Capítulo 2 O conceito de Função de Regressão Populacional (FRP) e Função de Regressão Amostral (FRA)

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Capítulo 2 O conceito de Função de Regressão Populacional (FRP) e Função de Regressão Amostral (FRA)"

Transcrição

1 I Metodologa da Ecoometra O MODELO CLÁSSICO DE REGRESSÃO LINEAR. Formulação da teora ou da hpótese.. Especfcação do modelo matemátco da teora. 3. Especfcação do modelo ecoométrco da teora. 4. Obteção de dados. 5. Estmatva dos parâmetros do modelo ecoométrco. 6. Teste de hpótese. 7. Prevsão ou predção. 8. Utlzação do modelo para fs de cotrole ou polítca. A atureza da Aálse de Regressão O termo regressão fo troduzdo por Fracs Galto. Ele verfcou que, embora houvesse uma tedêca de pas altos terem flhos altos e de pas baos terem flhos baos, a altura méda dos flhos de pas de uma dada altura teda a se deslocar ou regredr até a altura méda da população como um todo. Em outras palavras, a altura dos flhos de pas etraordaramete altos ou baos tede a se mover para a altura méda da população. A terpretação modera da regressão é dferete ocupa-se do estudo da depedêca de uma varável chamada varável edógea, resposta ou depedete, em relação a uma ou mas varáves, as varáves eplcatvas ou eógeas, com o objetvo de estmar e/ou prever a méda da população ou valor médo de depedete em termos dos valores cohecdos ou fos em amostragem repetda das eplcatvas. REGRESSÃO versus CAUSALIDADE É mportate ressaltar que embora a aálse de regressão lde com a depedêca de uma varável em relação a outras varáves, ela ão mplca ecessaramete em causa. Uma relação estatístca, por mas forte e sugestva que seja, jamas pode estabelecer uma relação causal. As déas sobre causa devem vr de fora da estatístca, efm, de outra teora. REGRESSÃO versus CORRELAÇÃO A aálse de regressão cocetualmete é muto dferete da aálse de correlação, cujo objetvo básco é medr a tesdade ou o grau de assocação lear etre duas varáves. Por eemplo, podemos estar teressados em achar a correlação etre o hábto de fumar e o câcer o pulmão. Ou ada, a correlação etre as potuações em eames de estatístca e de matemátca. Na aálse de regressão ão estamos teressados em tal medção. Em vez dsso, tetamos estmar ou prever o valor médo de uma varável com base os valores fados de outras varáves. Assm, podemos querer saber se é possível prever a ota méda em uma prova de estatístca sabedo a ota de um estudate em uma prova de matemátca. O coefcete de correlação mede a tesdade da assocação lear A NATUREZA E AS FONTES DE DADOS PARA ANÁLISE ECONOMÉTRICA - O sucesso de qualquer aálse ecoométrca depede bascamete da dspobldade de dados aproprados. Capítulo O coceto de Fução de Regressão Populacoal FRP e Fução de Regressão Amostral FRA Fução de Regressão Populacoal FRP. E/ = f A méda codcoal é uma fução de, em que f dca alguma fução da varável eplcatva. A. é cohecda como fução de regressão populacoal FRP ou de regressão lear de

2 duas varáves. Como uma prmera apromação ou uma hpótese de trabalho, podemos supor que FRP E/ seja uma fução lear de, do tpo. E / = + ode: tercepto coefcete de clação Especfcação estocástca.3 = + + u. Ode u é uma varável aleatóra ão-observável que pode assumr valores postvos ou egatvos, também cohecdo como termo de erro estocástco ou perturbação estocástca. Fução de Regressão Amostral FRA Na maora das stuações prátcas é somete uma amostra de valores correspodetes e algus s fos. A ossa tarefa é estmar a FRP com base as formações da amostra. Aalogamete a FRP, que fudameta a reta de regressão da população, podemos desevolver o coceto de FUNÇÃO DE REGRESSÃO AMOSTRAL FRA para represetar a reta de regressão amostral. A amostra cotrapartda da Equação. pode ser escrta como, ode: Ŷ = estmador de E/ = estmador de = estmador de Estmador e Estmatva Estmador, também cohecdo como uma estatístca baseado a amostra, é smplesmete uma regra, fórmula ou método que os dz como estmar o parâmetro da população a partr das formações dadas pela amostra dspoível. Estmatva um valor umérco partcular obtdo pelo estmador em uma aplcação é cohecdo como uma estmatva. Podemos epressar a FRA por sua fórmula estocástca u NOSSO PRINCIPAL OBJETIVO NA ANÁLISE DE REGRESSÃO É ESTIMAR A FRP = + + u Com base a FRA u FRP de duas varáves: MODELO DE REGRESSÃO LINEAR SIMPLES O MÉTODO DOS MÍNIMOS QUADRADOS ORDINÁRIOS

3 = + + u Etretato a FRP ão é dretamete observável. Nós a estmamos a partr de FRA: u u Ode: Ŷ é o valo méda codcoal estmado de. u u u û resíduos são smplesmete as dfereças etre os valores reas e estmados. Podemos adotar o segute crtéro: u seja a meor possível. Se adotarmos o crtéro de mmzar esta soma todos os resíduos recebem o mesmo peso a soma embora algus resíduos estejam muto mas prómos de FRA que outros. Ou seja, os resíduos têm gual mportâca, depedetemete de quão prómas ou dspersas as observações dvduas sejam relatvamete a FRA. A soma algébrca desses resíduos é zero. Podemos evtar este problema adotado o crtéro dos mímos quadrados, segudo o qual a FRA pode ser fada de tal modo que: u u Ao elevar û ao quadrado, este método dá maor peso a resíduos prómos da FRA do que os dstates. A soma dos resíduos elevados ao quadrado é alguma fução dos estmadores e ; O Método dos mímos quadrados escolhe e de tal maera que, para uma dada amostra ou u é a meor possível. Ou seja, para uma dada amostra, o método dos mímos cojuto de dados, quadrados os forece estmatvas úcas de que dão o meor valor possível de Para chegar a este resultado trata-se de um eercíco smples de cálculo dferecal. u. 3

4 DERIVAÇÃO DE ESTIMATIVAS POR MÍNIMOS QUADRADOS EQUAÇÕES NORMAIS Passo : Passo : Equações Normas. Para achar o poto de mímo gualamos as equações do passo a zero: Resolvedo as equações ormas smultaeamete, obtemos: 4

5 / / / / y ou ou Ode: y 5

6 O Modelo Clássco de Regressão Lear: As Hpóteses Subjacetes ao Método dos Mímos Quadrados O osso objetvo ão é somete obter e, mas também fazer ferêcas sobre os verdaderos e. Por eemplo, gostaríamos de saber quão prómo é do verdadero E/. Para tato, devemos ão apeas especfcar a forma fucoal do modelo, como, mas também formular certas hpóteses sobre o modo pelo qual são gerados. Precsão ou Erros-padrão das Estmatvas por Mímos Quadrados As estmatvas por mímos quadrados são uma fução dos dados da amostra. Mas como os dados provavelmete varam de amostra para amostra, as estmatvas vararão. Coseqüetemete, o que se ecessta é de alguma medda de cofabldade ou precsão dos estmadores e. Na estatístca, a precsão de uma estmatva é medda por seu erro-padrão ep. Data as hpóteses os erros-padrão das estmatvas por MQO podem ser obtdos: var ep var ep u Em que var = varâca e ep = erro-padrão, e Hpótese 4 ver capítulo e 3. é a varâca costate ou homoscedástca de u da Propredades dos Estmadores de Mímos Quadrados: O Teorema de Gauss-Markov. Dada as hpóteses do modelo clássco de regressão lear, as estmatvas por mímos quadrados possuem algumas propredades deas ou ótmas. Estas propredades estão cotdas o cohecdo teorema de Gauss-Markov. Para eteder este teorema, precsa cosderar a propredade do melhor estmador lear ão-vesado para um estmador. O estmador de MQO, é um melhor estmador lear ão-vesado MELNV de, caso seja váldo o segute:. É lear, sto é, uma fução lear de uma varável aleatóra, tal como a varável depedete o modelo de regressão.. É ão-vesado, sto é, seu valor médo ou esperado, E, é gual ao valor verdadero,. 3. Tem míma varâca a classe de todos esses estmadores leares ão-vesados; um estmador ãovesado com a meor varâca é cohecdo como um estmador efcete. 6

7 O Coefcete de Determação r : Uma Medda do Grau de Ajuste. O coefcete de determação r caso de duas varáves ou R regressão múltpla é uma medda stétca que dz quão bem a reta de regressão da amostra se ajusta aos dados. r SQE SQT Seja: SQT = SQE + SQR SQT = Soma dos Quadrados Total SQT SQE = Soma dos Quadrados Eplcada SQE SQR = Soma dos Quadrados dos Resíduos SQR Alteratvamete podemos escrever: r SQR SQT u A quatdade r assm defda é cohecda como coefcete de determação da amostra e é a medda utlzada do grau de ajuste de uma reta de regressão. Traduzdo, r mede a proporção ou a porcetagem da varação total em eplcada pelo modelo de regressão. Duas propredades de r podem ser destacadas:. É uma quatdade ão-egatva.. Seus lmtes são <=r <=. Um r gual a sgfca um perfeto ajuste, sto é para todo. Por outro lado, um r gual a zero sgfca que ão há ehuma relação etre o regreddo e o regressor. 7

Regressão Linear - Introdução

Regressão Linear - Introdução Regressão Lear - Itrodução Na aálse de regressão lear pretede-se estudar e modelar a relação (lear) etre duas ou mas varáves. Na regressão lear smples relacoam-se duas varáves, x e Y, através do modelo

Leia mais

Econometria: 3 - Regressão Múltipla

Econometria: 3 - Regressão Múltipla Ecoometra: 3 - Regressão Múltpla Prof. Marcelo C. Mederos mcm@eco.puc-ro.br Prof. Marco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo de regressão

Leia mais

Medidas de Localização

Medidas de Localização 07/08/013 Udade : Estatístca Descrtva Meddas de Localzação João Garbald Almeda Vaa Cojuto de dados utlzação de alguma medda de represetação resumo dos dados. E: Um cojuto com 400 observações como aalsar

Leia mais

2-0,0041295**.C 2 + 0,0017052**.T.C

2-0,0041295**.C 2 + 0,0017052**.T.C 14. Itrodução ao estudo de regressão lear smples 14.1. Itrodução Itrodução ao estudo de regressão lear smples IS 78,9137 -,341836**.T +,78753**.C -,7154**.T -,4195**.C +,175**.T.C R 77,17% IS, % Fgura

Leia mais

CURSO SOBRE MEDIDAS DESCRITIVA Adriano Mendonça Souza Departamento de Estatística - UFSM -

CURSO SOBRE MEDIDAS DESCRITIVA Adriano Mendonça Souza Departamento de Estatística - UFSM - CURSO SOBRE MEDIDAS DESCRITIVA Adrao Medoça Souza Departameto de Estatístca - UFSM - O telecto faz pouco a estrada que leva à descoberta. Acotece um salto a coscêca, chame-o você de tução ou do que quser;

Leia mais

3 - ANÁLISE BIDIMENSIONAL

3 - ANÁLISE BIDIMENSIONAL INE 7001 - Aálse Bdmesoal 1 3 - ANÁLISE BIDIMENSIONAL É comum haver teresse em saber se duas varáves quasquer estão relacoadas, e o quato estão relacoadas, seja a vda prátca, seja em trabalhos de pesqusa,

Leia mais

É o quociente da divisão da soma dos valores das variáveis pelos números deles:

É o quociente da divisão da soma dos valores das variáveis pelos números deles: Meddas de Posção. Itrodução Proª Ms. Mara Cytha O estudo das dstrbuções de requêcas, os permte localzar a maor cocetração de valores de uma dstrbução. Porém, para ressaltar as tedêcas característcas de

Leia mais

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento. Prof. Lorí Val, Dr. val@pucrs.r http://www.pucrs.r/famat/val/ Em mutas stuações duas ou mas varáves estão relacoadas e surge etão a ecessdade de determar a atureza deste relacoameto. A aálse de regressão

Leia mais

NOTAS DE AULA - ESTATÍSTICA TEORIA DA AMOSTRAGEM ESTIMAÇÃO

NOTAS DE AULA - ESTATÍSTICA TEORIA DA AMOSTRAGEM ESTIMAÇÃO NOTAS DE AULA - ESTATÍSTICA TEORIA DA AMOSTRAGEM ESTIMAÇÃO ISABEL C. C. LEITE SALVADOR BA 007 Estatístca Prof.ª Isabel C. C. Lete TEORIA DA AMOSTRAGEM DISTRIBUIÇÃO AMOSTRAL DOS ESTIMADORES A teora da amostragem

Leia mais

2-Geometria da Programação Linear

2-Geometria da Programação Linear I 88 Otmzação Lear -Geometra da Programação Lear ProfFeradoGomde DC-FEEC-Ucamp Coteúdo. Poledros e cojutos coveos. Potos etremos vértces soluções báscas factíves 3. Poledros a forma padrão 4. Degeeração

Leia mais

Matemática Ficha de Trabalho

Matemática Ficha de Trabalho Matemátca Fcha de Trabalho Meddas de tedêca cetral - 0º ao MEDIDAS DE LOCALIZAÇÃO Num estudo estatístco, depos de recolhdos e orgazados os dados, há a ase de trar coclusões através de meddas que possam,

Leia mais

MEDIDAS DE TENDÊNCIA CENTRAL I

MEDIDAS DE TENDÊNCIA CENTRAL I Núcleo das Cêcas Bológcas e da Saúde Cursos de Bomedca, Ed. Físca, Efermagem, Farmáca, Fsoterapa, Fooaudologa, edca Veterára, uscoterapa, Odotologa, Pscologa EDIDAS DE TENDÊNCIA CENTRAL I 7 7. EDIDAS DE

Leia mais

IND 1115 Inferência Estatística Aula 9

IND 1115 Inferência Estatística Aula 9 Coteúdo IND 5 Iferêca Estatístca Aula 9 Outubro 2004 Môca Barros Dfereça etre Probabldade e Estatístca Amostra Aleatóra Objetvos da Estatístca Dstrbução Amostral Estmação Potual Estmação Bayesaa Clássca

Leia mais

Gráfico de Controle de Regressão Aplicado ao Monitoramento de Características da Qualidade do Eletrodo de Carbono

Gráfico de Controle de Regressão Aplicado ao Monitoramento de Características da Qualidade do Eletrodo de Carbono Gráfco de Cotrole de Regressão Aplcado ao Motorameto de Característcas da Qualdade do Eletrodo de Carboo Marcello Neva de Mello, evamarcello@gmal.com Wager Rogéro Ferrera Phero, wager35@gmal.com Edso Marcos

Leia mais

1) Escrever um programa que faça o calculo de transformação de horas em minuto onde às horas devem ser apenas número inteiros.

1) Escrever um programa que faça o calculo de transformação de horas em minuto onde às horas devem ser apenas número inteiros. Dscpla POO-I 2º Aos(If) - (Lsta de Eercícos I - Bmestre) 23/02/2015 1) Escrever um programa que faça o calculo de trasformação de horas em muto ode às horas devem ser apeas úmero teros. Deverá haver uma

Leia mais

Hipóteses do Modelo de Regressão Linear Clássico

Hipóteses do Modelo de Regressão Linear Clássico Uversdade Federal da Baha Facldade de Cêcas coômcas Departameto de cooma CO 66 Itrodção à coometra Hpóteses do Modelo de Regressão Lear Clássco Gerváso F. Satos Propredades dos estmadores de MQO As estmatvas

Leia mais

Econometria: 4 - Regressão Múltipla em Notação Matricial

Econometria: 4 - Regressão Múltipla em Notação Matricial Ecoometra: 4 - Regressão últpla em Notação atrcal Prof. arcelo C. ederos mcm@eco.puc-ro.br Prof. arco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo

Leia mais

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Val, Dr. http://www.pucrs.br/famat/val/ val@pucrs.br Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Obetvos A Aálse de

Leia mais

ANÁLISE DE REGRESSÃO E CORRELAÇÃO

ANÁLISE DE REGRESSÃO E CORRELAÇÃO ANÁLISE DE REGRESSÃO E CORRELAÇÃO Quado se cosderam oservações de ou mas varáves surge um poto ovo: O estudo das relações porvetura estetes etre as varáves A aálse de regressão e correlação compreedem

Leia mais

ANÁLISE DE REGRESSÃO E CORRELAÇÃO

ANÁLISE DE REGRESSÃO E CORRELAÇÃO ANÁLISE DE REGRESSÃO E CORRELAÇÃO Quado se cosderam oservações de ou mas varáves surge um poto ovo: O estudo das relações porvetura estetes etre as varáves. A aálse de regressão e correlação compreedem

Leia mais

Regressão linear múltipla. Prof. Tatiele Lacerda

Regressão linear múltipla. Prof. Tatiele Lacerda Regressão linear múltipla Prof Tatiele Lacerda Yi = B + Bx + B3X3 + u Plano de resposta E(Y i ) = 0,00 Y i i 0 (,33;,67) Y i 0 X i Xi X p i, p i 3 Modelo de regressão linear múltipla em termos matriciais,

Leia mais

II. Propriedades Termodinâmicas de Soluções

II. Propriedades Termodinâmicas de Soluções II. Propredades Termodâmcas de Soluções 1 I. Propredades Termodâmcas de Fludos OBJETIVOS Eteder a dfereça etre propredade molar parcal e propredade de uma espéce pura Saber utlzar a equação de Gbbs-Duhem

Leia mais

CAPÍTULO 9 - Regressão linear e correlação

CAPÍTULO 9 - Regressão linear e correlação INF 6 Prof. Luz Alexadre Peterell CAPÍTULO 9 - Regressão lear e correlação Veremos esse capítulo os segutes assutos essa ordem: Correlação amostral Regressão Lear Smples Regressão Lear Múltpla Correlação

Leia mais

Medidas Numéricas Descritivas:

Medidas Numéricas Descritivas: Meddas Numércas Descrtvas: Meddas de dspersão Meddas de Varação Varação Ampltude Ampltude Iterquartl Varâca Desvo absoluto Coefcete de Varação Desvo Padrão Ampltude Medda de varação mas smples Dfereça

Leia mais

7 Análise de covariância (ANCOVA)

7 Análise de covariância (ANCOVA) Plejameto de Expermetos II - Adlso dos Ajos 74 7 Aálse de covarâca (ANCOVA) 7.1 Itrodução Em algus expermetos, pode ser muto dfícl e até mpossível obter udades expermetas semelhtes. Por exemplo, pode-se

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES INTERPOLAÇÃO

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES INTERPOLAÇÃO Uversdade Federal do Ro Grade FURG Isttuto de Matemátca, Estatístca e Físca IMEF Edtal CAPES INTERPOLAÇÃO Pro. Atôo Mauríco Mederos Alves Proª Dese Mara Varella Martez Matemátca Básca ara Cêcas Socas II

Leia mais

Análise de Regressão

Análise de Regressão Aálse de Regressão Prof. Paulo Rcardo B. Gumarães. Itrodução Os modelos de regressão são largamete utlzados em dversas áreas do cohecmeto, tas como: computação, admstração, egeharas, bologa, agrooma, saúde,

Leia mais

Licenciatura em Ciências USP/ Univesp funções polinomiais 4

Licenciatura em Ciências USP/ Univesp funções polinomiais 4 Lcecatura em Cêcas USP/Uvesp FUNÇÕES POLINOMIAIS 4 51 TÓPICO Gl da Costa Marques 4.1 Potecação 4. Fuções Polomas de grau 4.3 Fução Polomal do Segudo Grau ou Fução Quadrátca 4.4 Aálse da Forma Geral dos

Leia mais

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø.

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø. Professor Maurco Lutz 1 EGESSÃO LINEA SIMPLES A correlação lear é uma correlação etre duas varáves, cujo gráfco aproma-se de uma lha. O gráfco cartesao que represeta essa lha é deomado dagrama de dspersão.

Leia mais

Construção e Análise de Gráficos

Construção e Análise de Gráficos Costrução e Aálse de Gráfcos Por que fazer gráfcos? Facldade de vsualzação de cojutos de dados Faclta a terpretação de dados Exemplos: Egehara Físca Ecooma Bologa Estatístca Y(udade y) 5 15 1 5 Tabela

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação etre duas ou mas varáves. Pode ser: correlacoal ou expermetal. Numa relação expermetal os valores de uma das varáves

Leia mais

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL Faculdade de Tecologa de Cataduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL 5. Meddas de Posção cetral ou Meddas de Tedêca Cetral Meddas de posção cetral preocupam-se com a caracterzação e a

Leia mais

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados 3.1. Meddas de Tedêca Cetral CAPÍTULO 3 MEDIDA DE TENDÊNCIA CENTRAL E VARIABILIDADE UFRG 1 Há váras meddas de tedêca cetral. Etre elas ctamos a méda artmétca, a medaa, a méda harmôca, etc. Cada uma dessas

Leia mais

Estatística - exestatmeddisper.doc 25/02/09

Estatística - exestatmeddisper.doc 25/02/09 Estatístca - exestatmeddsper.doc 5/0/09 Meddas de Dspersão Itrodução ão meddas estatístcas utlzadas para avalar o grau de varabldade, ou dspersão, dos valores em toro da méda. ervem para medr a represetatvdade

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental. É o grau de assocação etre duas ou mas varáves. Pode ser: Prof. Lorí Val, Dr. val@pucrs.br http://www.pucrs.br/famat/val www.pucrs.br/famat/val/ correlacoal ou expermetal. Numa relação expermetal os valores

Leia mais

Estatística Básica - Continuação

Estatística Básica - Continuação Professora Adraa Borsso http://www.cp.utfpr.edu.br/borsso adraaborsso@utfpr.edu.br COEME - Grupo de Matemátca Meddas de Varabldade ou Dspersão Estatístca Básca - Cotuação As meddas de tedêca cetral, descrtas

Leia mais

Distribuições de Probabilidades

Distribuições de Probabilidades Estatístca - aulasestdstrnormal.doc 0/05/06 Dstrbuções de Probabldades Estudamos aterormete as dstrbuções de freqüêcas de amostras. Estudaremos, agora, as dstrbuções de probabldades de populações. A dstrbução

Leia mais

? Isso é, d i= ( x i. . Percebeu que

? Isso é, d i= ( x i. . Percebeu que Estatístca - Desvo Padrão e Varâca Preparado pelo Prof. Atoo Sales,00 Supoha que tehamos acompahado as otas de quatro aluos, com méda 6,0. Aluo A: 4,0; 6,0; 8,0; méda 6,0 Aluo B:,0; 8,0; 8,0; méda 6,0

Leia mais

Probabilidade e Estatística. Correlação e Regressão Linear

Probabilidade e Estatística. Correlação e Regressão Linear Probabldade e Estatístca Correlação e Regressão Lnear Varáves Varável: característcas ou tens de nteresse de cada elemento de uma população ou amostra Também chamada parâmetro, posconamento, condção...

Leia mais

MÉTODO DOS MÍNIMOS QUADRADOS

MÉTODO DOS MÍNIMOS QUADRADOS MÉTODO DOS MÍNIMOS QUADRADOS I - INTRODUÇÃO O processo de medda costtu uma parte essecal a metodologa cetífca e também é fudametal para o desevolvmeto e aplcação da própra cêca. No decorrer do seu curso

Leia mais

MODELOS DE REGRESSÃO APLICADOS EM EPIDEMIOLOGIA I, II e III. (HEP- 5743, HEP-5763 e HEP-5764)

MODELOS DE REGRESSÃO APLICADOS EM EPIDEMIOLOGIA I, II e III. (HEP- 5743, HEP-5763 e HEP-5764) FACULDADE DE AÚDE PÚBLICA - UP DEPARTAMENTO DE EPIDEMIOLOGIA MODELO DE REGREÃO APLICADO EM EPIDEMIOLOGIA I, II e III (HEP- 5743, HEP-5763 e HEP-5764) Profa. Dra. MARIA DO ROARIO DIA DE OLIVEIRA LATORRE

Leia mais

13 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL

13 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL 3 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL Como vto em amotragem o prmero bmetre, etem fatore que fazem com que a obervação de toda uma população em uma pequa eja mpratcável, muta veze em vrtude

Leia mais

MODELOS DE REGRESSÃO APLICADOS EM EPIDEMIOLOGIA I, II e III. (HEP- 5743, HEP-5763 e HEP-5764)

MODELOS DE REGRESSÃO APLICADOS EM EPIDEMIOLOGIA I, II e III. (HEP- 5743, HEP-5763 e HEP-5764) FACULDADE DE AÚDE PÚBLICA - UP DEPARTAMENTO DE EPIDEMIOLOGIA MODELO DE REGREÃO APLICADO EM EPIDEMIOLOGIA I, II e III (HEP- 5743, HEP-5763 e HEP-5764) Profa. Dra. MARIA DO ROARIO DIA DE OLIVEIRA LATORRE

Leia mais

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples.

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples. Estudo das relações etre peso e altura de estudates de estatístca através da aálse de regressão smples. Waessa Luaa de Brto COSTA 1, Adraa de Souza COSTA 1. Tago Almeda de OLIVEIRA 1 1 Departameto de Estatístca,

Leia mais

Apostila de Introdução Aos Métodos Numéricos

Apostila de Introdução Aos Métodos Numéricos Apostla de Itrodução Aos Métodos Numércos PARTE III o Semestre - Pro a. Salete Souza de Olvera Buo Ídce INTERPOAÇÃO POINOMIA...3 INTRODUÇÃO...3 FORMA DE AGRANGE... 4 Iterpolação para potos (+) - ajuste

Leia mais

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi REGESD Prolc Matemátca e Realdade- Profª Suz Samá Pto e Profº Alessadro da Slva Saad Meddas de Posção ou Tedêca Cetral As meddas de posção ou meddas de tedêca cetral dcam um valor que melhor represeta

Leia mais

Estatística Descritiva

Estatística Descritiva Estatístca Descrtva Cocetos Báscos População ou Uverso Estatístco: coj. de elemetos sobre o qual cde o estudo estatístco; Característca Estatístca ou Atrbuto: a característca que se observa os elemetos

Leia mais

MÓDULO 8 REVISÃO REVISÃO MÓDULO 1

MÓDULO 8 REVISÃO REVISÃO MÓDULO 1 MÓDULO 8 REVISÃO REVISÃO MÓDULO A Estatístca é uma técca que egloba os métodos cetícos para a coleta, orgazação, apresetação, tratameto e aálse de dados. O objetvo da Estatístca é azer com que dados dspersos

Leia mais

Casos de estimação do modelo de ajustamento da dívida com o xtabond2 do Stata

Casos de estimação do modelo de ajustamento da dívida com o xtabond2 do Stata Lus Fernandes Rodrgues Casos de estmação do modelo de ajustamento da dívda com o xtabond do Stata Arellano-Bond (99) nspraram-se na forma de nstrumentar de Holtz-Eakn, Newe, e Rosen (988) que preconzam,

Leia mais

O que heterocedasticidade? Heterocedasticidade. Por que se preocupar com heterocedasticidade? Exemplo de heterocedasticidade.

O que heterocedasticidade? Heterocedasticidade. Por que se preocupar com heterocedasticidade? Exemplo de heterocedasticidade. Heterocedastcdade y = β 0 + β + β + β k k + u O que heterocedastcdade? Lembre-se da hpótese de homocedastcdade: condconal às varáves eplcatvas, a varânca do erro, u, é constante Se sso não for verdade,

Leia mais

n. A densidade de corrente associada a esta espécie iônica é J n. O modelo está ilustrado na figura abaixo.

n. A densidade de corrente associada a esta espécie iônica é J n. O modelo está ilustrado na figura abaixo. Equlíbro e o Potecal de Nerst 5910187 Bofísca II FFCLRP USP Prof. Atôo Roque Aula 11 Nesta aula, vamos utlzar a equação para o modelo de eletrodfusão o equlíbro obtda a aula passada para estudar o trasporte

Leia mais

tica Professor Renato Tião

tica Professor Renato Tião Números complexos Algumas equações do segudo grau como x + 1 = 0 ão possuem solução o uverso real e o estudo destas soluções ão pareca ecessáro até o século XVI quado o matemátco aphael Bombell publcou

Leia mais

Inferência Estatística e Aplicações I. Edson Zangiacomi Martinez Departamento de Medicina Social FMRP/USP

Inferência Estatística e Aplicações I. Edson Zangiacomi Martinez Departamento de Medicina Social FMRP/USP Iferêca Estatístca e Aplcações I Edso Zagacom Martez Departameto de Medca Socal FMRP/USP edso@fmrp.usp.br Rotero Parte I Escola frequetsta Defções: parâmetros, estmatvas Dstrbuções de probabldade Estmação

Leia mais

Análise de Regressão. Notas de Aula

Análise de Regressão. Notas de Aula Análise de Regressão Notas de Aula 2 Modelos de Regressão Modelos de regressão são modelos matemáticos que relacionam o comportamento de uma variável Y com outra X. Quando a função f que relaciona duas

Leia mais

Revisão de Estatística X = X n

Revisão de Estatística X = X n Revsão de Estatístca MÉDIA É medda de tedêca cetral mas comumete usada ara descrever resumdamete uma dstrbução de freqüêca. MÉDIA ARIMÉTICA SIMPLES São utlzados os valores do cojuto com esos guas. + +...

Leia mais

Métodos iterativos. Capítulo O Método de Jacobi

Métodos iterativos. Capítulo O Método de Jacobi Capítulo 4 Métodos teratvos 41 O Método de Jacob O Método de Jacob é um procedmeto teratvo para a resolução de sstemas leares Tem a vatagem de ser mas smples de se mplemetar o computador do que o Método

Leia mais

Relatório 2ª Atividade Formativa UC ECS

Relatório 2ª Atividade Formativa UC ECS Relatóro 2ª Atvdade Formatva Eercíco I. Quado a dstrbução de dados é smétrca ou apromadamete smétrca, as meddas de localzação méda e medaa, cocdem ou são muto semelhates. O mesmo ão acotece quado a dstrbução

Leia mais

Estudo do intervalo de confiança da regressão inversa utilizando o software R

Estudo do intervalo de confiança da regressão inversa utilizando o software R Estudo do tervalo de cofaça da regressão versa utlzado o software R Llae Lopes Cordero João Domgos Scalo. Itrodução Na maora das aplcações evolvedo regressão, determa-se o valor de Y correspodete a um

Leia mais

x n = n ESTATÍSTICA STICA DESCRITIVA Conjunto de dados: Organização; Amostra ou Resumo; Apresentação. População

x n = n ESTATÍSTICA STICA DESCRITIVA Conjunto de dados: Organização; Amostra ou Resumo; Apresentação. População ESTATÍSTICA STICA DESCRITIVA Prof. Lorí Val, Dr. val@mat.ufrgs.br http://.ufrgs.br/~val/ Orgazação; Resumo; Apresetação. Cojuto de dados: Amostra ou População Um cojuto de dados é resumdo de acordo com

Leia mais

ANÁLISE DE REGRESSÃO LINEAR COM MODELO DIFUSO

ANÁLISE DE REGRESSÃO LINEAR COM MODELO DIFUSO ANÁLISE DE REGRESSÃO LINEAR COM MODELO DIFUSO Slva, Glso Mederos e; Bastos, Rogéro Cd; Marts, Aleadro * ; Pacheco *, Roberto C. S.; Programa de Pós-Graduação em Egehara de Produção PPGEP Uversdade Federal

Leia mais

Contabilometria. Aula 8 Regressão Linear Simples

Contabilometria. Aula 8 Regressão Linear Simples Contalometra Aula 8 Regressão Lnear Smples Orgem hstórca do termo Regressão Le da Regressão Unversal de Galton 1885 Galton verfcou que, apesar da tendênca de que pas altos tvessem flhos altos e pas axos

Leia mais

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD Dstrbuções Amostras Estatístca 8 - Dstrbuções Amostras 08- Dstrbuções Amostras Dstrbução Amostral de Objetvo: Estudar a dstrbução da população costtuída de todos os valores que se pode obter para, em fução

Leia mais

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12 MEDIDAS DE POSIÇÃO: São meddas que possbltam represetar resumdamete um cojuto de dados relatvos à observação de um determado feômeo, pos oretam quato à posção da dstrbução o exo dos, permtdo a comparação

Leia mais

Comprimento de Arco. Comprimento de Arco

Comprimento de Arco. Comprimento de Arco UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Comprmento de Arco

Leia mais

PROBABILIDADE E ESTATÍSTICA APLICADA À HIDROLOGIA

PROBABILIDADE E ESTATÍSTICA APLICADA À HIDROLOGIA UNIVERSIDADE DE ÉVORA DEPARTAMENTO DE ENGENHARIA RURAL PROBABILIDADE E ESTATÍSTICA APLICADA À HIDROLOGIA 0 ESTATÍSTICA E PROBABILIDADE APLICADA À HIDROLOGIA. Itrodução Nehum processo hdrológco é puramete

Leia mais

Estatística Notas de Aulas ESTATÍSTICA. Notas de Aulas. Professor Inácio Andruski Guimarães, DSc. Professor Inácio Andruski Guimarães, DSc.

Estatística Notas de Aulas ESTATÍSTICA. Notas de Aulas. Professor Inácio Andruski Guimarães, DSc. Professor Inácio Andruski Guimarães, DSc. Estatístca Notas de Aulas ESTATÍSTICA Notas de Aulas Professor Iáco Adrus Gumarães, DSc. Professor Iáco Adrus Gumarães, DSc. Estatístca Notas de Aulas SUMÁRIO CONCEITOS BÁSICOS 5. Estatístca. Estatístca

Leia mais

4 Capitalização e Amortização Compostas

4 Capitalização e Amortização Compostas 4.1 Itrodução Quado queremos fazer um vestmeto, podemos depostar todos os meses uma certa quata em uma cadereta de poupaça; quado queremos comprar um bem qualquer, podemos fazê-lo em prestações, a serem

Leia mais

Probabilidade: Diagramas de Árvore

Probabilidade: Diagramas de Árvore Probabldade: Dagramas de Árvore Ana Mara Lma de Faras Departamento de Estatístca (GET/UFF) Introdução Nesse texto apresentaremos, de forma resumda, concetos e propredades báscas sobre probabldade condconal

Leia mais

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1.

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1. Iterpolação Iterpolação é um método que permte costrur um ovo cojuto de dados a partr de um cojuto dscreto de dados potuas cohecdos. Em egehara e cêcas, dspõese habtualmete de dados potuas, obtdos a partr

Leia mais

Determinantes. De nição de determinante de uma matriz quadrada. Determinantes - ALGA - 2004/05 15

Determinantes. De nição de determinante de uma matriz quadrada. Determinantes - ALGA - 2004/05 15 Determnantes - ALGA - 004/05 15 Permutações Determnantes Seja n N Uma permutação p = (p 1 ; p ; : : : ; p n ) do conjunto f1; ; ; ng é um arranjo dos n números em alguma ordem, sem repetções ou omssões

Leia mais

9 Medidas Descritivas

9 Medidas Descritivas 1 9 Meddas Descrtvas Vmos aterormete que um cojuto de dados pode ser resumdo através de uma dstrbução de freqüêcas, e que esta pode ser represetada através de uma tabela ou de um gráfco. Se o cojuto refere-se

Leia mais

Algarismos Significativos Propagação de Erros ou Desvios

Algarismos Significativos Propagação de Erros ou Desvios Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento

Leia mais

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma:

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma: Professora Jaete Perera Amador 1 9 Meddas Descrtvas Vmos aterormete que um cojuto de dados pode ser resumdo através de uma dstrbução de freqüêcas, e que esta pode ser represetada através de uma tabela

Leia mais

Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto

Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Faculdade de Ecooma, Admstração e Cotabldade de Rberão Preto Ecooma Moetára Curso de Ecooma / º. Semestre de 014 Profa. Dra. Rosel da Slva Nota de aula CAPM Itrodução Há dos modelos bastate utlzados para

Leia mais

Análise de Regressão

Análise de Regressão Análse de Regressão método estatístco que utlza relação entre duas ou mas varáves de modo que uma varável pode ser estmada (ou predta) a partr da outra ou das outras Neter, J. et al. Appled Lnear Statstcal

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 6 Prof. Luz Alexadre Peterell CAPÍTULO - Estatístca Descrtva Podemos dvdr a Estatístca em duas áreas: estatístca dutva (ferêca estatístca) e estatístca descrtva. Estatístca Idutva: (Iferêca Estatístca)

Leia mais

04/03/2016 UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS DA TERRA DEPARTAMENTO DE GEOMÁTICA AJUSTAMENTO I GA106. Prof. Alvaro Muriel Lima Machado

04/03/2016 UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS DA TERRA DEPARTAMENTO DE GEOMÁTICA AJUSTAMENTO I GA106. Prof. Alvaro Muriel Lima Machado 04/03/06 UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS DA TERRA DEPARTAMENTO DE GEOMÁTICA AJUSTAMENTO I GA06 Prof. Alvaro Murel Lma Machado Itrodução Meddas e Observações (processo ou operação X resultado

Leia mais

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS No caítulo IV, Iterolação Polomal, estudamos uma forma de ldar com fuções matemátcas defdas or taelas de valores. Frequetemete, estas taelas são

Leia mais

INTERPRETANDO ALGUNS CONCEITOS DE PROBABILIDADE ESTATÍSTICA VIA ÁLGEBRA LINEAR

INTERPRETANDO ALGUNS CONCEITOS DE PROBABILIDADE ESTATÍSTICA VIA ÁLGEBRA LINEAR INTERPRETANDO ALGUNS CONCEITOS DE PROBABILIDADE ESTATÍSTICA VIA ÁLGEBRA LINEAR Hetor Achlles Dutra da Rosa - hetorachlles@yahoo.com.br Cetro Federal de Educação Tecológca Celso Suckow da Foseca CEFET/RJ

Leia mais

A esse tipo de tabela, cujos elementos não foram numericamente organizados, denominamos tabela primitiva.

A esse tipo de tabela, cujos elementos não foram numericamente organizados, denominamos tabela primitiva. Dstrbução de Frequênca Tabela prmtva ROL Suponhamos termos feto uma coleta de dados relatvos à estaturas de quarenta alunos, que compõem uma amostra dos alunos de um colégo A, resultando a segunte tabela

Leia mais

Disciplina: Prof. a Dr. a Simone Daniela Sartorio de Medeiros. DTAiSeR-Ar

Disciplina: Prof. a Dr. a Simone Daniela Sartorio de Medeiros. DTAiSeR-Ar Dscpla: 04 Relações etre varáves: Regressão Prof. a Dr. a Smoe Daela Sartoro de Mederos DTASeR-Ar Itrodução Cosdere uma varável aleatóra Y de teresse. Já vmos que podemos escrever essa varável como sedo:

Leia mais

( k) Tema 02 Risco e Retorno 1. Conceitos Básicos

( k) Tema 02 Risco e Retorno 1. Conceitos Básicos FEA -USP Graduação Cêcas Cotábes EAC05 04_0 Profa. Joaíla Ca. Rsco e Retoro. Cocetos Báscos Rotero BE-cap.6 Tema 0 Rsco e Retoro. Cocetos Báscos I. O que é Retoro? II. Qual é o Rsco de um Atvo Idvdual

Leia mais

Parte 3 - Regressão linear simples

Parte 3 - Regressão linear simples Parte 3 - Regressão lear smples Defção do modelo Modelo de regressão empregado para eplcar a relação lear etre duas varáves (ajuste de uma reta). O modelo de regressão lear smples pode ser epresso a forma:

Leia mais

ESTATÍSTICA MÓDULO 2 OS RAMOS DA ESTATÍSTICA

ESTATÍSTICA MÓDULO 2 OS RAMOS DA ESTATÍSTICA ESTATÍSTICA MÓDULO OS RAMOS DA ESTATÍSTICA Ídce. Os Ramos da Estatístca...3.. Dados Estatístcos...3.. Formas Icas de Tratameto dos Dados....3. Notação por Ídces...5.. Notação Sgma ()...5 Estatístca Módulo

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Constata-se, freqüentemente, a estênca de uma relação entre duas (ou mas) varáves. Se tal relação é de natureza quanttatva, a correlação é o nstrumento adequado para descobrr e medr

Leia mais

Análise dos resíduos e Outlier, Alavancagem e Influência

Análise dos resíduos e Outlier, Alavancagem e Influência Análse dos resíduos e Outler, Alavancagem e Influênca Dagnóstco na análse de regressão Usadas para detectar problemas com o ajuste do modelo de regressão. Presença de observações mal ajustadas (pontos

Leia mais

INTRODUÇÃO A ESTATÍSTICA

INTRODUÇÃO A ESTATÍSTICA Hewlett-Packard INTRODUÇÃO A ESTATÍSTICA Aulas 01 e 06 Elso Rodrgues, Gabrel Carvalho e Paulo Luz Sumáro Defções... 1 EXERCÍCIOS FUNDAMENTAIS... 1 Meddas de tedêca cetral... 1 Méda artmétca smples... 1

Leia mais

Média. Mediana. Ponto Médio. Moda. Itabira MEDIDAS DE CENTRO. Prof. Msc. Emerson José de Paiva 1 BAC011 - ESTATÍSTICA. BAC Estatística

Média. Mediana. Ponto Médio. Moda. Itabira MEDIDAS DE CENTRO. Prof. Msc. Emerson José de Paiva 1 BAC011 - ESTATÍSTICA. BAC Estatística BAC 0 - Estatístca Uversdade Federal de Itajubá - Campus Itabra BAC0 - ESTATÍSTICA ESTATÍSTICA DESCRITIVA MEDIDAS DE CENTRO Méda Medda de cetro ecotrada pela somatóra de todos os valores de um cojuto,

Leia mais

Oitava Lista de Exercícios

Oitava Lista de Exercícios Uversdade Federal Rural de Perambuco Dscpla: Matemátca Dscreta I Professor: Pablo Azevedo Sampao Semestre: 07 Otava Lsta de Exercícos Lsta sobre defções dutvas (recursvas) e prova por dução Esta lsta fo

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

APOSTILA DA DISCIPLINA INFERÊNCIA ESTATÍSTICA I

APOSTILA DA DISCIPLINA INFERÊNCIA ESTATÍSTICA I UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE ESTATÍSTICA APOSTILA DA DISCIPLINA INFERÊNCIA ESTATÍSTICA I CURSO DE ESTATÍSTICA Prof. Paulo Rcardo Bttecourt Gumarães O SEMETRE

Leia mais

Conceitos básicos de metrologia. Prof. Dr. Evandro Leonardo Silva Teixeira Faculdade UnB Gama

Conceitos básicos de metrologia. Prof. Dr. Evandro Leonardo Silva Teixeira Faculdade UnB Gama Prof. Dr. Evadro Leoardo Slva Teera Faculdade UB Gama Metrologa: Cêca que abrage os aspectos teórcos e prátcos relatvos a medção; Descreve os procedmetos e métodos para determar as certezas de medções;

Leia mais

Regressão e Correlação

Regressão e Correlação Regressão e Correlação Júlo Osóro Regressão & Correlação: geeraldades Em mutas stuações de pesqusa cetífca, dspomos de uma amostra aleatóra de pares de dados (x, ), resultates da medda cocomtate de duas

Leia mais

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão Estatístca Descrtva Meddas estatístcas: Localzação, Dspersão Meddas estatístcas Localzação Dspersão Meddas estatístcas - localzação Méda artmétca Dados ão agrupados x x Dados dscretos agrupados x f r x

Leia mais

PLANO PROBABILIDADES Professora Rosana Relva DOS. Números Inteiros e Racionais COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS

PLANO PROBABILIDADES Professora Rosana Relva DOS. Números Inteiros e Racionais COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS Professor Luz Atoo de Carvalho PLANO PROBABILIDADES Professora Rosaa Relva DOS Números Iteros e Racoas COMPLEXOS rrelva@globo.com Número s 6 O Número Por volta de 00 d.c a mpressão que se tha é que, com

Leia mais

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS No caítulo ateror estudamos uma forma de ldar com fuções matemátcas defdas or taelas de valores. Frequetemete, estas taelas são otdas com ase em

Leia mais

Capítulo 1. Exercício 5. Capítulo 2 Exercício

Capítulo 1. Exercício 5. Capítulo 2 Exercício UNIVERSIDADE FEDERAL DE GOIÁS CIÊNCIAS ECONÔMICAS ECONOMETRIA (04-II) PRIMEIRA LISTA DE EXERCÍCIOS Exercícos do Gujarat Exercíco 5 Capítulo Capítulo Exercíco 3 4 5 7 0 5 Capítulo 3 As duas prmeras demonstrações

Leia mais

ESTATÍSTICA Exame Final 1ª Época 3 de Junho de 2002 às 14 horas Duração : 3 horas

ESTATÍSTICA Exame Final 1ª Época 3 de Junho de 2002 às 14 horas Duração : 3 horas Faculdade de cooma Uversdade Nova de Lsboa STTÍSTIC xame Fal ª Época de Juho de 00 às horas Duração : horas teção:. Respoda a cada grupo em folhas separadas. Idetfque todas as folhas.. Todas as respostas

Leia mais

Análise Exploratória de Dados

Análise Exploratória de Dados Aálse Eploratóra de Dados Objetvos Aálse bvarada: uma varável qualtatva e uma quattatva: represetar grafcamete as duas varáves combadas; defr e calcular uma medda de assocação etre as varáves. Eemplo 1

Leia mais

MAE116 Noções de Estatística

MAE116 Noções de Estatística Grupo C - º semestre de 004 Exercíco 0 (3,5 potos) Uma pesqusa com usuáros de trasporte coletvo a cdade de São Paulo dagou sobre os dferetes tpos usados as suas locomoções dáras. Detre ôbus, metrô e trem,

Leia mais