Preparação para o teste intermédio de Matemática 8º ano

Save this PDF as:
Tamanho: px
Começar a partir da página:

Download "Preparação para o teste intermédio de Matemática 8º ano"

Transcrição

1 Preparação para o teste intermédio de Matemática 8º ano Conteúdos do 7º ano Conteúdos do 8º ano 1

2 Conjuntos numéricos IN 1 4 IN - Conjunto dos números Naturais IN = {1;;3;4;5;6 } Z - Conjunto dos números Inteiros relativos Z= { -3;-;-1;0;1;;3; } IN 0 0 Q- Conjunto dos números racionais Q Z ,(3) 14 3 Q = z U { números fracionários} Completa com os símbolos ; ; ; -1.. IN 1,4.. Z -3 Z - 0 IN 3 IN 4 Z - IN Z,3 Q

3 Raiz quadrada A rea 49cm 49 7cm lado A raiz quadrada permite calcular o lado de um quadrado sabendo a sua área. Raiz cúbica aresta cm Volume 343cm 3 A raiz cúbica permite calcular a aresta de um cubo sabendo o seu volume. 3

4 Mínimo múltiplo comum (m.m.c) 1º processo M 1 = {0;1;4;36;48;60 } M 30 = {0;30;60 } m.m.c = {60} Determina o m.m.c (1;30) º processo = x 3 30 = x 3 x 5 m.m.c = x 3 x5 = 60 Produto dos factores primos comuns e não comuns de maior expoente 4

5 Máximo divisor comum (m.d.c) 1º processo D 1 = {1;;3;4;6;1} D 30 = {1;;3;5;6;10;15;30} M.d.c (1;30)= {6} Determina o m.d.c (1;30) º processo = x 3 30 = x 3 x 5 M.d.c (1;30) = x 3 = 6 Produto dos factores primos comuns com menor expoente 5

6 mmc e mdc Texto «de tanto em tanto» «dividir/repartir/agrupar» mmc mdc 6

7 Sequências Numéricas Na sequência: , 5, 9, 13, 17, 4, 8, 1, 16 Termo de ordem? 1 Termo de ordem 5? 17 O termo geral da sequência é 4n-3. Termo de ordem 14? A ordem do termo 37? Ordem n n 37 3 n n

8 Qual é a expressão geradora de todos os termos de cada uma das sequências? 5, 10, 15, 0, 5, 30, Regra: somar cinco ao número anterior 6, 11, 16, 1, 6, 31, 5n 5n+1 Regra: somar cinco ao número anterior 5, 8, 11, 14, 17, 0, 3, 3n+ Regra: somar três ao número anterior 8

9 Proporcionalidade direta Definição: Duas grandezas x e y são diretamente proporcionais se a razão entre os seus valores correspondentes, tomados pela mesma ordem, é constante. Quando umas das grandezas é zero a outra também é zero. A representação gráfica de uma situação de proporcionalidade direta é uma recta que passa pela origem. A expressão analítica de uma situação de proporcionalidade direta é onde k é a constante de proporcionalidade direta. y kx 9

10 I II Quando uma das grandezas é zero a outra também é zero ; ; e Existe proporcionalidade direta, porque a razão entre as grandezas é constante. A constante de proporcionalidade direta é.,50 3, 00,50 e 1,50 1 Não existe proporcionalidade direta, porque a razão entre as grandezas não é constante. y x Expressão Analítica 10

11 Representação gráfica de cada situação I II Unindo os pontos obtém-se uma reta que passa pela origem. Unindo os pontos obtém-se uma reta que não passa pela origem. Existe proporcionalidade direta, porque a representação gráfica é uma reta que passa pela origem. y 4 y x x Expressão Analítica Não existe proporcionalidade direta, porque a representação gráfica não é uma reta que passa pela origem. 11

12 Percentagens 5 % de 10 chocolates são 5 x 10 = chocolates em 50 são % % x = 6 x 100 =1% x 50 1

13 Resolução de problemas envolvendo Percentagens 1- O preço de um sofá é de 300, sem IVA. Sabendo que o IVA é 0%, quanto é o valor, em euros, do IVA deste sofá? Qual é o preço final do sofá? 0% de 300 = 300 x 0 = 60 euros = 360 O preço final do sofá é 360 euros. - Uma camisola custava 56 euros e a Ana que era amiga da dona da loja, comprou-a por 4 euros. Qual foi a percentagem de desconto? Euros % x x = 4 x 100 = 75% % = 5% O desconto foi de 5%. 13

14 Semelhança de Figuras Figuras Semelhantes Geometricamente iguais Redução Ampliação - mesma forma - mesma dimensão - mesma forma - menor dimensão - mesma forma - maior dimensão Dois Polígonos são Semelhantes quando têm os ângulos geometricamente iguais e os lados correspondentes directamente proporcionais. 14

15 Semelhança de Figuras Razão de Semelhança medida do lado da figura final medida do lado da figura inicial Se a razão de semelhança for: maior que 1, obtemos uma ampliação; menor que 1, obtemos uma redução; igual a 1, obtemos uma figura geometricamente igual à original. 15

16 Triângulos Critérios de semelhança de triângulos Dois triângulos são semelhantes se: Tiverem dois ângulos geometricamente iguais (aa) Tiverem os três lados correspondentes diretamente proporcionais (lll) Tiverem dois lados diretamente proporcionais e o ângulo por eles formado for igual (lal) A soma dos ângulos internos de um triângulo é 180º. 16

17 Semelhança de triângulos Semelhança de triângulos Aplicação dos critérios de semelhança de triângulos 1. Determina a altura da árvore. Serão os triângulos [ABE] e [CDE] semelhantes? Sim, porque tem dois ângulos geometricamente iguais, o de 90º e o ângulo AEB. Determinação da altura da árvore. sombra altura 5, = h 1,6 0,8 3,6 + 1,6 = 5, m h = 5, x 0,8 1,6 h =,6 m A altura da árvore é de,6 metros. 17

18 Semelhança de triângulos Relação entre perímetros e áreas de figuras semelhantes Se dois polígonos A e B são semelhantes e a razão de semelhança de A para B é r, então: A razão entre os perímetros de A e B é r. A Razão entre as áreas de A e B é r. P B = r x P A A B = r x A A 18

19 Classificação de Quadriláteros 19

20 Ângulos Verticalmente Opostos Se dois ângulos têm o vértice em comum e os lados de cada um dos ângulos estiverem no prolongamento dos lados do outro ângulo, então chamam-se ângulos verticalmente opostos. AOB ˆ COˆ D 60º 60º Ângulos opostos formados por duas rectas que se cruzam. Os ângulos AOB e COD são verticalmente opostos. Os ângulos AOC e BOD também são verticalmente opostos. 0

21 Ângulos de Lados Paralelos Na figura abaixo os dois ângulos têm os lados paralelos e são ambos ângulos obtusos (a sua amplitude é maior do que 90º e menor do que 180º). 110º x=180º-110º=70º 110º Os dois ângulos assinalados são geometricamente iguais. 1

22 EQUAÇÕES COM PARÊNTESES simplificação de expressões com parênteses: Sinal menos antes dos parênteses: Tiramos os parênteses trocando os sinais dos termos que estão dentro x 3x 5 x 3x 5 Sinal mais antes dos parênteses: Tiramos os parênteses mantendo os sinais que 5x 1 3x 5x estão dentro. 3x 1 Número antes dos parênteses: Tiramos os parênteses, aplicando a propriedade 1 6x 6 x distributiva. 3x 3 x

23 Como resolver uma equação com parênteses. x 1 35 x 6 x 8 x 115x 6 6 x 8 x 15x x x 3 x x C.S = 1 4 Eliminar parênteses. Agrupar os termos com incógnita. Efectuar as operações Dividir ambos os membros pelo coeficiente da incógnita Determinar a solução, de forma simplificada. 3

24 EQUAÇÕES COM DENOMINADORES 1 x 3 x x 1 4x Começamos por reduzir todos os termos ao mesmo denominador. x x x 6x 4x 61 x Duas fracções com o mesmo denominador são iguais se os numeradores forem iguais. Podemos tirar os denominadores desde que sejam todos iguais. 4

25 3x 5x 3 Esta fração pode ser apresentada da seguinte forma Sinal menos antes de uma fração O sinal menos que se encontra antes da fração afeta todos os termos do numerador. 3x 5x 3 1 x 1 x x 1 x 8 3 () 4x 1 3x (6) (3) (3) 4x x x 43 x x 7 Começamos por desdobrar a fração que tem o sinal menos antes.(atenção aos sinais!) Reduzimos ao mesmo denominador e eliminamos os denominadores

26 EQUAÇÕES COM PARÊNTESES E DENOMINADORES Devemos começar por eliminar os parênteses e denominadores depois os 3 x 1 x x 3 1 3x 3 x x (3) (3) (3) () () 9x 93x 4x 9x 3x 4x 9 x 11 x 11 x 11 C.S.= 11 6

27 Potências Regras operatórias das potências Multiplicação Com a mesma base - x 7 = 5 Com o mesmo expoente (-) 3 x (-7) 3 = 14 3 Divisão Com a mesma base - : 7 = -9 Com o mesmo expoente (-4) 3 : 6 3 = (-4) 3 Potencia de potência ( 3 ) 5 = 15 Potencia de expoente inteiro negativo Potencia de expoente nulo (-8) 0 = 1 7

28 Notação Científica Definição: Diz-se que um número está escrito em notação cientifica se está escrito na forma de um produto de um número a entre 1 e 10 e uma potência de base 10, e escreve-se: a x 10 p, com 1 a<10 e p um número inteiro Escreve os seguintes números em notação cientifica = 6,7698 x , = 8 x ,053 x 10-3 =,53 x 10 - x 10-3 =,53 x ,9 x 10 5 = 7,69 x 10 1 x 10 5 = 7,69 x

29 Funções Definição: Uma função é uma correspondência entre dois conjuntos em que a cada elemento do conjunto de partida corresponde um e um só elemento do conjunto de chegada. Formas de definir uma função: Por um diagrama Por uma tabela Por uma expressão analítica Por um gráfico 9

30 Funções definidas por um diagrama Ex. Funções A f 1 3 B Ex. Não são funções D f = {1;,3} A Conjunto de Partida D f = {-1;-,-3} B Conjunto de chegada 1-1 Objetos: 1;,3 Imagens: -1;-;-3 f ( ) = - f ( x ) = -x 30

31 Noção de Função. Teste da reta vertical y y x x Representa o gráfico de uma função. Não representa um gráfico de uma função 31

32 Funções definidas por uma Tabela Seja a função g definida pela tabela seguinte Lado de um quadrado (L) Perímetro do quadrado (P) D g = {1;,3;4} D g = {4;8;1;16} Objectos: 1;,3;4 Imagens: 4;8;1;16 Variável independente: Lado do quadrado Variável dependente: Perímetro do quadrado g ( ) = 8 g (x) = 4x 3

33 Funções definidas por uma expressão analítica Seja a função h definida pela seguinte expressão analítica h(x) = x -1 Calcular a imagem sendo dado o objecto h(3) = x3-1 h(3) = 5 Calcular o objecto sendo dada a imagem (3;5) e (8;15) pertencem à recta que é gráfico da função h. h(x) = 15 x 1 = 15 x = x = 16 x = 8 33

34 Funções definidas por um gráfico Variável independente: Peso Variável dependente: Custo j( ) = 1 j(1) =.. Tipo de função: Linear Expressão analítica: j(x) = 6x 34

35 Uma Função Afim é uma função do tipo y ax b O gráfico de uma função afim é uma reta não vertical. A a chamamos o declive da reta e b é a ordenada na origem. a yb ya 5 3 x x 10 B A0,3 B1,5 A A 0,3 y x b 3 0 b 3 b yx3 35

36 Exemplos: Estatística Recolha de dados qualitativos Representam a informação que não suscetível de ser medida, mas de ser classificada. Tipo de dados quantitativos Representam a informação que pode ser medida, apresentando-se com diferentes intensidades, que podem ser de natureza discreta ou contínua. -Cor dos olhos dos alunos de uma turma. Podem ser castanhos, azuis ou verdes. Exemplo Notas de Matemática, do 7ºF, no final do º período. Exemplo Altura dos jogadores da equipa de futebol do FCP. 36

37 Estatística - Tabelas de frequências X 100% Número do sapato Total Frequência absoluta (f) Frequência relativa (f r ) 1 : 18 = 0,06 : 18 = 0,11 : 18 = 0,11 7 : 18 = 0,39 3 : 18 = 0,16 F r em percentagem 6 % 11 % 11 % 39 % 16 % : 18 = 0,11 11 % 1 : 18 = 0,06 6 % 1, % 37

38 Estatística - Gráficos de barras Número do sapato dos alunos de uma turma frequencia absoluta nº do sapato 38

39 Pictograma = 1 aluno Estatística - Pictograma 39

40 Estatística - Gráficos circulares Total Frequência absoluta (f) Graus 0º 40º 40º 140º 60º 40º 0º 360º x x x x x 360 x x 0º x 18 x x 40º 360x7 x x 140º 18 x 360x x 18 x x 60º 40

41 Estatística Medidas de tendência central A média (ou média aritmética) de um conjunto de valores é o quociente entre a soma de todos os valores e o número total de elementos. A média representa-se por. X Frequência absoluta (f) Total 18 X X X 39,1 18 X A média do número do sapato dos alunos é 39,1 41

42 Estatística Medidas de tendência central Frequência absoluta (f) Total 18 Moda - É o valor que surge com mais frequência se os dados são discretos. Neste caso a moda é 39. Mediana - Ordenados os elementos, a mediana é o valor que a divide ao meio, isto é, 50% dos elementos da amostra são menores ou iguais à mediana e os outros 50% são maiores ou iguais à mediana. ( ) : = 39 36;37;37;38;38;39;39;39;39;39;39;39;40;40;40;41;41;4 4

43 Para organizar estes dados vamos agrupá-los. em classes. Tendo em conta o menor e o maior valor da tabela e que cada classe tem que ter a mesma amplitude, ou seja, a diferença entre o extremo superior e o extremo inferior da classe Tabela de frequências Classes (Altura dos alunos) N.º de alunos [145,151[ 5 [151,157[ 3 [157,163[ 3 [163,169[ 4 [169,175[ 8 Total 3 Na 1.ª classe estão incluídas as alturas maiores ou iguais a 145 e menores do que

44 Histograma Os gráficos das distribuições usando dados contínuos têm um aspecto diferente dos gráficos de barras das distribuições de dados discretos. Neste caso chamam-se histogramas. Histograma é um gráfico de barras formado por um conjunto de rectângulos adjacentes (colados), tendo cada um deles por base um intervalo de classe e por altura a respectiva frequência. 44

45 Se num histograma unires por segmentos de recta os pontos médios dos lados superiores de cada rectângulo do histograma, como se fez em baixo, obténs uma outra forma de apresentar a distribuição, que se chama polígono de frequências. Polígono de frequências Nota: Para obtermos os pontos nos extremos da linha poligonal, devemos imaginar que existe uma classe com a mesma amplitude das restantes e frequência zero, determinar o ponto médio desta classe e uni-lo aos restantes. 45

46 35, 78, 50, 63, 86, 73, 57, 8, 59, 75, 66, 79, 83, 71, 94, 59 Pode-se organizar este conjunto de dados utilizando uma representação gráfica do tipo seguinte: Esta representação chama-se diagrama de caule-e-folhas. O caule é a coluna com os números 3, 5, 6, 7, 8 e 9 que representam o algarismo das dezenas e as folhas que representam o algarismo das unidades de cada um dos dados. 46

47 Diagrama de Extremos e Quartis Os quartis são valores da variável que dividem a distribuição em 4 partes iguais, cada uma delas com 5% dos dados totais ordenados. 1.º Quartil.º Quartil 3.º Quartil 47

48 Amplitude e Amplitude Interquartis A amplitude e a amplitude interquartis são medidas indicadas para estudar a dispersão dos dados. A amplitude é a diferença entre o máximo e o mínimo conjunto de dados (os extremos). do Amplitude = máximo mínimo A amplitude interquartis é a diferença entre o 3.º quartil e o 1.º quartil. Amplitude interquartis= Q 3 Q 1 48

49 Propriedades das isometrias: uma isometria conserva as medidas dos lados e as amplitudes dos ângulos. Rotação Translação Reflexão Reflexão deslizante 49

Planificação Anual de Matemática 5º Ano

Planificação Anual de Matemática 5º Ano Planificação Anual de Matemática 5º Ano DOMÍNI OS CONTEÚDOS METAS AULA S Números naturais Compreender as propriedades e regras das operações e usá-las no cálculo. Propriedades das operações e regras operatórias:

Leia mais

AGRUPAMENTO DE ESCOLAS RAINHA D. LEONOR ESCOLA BÁSICA 2/3 EUGÉNIO DOS SANTOS Matemática Conteúdos 8ºAno de Escolaridade Ano Letivo 2013/14

AGRUPAMENTO DE ESCOLAS RAINHA D. LEONOR ESCOLA BÁSICA 2/3 EUGÉNIO DOS SANTOS Matemática Conteúdos 8ºAno de Escolaridade Ano Letivo 2013/14 AGRUPAMENTO DE ESCOLAS RAINHA D. LEONOR ESCOLA BÁSICA 2/3 EUGÉNIO DOS SANTOS Matemática Conteúdos 8ºAno de Escolaridade Ano Letivo 2013/14 DOMÍNIO: NÚMEROS E OPERAÇÕES SUB-DOMÍNIO: NÚMEROS REAIS Números

Leia mais

8º Ano Planificação Matemática 14/15

8º Ano Planificação Matemática 14/15 8º Ano Planificação Matemática 14/15 Escola Básica Integrada de Fragoso 8º Ano Domínio Subdomínio Conteúdos Objetivos gerais / Metas Números e Operações Geometria e medida Dízimas finitas e infinitas periódicas

Leia mais

Os dados quantitativos também podem ser de natureza discreta ou contínua.

Os dados quantitativos também podem ser de natureza discreta ou contínua. Natureza dos Dados Às informações obtidas acerca das características de um conjunto dá-se o nome de dado estatístico. Os dados estatísticos podem ser de dois tipos: qualitativos ou quantitativos. Dado

Leia mais

Agrupamento de Escolas Júlio Dantas Escola Básica Tecnopolis

Agrupamento de Escolas Júlio Dantas Escola Básica Tecnopolis Teorema de Pitágoras- Unidade 2 1.ºP Tema Calendarização Domínio N.º de aulas de 45 minutos Agrupamento de Escolas Júlio Dantas Escola Básica Tecnopolis Planificação Curricular a Longo Prazo Matemática

Leia mais

Escola Secundária com 3º CEB de Lousada. Ficha de Trabalho de Matemática do 7º ano - Nº 24

Escola Secundária com 3º CEB de Lousada. Ficha de Trabalho de Matemática do 7º ano - Nº 24 Escola Secundária com º CEB de Lousada Ficha de Trabalho de Matemática do 7º ano - Nº Assunto: Objectivos para o teste de de Março/ Ficha de preparação para o teste Lições nº e Data / 0/ 00 Conteúdos para

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 8.º ANO PLANIFICAÇÃO GLOBAL 1. Representação, comparação e ordenação. Representar números racionais

Leia mais

SUMÁRIO. 1. REVISÃO DE GINÁSIO Critérios de divisibilidade. 2. CONJUNTOS Introdução. Operações de conjuntos. Conjuntos numéricos

SUMÁRIO. 1. REVISÃO DE GINÁSIO Critérios de divisibilidade. 2. CONJUNTOS Introdução. Operações de conjuntos. Conjuntos numéricos SUMÁRIO 1. REVISÃO DE GINÁSIO Critérios de divisibilidade Reconhecimento de número primo Decomposição em fatores primos Aplicação Potência Expressão numérica 2. CONJUNTOS Introdução Representação de um

Leia mais

Percursos temáticos de aprendizagem

Percursos temáticos de aprendizagem Novo Programa de Matemática - 1.º, 2.º e 3.º Ciclos Percursos temáticos de aprendizagem Os percursos temáticos de aprendizagem que se apresentam constituem possíveis sequências para o desenvolvimento do

Leia mais

Percursos temáticos de aprendizagem

Percursos temáticos de aprendizagem Novo Programa de Matemática - 1.º, 2.º e 3.º Ciclos Percursos temáticos de aprendizagem Os percursos temáticos de aprendizagem que se apresentam constituem possíveis sequências para o desenvolvimento do

Leia mais

PLANO DE ESTUDOS DE MATEMÁTICA 5.º ANO

PLANO DE ESTUDOS DE MATEMÁTICA 5.º ANO DE MATEMÁTICA 5.º ANO Ano Letivo 2015 2016 PERFIL DO ALUNO No domínio dos Números e Operações, o aluno deve ser capaz de conhecer e aplicar propriedades dos divisores e efetuar operações com números racionais

Leia mais

Eixo Temático ITema 1: Conjuntos Numéricos. Números e Operações

Eixo Temático ITema 1: Conjuntos Numéricos. Números e Operações Eixo Temático ITema 1: Conjuntos Numéricos Números e Operações 1. Conjunto dos números naturais 2. Conjunto dos números inteiros 1.0. Conceitos 3 1.1. Operar com os números naturais: adicionar, multiplicar,

Leia mais

CONTEÚDOS PARA A PROVA DE RECUPERAÇÃO SEMESTRAL AGOSTO / 2016 MATEMÁTICA

CONTEÚDOS PARA A PROVA DE RECUPERAÇÃO SEMESTRAL AGOSTO / 2016 MATEMÁTICA CONTEÚDOS PARA A PROVA DE RECUPERAÇÃO SEMESTRAL AGOSTO / 2016 ANO: 6º A e B Prof: Zezinho e Admir MATEMÁTICA PROGRAMA II DATA DA PROVA: 09 / 08 / 2016 HORÁRIO: 14h GRUPO 2 - ORIGEM E EVOLUÇÃO CAPÍTULO

Leia mais

Escola Secundária com 3ºCEB de Lousada

Escola Secundária com 3ºCEB de Lousada Escola Secundária com ºCEB de Lousada Ficha de Trabalho de Matemática doº ano - nº Data / / 011 Assunto: Preparação para o teste Lições nº,, e Data da Realização : / 0 / 011 Duração: 90 minutos Conteúdos

Leia mais

Aulas Previstas. Objectivos Conteúdos Estratégias/Actividades Recursos Avaliação. Avaliação diagnóstica. Observação e registo das atitudes dos alunos

Aulas Previstas. Objectivos Conteúdos Estratégias/Actividades Recursos Avaliação. Avaliação diagnóstica. Observação e registo das atitudes dos alunos Escola E.B. 2.3 Pedro Santarém Objectivos Conteúdos Estratégias/Actividas Recursos Avaliação Preparar e organizar o trabalho a realizar com os alunos Distinguir número inteiro número fraccionário. Reconhecer

Leia mais

PLANEJAMENTO 2016. Disciplina: Matemática Série: 6º Ano Ensino: Fundamental Prof.: Rafael

PLANEJAMENTO 2016. Disciplina: Matemática Série: 6º Ano Ensino: Fundamental Prof.: Rafael Disciplina: Matemática Série: 6º Ano Ensino: Fundamental Prof.: Rafael 1ª UNIDADE II ) Compreensão de fenômenos Contagem 1. Números pra quê? 2. Sistemas de numeração 3. O conjunto dos números naturais

Leia mais

Escola Secundária com 3º CEB de Lousada. Ficha de Trabalho de Matemática do 8º ano N.º 29 Assunto: Estatística

Escola Secundária com 3º CEB de Lousada. Ficha de Trabalho de Matemática do 8º ano N.º 29 Assunto: Estatística Escola Secundária com 3º CEB de Lousada Ficha de Trabalho de Matemática do 8º ano N.º 29 Assunto: Estatística Lições nº e Data /05/2011 Estatística A Estatística é um ramo da Matemática que tem por objectivo:

Leia mais

1. Estatística Descritiva

1. Estatística Descritiva Introdução à Estatística Estatística Descritiva 1 1. Estatística Descritiva Suponhamos que dispomos de um conjunto de dados (sem nos preocuparmos como foram obtidos) e pretendemos desenvolver processos

Leia mais

Depois de estudares bem a matéria leccionada, resolve:

Depois de estudares bem a matéria leccionada, resolve: Escola Secundária com 3ºCEB de Lousada Ficha de Trabalho de Matemática do 8º ano - nº Data / / 010 Assunto: Preparação para a ficha de avaliação de Matemática Lições nº,, Apresentação dos Conteúdos e Objectivos

Leia mais

Disciplina: MATEMÁTICA Trimestre: 1º Professora: Ana Eudóxia Alux Bessa Série: 8º Turma: 81,82,83 e 84

Disciplina: MATEMÁTICA Trimestre: 1º Professora: Ana Eudóxia Alux Bessa Série: 8º Turma: 81,82,83 e 84 COLÉGIO LA SALLE BRASÍLIA SGAS Q. 906 Conj. E C.P. 320 Fone: (061) 3443-7878 CEP: 70390-060 - BRASÍLIA - DISTRITO FEDERAL Disciplina: MATEMÁTICA Trimestre: 1º Professora: Ana Eudóxia Alux Bessa Série:

Leia mais

Resumos para a Prova de Aferição. Matemática

Resumos para a Prova de Aferição. Matemática Resumos para a Prova de Aferição de Matemática Números e operações 1.Leitura e escrita de números inteiros 1.1. Conjunto de números naturais Os números 1,, 3, 4, são números naturais. O conjunto dos números

Leia mais

Lista de exercícios Recuperação Semestral 9º Ano 1 Semestre

Lista de exercícios Recuperação Semestral 9º Ano 1 Semestre ALUNO (S) SÉRIE / TURMA Lista de exercícios Recuperação Semestral 9º Ano 1 Semestre 01. Observe o par de polígonos semelhantes e responda: b) Calcule o valor de x: a) Qual é a razão de semelhança? 02.

Leia mais

AGRUPAMENTO DE ESCOLAS DE SAMORA CORREIA ESCOLA BÁSICA PROF. JOÃO FERNANDES PRATAS ESCOLA BÁSICA DE PORTO ALTO

AGRUPAMENTO DE ESCOLAS DE SAMORA CORREIA ESCOLA BÁSICA PROF. JOÃO FERNANDES PRATAS ESCOLA BÁSICA DE PORTO ALTO AGRUPAMENTO DE ESCOLAS DE SAMORA CORREIA ESCOLA BÁSICA PROF. JOÃO FERNANDES PRATAS ESCOLA BÁSICA DE PORTO ALTO Prova Extraordinária de Avaliação (Matemática) 3º Ciclo - 8.º Ano de Escolaridade Despacho

Leia mais

Ficha de Preparação para o teste

Ficha de Preparação para o teste Escola Secundária com º CEB de Lousada Ficha de Trabalho de Matemática do 7º ano - Nº16 Assunto: Objectivos para o teste de de Fevereiro/ Ficha de preparação para o teste Lições nº e Data / 0/ 010 Conteúdos

Leia mais

CONTEÚDOS METAS/DESCRITORES RECURSOS

CONTEÚDOS METAS/DESCRITORES RECURSOS AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO Escola Básica e Secundária Dr. Vieira de Carvalho Departamento de Matemática e Ciências Experimentais Planificação Anual de Matemática 5º Ano Ano Letivo 2015/2016

Leia mais

Escola Secundária com 3ºCEB de Lousada (A) 72 (B) 36 (C) 24 (D) 18 (A) -10 (B) 5 (C) 20 (D) 15. =, então - 2 é imagem do objecto: (A) 4 (B) 1 (C) 4

Escola Secundária com 3ºCEB de Lousada (A) 72 (B) 36 (C) 24 (D) 18 (A) -10 (B) 5 (C) 20 (D) 15. =, então - 2 é imagem do objecto: (A) 4 (B) 1 (C) 4 Escola Secundária com 3ºCEB de Lousada Ficha de Trabalho de Matemática do 9º ano - nº Data: / 0 / 0 Assunto: Preparação para o teste intermédio I Lições nº, n. O termo geral de uma sequência numérica é.

Leia mais

MATEMÁTICA B 10ºANO ANO LETIVO 2015/2016 Módulo Inicial

MATEMÁTICA B 10ºANO ANO LETIVO 2015/2016 Módulo Inicial ESCOLA SECUNDÁRIA/3 RAINHA SANTA ISABEL- ESTREMOZ MATEMÁTICA B 10ºANO ANO LETIVO 2015/2016 Módulo Inicial Revisões de conceitos do 3º ciclo Efetuar cálculos com números reais utilizando valores exatos

Leia mais

COLÉGIO ESTADUAL ANASTÁCIA KRUK - ENS. FUNDAMENTAL E MÉDIO

COLÉGIO ESTADUAL ANASTÁCIA KRUK - ENS. FUNDAMENTAL E MÉDIO COLÉGIO ESTADUAL ANASTÁCIA KRUK - ENS. FUNDAMENTAL E MÉDIO PLANO DE TRABALHO DOCENTE PTD E PLANEJAMENTO 2011 DISCIPLINA: MATEMÁTICA PROFESSOR EVANDRO ORTIZ DA SILVA PLANO DE TRABALHO DOCENTE PTD 2011 PROFESSOR:

Leia mais

1.2. Recorrendo a um diagrama em árvore, por exemplo, temos: 1.ª tenda 2.ª tenda P E E

1.2. Recorrendo a um diagrama em árvore, por exemplo, temos: 1.ª tenda 2.ª tenda P E E Prova de Matemática do 3º ciclo do Ensino Básico Prova 927 1ª Chamada 1. 1.1. De acordo com enunciado, 50% são portugueses (P) e 50% são espanhóis (E) e italianos (I). Como os Espanhóis existem em maior

Leia mais

x = xi n x = xifi fi 1. MÉDIA Exercício: Quando a distribuição é simétrica, a média e a mediana coincidem.

x = xi n x = xifi fi 1. MÉDIA Exercício: Quando a distribuição é simétrica, a média e a mediana coincidem. 1. MÉDIA Exercício: Quando a distribuição é simétrica, a média e a mediana coincidem. Determine a média aritmética da distribuição: A mediana não é tão sensível, como a média, às observações que são muito

Leia mais

Ficha de Trabalho de Matemática do7º ano - nº Data / / 2011 Assunto: Preparação para o teste Lições nº,, e

Ficha de Trabalho de Matemática do7º ano - nº Data / / 2011 Assunto: Preparação para o teste Lições nº,, e Escola Secundária de Lousada Ficha de Trabalho de Matemática do7º ano - nº Data / / 0 Assunto: Preparação para o teste Lições nº,, e Apresentação dos Conteúdos e Objectivos para o º Teste de Avaliação

Leia mais

Chama-se razão de dois números racionais a e b (com b 0) ao quociente do primeiro

Chama-se razão de dois números racionais a e b (com b 0) ao quociente do primeiro Razão e Proporção Razão: comparação de quantidades usando uma divisão. Chama-se razão de dois números racionais a e b (com b 0) ao quociente do primeiro pelo segundo. Indica-se: a/b ou a : b e, lê-se:

Leia mais

Caderno 2: 60 minutos. Tolerância: 20 minutos. (não é permitido o uso de calculadora)

Caderno 2: 60 minutos. Tolerância: 20 minutos. (não é permitido o uso de calculadora) Prova Final de Matemática 2.º Ciclo do Ensino Básico Prova 62/1.ª Fase/2015 Decreto-Lei n.º 139/2012, de 5 de julho A PREENCHER PELO ALUNO Nome completo Documento de identificação Assinatura do Aluno CC

Leia mais

Anexo B Relação de Assuntos Pré-Requisitos à Matrícula

Anexo B Relação de Assuntos Pré-Requisitos à Matrícula Anexo B Relação de Assuntos Pré-Requisitos à Matrícula MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DEPARTAMENTO DE EDUCAÇÃO E CULTURA DO EXÉRCITO DIRETORIA DE EDUCAÇÃO PREPARATÓRIA E ASSISTENCIAL RELAÇÃO

Leia mais

Versão 2. Identifica claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes.

Versão 2. Identifica claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes. Teste Intermédio de Matemática Versão 2 Teste Intermédio Matemática Versão 2 Duração do Teste: 90 minutos 07.02.2011 9.º Ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de Janeiro Identifica claramente,

Leia mais

Escola Secundária de Lousada. Matemática do 8º ano FT nº Data: / / 2012 Assunto: Preparação para o teste de avaliação Lição nº e

Escola Secundária de Lousada. Matemática do 8º ano FT nº Data: / / 2012 Assunto: Preparação para o teste de avaliação Lição nº e Escola Secundária de Lousada Matemática do º ano FT nº Data: / / Assunto: Preparação para o teste de avaliação Lição nº e Apresentação dos Conteúdos e Objectivos para o º Teste de Avaliação de Matemática

Leia mais

CONTEÚDOS METAS/DESCRITORES RECURSOS

CONTEÚDOS METAS/DESCRITORES RECURSOS AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO Escola Básica e Secundária Dr. Vieira de Carvalho Departamento de Matemática e Ciências Experimentais Planificação Anual de Matemática 5º Ano Ano Letivo 2014/2015

Leia mais

Estatística. Conjunto de métodos e processos quantitativos que serve para estudar e medir os fenômenos coletivos ou de massa.

Estatística. Conjunto de métodos e processos quantitativos que serve para estudar e medir os fenômenos coletivos ou de massa. Faculdade de Tecnologia Senac Pelotas Curso Superior de Tecnologia em Análise e Desenvolvimento de Sistemas Matemática Aplicada Prof. Edécio Fernando Iepsen Estatística Variáveis Qualitativas, Quantitativas

Leia mais

Ficha de Preparação para o teste

Ficha de Preparação para o teste Escola Secundária com º CEB de Lousada Ficha de Trabalho de Matemática do 7º ano Turma B - nº Data / 01/ 009 e / 01 / 009 Assunto: Objectivos para o teste de de Fevereiro/ Ficha de preparação para o teste

Leia mais

Escola Básica Integrada Canto da Maia

Escola Básica Integrada Canto da Maia Escola Básica Integrada Canto da Maia Ano Letivo 2014/2015 Matriz da Prova de Exame a Nível de Escola Matemática 2º Ciclo MODALIDADE: Exame escrito. ESTRUTURA DA PROVA: A prova é constituída por dois cadernos

Leia mais

PLANEJAMENTO ANUAL / TRIMESTRAL 2013 Conteúdos Habilidades Avaliação

PLANEJAMENTO ANUAL / TRIMESTRAL 2013 Conteúdos Habilidades Avaliação CENTRO EDUCACIONAL LA SALLE Associação Brasileira de Educadores Lassalistas ABEL SGAS Q. 906 Conj. E C.P. 320 Fone: (061) 3443-7878 CEP: 70390-060 - BRASÍLIA - DISTRITO FEDERAL Disciplina: Matemática Trimestre:

Leia mais

Competências e Habilidades - Concurso de Bolsas 2015/2016. Ensino Médio e Fundamental. Ensino Médio (1º Ano) Língua Portuguesa

Competências e Habilidades - Concurso de Bolsas 2015/2016. Ensino Médio e Fundamental. Ensino Médio (1º Ano) Língua Portuguesa Ensino Médio (1º Ano) Língua Portuguesa Em Língua Portuguesa (com foco em leitura) serão avaliadas habilidades e competências, agrupadas em 8 tópicos que compõem a Matriz de Referência dessa disciplina,

Leia mais

ESCOLA SECUNDÁRIA DE CALDAS DAS TAIPAS PLANIFICAÇÃO ANUAL. Ano letivo 2014 / 2015

ESCOLA SECUNDÁRIA DE CALDAS DAS TAIPAS PLANIFICAÇÃO ANUAL. Ano letivo 2014 / 2015 PLANIFICAÇÃO ANUAL MATEMÁTICA A 10º ANO Ano letivo 01 / 015 Gorete Branco, José Temporão, M.ª Arminda Machado, Paula Gomes, Teresa Clain GESTÃO DO TEMPO 1.º PERÍODO INICIO: 15 / 09 / 01 FIM: 16 /1 / 01

Leia mais

1º Período Tarefa / Actividades Conteúdos abordados Metodologia utilizada Aulas

1º Período Tarefa / Actividades Conteúdos abordados Metodologia utilizada Aulas 1º Período Tarefa / Actividades Conteúdos abordados Metodologia utilizada Aulas Caixas de bolachas Caixa de bombons Garrafas de água Caixas de sumo Sólidos platónicos Teorema de Pitágoras Áreas e perímetros

Leia mais

Preparação para o teste intermédio de Matemática 8º ano

Preparação para o teste intermédio de Matemática 8º ano Preparação para o teste intermédio de Matemática 8º ano Conteúdos do 7º ano Conteúdos do 8º ano Conteúdos do 8º Ano Teorema de Pitágoras Funções Semelhança de triângulos Ainda os números Lugares geométricos

Leia mais

1º ano. Unidade 1: Conjuntos Numéricos. Unidade 2: Expressões Algébricas. Capítulo 9 - Itens: 2, 3 (2º ano) Unidade 3: Equações

1º ano. Unidade 1: Conjuntos Numéricos. Unidade 2: Expressões Algébricas. Capítulo 9 - Itens: 2, 3 (2º ano) Unidade 3: Equações 1º ano Unidade 1: Conjuntos Numéricos Expressão Numérica Unidade 2: Expressões Algébricas Classificação Valor numérico Monômios e polinômios Produtos notáveis Fatoração Equação do 1º grau (inteiras e fracionadas)

Leia mais

Prova Final de Matemática

Prova Final de Matemática Prova Final de Matemática 2.º Ciclo do Ensino Básico Decreto-Lei n.º 19/2012, de 5 de julho Prova 62/1.ª Fase Critérios de Classificação 10 Páginas 2015 Prova 62/1.ª F. CC Página 1/ 10 CRITÉRIOS GERAIS

Leia mais

PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO

PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO Provas 2º Bimestre 2012 MATEMÁTICA DESCRITORES DESCRITORES DO 2º BIMESTRE DE 2012

Leia mais

Planejamento Anual OBJETIVO GERAL

Planejamento Anual OBJETIVO GERAL Planejamento Anual Componente Curricular: Matemática Ano: 6º ano Ano Letivo: 2016 Professor(s): Eni e Patrícia OBJETIVO GERAL Desenvolver e aprimorar estruturas cognitivas de interpretação, análise, síntese,

Leia mais

Polígonos semelhantes

Polígonos semelhantes Escola Secundária de Lousada Matemática do 8º ano FT nº8 Data: / / 011 Assunto: Semelhança de figuras Lição nº e Figuras semelhantes têm a mesma forma. Duas figuras são semelhantes se são geometricamente

Leia mais

DESCRIÇÃO DOS NÍVEIS DA ESCALA DE DESEMPENHO DE MATEMÁTICA SAEB

DESCRIÇÃO DOS NÍVEIS DA ESCALA DE DESEMPENHO DE MATEMÁTICA SAEB DESCRIÇÃO DOS NÍVEIS DA ESCALA DE DESEMPENHO DE MATEMÁTICA SAEB 5º e 9º. Ano do Ensino Fundamental (continua) e exemplos de competência Nível 0 - abaixo de 125 A Prova Brasil não utilizou itens que avaliam

Leia mais

Ficha de Trabalho de Matemática do 8º ano N.º Assunto: Preparação para a ficha de Avaliação de Matemática Lições nº e Data: /01/2011

Ficha de Trabalho de Matemática do 8º ano N.º Assunto: Preparação para a ficha de Avaliação de Matemática Lições nº e Data: /01/2011 Escola Secundária com 3º CEB de Lousada Ficha de Trabalho de Matemática do 8º ano N.º Assunto: Preparação para a ficha de Avaliação de Matemática Lições nº e Data: /01/011 Apresentação dos Conteúdos e

Leia mais

PROVA DE MATEMÁTICA CONCURSO DE ADMISSÃO 2013/2014 1º ANO DO ENSINO MÉDIO

PROVA DE MATEMÁTICA CONCURSO DE ADMISSÃO 2013/2014 1º ANO DO ENSINO MÉDIO CONCURSO DE ADMISSÃO 2013/2014 PROVA DE MATEMÁTICA 1º ANO DO ENSINO MÉDIO CONFERÊNCIA: Membro da CEOCP (Mat / 1º EM) Presidente da CEI Dir Ens CPOR / CMBH PÁGINA 1 RESPONDA AS QUESTÕES DE 1 A 20 E TRANSCREVA

Leia mais

ORIENTAÇÕES CURRICULARES 7º ANO MATEMÁTICA

ORIENTAÇÕES CURRICULARES 7º ANO MATEMÁTICA ORIENTAÇÕES CURRICULARES 7º ANO MATEMÁTICA Objetivos Conteúdos Habilidades Reconhecer números inteiros, e as diferentes formas de representá-los e relacioná-los, apropriando-se deles. Números inteiros:

Leia mais

Geometria. Polígonos. Polígonos Regulares. Nome: N.ª: Ano: Turma: POLÍGONOS = POLI (muitos) + GONOS (ângulos)

Geometria. Polígonos. Polígonos Regulares. Nome: N.ª: Ano: Turma: POLÍGONOS = POLI (muitos) + GONOS (ângulos) MATEMÁTICA 3º CICLO FICHA 11 Geometria Polígonos. Polígonos Regulares. Nome: N.ª: Ano: Turma: Data: / / 20 POLÍGONOS = POLI (muitos) + GONOS (ângulos) Polígono é uma figura plana limitada por segmentos

Leia mais

Francisco Magalhães Gomes IMECC UNICAMP. Matemática básica. Volume 1 Operações, equações, funções e sequências

Francisco Magalhães Gomes IMECC UNICAMP. Matemática básica. Volume 1 Operações, equações, funções e sequências Francisco Magalhães Gomes IMECC UNICAMP Matemática básica Volume 1 Operações, equações, funções e sequências 2016 Sumário Prefácio vii Capítulo 1 Números reais 1 1.1 Conjuntos de números..............................

Leia mais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Taxa de Variação e Derivada TPC nº 6 (entregar no dia 14 01

Leia mais

Sumário 1. PROBLEMAS DE RACIOCÍNIO INTUITIVO ESPACIAL, NUMÉRICO E VERBAL...1 2. PROBLEMAS DE ARGUMENTAÇÃO LÓGICA INTUITIVA...55

Sumário 1. PROBLEMAS DE RACIOCÍNIO INTUITIVO ESPACIAL, NUMÉRICO E VERBAL...1 2. PROBLEMAS DE ARGUMENTAÇÃO LÓGICA INTUITIVA...55 IX Sumário 1. PROBLEMAS DE RACIOCÍNIO INTUITIVO ESPACIAL, NUMÉRICO E VERBAL...1 Solução dos exercícios... 29 2. PROBLEMAS DE ARGUMENTAÇÃO LÓGICA INTUITIVA...55 Solução dos exercícios... 64 3. conjuntos...77

Leia mais

Proposta de resolução da Prova de Matemática A (código 635) 2ª fase. 19 de Julho de 2010

Proposta de resolução da Prova de Matemática A (código 635) 2ª fase. 19 de Julho de 2010 Proposta de resolução da Prova de Matemática A (código 65) ª fase 9 de Julho de 00 Grupo I. Como só existem bolas de dois tipos na caixa e a probabilidade de sair bola azul é, existem tantas bolas roxas

Leia mais

11. Resolve as seguintes expressões numéricas: 1 2 1

11. Resolve as seguintes expressões numéricas: 1 2 1 Escola Secundária de Lousada Ficha de Trabalho de Matemática do7º nº Data /0 / 0 Assunto: Preparação para a Prova I Lições nº, Data da Realização : / 0 / 0 Duração: 90 minutos Conteúdos Números inteiros:

Leia mais

AGRUPAMENTO DE ESCOLAS DA SÉ GUARDA. MATEMÁTICA B Curso de Artes Visuais

AGRUPAMENTO DE ESCOLAS DA SÉ GUARDA. MATEMÁTICA B Curso de Artes Visuais Direção-Geral dos Estabelecimentos Escolares Direção de Serviços da Região Centro AGRUPAMENTO DE ESCOLAS DA SÉ GUARDA MATEMÁTICA B Curso de Artes Visuais ANO LECTIVO: 2015/2016 11º ANO 1º PERÍODO PLANIFICAÇÃO

Leia mais

Entrelinha 1,5. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta.

Entrelinha 1,5. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta. Teste Intermédio de Matemática Entrelinha 1,5 Teste Intermédio Matemática Entrelinha 1,5 (Versão única igual à Versão 1) Duração do Teste: 90 minutos 29.02.2012 8.º Ano de Escolaridade Decreto-Lei n.º

Leia mais

Plano de Curso. Matemática Ensino Fundamental. Fase final ( 6º a 9º ano )

Plano de Curso. Matemática Ensino Fundamental. Fase final ( 6º a 9º ano ) Plano de Curso Matemática Ensino Fundamental Fase final ( 6º a 9º ano ) 2012 2 APRESENTAÇÃO Caro(a) professor(a), (...) Protege-me das incursões obrigatórias que sufocam o prazer da descoberta e com o

Leia mais

Escola Secundária com 3ºCEB de Lousada

Escola Secundária com 3ºCEB de Lousada Escola Secundária com ºCEB de Lousada Ficha de Trabalho de Matemática do 9º ano - nº Data / / 00 Assunto: Preparação para o teste intermédio. Num sorteio, foram vendidas 500 rifas. a. A Rita comprou uma

Leia mais

Escola Secundária de Lousada

Escola Secundária de Lousada Escola Secundária de Lousada Ficha de Trabalho de Matemática do7º ano - nº Data / 0 / 0 Assunto: Preparação para o teste Lições nº,, e Data da Realização : / 0 / 0 Duração: 90 minutos Conteúdos Números

Leia mais

1.2. Grandezas Fundamentais e Sistemas de Unidades

1.2. Grandezas Fundamentais e Sistemas de Unidades CAPÍTULO 1 Grandezas, Unidades e Dimensões 1.1. Medidas Uma grandeza física é uma propriedade de um corpo, ou particularidade de um fenómeno, susceptível de ser medida, i.e. à qual se pode atribuir um

Leia mais

Estatística. Slide 0. Ana M. Abreu - 2006/07

Estatística. Slide 0. Ana M. Abreu - 2006/07 Estatística Slide 0 Capítulo 1 Estatística Descritiva Slide 1 I-1 Introdução à organização e ao processamento de dados. I-2 Amostra e população; cuidados a ter na recolha da amostra. I-3 Ordenação dos

Leia mais

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 96 / 97 MÚLTIPLA ESCOLHA

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 96 / 97 MÚLTIPLA ESCOLHA 18 1 a QUESTÃO. (VALOR: 0 ESCORES) - ESCORES OBTIDOS MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES ABAIXO. Item 01. A representação gráfica de M ( M N) P é a. ( )

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 2ª FASE 21 DE JULHO 2015 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 2ª FASE 21 DE JULHO 2015 GRUPO I Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 1500-36 Lisboa Tel.: +351 1 716 36 90 / 1 711 03 77 Fax: +351 1 716 64 4 http://www.apm.pt email: geral@apm.pt PROPOSTA DE

Leia mais

Variáveis Frequências Gráficos Medidas de Posição Medidas de Dispersão Medidas Complementares Inferência

Variáveis Frequências Gráficos Medidas de Posição Medidas de Dispersão Medidas Complementares Inferência Tipos de Variáveis Problema Motivador: Um pesquisador está interessado em fazer um levantamento sobre aspectos sócio-econômicos dos empregados da seção de orçamentos de uma companhia (vide tabela). Algumas

Leia mais

Conteúdo programático por disciplina Matemática 6 o ano

Conteúdo programático por disciplina Matemática 6 o ano 60 Conteúdo programático por disciplina Matemática 6 o ano Caderno 1 UNIDADE 1 Significados das operações (adição e subtração) Capítulo 1 Números naturais O uso dos números naturais Seqüência dos números

Leia mais

a) 2 b) 3 c) 4 d) 5 e) 6

a) 2 b) 3 c) 4 d) 5 e) 6 Recordando operações básicas 01. Calcule as expressões abaixo: a) 2254 + 1258 = b) 300+590 = c) 210+460= d) 104+23 = e) 239 54 = f) 655-340 = g) 216-56= h) 35 x 15 = i) 50 x 210 = j) 366 x 23 = k) 355

Leia mais

1º período. Conhecer os algarismos que compõem o SND (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). Diferenciar algarismos e números. e vice-versa.

1º período. Conhecer os algarismos que compõem o SND (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). Diferenciar algarismos e números. e vice-versa. 1º período Os números naturais: Sistema de Numeração Decimal. (SND) Um pouco de história: sistema de numeração dos romanos. Os números naturais Sistema de Numeração Decimal (SND). Unidades e dezenas. Unidades,

Leia mais

Aula 6 Medidas de Tendência Central

Aula 6 Medidas de Tendência Central 1 Estatística e Probabilidade Aula 6 Medidas de Tendência Central Professor Luciano Nóbrega Somatório Quando queremos representar uma soma de valores que obedecem à uma sequência, podemos codificá-la através

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - 4 HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 04 GABARITO COMENTADO 40 40 ) Sabendo que O B M = 40 O B = B M M = O, 40 O B+ M = 46 + M = 46 M 46M + 40 =

Leia mais

AVALIAÇÃO DIAGNÓSTICA DE MATEMÁTICA

AVALIAÇÃO DIAGNÓSTICA DE MATEMÁTICA AVALIAÇÃO DIAGNÓSTICA DE MATEMÁTICA Nome: nº Série: 3º ano Turma: Professora: Data: / / 1) A figura abaixo representa a planificação de um sólido geométrico. O sólido planificado é A) uma pirâmide de base

Leia mais

Em linguagem matemática, essa proprieade pode ser escrita da seguinte maneira: x. 1 = x Onde x representa um número natural qualquer.

Em linguagem matemática, essa proprieade pode ser escrita da seguinte maneira: x. 1 = x Onde x representa um número natural qualquer. MATEMÁTICA BÁSICA 5 EXPRESSÕES ALGÉBRICAS - EQUAÇÕES A expressão numérica é aquela que apresenta uma sequência de operações e de números. Também já sabemos que as letras são usadas em Matemática para representar

Leia mais

A recuperação foi planejada com o objetivo de lhe oportunizar mais um momento de aprendizagem.

A recuperação foi planejada com o objetivo de lhe oportunizar mais um momento de aprendizagem. DISCIPLINA: MATEMÁTICA PROFESSORES: MÁRIO, ADRIANA E GRAYSON DATA: / 1 / 014 VALOR: 0,0 NOTA: TRABALHO DE RECUPERAÇÃO FINAL SÉRIE: 9º ANO TURMA: NOME COMPLETO: Nº: Prezado(a) aluno(a), A recuperação foi

Leia mais

PLANO DE TRABALHO DOCENTE C.E. ATTÍLIO FONTANA 1º BIMESTRE JUSTIFICATIVA

PLANO DE TRABALHO DOCENTE C.E. ATTÍLIO FONTANA 1º BIMESTRE JUSTIFICATIVA PLANO DE TRABALHO DOCENTE C.E. ATTÍLIO FONTANA Professora: Andréia Bamberg Vieira Disciplina: Matemática AnO7 H Período: Vespertino 1º BIMESTRE NÚMEROS E ÁLGEBRA - Números Naturais: - A sequência dos números

Leia mais

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 95 / 96 QUESTÃO ÚNICA. ESCORES OBTIDOS MÚLTIPLA ESCOLHA

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 95 / 96 QUESTÃO ÚNICA. ESCORES OBTIDOS MÚLTIPLA ESCOLHA QUESTÃO ÚNICA. ESCORES OBTIDOS MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES À ESQUERDA OS ITENS DE 01 A 06 DEVERÃO SER RESPONDIDOS COM BASE NA TEORIA DOS CONJUNTOS.

Leia mais

Agrupamento Vertical de Escolas Engenheiro Nuno Mergulhão

Agrupamento Vertical de Escolas Engenheiro Nuno Mergulhão 2013/1 16/09/2013 1 1:30-15:15 _Apresentação do professor e dos alunos. _Definição de normas de funcionamento das aulas. _Material necessário. _Programa anual da disciplina. _Apresentação dos Critérios

Leia mais

Potenciação e radiciação

Potenciação e radiciação Sequência didática para a sala de aula 6 MATEMÁTICA Unidade 1 Capítulo 6: (páginas 55 a 58 do livro) 1 Objetivos Associar a potenciação às situações que representam multiplicações de fatores iguais. Perceber

Leia mais

Escola Secundária com 3ºCEB de Lousada

Escola Secundária com 3ºCEB de Lousada Escola Secundária com ºCEB de Lousada Ficha de Trabalho de Matemática do7º ano - nº Data / / 0 Assunto: Preparação para o teste Lições nº,, e Data da Realização : / 0 / 0 Duração: 90 minutos Conteúdos

Leia mais

Prova Final de Matemática

Prova Final de Matemática Prova Final de Matemática 2.º Ciclo do Ensino Básico Decreto-Lei n.º 19/2012, de 5 de julho Prova 62/1.ª Fase Braille, Entrelinha 1,5, sem figuras Critérios de Classificação 9 Páginas 2015 Prova 62/1.ª

Leia mais

Planificação Anual Departamento 1.º Ciclo

Planificação Anual Departamento 1.º Ciclo Modelo Dep-01 Agrupamento de Escolas do Castêlo da Maia Planificação Anual Departamento 1.º Ciclo Ano 3º Ano letivo 2013.2014 Disciplina: Matemática Turmas: 3º ano Professores: todos os docentes do 3º

Leia mais

Aula 4 Gráficos e Distribuição de Frequências

Aula 4 Gráficos e Distribuição de Frequências 1 REDES Aula 4 Gráficos e Distribuição de Frequências Professor Luciano Nóbrega Gráficos A representação gráfica fornece uma visão mais rápida que a observação direta de dados numéricos ou de tabelas.

Leia mais

Seleção de módulos do Sistema de Ensino Ser 2014

Seleção de módulos do Sistema de Ensino Ser 2014 ABEU COLÉGIOS Disciplina: Matemática Série: 1 ano / Fundamental I (Bimestres) 1 Caderno 1 Seleção de módulos do Sistema de Ensino Ser 2014 Módulos Primeiras Noções - Comparação de tamanhos - Noções de

Leia mais

Medidas de Localização

Medidas de Localização MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS RESUMO Estatística 2 Medidas de Localização e Dispersão 10º ano Cláudia Henriques Medidas de Localização Estatísticas Medidas que se calculam a partir dos dados

Leia mais

1. Resolve as expressões seguintes aplicando, sempre que possível, as regras operatórias das potências.

1. Resolve as expressões seguintes aplicando, sempre que possível, as regras operatórias das potências. Escola Secundária de Lousada Ficha de Trabalho nº Data / / 0 Assunto: Preparação para o teste Lições nº,, e Data da Realização : / 0 / 0 Duração: 90 minutos Números inteiros: - Números primos e números

Leia mais

MÓDULO XVI MEDIDAS DE ÂNGULOS. Um ângulo é classificado como agudo quando sua medida é maior que 0º e menor que 90º. 1. Definição de ângulo

MÓDULO XVI MEDIDAS DE ÂNGULOS. Um ângulo é classificado como agudo quando sua medida é maior que 0º e menor que 90º. 1. Definição de ângulo MÓDUL XVI 1. Definição de ângulo MEDIDS DE ÂNGULS Um ângulo é classificado como agudo quando sua medida é maior que 0º e menor que 90º. Ângulo é a união de duas semi-retas e de mesma origem e não colineares.

Leia mais

(1, 6) é também uma solução da equação, pois 3 1 + 2 6 = 15, isto é, 15 = 15. ( 23,

(1, 6) é também uma solução da equação, pois 3 1 + 2 6 = 15, isto é, 15 = 15. ( 23, Sistemas de equações lineares generalidades e notação matricial Definição Designa-se por equação linear sobre R a uma expressão do tipo com a 1, a 2,... a n, b R. a 1 x 1 + a 2 x 2 +... + a n x n = b (1)

Leia mais

PLANO DE ENSINO DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO 1º BIMESTRE DIRETORIA DE ENSINO REGIÃO CAIEIRAS

PLANO DE ENSINO DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO 1º BIMESTRE DIRETORIA DE ENSINO REGIÃO CAIEIRAS PLANO DE ENSINO DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO 1º BIMESTRE 1-Conjuntos numéricos, regularidades numéricas e/ou geométricas ( conjuntos numéricos; seqüências numéricas e/ou geométricas; termo geral

Leia mais

Nome: N.º: Endereço: Data: Telefone: PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 2016 Disciplina: MATEMÁTICA

Nome: N.º: Endereço: Data: Telefone:   PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 2016 Disciplina: MATEMÁTICA Nome: N.º: Endereço: Data: Telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 06 Disciplina: MATEMÁTICA Prova: DESAFIO NOTA: QUESTÃO 6 Analise cada item com atenção: I. O antecedente

Leia mais

MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Equações de retas e planos

MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Equações de retas e planos MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Equações de retas e planos 1 Seja um número real. Considere, num referencial o.n., a reta e o plano definidos, respetivamente, por e Sabe-se

Leia mais

Números escritos em notação científica

Números escritos em notação científica Notação Científica Números escritos em notação científica Escrever um número em notação científica tem muitas vantagens: Para números muito grandes ou muito pequenos poderem ser escritos de forma abreviada.

Leia mais

AEFG. Sabe-se que: ABCD e. AD, respetivamente.

AEFG. Sabe-se que: ABCD e. AD, respetivamente. Escola Básica de Ribeirão (Sede) ANO LETIVO 04/0 Nome: N.º: Turma: Classificação: Professor: Enc. Educação: 9.º Ano Ficha de Avaliação de Matemática Versão Duração do Teste: 0 minutos (Caderno ) + 0 minutos

Leia mais

Gabarito - Colégio Naval 2016/2017 Matemática Prova Amarela

Gabarito - Colégio Naval 2016/2017 Matemática Prova Amarela Gabarito - Colégio Naval 016/017 PROFESSORES: Carlos Eduardo (Cadu) André Felipe Bruno Pedra Jean Pierre QUESTÃO 1 Considere uma circunferência de centro O e raio r. Prolonga-se o diâmetro AB de um comprimento

Leia mais

Escola Básica e Secundária de Velas Planificação Anual

Escola Básica e Secundária de Velas Planificação Anual Escola Básica e Secundária de Velas Planificação Anual MATEMÁTICA 10º ANO (CURSO PROFISSIONAL) ANO LETIVO 201/2014 Módulo I: Estatística Nº de Aulas Previstas (90 m): 18 Conteúdos Objetivos Estratégias/

Leia mais

PROVA MATEMÁTICA UFRGS CORREÇÃO DO PROFESSOR ALEXANDRE FAÉ. 8 100% 0,3 x% x = 3,75%. GABARITO: C. Classes D e E 2009 30,8% 2014 17% Taxa var.

PROVA MATEMÁTICA UFRGS CORREÇÃO DO PROFESSOR ALEXANDRE FAÉ. 8 100% 0,3 x% x = 3,75%. GABARITO: C. Classes D e E 2009 30,8% 2014 17% Taxa var. PROVA MATEMÁTICA UFRGS CORREÇÃO DO PROFESSOR ALEXANDRE FAÉ 6. ASSUNTO: MATEMÁTICA BÁSICA gotas ml 1 0, 5 5 ml em um minuto ml minutos 5 1 y 4 60 y 700 ml 7, litros 60per 7. ASSUNTO: MATEMÁTICA BÁSICA 60

Leia mais

Apresentação dos Conteúdos e Objectivos para o 1º Teste de Avaliação de Matemática

Apresentação dos Conteúdos e Objectivos para o 1º Teste de Avaliação de Matemática Escola Secundária com 3ºCEB de Lousada Ficha de Trabalho de Matemática do 8º ano - nº Data / / 2009 Assunto: Preparação para a ficha de avaliação de Matemática Lições nº,, Apresentação dos Conteúdos e

Leia mais