7] e B=[3;9[, determine os conjuntos abaixo: CONJUNTOS NUMÉRICOS Exercícios resolvidos Sendo A=[1;7] e B=[3;9[, determine os conjuntos abaixo: Analisando as retas abaixo, constatamos que a intersecção entre A e B é dada pela área compreendida entre

Leia mais

Em linguagem matemática, essa proprieade pode ser escrita da seguinte maneira: x. 1 = x Onde x representa um número natural qualquer.

Em linguagem matemática, essa proprieade pode ser escrita da seguinte maneira: x. 1 = x Onde x representa um número natural qualquer. MATEMÁTICA BÁSICA 5 EXPRESSÕES ALGÉBRICAS - EQUAÇÕES A expressão numérica é aquela que apresenta uma sequência de operações e de números. Também já sabemos que as letras são usadas em Matemática para representar

Leia mais

PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO

PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO Provas 2º Bimestre 2012 MATEMÁTICA DESCRITORES DESCRITORES DO 2º BIMESTRE DE 2012

Leia mais

Matemática. Questão 1. 8 o ano do Ensino Fundamental Turma. 1 o Bimestre de 2016 Data / / Escola Aluno RESOLUÇÃO:

Matemática. Questão 1. 8 o ano do Ensino Fundamental Turma. 1 o Bimestre de 2016 Data / / Escola Aluno RESOLUÇÃO: EF AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 8 o ano do Ensino Fundamental Turma GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO o Bimestre de 206 Data / / Escola Aluno Questão O conjunto

Leia mais

MATEMÁTICA. Aula 01. Revisão _ Produtos Notáveis Professor Luciano Nóbrega

MATEMÁTICA. Aula 01. Revisão _ Produtos Notáveis Professor Luciano Nóbrega MATEMÁTICA Felizes aqueles que se divertem com problemas matemáticos que educam a alma e elevam o espírito. (Fraçois Fenelon Educador Francês ) 1 Aula 01 Revisão _ Produtos Notáveis Professor Luciano Nóbrega

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L NOTAS DA VIGÉSIMA PRIMEIRA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, abordaremos a técnica de integração conhecida como frações parciais. Esta técnica pode ser utilizada para

Leia mais

a) 2 b) 3 c) 4 d) 5 e) 6

a) 2 b) 3 c) 4 d) 5 e) 6 Recordando operações básicas 01. Calcule as expressões abaixo: a) 2254 + 1258 = b) 300+590 = c) 210+460= d) 104+23 = e) 239 54 = f) 655-340 = g) 216-56= h) 35 x 15 = i) 50 x 210 = j) 366 x 23 = k) 355

Leia mais

Apostila de Matemática 16 Polinômios

Apostila de Matemática 16 Polinômios Apostila de Matemática 16 Polinômios 1.0 Definições Expressão polinomial ou polinômio Expressão que obedece a esta forma: a n, a n-1, a n-2, a 2, a 1, a 0 Números complexos chamados de coeficientes. n

Leia mais

Matemática. Caderno de Atividades Pedagógicas de Aprendizagem Autorregulada 03. 8 Ano 3 Bimestre. Disciplina Curso Bimestre Ano

Matemática. Caderno de Atividades Pedagógicas de Aprendizagem Autorregulada 03. 8 Ano 3 Bimestre. Disciplina Curso Bimestre Ano Matemática Aluno Caderno de Atividades Pedagógicas de Aprendizagem Autorregulada 03 8 Ano 3 Bimestre Disciplina Curso Bimestre Ano Matemática Ensino Fundamental 3 8 Habilidades Associadas 1. Identificar

Leia mais

Aula 7 Lista de Exercícios de Raízes de Equações Polinomiais

Aula 7 Lista de Exercícios de Raízes de Equações Polinomiais Aula 7 Lista de Exercícios de Raízes de Equações Polinomiais Parte 1 Exercícios do Livro A Matemática do Ensino Médio Volume 3. Autores: Elon Lages Lima, Paulo Cezar Pinto Carvalho, Eduardo Wagner, Augusto

Leia mais

AGRUPAMENTO DE ESCOLAS RAINHA D. LEONOR ESCOLA BÁSICA 2/3 EUGÉNIO DOS SANTOS Matemática Conteúdos 8ºAno de Escolaridade Ano Letivo 2013/14

AGRUPAMENTO DE ESCOLAS RAINHA D. LEONOR ESCOLA BÁSICA 2/3 EUGÉNIO DOS SANTOS Matemática Conteúdos 8ºAno de Escolaridade Ano Letivo 2013/14 AGRUPAMENTO DE ESCOLAS RAINHA D. LEONOR ESCOLA BÁSICA 2/3 EUGÉNIO DOS SANTOS Matemática Conteúdos 8ºAno de Escolaridade Ano Letivo 2013/14 DOMÍNIO: NÚMEROS E OPERAÇÕES SUB-DOMÍNIO: NÚMEROS REAIS Números

Leia mais

Material de Apoio de Matemática Básica

Material de Apoio de Matemática Básica Sindicato dos Servidores Públicos Municipais de São Vicente Material de Apoio de Matemática Básica Caio Ricardo Faiad da Silva Setembro/11-Novembro/11 Apresentação Este material foi preparado com a intenção

Leia mais

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Professor(a) :

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Professor(a) : Escola: ( ) Atividade ( ) Avaliação Aluno(a): Professor(a) : Número: Data: Ano: Nota : _ Questão 1 (UFRS RS) O resto da divisão do polinômio x 3 2x 2 x 1 por x 2 x + 1 é o polinômio R(x). O valor numérico

Leia mais

Material Teórico - Módulo de Expressões Algébricas e Polinômios. Parte 1. Oitavo Ano. Prof. Ulisses Lima Parente

Material Teórico - Módulo de Expressões Algébricas e Polinômios. Parte 1. Oitavo Ano. Prof. Ulisses Lima Parente Material Teórico - Módulo de Expressões Algébricas e Polinômios Parte 1 Oitavo Ano Prof. Ulisses Lima Parente 1 Expressões algébricas Em muitas situações, é conveniente denotar um número real arbitrário

Leia mais

Eixo Temático ITema 1: Conjuntos Numéricos. Números e Operações

Eixo Temático ITema 1: Conjuntos Numéricos. Números e Operações Eixo Temático ITema 1: Conjuntos Numéricos Números e Operações 1. Conjunto dos números naturais 2. Conjunto dos números inteiros 1.0. Conceitos 3 1.1. Operar com os números naturais: adicionar, multiplicar,

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 8.º ANO PLANIFICAÇÃO GLOBAL 1. Representação, comparação e ordenação. Representar números racionais

Leia mais

8º Ano Planificação Matemática 14/15

8º Ano Planificação Matemática 14/15 8º Ano Planificação Matemática 14/15 Escola Básica Integrada de Fragoso 8º Ano Domínio Subdomínio Conteúdos Objetivos gerais / Metas Números e Operações Geometria e medida Dízimas finitas e infinitas periódicas

Leia mais

Equipe de Matemática MATEMÁTICA

Equipe de Matemática MATEMÁTICA Aluno (a): Série: 3ª Turma: TUTORIAL 5B Ensino Médio Equipe de Matemática Data: MATEMÁTICA Conjunto dos números racionais O conjunto dos números racionais é uma ampliação do conjunto dos números inteiros.

Leia mais

MATEMÁTICA POLINÔMIOS

MATEMÁTICA POLINÔMIOS MATEMÁTICA POLINÔMIOS 1. F.I.Anápolis-GO Seja o polinômio P(x) = x 3 + ax 2 ax + a. O valor de P(1) P(0) é: a) 1 b) a c) 2a d) 2 e) 1 2a 1 2. UFMS Considere o polinômio p(x) = x 3 + mx 20, onde m é um

Leia mais

1º ano. Unidade 1: Conjuntos Numéricos. Unidade 2: Expressões Algébricas. Capítulo 9 - Itens: 2, 3 (2º ano) Unidade 3: Equações

1º ano. Unidade 1: Conjuntos Numéricos. Unidade 2: Expressões Algébricas. Capítulo 9 - Itens: 2, 3 (2º ano) Unidade 3: Equações 1º ano Unidade 1: Conjuntos Numéricos Expressão Numérica Unidade 2: Expressões Algébricas Classificação Valor numérico Monômios e polinômios Produtos notáveis Fatoração Equação do 1º grau (inteiras e fracionadas)

Leia mais

Prática. Exercícios didáticos ( I)

Prática. Exercícios didáticos ( I) 1 Prática Exercício para início de conversa Localize na reta numérica abaixo os pontos P correspondentes aos segmentos de reta OP cujas medidas são os números reais representados por: Exercícios didáticos

Leia mais

Gabarito de Matemática do 6º ano do E.F.

Gabarito de Matemática do 6º ano do E.F. Gabarito de Matemática do 6º ano do E.F. Lista de Exercícios (L11) Querido(a) aluno(a), vamos retomar nossos estudos relembrando os conceitos de divisores, múltiplos, números primos, mmc e mdc. Divisor

Leia mais

COLÉGIO ESTADUAL LUIZ AUGUSTO MORAIS REGO ENSINO FUNDAMENTAL E MÉDIO PLANO DE TRABALHO DOCENTE 2014. 1º Bimestre METODOLÓGICO

COLÉGIO ESTADUAL LUIZ AUGUSTO MORAIS REGO ENSINO FUNDAMENTAL E MÉDIO PLANO DE TRABALHO DOCENTE 2014. 1º Bimestre METODOLÓGICO COLÉGIO ESTADUAL LUIZ AUGUSTO MORAIS REGO ENSINO FUNDAMENTAL E MÉDIO PLANO DE TRABALHO DOCENTE 2014 Professor: Amilton Uber Disciplina: MATEMÁTICA Turma: 8º ano D 1º Bimestre CONTEÚDO BÁSICO CONTEÚDOS

Leia mais

MATEMÁTICA PROVA 2º BIMESTRE 8º ANO

MATEMÁTICA PROVA 2º BIMESTRE 8º ANO PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO MATEMÁTICA PROVA 2º BIMESTRE 8º ANO 2010 QUESTÃO 1 Alberto quis apostar uma corrida

Leia mais

1º Ano do Ensino Médio

1º Ano do Ensino Médio MINISTÉRIO DA DEFESA Manaus AM 18 de outubro de 009. EXÉRCITO BRASILEIRO CONCURSO DE ADMISSÃO 009/010 D E C E x - D E P A COLÉGIO MILITAR DE MANAUS MATEMÁTICA 1º Ano do Ensino Médio INSTRUÇÕES (CANDIDATO

Leia mais

COLÉGIO ESTADUAL LUIZ AUGUSTO MORAIS REGO ENSINO FUNDAMENTAL E MÉDIO PLANO DE TRABALHO DOCENTE 2014. 1º Bimestre METODOLÓGICO

COLÉGIO ESTADUAL LUIZ AUGUSTO MORAIS REGO ENSINO FUNDAMENTAL E MÉDIO PLANO DE TRABALHO DOCENTE 2014. 1º Bimestre METODOLÓGICO COLÉGIO ESTADUAL LUIZ AUGUSTO MORAIS REGO ENSINO FUNDAMENTAL E MÉDIO PLANO DE TRABALHO DOCENTE 2014 Professor: Amilton Uber Disciplina: MATEMÁTICA Turma: 8º ano 1º Bimestre CONTEÚDO BÁSICO CONTEÚDOS ESPECÍFICOS

Leia mais

Lista de exercícios Recuperação Semestral 9º Ano 1 Semestre

Lista de exercícios Recuperação Semestral 9º Ano 1 Semestre ALUNO (S) SÉRIE / TURMA Lista de exercícios Recuperação Semestral 9º Ano 1 Semestre 01. Observe o par de polígonos semelhantes e responda: b) Calcule o valor de x: a) Qual é a razão de semelhança? 02.

Leia mais

Unidade 5. A letra como incógnita equações do segundo grau

Unidade 5. A letra como incógnita equações do segundo grau Unidade 5 A letra como incógnita equações do segundo grau Para início de conversa... Vamos avançar um pouco mais nas resoluções de equações. Desta vez, vamos nos focar nas equações do segundo grau. Esses

Leia mais

2.2. ÁLGEBRA E GEOMETRIA - Circunferências e círculos (Unidade 3 - Capítulo 3).

2.2. ÁLGEBRA E GEOMETRIA - Circunferências e círculos (Unidade 3 - Capítulo 3). ROTEIRO DE ESTUDOS 3 NOME Nº 8 ANO MATEMÁTICA - 3º BIMESTRE Profs. Yuri, Marcello e Décio 1. APRESENTAÇÃO Caro aluno, A estrutura da recuperação paralela do Colégio Pentágono pressupõe uma revisão dos

Leia mais

EXAME INTELECTUAL AOS CURSOS DE FORMAÇÃO DE SARGENTOS 2011-12 SOLUÇÃO DAS QUESTÕES DE MATEMÁTICA

EXAME INTELECTUAL AOS CURSOS DE FORMAÇÃO DE SARGENTOS 2011-12 SOLUÇÃO DAS QUESTÕES DE MATEMÁTICA dessa Escoladessa Escola MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DECEx DFA ESCOLA DE SARGENTOS DAS ARMAS ESCOLA SARGENTO MAX WOLFF FILHO EXAME INTELECTUAL AOS CURSOS DE FORMAÇÃO DE SARGENTOS 011-1 Questão

Leia mais

A primeira coisa ao ensinar o teorema de Pitágoras é estudar o triângulo retângulo e suas partes. Desta forma:

A primeira coisa ao ensinar o teorema de Pitágoras é estudar o triângulo retângulo e suas partes. Desta forma: As atividades propostas nas aulas a seguir visam proporcionar ao aluno condições de compreender de forma prática o teorema de Pitágoras em sua estrutura geométrica, através do uso de quadrados proporcionais

Leia mais

POTENCIAÇÂO. A potenciação é uma forma de representar uma multiplicação de fatores iguais.

POTENCIAÇÂO. A potenciação é uma forma de representar uma multiplicação de fatores iguais. POTENCIAÇÂO A potenciação é uma forma de representar uma multiplicação de fatores iguais. A potência é o resultado. x x x cada termo desta multiplicação é chamado de fator, portanto temos 4 fatores iguais

Leia mais

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Caderno do Professor. 8º ano do Ensino Fundamental MATEMÁTICA

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Caderno do Professor. 8º ano do Ensino Fundamental MATEMÁTICA AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Caderno do Professor 8º ano do Ensino Fundamental MATEMÁTICA São Paulo Agosto de 2015 9ª edição Gabarito 7ª Série / 8º Ano QUESTÃO A B C D 01 02 03 04 05 06 07 08

Leia mais

Duas retas paralelas são cortadas por uma transversal formando dois ângulos

Duas retas paralelas são cortadas por uma transversal formando dois ângulos EXERCÍCIO COMPLEMENTRES - MTEMÁTIC 8º NO - ENSINO FUNDMENTL - 1ª ETP 01- ssunto: Dízima Periódica Obtenha as geratrizes das seguintes dízimas periódicas: a) 8,715715715... b) 4,722... 02- ssunto: Conjunto

Leia mais

MATEMÁTICA PROVA 3º BIMESTRE

MATEMÁTICA PROVA 3º BIMESTRE PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO MATEMÁTICA PROVA 3º BIMESTRE 9º ANO 2010 QUESTÃO 1 Na reta numérica abaixo, há

Leia mais

Nome: N.º: Endereço: Data: Telefone: PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 2016 Disciplina: MATEMÁTICA

Nome: N.º: Endereço: Data: Telefone:   PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 2016 Disciplina: MATEMÁTICA Nome: N.º: Endereço: Data: Telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 06 Disciplina: MATEMÁTICA Prova: DESAFIO NOTA: QUESTÃO 6 Analise cada item com atenção: I. O antecedente

Leia mais

Exercícios de Aprofundamento Mat Polinômios e Matrizes

Exercícios de Aprofundamento Mat Polinômios e Matrizes . (Unicamp 05) Considere a matriz A A e A é invertível, então a) a e b. b) a e b 0. c) a 0 e b 0. d) a 0 e b. a 0 A, b onde a e b são números reais. Se. (Espcex (Aman) 05) O polinômio q(x) x x deixa resto

Leia mais

Polinômios. Para mais informações sobre a história de monômios e polinômios, leia o artigo Monômios.

Polinômios. Para mais informações sobre a história de monômios e polinômios, leia o artigo Monômios. Um pouco de história Polinômios A grande maioria das pessoas que estão em processo de aprendizagem em matemática sempre buscam aplicações imediatas para os conteúdos. Não que esse deva ser um caminho único

Leia mais

Lista de Exercícios: Potência, Notação Científica, Conjuntos Numéricos e Dízima periódica.

Lista de Exercícios: Potência, Notação Científica, Conjuntos Numéricos e Dízima periódica. Lista de Exercícios: Potência, Notação Científica, Conjuntos Numéricos e Dízima periódica. ) Calcule o valor das expressões a seguir: g) h) i) 0 + 5 7 + ( ) + ( ) + ( ( ) ( ) ( ( ) ( + + + ) 5 ) ) ) Reduza

Leia mais

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 3ª Série do Ensino Médio Turma 2º bimestre de 2015 Data / / Escola Aluno

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 3ª Série do Ensino Médio Turma 2º bimestre de 2015 Data / / Escola Aluno AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 3ª Série do Ensino Médio Turma 2º bimestre de 2015 Data / / Escola Aluno Questão 1 O perímetro de um piso retangular de cerâmica mede 14 m e sua área, 12

Leia mais

FUNÇÃO DO 2º GRAU PROF. LUIZ CARLOS MOREIRA SANTOS

FUNÇÃO DO 2º GRAU PROF. LUIZ CARLOS MOREIRA SANTOS Questão 01) FUNÇÃO DO º GRAU A função definida por L(x) = x + 800x 35 000, em que x indica a quantidade comercializada, é um modelo matemático para determinar o lucro mensal que uma pequena indústria obtém

Leia mais

1º BIMESTRE Encaminhamentos Metodológicos (como?)

1º BIMESTRE Encaminhamentos Metodológicos (como?) NRE - TOLEDO PLANO DE TRABALHO DOCENTE MATEMÁTICA COLÉGIO SENADOR ATILIO FONTANA Ensino Fundamental e Médio SÉRIE: 8º ano B ANO LETIVO: 2014 PROF: TEREZA HENRIQUETTA BENETTI Conjuntos numéricos Números

Leia mais

Em um terreiro, há galinhas e carneiros, num total de 21 animais e 50 pés. Quantos animais de cada espécie há nesse terreiro? 5, sendo U = R.

Em um terreiro, há galinhas e carneiros, num total de 21 animais e 50 pés. Quantos animais de cada espécie há nesse terreiro? 5, sendo U = R. EXERÍIO OMPLEMENTRES - MTEMÁTI - 8º NO - ENSINO FUNMENTL - ª ETP 0- ssunto: Equação Nominal Resolva a equação literal a - a. 0- ssunto: Sistema de Equação Em um terreiro, há galinhas e carneiros, num total

Leia mais

= 1 1 1 1 1 1. Pontuação: A questão vale dez pontos, tem dois itens, sendo que o item A vale até três pontos, e o B vale até sete pontos.

= 1 1 1 1 1 1. Pontuação: A questão vale dez pontos, tem dois itens, sendo que o item A vale até três pontos, e o B vale até sete pontos. VTB 008 ª ETAPA Solução Comentada da Prova de Matemática 0 Em uma turma de alunos que estudam Geometria, há 00 alunos Dentre estes, 30% foram aprovados por média e os demais ficaram em recuperação Dentre

Leia mais

Agrupamento de Escolas Júlio Dantas Escola Básica Tecnopolis

Agrupamento de Escolas Júlio Dantas Escola Básica Tecnopolis Teorema de Pitágoras- Unidade 2 1.ºP Tema Calendarização Domínio N.º de aulas de 45 minutos Agrupamento de Escolas Júlio Dantas Escola Básica Tecnopolis Planificação Curricular a Longo Prazo Matemática

Leia mais

Planificação Anual de Matemática 5º Ano

Planificação Anual de Matemática 5º Ano Planificação Anual de Matemática 5º Ano DOMÍNI OS CONTEÚDOS METAS AULA S Números naturais Compreender as propriedades e regras das operações e usá-las no cálculo. Propriedades das operações e regras operatórias:

Leia mais

PROVA DE MATEMÁTICA CONCURSO DE ADMISSÃO 2013/2014 1º ANO DO ENSINO MÉDIO

PROVA DE MATEMÁTICA CONCURSO DE ADMISSÃO 2013/2014 1º ANO DO ENSINO MÉDIO CONCURSO DE ADMISSÃO 2013/2014 PROVA DE MATEMÁTICA 1º ANO DO ENSINO MÉDIO CONFERÊNCIA: Membro da CEOCP (Mat / 1º EM) Presidente da CEI Dir Ens CPOR / CMBH PÁGINA 1 RESPONDA AS QUESTÕES DE 1 A 20 E TRANSCREVA

Leia mais

Disciplina: Matemática Ano letivo: 2014 8º ANO Professor(a): Josiane Caroline Protti

Disciplina: Matemática Ano letivo: 2014 8º ANO Professor(a): Josiane Caroline Protti Colégio Estadual Senador Attílio Fontana Ensino Fundamental, Médio e Profissional PLANO DE TRABALHO DOCENTE (PTD) Disciplina: Matemática Ano letivo: 2014 8º ANO Professor(a): Josiane Caroline Protti Fundamentação

Leia mais

Escola Secundária com 3º CEB de Lousada. Ficha de Trabalho de Matemática do 7º ano - Nº 24

Escola Secundária com 3º CEB de Lousada. Ficha de Trabalho de Matemática do 7º ano - Nº 24 Escola Secundária com º CEB de Lousada Ficha de Trabalho de Matemática do 7º ano - Nº Assunto: Objectivos para o teste de de Março/ Ficha de preparação para o teste Lições nº e Data / 0/ 00 Conteúdos para

Leia mais

Nome: N.º: endereço: data: telefone: PARA QUEM CURSA O 9 Ọ ANO EM 2012. Disciplina: matemática

Nome: N.º: endereço: data: telefone:   PARA QUEM CURSA O 9 Ọ ANO EM 2012. Disciplina: matemática Nome: N.º: endereço: data: telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO EM 01 Disciplina: matemática Prova: desafio nota: QUESTÃO 16 Observe a tabela: Número Antecessor Sucessor 10 A B C zero D

Leia mais

MATEMÁTICA PROVA 1º BIMESTRE 9º ANO

MATEMÁTICA PROVA 1º BIMESTRE 9º ANO PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO MATEMÁTICA PROVA 1º BIMESTRE 9º ANO 2010 PROVA MATEMÁTICA 9º ANO QUESTÃO 01 Artur

Leia mais

Uma expressão matemática que apresenta números e letras ou somente letras, é denominada expressão algébrica

Uma expressão matemática que apresenta números e letras ou somente letras, é denominada expressão algébrica Trabalho de Reforço Matemática 8º ano A, 8º ano B e 8º ano C Ensino Fundamental Professor André Data de entrega: 05 de agosto de 2013. Exercícios de revisão de conteúdo Objetivo: fazer com que o aluno

Leia mais

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 95 / 96 QUESTÃO ÚNICA. ESCORES OBTIDOS MÚLTIPLA ESCOLHA

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 95 / 96 QUESTÃO ÚNICA. ESCORES OBTIDOS MÚLTIPLA ESCOLHA QUESTÃO ÚNICA. ESCORES OBTIDOS MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES À ESQUERDA OS ITENS DE 01 A 06 DEVERÃO SER RESPONDIDOS COM BASE NA TEORIA DOS CONJUNTOS.

Leia mais

A motivação é fundamental

A motivação é fundamental A motivação é fundamental A motivação é fundamental para se dedicar aos estudos. Quando a perdemos, nossa vontade de estudar diminui ou até desaparece. A seguir algumas dicas para manter a motivação para

Leia mais

SOLUÇÕES N2 2015. item a) O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2.

SOLUÇÕES N2 2015. item a) O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2. Solução da prova da 1 a fase OBMEP 2015 Nível 1 1 SOLUÇÕES N2 2015 N2Q1 Solução O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2. Com um

Leia mais

Simplificação de Expressões Booleanas e Circuitos Lógicos

Simplificação de Expressões Booleanas e Circuitos Lógicos Simplificação de Expressões Booleanas e Circuitos Lógicos Margrit Reni Krug Julho/22 Tópicos Revisão Álgebra Booleana Revisão portas lógicas Circuitos lógicos soma de produtos produto de somas Simplificação

Leia mais

Potenciação e radiciação

Potenciação e radiciação Sequência didática para a sala de aula 6 MATEMÁTICA Unidade 1 Capítulo 6: (páginas 55 a 58 do livro) 1 Objetivos Associar a potenciação às situações que representam multiplicações de fatores iguais. Perceber

Leia mais

MATEMÁTICA PROVA 2º BIMESTRE 9º ANO

MATEMÁTICA PROVA 2º BIMESTRE 9º ANO PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO MATEMÁTICA PROVA 2º BIMESTRE 9º ANO 2010 QUESTÃO 1 π é o nome dado ao quociente

Leia mais

SUMÁRIO. 1. REVISÃO DE GINÁSIO Critérios de divisibilidade. 2. CONJUNTOS Introdução. Operações de conjuntos. Conjuntos numéricos

SUMÁRIO. 1. REVISÃO DE GINÁSIO Critérios de divisibilidade. 2. CONJUNTOS Introdução. Operações de conjuntos. Conjuntos numéricos SUMÁRIO 1. REVISÃO DE GINÁSIO Critérios de divisibilidade Reconhecimento de número primo Decomposição em fatores primos Aplicação Potência Expressão numérica 2. CONJUNTOS Introdução Representação de um

Leia mais

Medidas de Localização

Medidas de Localização MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS RESUMO Estatística 2 Medidas de Localização e Dispersão 10º ano Cláudia Henriques Medidas de Localização Estatísticas Medidas que se calculam a partir dos dados

Leia mais

Matemática/15 6ºmat301r 6º ano Turma: 1º trimestre Nome: Data: / / Roteiro de Estudos para Recuperação Final de Matemática - 6 ano 1 Trimestre

Matemática/15 6ºmat301r 6º ano Turma: 1º trimestre Nome: Data: / / Roteiro de Estudos para Recuperação Final de Matemática - 6 ano 1 Trimestre Matemática/15 6ºmat301r 6º ano Turma: 1º trimestre Nome: Data: / / Roteiro de Estudos para Recuperação Final de Matemática - 6 ano 1 Trimestre Os conteúdos estão abaixo selecionados e deverão ser estudados

Leia mais

As operações de adição, subtração e multiplicação são feitas de maneira natural, considerando-se o número complexo como um binômio.

As operações de adição, subtração e multiplicação são feitas de maneira natural, considerando-se o número complexo como um binômio. NÚMEROS COMPLEXOS Prof Eduardo Nagel. DEFINIÇÃO No conjunto dos números reais R, temos que a = a. a é sempre um número não negativo para todo a. Ou seja, não é possível extrair a rai quadrada de um número

Leia mais

1.2. Recorrendo a um diagrama em árvore, por exemplo, temos: 1.ª tenda 2.ª tenda P E E

1.2. Recorrendo a um diagrama em árvore, por exemplo, temos: 1.ª tenda 2.ª tenda P E E Prova de Matemática do 3º ciclo do Ensino Básico Prova 927 1ª Chamada 1. 1.1. De acordo com enunciado, 50% são portugueses (P) e 50% são espanhóis (E) e italianos (I). Como os Espanhóis existem em maior

Leia mais

Plano de Ensino. Identificação. Câmpus de Bauru. Curso 1503 - Licenciatura em Matemática. Ênfase

Plano de Ensino. Identificação. Câmpus de Bauru. Curso 1503 - Licenciatura em Matemática. Ênfase Curso 1503 - Licenciatura em Matemática Ênfase Identificação Disciplina 0006308A - Fundamentos de Matemática Elementar Docente(s) Ivete Maria Baraldi Unidade Faculdade de Ciências Departamento Departamento

Leia mais

Determinantes. Matemática Prof. Mauricio José

Determinantes. Matemática Prof. Mauricio José Determinantes Matemática Prof. Mauricio José Determinantes Definição e Conceito Matriz de ordem 1 Dizemos que um determinante é um resultado (numérico) de operações que são realizadas em uma matriz quadrada.

Leia mais

SÍMBOLOS MATEMÁTICOS. adição Lê-se como "mais" Ex: 2+3 = 5, significa que se somarmos 2 e 3 o resultado é 5.

SÍMBOLOS MATEMÁTICOS. adição Lê-se como mais Ex: 2+3 = 5, significa que se somarmos 2 e 3 o resultado é 5. SÍMBOLOS MATEMÁTICOS Símbolo Nome Explicação + adição Lê-se como "mais" 2+3 = 5, significa que se somarmos 2 e 3 o resultado é 5. - subtração Lê-se como "menos" 5-3 = 2, significa que se subtrairmos 3

Leia mais

Plano de Ensino. Identificação. Câmpus de Bauru. Curso 1503 - Licenciatura em Matemática. Ênfase

Plano de Ensino. Identificação. Câmpus de Bauru. Curso 1503 - Licenciatura em Matemática. Ênfase Curso 1503 - Licenciatura em Matemática Ênfase Identificação Disciplina 0006308A - Fundamentos de Matemática Elementar Docente(s) Maria Edneia Martins Salandim Unidade Faculdade de Ciências Departamento

Leia mais

POTENCIAÇÃO, RADICIAÇÃO E LOGARITMAÇÂO NOS NÚMEROS REAIS. Potenciação 1

POTENCIAÇÃO, RADICIAÇÃO E LOGARITMAÇÂO NOS NÚMEROS REAIS. Potenciação 1 POTENCIAÇÃO, RADICIAÇÃO E LOGARITMAÇÂO NOS NÚMEROS REAIS Potenciação 1 Neste texto, ao classificarmos diferentes casos de potenciação, vamos sempre supor que a base e o expoente sejam não nulos, pois já

Leia mais

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE CURSO DE MATEMÁTICA BÁSICA Aula 01 Introdução a Geometria Plana Ângulos Potenciação Radiciação Introdução a Geometria Plana Introdução: No estudo da Geometria Plana, consideraremos três conceitos primitivos:

Leia mais

Anexo B Relação de Assuntos Pré-Requisitos à Matrícula

Anexo B Relação de Assuntos Pré-Requisitos à Matrícula Anexo B Relação de Assuntos Pré-Requisitos à Matrícula MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DEPARTAMENTO DE EDUCAÇÃO E CULTURA DO EXÉRCITO DIRETORIA DE EDUCAÇÃO PREPARATÓRIA E ASSISTENCIAL RELAÇÃO

Leia mais

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) Uma placa decorativa consiste num quadrado branco de 4 metros de lado, pintado de forma simétrica

Leia mais

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo A UA UL LA Frações e números decimais Introdução Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos de um bolo se dividirmos esse bolo em cinco partes iguais e tomarmos

Leia mais

Matemática Ficha de Trabalho Equações

Matemática Ficha de Trabalho Equações Matemática Ficha de Trabalho Equações 7ºano. Considera a equação: 4 + b = b + 8. Indique: a) A incógnita b) O º membro c) O º membro d) Os termos do º membro e) Os termos do º membro f) Verifica se e 7

Leia mais

Caderno 2: 60 minutos. Tolerância: 20 minutos. (não é permitido o uso de calculadora)

Caderno 2: 60 minutos. Tolerância: 20 minutos. (não é permitido o uso de calculadora) Prova Final de Matemática 2.º Ciclo do Ensino Básico Prova 62/1.ª Fase/2015 Decreto-Lei n.º 139/2012, de 5 de julho A PREENCHER PELO ALUNO Nome completo Documento de identificação Assinatura do Aluno CC

Leia mais

Resolução: P(i) = 2. (i) 4 (i) 3 3(i) 2 + (i) + 5 = 2 + i + 3 + i + 5 = 10 + 2i. Resolução: Resolução:

Resolução: P(i) = 2. (i) 4 (i) 3 3(i) 2 + (i) + 5 = 2 + i + 3 + i + 5 = 10 + 2i. Resolução: Resolução: EXERCÍCIOS 01. Calcule o valor numérico de P(x) = 2x 4 x 3 3x 2 + x + 5 para x = i. P(i) = 2. (i) 4 (i) 3 3(i) 2 + (i) + 5 = 2 + i + 3 + i + 5 = 10 + 2i 02. Dado o polinômio P(x) = x 3 + kx 2 2x + 5, determine

Leia mais

Trabalho de Estudos Independentes de Matemática

Trabalho de Estudos Independentes de Matemática Trabalho de Estudos Independentes de Matemática ALUNO (A): Nº: SÉRIE: 8º TURMA: Professora: Marilia Henriques NÍVEL: Ensino fundamental DATA: / / VALOR 30 pontos NOTA: 1) Marque cada afirmação como verdadeira

Leia mais

OPERAÇÕES ALGÉBRICAS

OPERAÇÕES ALGÉBRICAS MATEMÁTICA OPERAÇÕES ALGÉBRICAS 1. EXPRESSÕES ALGÉBRICAS Monômio ou Termo É expressão lgébric mis sintétic. É expressão formd por produtos e quocientes somente. 5x 4y 3x y x x 8 4x x 4 z Um monômio tem

Leia mais