CAPÍTULO IV - POSIÇÕES RELATIVAS DE UMA RETA E UM PLANO E DE DUAS RETAS

Tamanho: px
Começar a partir da página:

Download "CAPÍTULO IV - POSIÇÕES RELATIVAS DE UMA RETA E UM PLANO E DE DUAS RETAS"

Transcrição

1 CAÍTULO IV - OSIÇÕES RELATIVAS DE UMA RETA E UM LANO E DE DUAS RETAS 41 sições elativas de uma eta e um plan As psições de uma eta a) paalela a ( // ) :X = R + t v, t IR R e um plan sã: v n // v n = 0 e R n R v v n = 0 e R b) cntida em ( ) c) e cncentes ( = {} ) v n = {} v n 0 14

2 Cas paticula: v n Exempls: 1 Detemine a inteseçã da eta cm plan, ns seguintes cass: a) : X = (1,6,2) + t (1,1,1) ; t IR : x z 3 = 0 b) c) : x 1= y 2 = 2 (z 1) :X = h(6,2,1) + t (1,2,1); = t : y = t ; t IR = t : x + y + 2z 1= 0 t, h IR Sluçã: a) v n = (11,,1) (1,0, 1) = 0, lg, = u = φ Cm R(1,6,2) é um pnt de, veificams que R Lg = φ 1 b) Send v = 1,1, e n = (6,2,1) (1,2,1) = (0, 5,10), tems que 2 v n = 0 Lg, = u = φ Cm R(1,2,1) é um pnt de, veificams que R Lg e cnsequentemente = 15

3 b) De v n = (1,3, 1) (11,,2) = 2 0 cncluíms que e sã cncentes Seja = {} = {(a,b,c)} Tems entã: (1) a + b + 2c 1= 0 (2) a = t b = t, c = t paa algum escala t De (1) e (2) btems t = 2 e (2,3, 2) 2 Detemine uma equaçã da eta que passa pel pnt A(1,0, 2) e é paalela as plans α: 2x y + 2 = 0 e β : x + z 3 = 0 Sluçã: Cm // α e // β, tems v nα e v nβ Send n α e nβ tems que // n α n Assim pdems cnsidea v β LI, v = nα nβ = (1,01) (2, 1,0) = (1,2, 1) Daí uma equaçã vetial da eta é: : X = (1,0, 2) + t (1,2, 1); t IR 42 sições elativas de duas etas Se duas etas estã cntidas n mesm plan dizems que sã cplanaes Cas cntái sã denminadas evesas As etas cplanaes pdem se paalelas (distintas u cincidentes) u cncentes 16

4 Resumind, duas etas 1 e 2 pdem se: Cplanaes Cncentes : { } 1 2 = 1 2 aalelas: Distintas : 1 2 = φ Cincidentes : Revesas 1 2 Estabeleceems a segui cndições paa a identificaçã da psiçã elativa de duas etas Cnsidee as etas : X = R + h v e s :X = S + t v ; h, t IR Se e s sã cplanaes entã s vetes RS, v s e v s [ RS,v,vs ] = sã cplanaes e ptant [ RS,v,vs ] = 0 Recipcamente, se 0 pdems te: i) v // vs, nesse cas e s sã paalelas, lg cplanaes 17

5 ii) v e vs LI, nesse cas RS, v e v s sã LD Cm v e lineamente independentes, entã pdems esceve RS cm cmbinaçã linea de v e vs Lg, existem escalaes h e t tais que S = R + hv + tvs Assim, plan β : X = R + h v + t v s ; h, t IR, cntém as etas e s, que ptant sã cplanaes Obsevems ainda que, neste cas as etas sã cncentes vs sã Um cas paticula de etas cncentes sã as etas pependiculaes Obsevems que se duas etas e s sã pependiculaes entã v v 0 s = v s v s Exempls 1 Estude a psiçã elativa ds seguintes paes de etas: 2x y z + 2 = 0 a) : e s : X = (1,0,2) + h (1, 3,7); h IR x + 3y z + 2 = 0 = h 1 x y b) : y = 1 h ; h IR e s : = = z = 4 + 4h x 3 c) : X = ( 2,1,3) + t( 10, 2, 18) ; t IR e s : = y 2 = 5 = 4 d) : X = (4, 3,1) + h(0,2,1); h IR e s : y = 1 2t ; t IR = 3 t z 12 9 Sluçã: a) Cm v // (2, 1, 1) (1,3, 1) = (4,1,7) e vs // (1, 3,7) tems que as etas e s sã cncentes u evesas Vams entã cnsidea R(0,0,2) e S(1,0,2) pnts de e s, espectivamente Assim, 18

6 [ RS,v,vs ] = = 28 0 tant, as etas e s sã evesas c) Cm v // (1, 1,4) e vs // ( 2,3,1) tems que as etas e s sã cncentes u evesas Vams entã cnsidea R(0,1,4) e S(1,0,8) pnts de e s, espectivamente Assim, [ RS,v,vs ] = = Lg as etas e s sã cncentes c) Cm v // ( 10, 2, 18) e vs // (5,1,9) tems que as etas e s sã paalelas (distintas u cincidentes) Além diss, pnt R( 2,1,3 ) petence às etas e s Assim, pdems cnclui que as etas e s sã cincidentes d) Cm v // (0,2,1) e vs // (0, 2, 1) tems que as etas e s sã paalelas (distintas u cincidentes) Obsevems que pnt R(4, 3,1) petence à eta, n entant nã petence à eta s, pis sistema 4 = 4 3 = 1 2 t nã tem sluçã 1= 3 t Assim, pdems cnclui que as etas e s sã paalelas distintas 2 Dê uma equaçã da eta que passa pel pnt ( 1,1,1 ) e é paalela à eta s: 2x y+ 4z + 3 = 0 x + 5y z + 6 = 0 19

7 Sluçã: Send e s etas paalelas pdems cnsidea v = vs Cm // (2, 1,4) (1,5, 1) = ( 19,6,11) as equações siméticas de s sã: v s x + 1 = 19 y 1 = 6 z 1 11 = 4 + t 3 Mste que as etas : x 2 = y = z 1 e s : y = 2 t; t IR = 3 sã cncentes e detemine pnt de inteseçã Sluçã: Sejam v = (1, 1,1), vs = (1, 1,0) e R(2,0,1) e S(4, 2,3) s, pnts de e espectivamente Entã v,v,rs] = [ s = e assim cncluíms que e s sã cplanaes Cm nã sã paalelas pis v e vs sã vetes LI, tems que as etas sã cncentes Seja = (x, y, z ) = { } { } s Entã, x 2 = y = z 1 e Daí, t = 0 e = (4, 2,3) y = 4 + t = 2 t = 3 4 Detemine uma equaçã da eta que passa pel pnt (1,2,3), é cncente cm a eta s : X = ( 1,3,5) + h (2,5,1); h IR, e tem vet dieçã v tgnal a vet u = (0,1, 4) 20

8 Sluçã: Seja { } = s Entã existe um eal h, tal que ( 1 + 2h,3 + 5h,5 + h ) Cnsideems v = Cm v é tgnal a u, tems que ( 2 + 2h,1 + 5h,2 + h) (0,1, 4) = 0 Lg, h = 7 Assim, = (13,18,12) e : X = (1,2,3) + t (2,5,1); t IR 5 Detemine uma cndiçã necessáia e suficiente paa que uma eta seja paalela a eix OX Sluçã: O eix OX tem vet dieçã i = (1,0,0) Entã, uma eta é paalela a eix OX se, e smente se, v é paalel a vet i = (1,0,0) 6 Detemine uma equaçã da eta que passa pel pnt = (1,0,2), é cncente cm a eta s : X = (1,0,1) + t (2,1,1);t IR e é paalela a plan : 2x 3y + 4z 6 = 0 Sluçã: 0 s Seja { } s = entã, existe t IR tal que = (1 + 2t, t,1 + t) e = (2t, t, t 1) Cm // tems ( 2t,t,t 1) (2, 3,4) = 0 Assim, t = 5 4 Cnsideand = (8,4, 1), uma equaçã vetial de é: v : X = (1,0,2) + t (8,4, 1); t IR 21

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 5 RETA

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 5 RETA Lui Fancisc da Cu Depatament de Matemática Unesp/Bauu CAPÍTULO RETA Definiçã: Seja () uma eta que cntém um pnt A e tem a dieçã de um vet v, cm v. Paa que um pnt X d R petença à eta () deve ce que s vetes

Leia mais

CAPÍTULO I EQUAÇÕES DA RETA

CAPÍTULO I EQUAÇÕES DA RETA CAPÍTULO I EQUAÇÕES DA RETA Equaçã vetial Um ds aximas da gemetia euclidiana diz que dis pnts distints deteminam uma eta Seja a eta deteminada pels pnts P e P P P Um pnt P petence à eta se, e smente se,

Leia mais

Universidade Federal da Bahia Departamento de Matemática

Universidade Federal da Bahia Departamento de Matemática Retas e Plans Univesidade Fedeal da Bahia Depatament de Matemática 000 Intduçã Este text é uma vesã evisada e atualizada d text " Retas e Plans" de autia das pfessas Ana Maia Sants Csta, Heliacy Celh Suza

Leia mais

CAPÍTULO 7 DISTÂNCIAS E ÂNGULOS

CAPÍTULO 7 DISTÂNCIAS E ÂNGULOS Luiz Fancisc da Cuz epatament de Matemática Unesp/Bauu CPÍTULO 7 ISTÂNCIS E ÂNGULOS 1 ISTÂNCIS Tds s cnceits vetiais que sã necessáis paa cálcul de distâncias e ânguls, de ceta fma, já fam estudads ns

Leia mais

CAPÍTULO VI - DISTÂNCIA

CAPÍTULO VI - DISTÂNCIA CAPÍTULO VI - DISTÂNCIA 61 Ditância ente di pnt A ditância ente um pnt A e um pnt B B é indicada p d(a,b) e definida p AB A Cnideand A (a1, a, a3 ) e B(b1, b, b 3 ) tem que: d(a, B) = AB = (b1 a1, b a,

Leia mais

I, determine a matriz inversa de A. Como A 3 3 A = 2 I; fatorando o membro esquerdo dessa igualdade por A, temos a expressão

I, determine a matriz inversa de A. Como A 3 3 A = 2 I; fatorando o membro esquerdo dessa igualdade por A, temos a expressão VTB 008 ª ETAPA Sluçã Cmentada da Prva de Matemática 0 Em uma turma de aluns que estudam Gemetria, há 00 aluns Dentre estes, 0% fram aprvads pr média e s demais ficaram em recuperaçã Dentre s que ficaram

Leia mais

BRDE AOCP 2012. 01. Complete o elemento faltante, considerando a sequência a seguir: 1 2 4 8? 32 64 (A) 26 (B) 12 (C) 20 (D) 16 (E) 34.

BRDE AOCP 2012. 01. Complete o elemento faltante, considerando a sequência a seguir: 1 2 4 8? 32 64 (A) 26 (B) 12 (C) 20 (D) 16 (E) 34. BRDE AOCP 01 01. Cmplete element faltante, cnsiderand a sequência a seguir: (A) 6 (B) 1 (C) 0 (D) 16 (E) 4 Resluçã: 1 4 8? 64 Observe que, td númer subsequente é dbr d númer anterir: 1 4 8 16 4 8 16 64...

Leia mais

4.4 Mais da geometria analítica de retas e planos

4.4 Mais da geometria analítica de retas e planos 07 4.4 Mais da geometia analítica de etas e planos Equações da eta na foma simética Lembemos que uma eta, no planos casos acima, a foma simética é um caso paticula da equação na eta na foma geal ou no

Leia mais

Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta

Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta Questã O númer de gls marcads ns 6 jgs da primeira rdada de um campenat de futebl fi 5,,,, 0 e. Na segunda rdada, serã realizads mais 5 jgs. Qual deve ser númer ttal de gls marcads nessa rdada para que

Leia mais

5 Estudo analítico de retas e planos

5 Estudo analítico de retas e planos GA3X1 - Geometia Analítica e Álgeba Linea 5 Estudo analítico de etas e planos 5.1 Equações de eta Definição (Veto dieto de uma eta): Qualque veto não-nulo paalelo a uma eta chama-se veto dieto dessa eta.

Leia mais

GEOMETRIA ESPACIAL DE POSIÇÃO. - Ponto: - Reta: - Plano: - Espaço: Dois pontos distintos determinam uma reta. ou. Posições Relativas

GEOMETRIA ESPACIAL DE POSIÇÃO. - Ponto: - Reta: - Plano: - Espaço: Dois pontos distintos determinam uma reta. ou. Posições Relativas GEOMETRIA ESPACIAL DE POSIÇÃO Conceitos Pimitivos: - Ponto: - Reta: - Plano: - Espaço: A B Postulados de Existência: Existem infinitos pontos, infinitas etas, infinitos planos e um único espaço. Algumas

Leia mais

CAPÍTULO VIII. Análise de Circuitos RL e RC

CAPÍTULO VIII. Análise de Circuitos RL e RC CAPÍTUO VIII Análise de Circuits e 8.1 Intrduçã Neste capítul serã estudads alguns circuits simples que utilizam elements armazenadres. Primeiramente, serã analisads s circuits (que pssuem apenas um resistr

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 6 PLANO. v r 1

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 6 PLANO. v r 1 Luiz Fancisco a Cuz Depatamento e Matemática Unesp/Bauu CAPÍTULO 6 PLANO Definição: Seja A um ponto qualque o plano e v e v ois vetoes LI (ou seja, não paalelos), mas ambos paalelos ao plano. Seja X um

Leia mais

E d A E d A E d A E d A

E d A E d A E d A E d A X R Í I OS: Lei de Gauss 1. Uma supefície fechada, na fma de um cilind et, encnta-se imes em um camp elétic unifme. O eix d cilind é paalel a camp elétic. Usand a fma integal paa flux d camp elétic, mste

Leia mais

Termodinâmica. Termologia

Termodinâmica. Termologia ermdinâmica ermlgia nceits Básics A ermlgia é a parte da ísica que estuda calr e tds s fenômens térmics. ermmetria é a parte da ermlgia que estuda a temperatura e suas medidas. alr é energia térmica em

Leia mais

Objetivo. Estudo do efeito de sistemas de forças concorrentes.

Objetivo. Estudo do efeito de sistemas de forças concorrentes. Univesidade Fedeal de Alagas Cent de Tecnlgia Cus de Engenhaia Civil Disciplina: Mecânica ds Sólids 1 Códig: ECIV018 Pfess: Eduad Nbe Lages Estática das Patículas Maceió/AL Objetiv Estud d efeit de sistemas

Leia mais

4.3. DIVISÃO DA CIRCUNFERÊNCIA EM ARCOS IGUAIS: PROCESSOS EXATOS

4.3. DIVISÃO DA CIRCUNFERÊNCIA EM ARCOS IGUAIS: PROCESSOS EXATOS ELEMENTOS DE GEOMETRIA 105 05. Detemine gaficamente a medida apximada em gaus de um ac de cm de cmpiment em uma cicunfeência de,5cm de ai. 06. Numa cicunfeência de ai qualque, define-se um adian (1ad)

Leia mais

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa A. alternativa D. alternativa B. alternativa A

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa A. alternativa D. alternativa B. alternativa A Questã TIPO DE PROVA: A Um bjet é vendid em uma lja pr R$ 6,00. O dn da lja, mesm pagand um impst de 0% sbre preç de venda, btém um lucr de 0% sbre preç de cust. O preç de cust desse bjet é: a) R$ 6,00

Leia mais

Gabarito Extensivo MATEMÁTICA volume 1 Frente D

Gabarito Extensivo MATEMÁTICA volume 1 Frente D Gabarit Extensiv MATEMÁTICA vlume 1 Frente D 01) 8x 40 6x 0 8x 6x 0 + 40 x 0 x 10 8x 40 8.10 40 80 40 40 6x 0 6.10 0 60 0 40 0) Pnteir pequen (hras): 30-1 hra 60 minuts 1 -? 30 60 1 x x 4 min Prtant, 1h4min

Leia mais

singular GEOMETRIA ANALÍTICA 2º E.M. Tarde Colégio Técnico Noturno Profª Liana (Lista de exercícios elaborada pelo professor DANRLEY)

singular GEOMETRIA ANALÍTICA 2º E.M. Tarde Colégio Técnico Noturno Profª Liana (Lista de exercícios elaborada pelo professor DANRLEY) 1 singula GEOMETRIA ANALÍTICA 2º E.M. Tade Colégio Técnico Notuno Pofª Liana (Lista de eecícios elaboada pelo pofesso DANRLEY) SISTEMA CARTESIANO ORTOGONAL 2 1) Indique a que quadante petence cada ponto:

Leia mais

QUESTÕES COMENTADAS DE MECÂNICA

QUESTÕES COMENTADAS DE MECÂNICA QUSTÕS OMNTS MÂNI Prf. Ináci envegnú Mrsch MOM ept. ng. ivil UFRGS 1) etermine valr da frça F 2, figura (1), que é rtgnal à reta O, para que smatóri ds mments em O seja igual a zer. 2 16 F 2 Sluçã: Transprta-se

Leia mais

Credenciamento Portaria MEC 3.613, de D.O.U

Credenciamento Portaria MEC 3.613, de D.O.U edenciamento Potaia ME 3.63, de 8..4 - D.O.U. 9..4. MATEMÁTIA, LIENIATURA / Geometia Analítica Unidade de apendizagem Geometia Analítica em meio digital Pof. Lucas Nunes Ogliai Quest(iii) - [8/9/4] onteúdos

Leia mais

PARTE IV COORDENADAS POLARES

PARTE IV COORDENADAS POLARES PARTE IV CRDENADAS PLARES Existem váios sistemas de coodenadas planas e espaciais que, dependendo da áea de aplicação, podem ajuda a simplifica e esolve impotantes poblemas geométicos ou físicos. Nesta

Leia mais

MOVIMENTO RETILÍNEO UNIFORMEMENTE VARIADO (MRUV)

MOVIMENTO RETILÍNEO UNIFORMEMENTE VARIADO (MRUV) MOVIMENTO RETILÍNEO UNIFORMEMENTE VARIADO (MRUV) 3.1 - INTRODUÇÃO A partir de agra, passarems a estudar um tip de miment em que a elcidade nã é mais cnstante. N MRUV passa a existir a aceleraçã cnstante,

Leia mais

QUESTÕES DISCURSIVAS

QUESTÕES DISCURSIVAS QUESTÕES DISCURSIVAS Questã 1 Um cliente tenta negciar n banc a taa de jurs de um empréstim pel praz de um an O gerente diz que é pssível baiar a taa de jurs de 40% para 5% a an, mas, nesse cas, um valr

Leia mais

Campo Elétrico. 4πε o FATECSP Campo Elétrico

Campo Elétrico. 4πε o FATECSP Campo Elétrico . Camp létic FATCSP - 0 Camp létic Pdems mapea a tempeatua a ed de um fn utiliand-se de um temômet paa bte uma distibuiçã de tempeatuas cnhecid cm camp de tempeatua d fn. Da mesma fma camp elétic em tn

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru Luiz Fancisco da Cuz Depatamento de Matemática Unesp/Bauu EXERCÍCIOS SOBRE CÁLCULO VETOTIL E GEOMETRI NLÍTIC 01) Demonste vetoialmente que o segmento que une os pontos médios dos lados não paalelos de

Leia mais

Introdução. capítulo 1. Objetivos de aprendizagem

Introdução. capítulo 1. Objetivos de aprendizagem capítulo 1 Intodução Neste capítulo, apesentamos os entes geométicos fundamentais a sabe, o ponto, a eta e o plano e conceitos elacionados que condicionam a compeensão do estante deste livo. Objetivos

Leia mais

MATEMÁTICA. 248 = 800 mg de cálcio. 1600 k2. k 2 1600 k2

MATEMÁTICA. 248 = 800 mg de cálcio. 1600 k2. k 2 1600 k2 (9) 35-0 www.elitecampinas.cm.br O ELITE RESOLVE A UNICAMP 005 SEGUNDA FASE MATEMÁTICA MATEMÁTICA ATENÇÃO: Escreva a resluçã COMPLETA de cada questã n espaç a ela reservad. Nã basta escrever apenas resultad

Leia mais

Caderno 2: 75 minutos. Tolerância: 15 minutos. Não é permitido o uso de calculadora.

Caderno 2: 75 minutos. Tolerância: 15 minutos. Não é permitido o uso de calculadora. Eame Final Nacional de Matemática A Pova 635 Época Especial Ensino Secundáio 018 1.º Ano de Escolaidade Deceto-Lei n.º 139/01, de 5 de julho Duação da Pova (Cadeno 1 + Cadeno ): 150 minutos. Toleância:

Leia mais

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 6- º ano. Este material é um complemento da obra Matemática 6. uso escolar. Venda proibida.

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 6- º ano. Este material é um complemento da obra Matemática 6. uso escolar. Venda proibida. 6 ENSINO FUNDMENTL 6- º ano Matemática tividades complementaes Este mateial é um complemento da oba Matemática 6 Paa Vive Juntos. Repodução pemitida somente paa uso escola. Venda poibida. Samuel Casal

Leia mais

Em geometria, são usados símbolos e termos que devemos nos familiarizar:

Em geometria, são usados símbolos e termos que devemos nos familiarizar: IFS - ampus Sã Jsé Área de Refrigeraçã e ndicinament de r Prf. Gilsn ELEENTS E GEETRI Gemetria significa (em greg) medida de terra; ge = terra e metria = medida. nss redr estams cercads de frmas gemétricas,

Leia mais

5/21/2015. Prof. Marcio R. Loos. Revisão: Campo Magnético. Revisão: Campo Magnético. Ímãs existem apenas em pares de polos N e S (não há monopolos*).

5/21/2015. Prof. Marcio R. Loos. Revisão: Campo Magnético. Revisão: Campo Magnético. Ímãs existem apenas em pares de polos N e S (não há monopolos*). 5/1/15 Físca Geal III Aula Teóca 16 (Cap. 1 pate 1/): 1) evsã: Camp Magnétc ) Le de t-savat ) devd a um f etlíne lng ) Lnhas de camp pduzds p um f 5) n cent de cuvatua de um ac de f 6) Fça ente centes

Leia mais

)25d$0$*1e7,&$62%5( &21'8725(6

)25d$0$*1e7,&$62%5( &21'8725(6 73 )5d$0$*1e7,&$6%5( &1'875(6 Ao final deste capítulo você deveá se capaz de: ½ Explica a ação de um campo magnético sobe um conduto conduzindo coente. ½ Calcula foças sobe condutoes pecoidos po coentes,

Leia mais

4m 5) 10,8 kn/m. 2 m. 3 m 2 m. 12 kn/m. 3 m. 5 m 3 m. 6 kn/m. 3 m. 4 m. 6 m. 2 m. 3 m 2 m. 3 m. 4 m 4 m. 6 kn/m 1 kn EI EI

4m 5) 10,8 kn/m. 2 m. 3 m 2 m. 12 kn/m. 3 m. 5 m 3 m. 6 kn/m. 3 m. 4 m. 6 m. 2 m. 3 m 2 m. 3 m. 4 m 4 m. 6 kn/m 1 kn EI EI nhanguera-uniderp Engenharia ivil iperestática Exercícis - Utilize étd ds deslcaments para calcular as reações de api e trace s diagramas de esfrçs nrmal, crtante e mment fletr ds quadrs hiperestátics:

Leia mais

Conversão Grau Radiano 180 o rad Onde 3,14

Conversão Grau Radiano 180 o rad Onde 3,14 RESUMO TEÓRICO Intrduçã à Trignmetria Relações Trignmétricas n Triângul Retângul Catet Opst a α sen α Hiptenusa Hiptenusa a Catet Adjacente a Catet Opst a Catet Adjacente a α cs α Hiptenusa Catet Opst

Leia mais

Quadriláteros. a) 30 o e 150 o b) 36 o e 72 o c) 36 o e 144 o d) 45 o e 135 o e) 60 o e 120 o. Nessas condições, a área do paralelogramo EFBG é.

Quadriláteros. a) 30 o e 150 o b) 36 o e 72 o c) 36 o e 144 o d) 45 o e 135 o e) 60 o e 120 o. Nessas condições, a área do paralelogramo EFBG é. 1) (OBM) O retângul a lad está dividid em 9 quadrads, A, B, C, D, E, F, G, H e I. O quadrad A tem lad 1 e quadrad B tem lad 9. Qual é lad d quadrad I? Quadriláters b) Cnsidere dis plinômis, f(x) e g(x),

Leia mais

UFJF CONCURSO VESTIBULAR 2012 REFERÊNCIA DE CORREÇÃO DA PROVA DE MATEMÁTICA. e uma das raízes é x = 1

UFJF CONCURSO VESTIBULAR 2012 REFERÊNCIA DE CORREÇÃO DA PROVA DE MATEMÁTICA. e uma das raízes é x = 1 UFJF ONURSO VESTIULR REFERÊNI DE ORREÇÃO D PROV DE MTEMÁTI 4 Questão Seja P( = ax + bx + cx + dx + e um polinômio com coeficientes eais em que b = e uma das aízes é x = Sabe-se que a < b < c < d < e fomam

Leia mais

Material Teórico - Sistemas Lineares e Geometria Anaĺıtica. Sistemas com Três Variáveis - Parte 2. Terceiro Ano do Ensino Médio

Material Teórico - Sistemas Lineares e Geometria Anaĺıtica. Sistemas com Três Variáveis - Parte 2. Terceiro Ano do Ensino Médio Mateial Teóico - Sistemas Lineaes e Geometia Anaĺıtica Sistemas com Tês Vaiáveis - Pate 2 Teceio Ano do Ensino Médio Auto: Pof. Fabício Siqueia Benevides Reviso: Pof. Antonio Caminha M. Neto 1 Sistemas

Leia mais

Testes Propostos de Geometria Plana: Ângulos

Testes Propostos de Geometria Plana: Ângulos u de Matemática Tete Ppt de Gemetia Plana: Ângul 01. Sejam, e epectivamente a medida d cmplement, uplement e eplement d ângul de 40, têm-e 05. i ângul adjacente ã cmplementae. ntã, ângul fmad pela bietize

Leia mais

Matemática B Semi-Extensivo V. 1. Exercícios

Matemática B Semi-Extensivo V. 1. Exercícios Matemática B Semi-Etensiv V. Eercícis 0) E Cm DBC é isósceles, tems DC 8. Em ADC sen 60º AC DC 0) B sen 60º 6 cs 60º y y y 6 Perímetr + 6 + 6 8 + 6 6( + ) 0) AC 8 AC 6 tg y y y tg 0) D 8. h 8 h 6 d 8 +

Leia mais

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano Escola Secundáia/ da Sé-Lamego Ficha de Tabalho de Matemática Ano Lectivo 00/04 Geometia - Revisões º Ano Nome: Nº: Tuma: A egião do espaço definida, num efeencial otonomado, po + + = é: [A] a cicunfeência

Leia mais

Valor das aposentadorias

Valor das aposentadorias Valr das apsentadrias O que é? O cálcul d valr de apsentadrias é a frma cm s sistemas d INSS estã prgramads para cumprir que está previst na legislaçã em vigr e definir valr inicial que vai ser pag mensalmente

Leia mais

Matemática B Extensivo V. 6

Matemática B Extensivo V. 6 Matemática Etensivo V. 6 Eecícios ) Seja: + e s a eta pependicula a : omo s, temos: m s m s Logo, a equação da eta s é dada po: m ( ) ( ) ( ) + + + ) + + Temos ainda: m + + m m omo as etas acima são paalelas,

Leia mais

5ª LISTA DE EXERCÍCIOS - CINEMÁTICA

5ª LISTA DE EXERCÍCIOS - CINEMÁTICA UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE FÍSICA DEPARTAMENTO DE FÍSICA DA TERRA E DO MEIO AMBIENTE CURSO: FÍSICA GERAL E EXPERIMENTAL I E SEMESTRE: 2008.1 5ª LISTA DE EXERCÍCIOS - CINEMÁTICA Cnsidee

Leia mais

ENGENHARIA FÍSICA FENÔMENOS DE TRANSPORTE B

ENGENHARIA FÍSICA FENÔMENOS DE TRANSPORTE B ENGENHARIA FÍSICA FENÔMENOS DE TRANSPORTE B Pf. D. Ségi R. Mnt segi.mnt@usp.b smnt@dequi.eel.usp.b TRANSFERÊNCIA DE CALOR ENGENHARIA FÍSICA AULA 7 RAIO CRÍTICO DE ISOLAMENTO 2 Cnsidee um tub de pequen

Leia mais

matemática 2 Questão 7

matemática 2 Questão 7 Questã TIPO DE PROVA: A Na figura, a diferença entre as áreas ds quadrads ABCD e EFGC é 56. Se BE =,a área d triângul CDE vale: a) 8,5 b) 0,5 c),5 d),5 e) 6,5 pr semana. Eventuais aulas de refrç sã pagas

Leia mais

Figura 13-Balança de torção

Figura 13-Balança de torção Capítul-Cagas eléticas, islantes e cndutes ças eléticas A Lei de Culmb Augustin Culmb aceditava na teia de açã a distância paa a eleticidade Ele inventa e cnstói em 785 uma balança de tçã paa estuda a

Leia mais

Função Inversa. Função Inversa. Exemplos: f(x) = y. Notemos que f: A B é sobrejetora se, e somente se, Im(f) = B. f é sobrejetora Im( f ) = B

Função Inversa. Função Inversa. Exemplos: f(x) = y. Notemos que f: A B é sobrejetora se, e somente se, Im(f) = B. f é sobrejetora Im( f ) = B UNIVERSIDDE DO ESTDO DE MTO GROSSO CMPUS UNIVERSITÁRIO DE SINOP FCULDDE DE CIÊNCIS EXTS E TECNOLÓGICS CURSO DE ENGENHRI CIVIL DISCIPLIN: FUNDMENTOS DE MTEMÁTIC Funçã Inversa. Funçã sbrejetra Ntems que

Leia mais

MATEMÁTICA APLICADA RESOLUÇÃO

MATEMÁTICA APLICADA RESOLUÇÃO GRADUAÇÃO EM ADMINISTRAÇÃO, CIÊNCIAS ECONÔMICAS E 3/0/06 As grandezas P, T e V sã tais que P é diretamente prprcinal a T e inversamente prprcinal a V Se T aumentar 0% e V diminuir 0%, determine a variaçã

Leia mais

MATRIZES. Em uma matriz M de m linhas e n colunas podemos representar seus elementos da seguinte maneira:

MATRIZES. Em uma matriz M de m linhas e n colunas podemos representar seus elementos da seguinte maneira: MATRIZES Definiçã Chm-se mtriz d tip m x n (m IN* e n IN*) td tel M frmd pr númers reis distriuíds em m linhs e n cluns. Em um mtriz M de m linhs e n cluns pdems representr seus elements d seguinte mneir:

Leia mais

MATEMÁTICA. Módulo 28. Frente IV - Caderno 07. Paralelismo e Perpendicularismo no Espaço Página 229

MATEMÁTICA. Módulo 28. Frente IV - Caderno 07. Paralelismo e Perpendicularismo no Espaço Página 229 MATEMÁTICA Fene IV - Cadeno 07 Módulo 28 Paalelismo e Pependiculaismo no Espaço Página 229 GEOMETRIA DE POSIÇÃO POSTULADOS POSTULADO DA EXISTÊNCIA Exisem: pono, ea e plano A C s B Numa ea, ou foa dela,

Leia mais

f (x) (1 + (f (x)) 2 ) 3/2. κ(x) = f(x) = log x, f(x) = a cosh x a, a 0 (catenaria), f(x) = sen ax 2,

f (x) (1 + (f (x)) 2 ) 3/2. κ(x) = f(x) = log x, f(x) = a cosh x a, a 0 (catenaria), f(x) = sen ax 2, Univesidade Fedeal do Rio de Janeio INSTITUTO DE MATEMÁTICA Depatamento de Métodos Matemáticos Pimeia Lista de Execícios - Geometia Difeencial 010/0 1. Calcula o veto tangente unitáio, a nomal pincipal

Leia mais

Tema: Estudo do Comportamento de Funções usando Cálculo Diferencial. Seja definida em um intervalo e sejam e pontos deste intervalo.

Tema: Estudo do Comportamento de Funções usando Cálculo Diferencial. Seja definida em um intervalo e sejam e pontos deste intervalo. Tema: Estud d Cmprtament de Funções usand Cálcul Diferencial Funções Crescentes, Decrescentes e Cnstantes Seja definida em um interval e sejam e pnts deste interval Entã: é crescente n interval se para

Leia mais

CÁLCULO I. Aula n o 02: Funções. Denir função e conhecer os seus elementos; Listar as principais funções e seus grácos.

CÁLCULO I. Aula n o 02: Funções. Denir função e conhecer os seus elementos; Listar as principais funções e seus grácos. CÁLCULO I Prf. Marcs Diniz Prf. André Almeida Prf. Edilsn Neri Júnir Prf. Emersn Veiga Prf. Tiag Celh Aula n 02: Funções. Objetivs da Aula Denir funçã e cnhecer s seus elements; Recnhecer grác de uma funçã;

Leia mais

Exercícios propostos

Exercícios propostos Eecícios poposos 01 Esceva uma equação da ea nos casos a segui a) passa pelo pono P(, 1,) e em a dieção do veo u (,1,1 ) b) passa pelos ponos A(1,, 1) e B(0,,) 0 Veifique, em cada um dos iens abaio, se

Leia mais

CAPÍTULO 6. Exercícios 6.3

CAPÍTULO 6. Exercícios 6.3 CAPÍTULO 6 Execícios 6.3 1. Em notação vetoial: (x, y) (x 0, y 0 ) (a, b) é a equação da eta que passa pelo ponto (x 0, y 0 ) e é paalela à dieção do veto v ( a, b). Potanto, (x, y) (1, 2) (1, 1), é a

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 VETORES NO PLANO E NO ESPAÇO

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 VETORES NO PLANO E NO ESPAÇO Lui Fancisco da Cu Depatamento de Matemática Unesp/Bauu CAPÍTULO VETORES NO PLANO E NO ESPAÇO Vetoes no plano O plano geomético, também chamado de R, simbolicamente escevemos: R RR {(,), e R}, é o conunto

Leia mais

F G. m 2. Figura 32- Lei da gravitação Universal de Newton e Lei de Coulomb.

F G. m 2. Figura 32- Lei da gravitação Universal de Newton e Lei de Coulomb. apítul 3-Ptencal eletc PÍTULO 3 POTEIL ELÉTRIO Intduçã Sabems ue é pssível ntduz cncet de enega ptencal gavtacnal pue a fça gavtacnal é cnsevatva Le de Gavtaçã Unvesal de ewtn e a Le de ulmb sã mut paecdas

Leia mais

NOTAS DE AULA ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA RETAS E PLANOS ERON E ISABEL

NOTAS DE AULA ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA RETAS E PLANOS ERON E ISABEL NOTAS DE AULA ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA RETAS E PLANOS ERON E ISABEL SALVADOR BA 7 EQUAÇÃO VETORIAL DA RETA EQUAÇÕES DA RETA DEF: Qualque eto não nulo paalelo a uma eta chama-e eto dieto dea

Leia mais

XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (7 a. e 8 a. Ensino Fundamental) GABARITO

XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (7 a. e 8 a. Ensino Fundamental) GABARITO GABARITO NÍVEL XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (7 a. e 8 a. Ensin Fundamental) GABARITO ) D 6) A ) D 6) C ) C ) C 7) C ) C 7) B ) E ) C 8) A ) E 8) C ) D 4) A 9) B 4) C 9)

Leia mais

PROGRAMA CLIENTE REFERÊNCIA FH REGULAMENTO

PROGRAMA CLIENTE REFERÊNCIA FH REGULAMENTO PROGRAMA CLIENTE REFERÊNCIA FH REGULAMENTO Última Revisã: 02/06/2014 1. RESUMO CADASTRO Cliente preenche Frmulári de Cadastr CONFIRMAÇÃO DE CADASTRO A FH envia um e-mail de cnfirmaçã de cadastr para cliente

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 GEOM. ANALÍTICA PONTO E RET

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 GEOM. ANALÍTICA PONTO E RET INTRODUÇÃO... NOÇÕES BÁSICAS... POSIÇÃO DE UM PONTO EM RELAÇÃO AO SISTEMA... DISTÂNCIA ENTRE DOIS PONTOS... 5 RAZÃO DE SECÇÃO... DIVISÃO DE UM SEGMENTO NUMA RAZÃO DADA... 4 PONTO MÉDIO DE UM SEGMENTO...

Leia mais

1. Instruções para preenchido pelos Participantes

1. Instruções para preenchido pelos Participantes 1. Instruções para preenchid pels Participantes O Participante Cetip que deseja ser certificad a realizar a guarda física de ativs cartulares, deve preencher questinári a seguir e enviá-l à Cetip: CETIP

Leia mais

SUPERFÍCIE E CURVA. F(x, y, z) = 0

SUPERFÍCIE E CURVA. F(x, y, z) = 0 SUPERFÍIE E URVA SUPERFÍIE E URVA As superfícies sã estudadas numa área chamada de Gemetria Diferencial, desta frma nã se dispõe até nível da Gemetria Analítica de base matemática para estabelecer cnceit

Leia mais

Exercícios propostos

Exercícios propostos Os undaments da ísca lume Testes prpsts Menu Resum d capítul apítul Exercícs prpsts Espelhs esércs P.57 P.58 P.59 pnta d cgarr deve ser clcada n c prncpal : P.60 O espelh a ser utlzad é côncav. O lament

Leia mais

j^qbjžqf`^=^mif`^a^=

j^qbjžqf`^=^mif`^a^= j^qbjžqf`^^mif`^a^ N Walter tinha dinheir na pupança e distribuiu uma parte as três filhs A mais velh deu / d que tinha na pupança D que sbru, deu /4 a filh d mei A mais nv deu / d que restu ^ Que prcentagem

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE ENGENHARIA EXPRESSÃO GRÁFICA BÁSICA - ENG 1070

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE ENGENHARIA EXPRESSÃO GRÁFICA BÁSICA - ENG 1070 PONTIFÍI UNIVERSIDDE TÓLI DE GOIÁS DEPRTMENTO DE ENGENHRI EXPRESSÃO GRÁFI ÁSI - ENG 1070 I - Elementos Fundamentais da Geometia 1- Ponto: O ponto geomético é um ente ideal, isto é, só existe na nossa imaginação.

Leia mais

Testes para comparação de médias

Testes para comparação de médias 7 /03/018 Rtei de Aula Aula 5 Expeimentaçã Ztécnica Pfa. Da. Amanda Liz Pacífic Manfim Peticaai Tete paa cmpaaçã de média Cntate de média: Y = c 1 m 1 + c m + + c I m I e i=1 c i = c 1 + c + +c I = 0 I

Leia mais

Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa B

Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa B Questã 1 Uma pesquisa de mercad sbre determinad eletrdméstic mstru que 7% ds entrevistads preferem a marca X, 40% preferem a marca Y, 0% preferem a marca Z, 5% preferem X e Y, 8% preferem Y e Z, % preferem

Leia mais

Infisc. Programa Validador de Lotes de DMS-e Manual de uso do Programa Validador de Arquivo XML para DMS- e

Infisc. Programa Validador de Lotes de DMS-e Manual de uso do Programa Validador de Arquivo XML para DMS- e Prgrama Validadr de Ltes de DMS-e Manual de us d Prgrama Validadr de Arquiv XML para DMS- e Este manual destina- se a rientar s cntribuintes em cm validar arquivs XML para a remessa de ltes de DMSe. Farrupilha

Leia mais

o que se entende por lente.

o que se entende por lente. 1062.0041 As lentes esféricas e suas principais características. 1. Habilidades e cmpetências. 3. Mntagem. B ::; A términ desta atividade alun deverá ter Cas necessári cnsulte a instruçã ]992.021. cmpetência

Leia mais

LISTA DE EXERCÍCIOS DE GEOMETRIA ANALÍTICA. 01) Dados os vetores e, determine o valor da expressão vetorial. Resp: A=51

LISTA DE EXERCÍCIOS DE GEOMETRIA ANALÍTICA. 01) Dados os vetores e, determine o valor da expressão vetorial. Resp: A=51 1 LISTA DE EXERCÍCIOS DE GEOMETRIA ANALÍTICA 01) Dados os vetores e, determine o valor da expressão vetorial. A=51 02) Decomponha o vetor em dois vetores tais que e, com. 03) Dados os vetores, determine

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Matemática 11. N DE ESLRIDDE Duação: 90 minutos Data: adeno 1 (é pemitido o uso de calculadoa) Na esposta aos itens de escolha múltipla, selecione a opção coeta. Esceva, na olha de espostas, o númeo do

Leia mais

SISTEMA DE COORDENADAS

SISTEMA DE COORDENADAS ELETROMAGNETISMO I 1 0 ANÁLISE VETORIAL Este capítulo ofeece uma ecapitulação aos conhecimentos de álgeba vetoial, já vistos em outos cusos. Estando po isto numeado com o eo, não fa pate de fato dos nossos

Leia mais

Geometria de Posição. Continuação. Prof. Jarbas

Geometria de Posição. Continuação. Prof. Jarbas Geometia de Poição Continuação Pof. Jaba POSIÇÕES RELATIVAS ENTRE DUAS RETAS NO ESPAÇO O que ão eta coplanae? São eta contida num memo plano. O que ão eta evea? São eta que não etão contida num memo plano.

Leia mais

Diagramas líquido-vapor

Diagramas líquido-vapor Diagramas líquid-vapr ara uma sluçã líquida cntend 2 cmpnentes vláteis que bedecem (pel mens em primeira aprximaçã) a lei de Rault, e prtant cnsiderada cm uma sluçã ideal, a pressã de vapr () em equilíbri

Leia mais

CAPÍTULO 10 TRANSLAÇÃO E ROTAÇÃO DE EIXOS

CAPÍTULO 10 TRANSLAÇÃO E ROTAÇÃO DE EIXOS CAPÍTULO 0 TRANSLAÇÃO E ROTAÇÃO DE EIXOS TRANSLAÇÃO DE EIXOS NO R Sejam O e O s eis primitivs, d Sistema Cartesian de Eis Crdenads cm rigem O(0,0). Sejam O e O s nvs eis crdenads cm rigem O (h,k), depis

Leia mais

Circunferência e círculo

Circunferência e círculo Cicunfeência e cículo evolução da humanidade foi aceleada po algumas descobetas e invenções. Ente elas, podemos cita a impensa de Johannes Gutenbeg (1400-1468), na lemanha, po volta de 1450, que pemitiu

Leia mais

O resultado dessa derivada é então f (2) = lim = lim

O resultado dessa derivada é então f (2) = lim = lim Tets de Cálcul Prf. Adelm R. de Jesus I. A NOÇÃO DE DERIVADA DE UMA FUNÇÃO EM UM PONTO Dada uma funçã yf() e um pnt pdems definir duas variações: a variaçã de, chamada, e a variaçã de y, chamada y. Tems

Leia mais

Aula 05 Fontes Independentes e Dependentes

Aula 05 Fontes Independentes e Dependentes Campus I Jã Pessa Disciplina: Análise de Circuits Curs Técnic Integrad em Eletrônica Prfª: Rafaelle Felician 1. Mdels de Circuits Eletrônics Intrduçã Aula 05 Fntes Independentes e Dependentes Uma das funções

Leia mais

XXXIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXXIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXXIII OLIMPÍD RSILEIR DE MTEMÁTI PRIMEIR FSE NÍVEL (Ensin Médi) GRITO GRITO NÍVEL ) 6) ) D 6) D ) ) 7) D ) 7) D ) D ) 8) ) 8) D ) ) 9) ) 9) ) D ) E 0) D ) D 0) E ) E ada questã da Primeira Fase vale pnt.

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica ESCOL POLITÉCNIC D UNIVESIDDE DE SÃO PULO Depatamento de Engenhaia ecânica PE 100 ecânica Pova de ecupeação - Duação 100 minutos 05 de feveeio de 013 1 - Não é pemitido o uso de calculadoas, celulaes,

Leia mais

Soma dos ângulos: internos ou externos?

Soma dos ângulos: internos ou externos? Refrç esclar M ate mática Sma ds ânguls: interns u externs? Dinâmica 5 9º An 4º Bimestre Prfessr DISCIPLINA An CAMPO CONCEITO Matemática 9º d Ensin Fundamental Gemétric. Plígns regulares e áreas de figuras

Leia mais

Aula 31 Área de Superfícies - parte II

Aula 31 Área de Superfícies - parte II MÓDULO - UL 1 ula 1 Áea de Supefícies - pate II Objetivos Defini sólidos de evolução. Detemina áeas de algumas supefícies de evolução. Intodução Considee um plano e uma linha simples L contida nesse plano.

Leia mais

Matemática B Extensivo v. 3

Matemática B Extensivo v. 3 Etensiv v. Eercícis 0) B Períd é dad pr: P π Cm m 8, tems: P π 8 π 8 rad 0) C Dmíni: π 6 kπ kπ + π 6. k. π + π. 6 0) C 0) E I. Incrreta. Dmíni: π + kπ π 6 + k π 6 D (f) { R / π 6 + k π, k z} II. Crreta.

Leia mais

Classificações ECTS. - Resultados da aplicação experimental às disciplinas do IST - Carla Patrocínio

Classificações ECTS. - Resultados da aplicação experimental às disciplinas do IST - Carla Patrocínio Classificações ECTS - Resultads da aplicaçã experimental às disciplinas d IST - Carla Patrcíni Crd.: Drª Marta Pile Gabinete de estuds e planeament Institut Superir Técnic Janeir, 2003 1. Enquadrament

Leia mais

LEI DE GAUSS. Figura 102-Lei de Gauss Na figura acima, o fluxo de linhas de força através de A 1

LEI DE GAUSS. Figura 102-Lei de Gauss Na figura acima, o fluxo de linhas de força através de A 1 Capítul 9-Lei de Gauss LI D GUSS Quand se clca fubá (u simila) na supefície de um óle viscs nde existem cagas eléticas apaecem linhas. Faaday pecebeu que a dieçã da linha em cada pnt d espaç ea a dieçã

Leia mais

Questão 1. Questão 2. Resposta. Resposta

Questão 1. Questão 2. Resposta. Resposta Questã 1 Numa cidade d interir d estad de Sã Paul, uma prévia eleitral entre.000 filiads revelu as seguintes infrmações a respeit de três candidats A, B, ec, d Partid da Esperança (PE), que cncrrem a 3

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 3. alternativa A. alternativa B. alternativa C

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 3. alternativa A. alternativa B. alternativa C Questã TIPO DE PROVA: A de dias decrrids para que a temperatura vlte a ser igual àquela d iníci das bservações é: A ser dividid pr 5, númer 4758 + 8a 5847 deixa rest. Um pssível valr d algarism a, das

Leia mais

CONSTRUINDO O LOGOTIPO DA OLIMPÍADA BRASILEIRA DE MATEMÁTICA NO GEOGEBRA

CONSTRUINDO O LOGOTIPO DA OLIMPÍADA BRASILEIRA DE MATEMÁTICA NO GEOGEBRA CONSTRUINDO O LOGOTIPO DA OLIMPÍADA BRASILEIRA DE MATEMÁTICA NO GEOGEBRA Maiana Man Bas - Valdeni Sliani Fanc maianamanba@gmail.cm - vsfanc@uem.b Univesidade Estadual d Paaná/FECILCAM Univesidade Estadual

Leia mais

UFSC. Matemática (Amarela)

UFSC. Matemática (Amarela) Respsta da UFSC: 0 + 0 + 08 = Respsta d Energia: 0 + 08 = 09 Resluçã 0. Crreta. 0. Crreta. C x x + y = 80 y = 80 x y y = x + 3 30 x + 3 30 = 80 x x = 80 3 30 x = 90 6 5 x = 73 45 8 N x z 6 MN // BC segue

Leia mais

Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta. ATENÇÃO: Escreva a resolução COM- PLETA de cada questão no espaço reservado

Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta. ATENÇÃO: Escreva a resolução COM- PLETA de cada questão no espaço reservado ATENÇÃO: Escreva a resluçã COM- PLETA de cada questã n espaç reservad para a mesma. Nã basta escrever apenas resultad final: é necessári mstrar s cálculs racicíni utilizad. Questã Caminhand sempre cm a

Leia mais

Descrição do serviço. Visão geral do serviço. Escopo dos serviços Copilot Optimize. Copilot Optimize CAA-1000. Escopo

Descrição do serviço. Visão geral do serviço. Escopo dos serviços Copilot Optimize. Copilot Optimize CAA-1000. Escopo Descriçã d serviç Cpilt Optimize CAA-1000 Visã geral d serviç Esta Descriçã d serviç ( Descriçã d serviç ) é firmada pr vcê, cliente, ( vcê u Cliente ) e a entidade da Dell identificada na fatura de cmpra

Leia mais

UNIVERSIDADE DE TAUBATÉ FACULDADE DE ENGENHARIA CIVIL CÁLCULO VETORIAL

UNIVERSIDADE DE TAUBATÉ FACULDADE DE ENGENHARIA CIVIL CÁLCULO VETORIAL OBJETIVOS DO CURSO UNIVERSIDADE DE TAUBATÉ FACULDADE DE ENGENHARIA CIVIL CÁLCULO VETORIAL Fonece ao aluno as egas básicas do cálculo vetoial aplicadas a muitas gandezas na física e engenhaia (noção de

Leia mais

Favor aguardar a autorização do fiscal para abrir o caderno e iniciar a prova. Exame de Seleção Curso de Graduação em Administração

Favor aguardar a autorização do fiscal para abrir o caderno e iniciar a prova. Exame de Seleção Curso de Graduação em Administração 27/05/2007 Ingresso em agosto de 2007 Exame de Seleção Curso de Graduação em Administração Módulo Discursivo Lógica Quantitativa Leia atentamente as seguintes instruções: Confira se o seu nome e RG estão

Leia mais

r 2 r 1 Projecção Horizontal Projecção Frontal (Vertical) DUPLA PROJECÇÃO ORTOGONAL REPRESENTAÇÃO DA RECTA - PROJECÇÕES

r 2 r 1 Projecção Horizontal Projecção Frontal (Vertical) DUPLA PROJECÇÃO ORTOGONAL REPRESENTAÇÃO DA RECTA - PROJECÇÕES DULA ROJECÇÃO ORTOGONAL RERESENTAÇÃO DA RECTA - ROJECÇÕES A B ojecção Hoizontal ojecção Fontal (Vetical) DULA ROJECÇÃO ORTOGONAL RERESENTAÇÃO DA RECTA - ONTO DE UMA RECTA C2 A C1 C B C2 C1 Um onto petence

Leia mais

Matemática B Extensivo V. 2

Matemática B Extensivo V. 2 Gabarit Matemática B Extensiv V. Reslva Aula Aula 7.0) a) sen 0 sen (60 0 ) 7.0) f(x) sen 0 b) cs 0 cs (80 0 ) c) cs 60 cssec 60 cssec 00 sen 00. d) sec 97 sec cs e) tg tg tg ( 80 ) Períd: p 6 Imagem:

Leia mais

ESTERIFICAÇÃO ESTERIFICAÇÃO ESTERIFICAÇÃO ESTERIFICAÇÃO

ESTERIFICAÇÃO ESTERIFICAÇÃO ESTERIFICAÇÃO ESTERIFICAÇÃO TECNLGIA DE DEFINIÇÃ: PREPARAÇÃ DE UM ÉSTER A PARTIR DE ÁLCIS E ÁCIDS CARBXÍLICS U SEUS DERIVADS (HALETS DE ÁCIDS E ANIDRIDS DE ÁCID) TECNLGIA DE EQUAÇÕES GERAIS H + 1) R - C + H - - R R-C + H 2 H - R

Leia mais