7 - Grafos e Algoritmos Algoritmos e contagem do número de Operações

Tamanho: px
Começar a partir da página:

Download "7 - Grafos e Algoritmos. 7.1 - Algoritmos e contagem do número de Operações"

Transcrição

1 7 - Grfs e Algritms Algritms e cntgem d númer de Operções Prblems de timizçã e prblems cmputcinis em gerl sã reslvids pr mei de lgritms. De um frm vg, pdems dizer que um lgritm é um cnjunt de finit de instruções d tip usd em lingugens de prgrmçã tis cm: perções ritmétics, instruções cndicinis, instruções de leitur e escrit. O temp de execuçã de um lgritm depende de váris ftres, entre eles: b prátic de prgrmçã, cdificçã ds instruções de frm inteligente, estrutur de dds, equipment nde est send executd. Apesr d imprtânci destes ftres, estms interessds em vlir qulidde de um lgritm independentemente d frm em que está cdificd u d máquin nde est send executd. Um mneir de vlir desempenh cmputcinl de um lgritm independentemente de um implementçã prticulr é clculr prximdmente númer de perções (ritmétics, cndicinis, etc) que mesm execut. Est prátic é em gerl stisftóri, pesr de descnsiderr que perções cm númers inteirs de pucs dígits sã mens trblhss que perções envlvend númers reis de lt precisã, u númers inteirs de muits dígits. Um cálcul mis precis cnsider tmbém s dds d prblem. Neste text, irems cnsiderr pens s dds reltivs à dimensã d prblem. Um trtment mis detlhd sbre vliçã d desempenh cmputcinl de um lgritm pde ser encntrd em [1], [] e [3]. Cnsidere pr exempl, s dis lgritms descrits seguir. O primeir se destin clculr prdut esclr de dis vetres, e segund clcul prdut de dus mtrizes. Algritm 1 - Clcul prdut esclr n (p) entre s vetres v, w R n Dds: v, w R iníci p = v(1)*w(1) Pr i = té n fç p = p + v(i)*w(i) escrev p. Algritm - Clcul prdut (C) de m x n n x p dus mtrizes A R, B R m x n n x p Dds: A R, B R iníci pr i = 1 té m fç pr j = 1 té p fç c(i,j) = (i,1)*b(1,j) pr k = té n c(i,j) = c(i,j) + (i,k)*b(k,j)

2 Nte que n Algritm 1 tems n multiplicções e (n-1) dições ttliznd (n - 1) perções. O lgritm clcul s elements c(i,j) d mtriz C fzend prdut esclr entre linh i d mtriz A e clun j d mtriz B. Ist é, sã clculd m*p prduts esclres que pr su vez requerem (n-1) perções, ttliznd m*p(n-1) perções. Pr s lgritms 1 e fi pssível fzer cntgem ext d númer de perções que cd um execut. Nem sempre cntgem d númer de perções é trivil. Prcur-se entã fzer um estimtiv d cresciment d númer de perções em funçã ds prâmetrs que definem prblem. Assim, pr Algritm 1 é suficiente dizer que númer de perções que ele execut é um funçã liner de n, enqunt que númer de perções d Algritm é um funçã cúbic de n, m e p. Pr ser mis precis nest estimtiv d númer de perções é utilizd expressã "rdem de mgnitude" definid seguir. Definiçã 1: Sejm f e g : R n + R+ dizems que: ) f(n) é O(g(n)) (f é d rdem de g) se existirem cnstntes c, n > 0 tl que f ( n) cg( n) pr n n. (cmplexidde n pir cs) b) f(n) é Ω ( g( n)) (f é d rdem de g) se existirem cnstntes c, n > 0 tl que f ( n) cg( n) pr n n. (cmplexidde n melhr cs) c) f(n) é Θ ( g( n)) se f(n) é O(g(n)) e f(n) é Ω ( g( n)). (Cmplexidde ext) Exempls [3]: 3 ) f = 3p + p é d rdem de b) 3 3 3p + p 5p f = ( p +1) é d rdem de O( p = 1 e c = 4, tems ( p + 1) 4 p c) f=54 é (1) 3 p, u simplesmente f é O( p ). Neste cs:: 3 p ), pis pr = 0 p e c = 5, tems d) Observe que cm est definiçã s funções cmplexidde O(n 3 ) f ( x) + n 10 3 = 10 n e g ( x) + n 3 10 = n + 10 pssuem Exercíci: Verificr que: ) 3 f = 3p + p + 10 é Θ ( n 3 ) b) f = n lg n é O ( n ) e Ω (n) Cm vlir se cmplexidde de um dd lgritm é b u ruim? Supnh que pssms esclher entre dis lgritms, A e B. O temp de execuçã d lgritm A é 10 n n, ist é O (10 ) (expnencil) e d lgritm B é 10n 100 3, ist é O(n 3 ) (plinmil). Pr vlres bem pequens de n, pr exempl n=3, lgritm A é mis eficiente que lgritm B. Vej tbel 1 bix.

3 n 10 n n Tbel 1 - Númer de perções ds lgritms A e B Ms que cntece pr vlres mires de n? Supnh que dispms de um máquin cpz de executr 10 7 perções ritmétic pr segund, e que estms dispsts executr s dis lgritms pr 1000 segunds. Qul é dimensã ds prblems que pderíms reslver cm cd um ds lgritms dentr deste intervl de temp? Se máquin execut 10 7 perções pr segund, lgritm A, executd nest máquin pde relizr qunts perções em 1000 segunds? Um simples regr de três: 1 s s 10 n 100 ns lev seguinte equçã: 10 n = * > n = 1. Ist é, neste temp lgritm A reslve prblems cm n<= 1. Fzend um rcicíni similr pr lgritm B, tems que este reslve prblems cm n<= Estes cálculs indicm que lgritms plinmiis permitem resluçã de prblems mires dentr de um mesm intervl de temp. De um mneir gerl lgritms cm cmplexidde cmputcinl plinmil sã cnsiderds rápids e eficientes enqunt que s lgritms cm cmplexidde expnencil sã vists cm lents e ineficientes. Este pnt de vist se justific em muits, ms nã tds, situções. A timizçã liner é um exempl nde lgritms expnenciis (bseds n métd simplex) e lgritms plinmiis (métds de pnt interir) cmpetem em pé de iguldde. O estud de cmplexidde de lgritms será útil pr determinms gru de dificuldde de resluçã de prblems em Grfs. Em gerl s medids de cmplexidde sã feits em funçã d dimensã d prblem. N cs de grfs em funçã d númer de vértices, n, e d númer de rests, m e em lguns ns vlres tribuíds pr s vértices e pr s rests. Mis infrmções sbre cmplexidde de lgritms pdem ser encntrds em: [1] - Cmpel, R.E e N. Mculn, Algritms e Heurístics, Editr d Universidde Federl Fluminense, 1994; [] - Grey, M. R. e Jhnsn D.S. - Cmputer Intrctbility - A Guide t the Thery f NP- Cmpleteness. W.H. Freemn Cmpny, 1979.

4 7. Representçã de Grfs A representçã cmputcinl de um grf (u digrf) deve usr um estrutur que: i) crrespnde de frm únic um grf dd ii) pde ser rmzend e mnipuld em um cmputdr. A representçã gemétric de um grf trvés d digrm de pnts e linhs nã stisfz cndiçã ii) cim. Vms discutir seguir lgums estruturs que stisfzem estes dis critéris. Cnsidere um grf G(V,A) cm n vértices e m rests 7..1 Mtriz de Adjcênci É um mtriz n x n, A = [ ] nde: = se vértice i é djcente vértice cs cntrári j Exempl : Inicilmente fzems um rtulçã ns vértices de G. Qul é cmplexidde em terms de espç de memóri que um lgritm que use um mtriz de djcênci pr rmzenr grf? O(n ) Qulquer tip de grf pde ser rmzend nest estrutur? Nã! Apens grfs que nã pssum rests prlels. Qunts elements diferentes de zer est mtriz pssui? Qul é gru de um vértice? Se grf é simples gru de um vértice é dd pel sm ds elements de um linh. O que represent mtriz B= A*A? s elements b, i j, representm númer de cminhs distints entre s vértices vi e vj. de tmnh. b = n k= 1 ik kj existe um cminh se = 1, e cminh é dd pr {i, (i,k), k, (k,j), j}. ik = kj

5 É pssível utilizr est estrutur pr rmzenr digrfs? Sim. Terems : se existe um rest rientd = cs cntrári d vértice i pr vértice j Neste cs mtriz só será simétric, se digrf fr simétric. O gru de síd d vértice i é dd pel sm ds elements d linh i O gru de entrd d vértice i é dd pel sm ds elements d clun i 7.. Mtriz de Incidênci É um mtriz n x m, A = [ ] nde: = se rest j é incidente n vértice cs cntrári i Exempl 3: Inicilmente fzems um rtulçã ns vértices e ns rests de G. 1) Qul é cmplexidde em terms de espç de memóri que um lgritm que use um mtriz de incidênci pr rmzenr grf? O(n m) ) Qulquer tip de grf pde ser rmzend nest estrutur? Nã! Apens grfs que nã pssum lps. 3) Qunts elements diferentes de zer est mtriz pssui? m 4) Qul é gru de um vértice? O gru de um vértice é dd pel sm ds elements de um linh. 5) É pssível utilizr est estrutur pr rmzenr digrfs?

6 Sim cm um pequen mdificçã um vez que dizer que um rest incide em um vértice é necessári especificr se el cnverge pr u diverge de um dd vértice. Assim, pr digrfs, mtriz de incidenci cm n linhs e m cluns é definid pr: se rest j diverge d vértice i = -1se rest j cnverge pr vértice i cs cntrári Um bservçã: Um submtriz (n-1) x (n-1) d mtriz de incidênci é nã singulr se e smente se s rests sscids às (n-1) cluns dest submtriz cnstituem um árvre gerdr 1 de G. - um linh cm zers represent um vértice isld - um permutçã de linhs e cluns crrespndem um nv rtulçã pr vértices e rests e prtnt representm mesm grf; Pdems enuncir seguinte resultd: Terem Dis grfs G1 e G sã ismrfs se e smente se sus mtrizes de incidênci C1 e C diferem pens pel permutçã de linhs e cluns. As dus representções cim sã imprtntes prque els fcilitm recuperçã de um séries de infrmções respeit de um grf. Pr exempl gru de um vértice, determinr se dis vértices sã djcentes, entre utrs. N entnt els nã vlem pr qulquer grf dd, e demndm muit espç de memóri: O(n ) e O(nm) pr rmzenr pens m elements diferentes de zer. É pssível encntrr frmr mis eficientes de rmzenment de dds. Ms devems slientr que melhr mneir de rmzenr um grf u digrf vi depender d lgritm ser implementd List de Arests O digrf (u grf) G é representd pr dis vetres m-dimesinis F e H. Cd element destes vetres recebe rótul de um vértice. Assim i-esim rest diverge d vértce f i e cnverge pr vértice h i. Qul é espç necessári pr est estrutur? O(m) 7..4 List de sucessres Qund rzã m/n nã é muit lt é cnveniente usr um list de sucessres. Pr ist defin n vetres. Cd vetr é sscid um vértice. O primeir element d vetr K é vértice k e s demis elements sã s vértices djcentes vértice k (em um digrf, s vértice que est ligds vértice k pr um cminh de cmpriment 1). 1 Árvre gerdr de um grf é um subgrf cnex e sem circuits que cntém tds s vértice d grf.

7 Supnd que dmed é gru médi (u gru de síd médi) espç de memóri necessári pr est estrutur é O (n dmed) D1: G1 (1,) (1,,3,4) (,3,5) (,1,4,5,6) (3) (3,1,4,5) (4,1,5) (4,1,,3) (5,4) (5,,3) (6.) Exercícis 1)Se A é mtriz de djcênci de um grf G(V,A) entã (i,j)-ésim element d mtriz A k é igul númer de cminhs distints entre s vértices i e j de cmpriment K. Verifique este resultd pr grf d exempl, fzend k = 3. Este resultd vle pr mtriz de djcênci sscid digrfs? Verifique su respst cm um exempl.

MATRIZES. Em uma matriz M de m linhas e n colunas podemos representar seus elementos da seguinte maneira:

MATRIZES. Em uma matriz M de m linhas e n colunas podemos representar seus elementos da seguinte maneira: MATRIZES Definiçã Chm-se mtriz d tip m x n (m IN* e n IN*) td tel M frmd pr númers reis distriuíds em m linhs e n cluns. Em um mtriz M de m linhs e n cluns pdems representr seus elements d seguinte mneir:

Leia mais

Definição 1 O determinante de uma matriz quadrada A de ordem 2 é por definição a aplicação. det

Definição 1 O determinante de uma matriz quadrada A de ordem 2 é por definição a aplicação. det 5 DETERMINANTES 5 Definição e Proprieddes Definição O erminnte de um mtriz qudrd A de ordem é por definição plicção ( ) : M IR IR A Eemplo : 5 A ( A ) ( ) ( ) 5 7 5 Definição O erminnte de um mtriz qudrd

Leia mais

Prof. Ms. Aldo Vieira Aluno:

Prof. Ms. Aldo Vieira Aluno: Prof. Ms. Aldo Vieir Aluno: Fich 1 Chmmos de mtriz, tod tbel numéric com m linhs e n coluns. Neste cso, dizemos que mtriz é do tipo m x n (onde lemos m por n ) ou que su ordem é m x n. Devemos representr

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada. antunes@ibilce.unesp.br, socorro@ibilce.unesp.

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada. antunes@ibilce.unesp.br, socorro@ibilce.unesp. Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br Grafos e Algoritmos Preparado a partir do texto: Rangel, Socorro.

Leia mais

6. ÁLGEBRA LINEAR MATRIZES

6. ÁLGEBRA LINEAR MATRIZES MATRIZES. ÁLGEBRA LINEAR Definição Digonl Principl Mtriz Unidde Mtriz Trnspost Iguldde entre Mtrizes Mtriz Nul Um mtriz m n um tbel de números reis dispostos em m linhs e n coluns. Sempre que m for igul

Leia mais

CAPÍTULO VIII. Análise de Circuitos RL e RC

CAPÍTULO VIII. Análise de Circuitos RL e RC CAPÍTUO VIII Análise de Circuits e 8.1 Intrduçã Neste capítul serã estudads alguns circuits simples que utilizam elements armazenadres. Primeiramente, serã analisads s circuits (que pssuem apenas um resistr

Leia mais

( ) Logaritmos. Logaritmos. a é a base do logaritmo, b é o logaritmando, x é o logaritmo. Exemplos

( ) Logaritmos. Logaritmos. a é a base do logaritmo, b é o logaritmando, x é o logaritmo. Exemplos UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Lgritms. Cneit de lgritm

Leia mais

Simbolicamente, para. e 1. a tem-se

Simbolicamente, para. e 1. a tem-se . Logritmos Inicilmente vmos trtr dos ritmos, um ferrment crid pr uilir no desenvolvimento de cálculos e que o longo do tempo mostrou-se um modelo dequdo pr vários fenômenos ns ciêncis em gerl. Os ritmos

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas.

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas. CÁLCULO L1 NOTAS DA DÉCIMA SÉTIMA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nest ul, utilizremos o Teorem Fundmentl do Cálculo (TFC) pr o cálculo d áre entre dus curvs. 1. A áre entre dus curvs A

Leia mais

I, determine a matriz inversa de A. Como A 3 3 A = 2 I; fatorando o membro esquerdo dessa igualdade por A, temos a expressão

I, determine a matriz inversa de A. Como A 3 3 A = 2 I; fatorando o membro esquerdo dessa igualdade por A, temos a expressão VTB 008 ª ETAPA Sluçã Cmentada da Prva de Matemática 0 Em uma turma de aluns que estudam Gemetria, há 00 aluns Dentre estes, 0% fram aprvads pr média e s demais ficaram em recuperaçã Dentre s que ficaram

Leia mais

Linhas 1 2 Colunas 1 2. (*) Linhas 1 2 (**) Colunas 2 1.

Linhas 1 2 Colunas 1 2. (*) Linhas 1 2 (**) Colunas 2 1. Resumos ds uls teórics -------------------- Cp 5 -------------------------------------- Cpítulo 5 Determinntes Definição Consideremos mtriz do tipo x A Formemos todos os produtos de pres de elementos de

Leia mais

Calculando volumes. Para pensar. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos?

Calculando volumes. Para pensar. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos? A UA UL LA 58 Clculndo volumes Pr pensr l Considere um cubo de rest : Pr construir um cubo cuj rest sej o dobro de, de quntos cubos de rest precisremos? l Pegue um cix de fósforos e um cix de sptos. Considerndo

Leia mais

MATRIZES E DETERMINANTES

MATRIZES E DETERMINANTES Professor: Cssio Kiechloski Mello Disciplin: Mtemátic luno: N Turm: Dt: MTRIZES E DETERMINNTES MTRIZES: Em quse todos os jornis e revists é possível encontrr tbels informtivs. N Mtemátic chmremos ests

Leia mais

SERVIÇO PÚBLICO FEDERAL Ministério da Educação

SERVIÇO PÚBLICO FEDERAL Ministério da Educação SERVIÇO PÚBLICO FEDERAL Ministério d Educção Universidde Federl do Rio Grnde Universidde Abert do Brsil Administrção Bchreldo Mtemátic pr Ciêncis Sociis Aplicds I Rodrigo Brbos Sores . Mtrizes:.. Introdução:

Leia mais

PLANIFICAÇÃO DE MATEMÁTICA setembro/outubro

PLANIFICAÇÃO DE MATEMÁTICA setembro/outubro AGRUPAMNTO D SCOLAS MARQUÊS D MARIALVA- Cntnhede 1.º ANO D SCOLARIDAD PLANIFICAÇÃO D MATMÁTICA setembr/utubr (GM1) (dptds à unidde) bjets e pnts; Cmprçã de distâncis entre pres de bjets e pnts UNIDAD 1

Leia mais

Problemas e Algoritmos

Problemas e Algoritmos Problems e Algoritmos Em muitos domínios, há problems que pedem síd com proprieddes específics qundo são fornecids entrds válids. O primeiro psso é definir o problem usndo estruturs dequds (modelo), seguir

Leia mais

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos 3. Cálculo integrl em IR 3.. Integrl Indefinido 3... Definição, Proprieddes e Exemplos A noção de integrl indefinido prece ssocid à de derivd de um função como se pode verificr prtir d su definição: Definição

Leia mais

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5,

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5, - Limite. - Conceito Intuitivo de Limite Considere função f definid pel guinte epressão: f - - Podemos obrvr que função está definid pr todos os vlores de eceto pr. Pr, tnto o numerdor qunto o denomindor

Leia mais

Área entre curvas e a Integral definida

Área entre curvas e a Integral definida Universidde de Brsíli Deprtmento de Mtemátic Cálculo Áre entre curvs e Integrl definid Sej S região do plno delimitd pels curvs y = f(x) e y = g(x) e s rets verticis x = e x = b, onde f e g são funções

Leia mais

Comprimento de arco. Universidade de Brasília Departamento de Matemática

Comprimento de arco. Universidade de Brasília Departamento de Matemática Universidde de Brsíli Deprtmento de Mtemátic Cálculo Comprimento de rco Considerefunçãof(x) = (2/3) x 3 definidnointervlo[,],cujográficoestáilustrdo bixo. Neste texto vmos desenvolver um técnic pr clculr

Leia mais

Potencial Elétrico. Evandro Bastos dos Santos. 14 de Março de 2017

Potencial Elétrico. Evandro Bastos dos Santos. 14 de Março de 2017 Potencil Elétrico Evndro Bstos dos Sntos 14 de Mrço de 2017 1 Energi Potencil Elétric Vmos começr fzendo um nlogi mecânic. Pr um corpo cindo em um cmpo grvitcionl g, prtir de um ltur h i té um ltur h f,

Leia mais

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON PROFJWPS@GMAIL.COM MATRIZES Definição e Notção... 11 21 m1 12... 22 m2............ 1n.. 2n. mn Chmmos de Mtriz todo conjunto de vlores, dispostos

Leia mais

Matemática. Resolução das atividades complementares. M13 Determinantes. 1 (Unifor-CE) Sejam os determinantes A 5. 2 (UFRJ) Dada a matriz A 5 (a ij

Matemática. Resolução das atividades complementares. M13 Determinantes. 1 (Unifor-CE) Sejam os determinantes A 5. 2 (UFRJ) Dada a matriz A 5 (a ij Resolução ds tividdes complementres Mtemátic M Determinntes p. (Unifor-CE) Sejm os determinntes A, B e C. Nests condições, é verdde que AB C é igul : ) c) e) b) d) A?? A B?? B C?? C AB C ()? AB C, se i,

Leia mais

Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta

Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta Questã O númer de gls marcads ns 6 jgs da primeira rdada de um campenat de futebl fi 5,,,, 0 e. Na segunda rdada, serã realizads mais 5 jgs. Qual deve ser númer ttal de gls marcads nessa rdada para que

Leia mais

Matrizes. Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Márcia A.F. Dias de Moraes. Matrizes Conceitos Básicos

Matrizes. Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Márcia A.F. Dias de Moraes. Matrizes Conceitos Básicos Mtemátic pr Economists LES uls e Mtrizes Ching Cpítulos e Usos em economi Mtrizes ) Resolução sistems lineres ) Econometri ) Mtriz Insumo Produto Márci.F. Dis de Mores Álgebr Mtricil Conceitos Básicos

Leia mais

1 ÁLGEBRA MATRICIAL 1.1 TIPOS ESPECIAIS DE MATRIZES. Teorema. Sejam A uma matriz k x m e B uma matriz m x n. Então (AB) T = B T A T

1 ÁLGEBRA MATRICIAL 1.1 TIPOS ESPECIAIS DE MATRIZES. Teorema. Sejam A uma matriz k x m e B uma matriz m x n. Então (AB) T = B T A T ÁLGEBRA MATRICIAL Teorem Sejm A um mtriz k x m e B um mtriz m x n Então (AB) T = B T A T Demonstrção Pr isso precismos d definição de mtriz trnspost Definição Mtriz trnspost (AB) T = (AB) ji i j = A jh

Leia mais

FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x

FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x FUNÇÕES ) Se f() = 6, então f ( 5) f ( 5) é igul () (b) (c) 3 (d) 4 (e) 5 ) (UNIFOR) O gráfico bio 0 () não represent um função. (b) represent um função bijetor. (c) represent um função não injetor. (d)

Leia mais

, reais ou complexos, com a

, reais ou complexos, com a 6 - Determiçã de ízes de Pliômis Pliômi é um s rtiulr de equçã ã-lier, rtt que fi vist r rízes de equções ã-lieres de ser estedid r liômis Será vist lgums rterístis eseífis de liômis Cm viu-se, r sluçã

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

Função Modular. x, se x < 0. x, se x 0

Função Modular. x, se x < 0. x, se x 0 Módulo de um Número Rel Ddo um número rel, o módulo de é definido por:, se 0 = `, se < 0 Observção: O módulo de um número rel nunc é negtivo. Eemplo : = Eemplo : 0 = ( 0) = 0 Eemplo : 0 = 0 Geometricmente,

Leia mais

LABORATÓRIO DA FUNDIÇÃO RELATÓRIO 001/13 ESTUDO DO COMPORTAMENTO DA TEMPERATURA DA ÁGUA DA PISCINA NO TRATAMENTO TÉRMICO DE AUSTENITIZAÇÃO

LABORATÓRIO DA FUNDIÇÃO RELATÓRIO 001/13 ESTUDO DO COMPORTAMENTO DA TEMPERATURA DA ÁGUA DA PISCINA NO TRATAMENTO TÉRMICO DE AUSTENITIZAÇÃO LABORATÓRIO DA FUNDIÇÃO RELATÓRIO 001/13 ESTUDO DO COMPORTAMENTO DA TEMPERATURA DA ÁGUA DA PISCINA NO TRATAMENTO TÉRMICO DE AUSTENITIZAÇÃO INTRODUÇÃO Pr ç mngnês presentr dequd cndiçã de us, ele deve ser

Leia mais

FLUXO EM SOLOS SOB CONDIÇÃO SATURADA. Análise Numérica Método das Diferenças Finitas

FLUXO EM SOLOS SOB CONDIÇÃO SATURADA. Análise Numérica Método das Diferenças Finitas FLUXO EM SOLOS SOB CONDIÇÃO SATURADA Análise Numéric Métd ds Diferençs Finits CONTEÚDO. ANÁLISE NUMÉRICA MÉTODO DAS FIFERENÇAS FINITAS..... CONDIÇÕES ESPECIAIS... 5... Superfície impermeável... 5... Diferentes

Leia mais

Aula 6: Determinantes

Aula 6: Determinantes Aul 6: Determinntes GAN-Álg iner- G 8 Prof An Mri uz F do Amrl Determinntes Relembrndo Vimos que: Se A é x e det(a) então existe A - ; Se existe A - então o sistem liner Axb tem solução únic (x A - b)

Leia mais

Calculando volumes. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos?

Calculando volumes. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos? A UA UL LA Acesse: http://fuvestibulr.com.br/ Clculndo volumes Pr pensr l Considere um cubo de rest : Pr construir um cubo cuj rest sej o dobro de, de quntos cubos de rest precisremos? l Pegue um cix de

Leia mais

Módulo 02. Sistemas Lineares. [Poole 58 a 85]

Módulo 02. Sistemas Lineares. [Poole 58 a 85] Módulo Note em, leitur destes pontmentos não dispens de modo lgum leitur tent d iliogrfi principl d cdeir Chm-se à tenção pr importânci do trlho pessol relizr pelo luno resolvendo os prolems presentdos

Leia mais

Matrizes e Determinantes

Matrizes e Determinantes Págin de - // - : PROFESSOR: EQUIPE DE MTEMÁTIC NCO DE QUESTÕES - MTEMÁTIC - ª SÉRIE - ENSINO MÉDIO - PRTE =============================================================================================

Leia mais

MÉTODO DA POSIÇÃO FALSA EXEMPLO

MÉTODO DA POSIÇÃO FALSA EXEMPLO MÉTODO DA POSIÇÃO FALSA Vimos que o Método d Bissecção encontr um novo intervlo trvés de um médi ritmétic. Ddo o intervlo [,], o método d posição fls utiliz médi ponderd de e com pesos f( e f(, respectivmente:

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano.

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano. CÁLCULO NUMÉRICO Prof. Dr. Yr de Souz Tdno yrtdno@utfpr.edu.br Aul 0 0/04 Sistems de Equções Lineres Prte MÉTODOS ITERATIVOS Cálculo Numérico /9 MOTIVAÇÃO Os métodos itertivos ou de proimção fornecem um

Leia mais

Teoria de Linguagens 2 o semestre de 2014 Professor: Newton José Vieira Primeira Lista de Exercícios Entrega: até 16:40h de 23/10.

Teoria de Linguagens 2 o semestre de 2014 Professor: Newton José Vieira Primeira Lista de Exercícios Entrega: até 16:40h de 23/10. Pós-Grdução em Ciênci d Computção DCC/ICEx/UFMG Teori de Lingugens 2 o semestre de 2014 Professor: Newton José Vieir Primeir List de Exercícios Entreg: té 16:40h de 23/10. Oservções: O uso do softwre JFLAP,

Leia mais

BRDE AOCP 2012. 01. Complete o elemento faltante, considerando a sequência a seguir: 1 2 4 8? 32 64 (A) 26 (B) 12 (C) 20 (D) 16 (E) 34.

BRDE AOCP 2012. 01. Complete o elemento faltante, considerando a sequência a seguir: 1 2 4 8? 32 64 (A) 26 (B) 12 (C) 20 (D) 16 (E) 34. BRDE AOCP 01 01. Cmplete element faltante, cnsiderand a sequência a seguir: (A) 6 (B) 1 (C) 0 (D) 16 (E) 4 Resluçã: 1 4 8? 64 Observe que, td númer subsequente é dbr d númer anterir: 1 4 8 16 4 8 16 64...

Leia mais

Gráfico do Método de Newton original

Gráfico do Método de Newton original Cmetáris Adiiis d Métd de Newt-Rphs Métd de Newt Mdiid Sej epressã gerl d métd: Oserve que d iterçã é luld derivd d uçã v pt. A iterpretçã grái d métd está igur i. A d iterçã iliçã d ret tgete é mdiid.

Leia mais

Aula 27 Integrais impróprias segunda parte Critérios de convergência

Aula 27 Integrais impróprias segunda parte Critérios de convergência Integris imprópris segund prte Critérios de convergênci MÓDULO - AULA 7 Aul 7 Integris imprópris segund prte Critérios de convergênci Objetivo Conhecer dois critérios de convergênci de integris imprópris:

Leia mais

Vestibular Comentado - UVA/2011.1

Vestibular Comentado - UVA/2011.1 estiulr Comentdo - UA/0. Conecimentos Específicos MATEMÁTICA Comentários: Profs. Dewne, Mrcos Aurélio, Elino Bezerr. 0. Sejm A e B conjuntos. Dds s sentençs ( I ) A ( A B ) = A ( II ) A = A, somente qundo

Leia mais

Diogo Pinheiro Fernandes Pedrosa

Diogo Pinheiro Fernandes Pedrosa Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito

Leia mais

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana.

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana. INTEGRAL DEFINIDO O oneito de integrl definido está reliondo om um prolem geométrio: o álulo d áre de um figur pln. Vmos omeçr por determinr áre de um figur delimitd por dus rets vertiis, o semi-eio positivo

Leia mais

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc.

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc. Aul Métodos Esttísticos sticos de Apoio à Decisão Aul Mônic Brros, D.Sc. Vriáveis Aletóris Contínus e Discrets Função de Probbilidde Função Densidde Função de Distribuição Momentos de um vriável letóri

Leia mais

ÁLGEBRA LINEAR Equações Lineares na Álgebra Linear EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS

ÁLGEBRA LINEAR Equações Lineares na Álgebra Linear EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS Equção Liner * Sej,,,...,, (números reis) e n (n ) 2 3 n x, x, x,..., x (números reis) 2 3 n Chm-se equção Liner sobre

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - CAPES MATRIZES Prof. Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr Ciêncis Sociis

Leia mais

VIBRAÇÃO NO NÚCLEO ESTATÓRICO DO GERADOR DA UG-05 DA USINA HIDRELÉTRICA ENGº. SÉRGIO MOTTA (PORTO PRIMAVERA) 1.0 INTRODUÇÃO

VIBRAÇÃO NO NÚCLEO ESTATÓRICO DO GERADOR DA UG-05 DA USINA HIDRELÉTRICA ENGº. SÉRGIO MOTTA (PORTO PRIMAVERA) 1.0 INTRODUÇÃO GGH/008 6 de Outubr de 00 Cmpins - Sã Pul - Brsil GRUPO I GRUPO DE ESTUDO DE GERAÇÃO HIDRÁULICA - GGH VIBRAÇÃO NO NÚCLEO ESTATÓRICO DO GERADOR DA UG-05 DA USINA HIDRELÉTRICA ENGº. SÉRGIO MOTTA (PORTO PRIMAVERA)

Leia mais

Definição e Criação de Molduras

Definição e Criação de Molduras TQS - Mldur Escrit pr Eng. Cmil Ferreir Seg, 20 Mi 2013 09:47 - Ness mensg rei lg dic crir nv mldur pltg n TQS. Ain nesse mesm text, lbrrei ts sbre recurs interessnte p uxiliá-ls criçã crimbs (u sels)

Leia mais

1 Fórmulas de Newton-Cotes

1 Fórmulas de Newton-Cotes As nots de ul que se seguem são um compilção dos textos relciondos n bibliogrfi e não têm intenção de substitui o livro-texto, nem qulquer outr bibliogrfi. Integrção Numéric Exemplos de problems: ) Como

Leia mais

Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Luiz Fernando Satolo

Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Luiz Fernando Satolo Mtemátic pr Economists LES Auls 5 e Mtrizes Ching Cpítulos e 5 Luiz Fernndo Stolo Mtrizes Usos em economi ) Resolução sistems lineres ) Econometri ) Mtriz Insumo Produto Álgebr Mtricil Conceitos Básicos

Leia mais

Aula 10 Estabilidade

Aula 10 Estabilidade Aul 0 Estbilidde input S output O sistem é estável se respost à entrd impulso 0 qundo t Ou sej, se síd do sistem stisfz lim y(t) t = 0 qundo entrd r(t) = impulso input S output Equivlentemente, pode ser

Leia mais

10/09/2016 UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS DA TERRA DEPARTAMENTO DE GEOMÁTICA AJUSTAMENTO II GA110. Prof. Alvaro Muriel Lima Machado

10/09/2016 UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS DA TERRA DEPARTAMENTO DE GEOMÁTICA AJUSTAMENTO II GA110. Prof. Alvaro Muriel Lima Machado UNIVERSIDDE FEDERL DO PRNÁ SEOR DE IÊNIS D ERR DEPRMENO DE GEOMÁI JUSMENO II G Prof. lvro Muriel Lim Mchdo justmento de Observções Qundo s medids não são feits diretmente sobre s grndezs procurds, ms sim

Leia mais

B ) 2 = ( x + y ) 2 ( 31 + 8 15 + 31 8 ( 31 + 8 15 ) 2 + 2( 31 + 8 15 )( 31 8 MÓDULO 17. Radiciações e Equações

B ) 2 = ( x + y ) 2 ( 31 + 8 15 + 31 8 ( 31 + 8 15 ) 2 + 2( 31 + 8 15 )( 31 8 MÓDULO 17. Radiciações e Equações Ciêncis d Nturez, Mtemátic e sus Tecnologis MATEMÁTICA. Mostre que Rdicições e Equções + 8 5 + 8 + 8 5 + 8 ( + 8 5 + 8 5 é múltiplo de 4. 5 = x, com x > 0 5 ) = x ( + 8 5 ) + ( + 8 5 )( 8 + ( 8 5 ) = x

Leia mais

NÍVEL 2 - Prova da 2ª fase - Soluções

NÍVEL 2 - Prova da 2ª fase - Soluções NÍVEL - Prv d ª fse - Sluções QUESTÃO () A prtir d figur d eucid tems =S, =U, 7=C, =R e =I. Lg plvr cdificd cm --7--- é SUCURI. (b) Pr chve 0 tems figur ld, de vems que O=8, B=, M=6, E= e P=9. Assim, cdificçã

Leia mais

Física 1 Capítulo 3 2. Acelerado v aumenta com o tempo. Se progressivo ( v positivo ) a m positiva Se retrógrado ( v negativo ) a m negativa

Física 1 Capítulo 3 2. Acelerado v aumenta com o tempo. Se progressivo ( v positivo ) a m positiva Se retrógrado ( v negativo ) a m negativa Físic 1 - Cpítulo 3 Movimento Uniformemente Vrido (m.u.v.) Acelerção Esclr Médi v 1 v 2 Movimento Vrido: é o que tem vrições no vlor d velocidde. Uniddes de celerção: m/s 2 ; cm/s 2 ; km/h 2 1 2 Acelerção

Leia mais

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) EXPERIMENTOS COM UM ÚNICO FATOR E A ANÁLISE DE VARIÂNCIA

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) EXPERIMENTOS COM UM ÚNICO FATOR E A ANÁLISE DE VARIÂNCIA PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) EXPERIMENTOS COM UM ÚNICO FATOR E A ANÁLISE DE VARIÂNCIA Dr. Sivldo Leite Correi EXEMPLO DE UM PROBLEMA COM UM ÚNICO FATOR Um empres do rmo textil desej desenvolver

Leia mais

Gabarito Extensivo MATEMÁTICA volume 1 Frente D

Gabarito Extensivo MATEMÁTICA volume 1 Frente D Gabarit Extensiv MATEMÁTICA vlume 1 Frente D 01) 8x 40 6x 0 8x 6x 0 + 40 x 0 x 10 8x 40 8.10 40 80 40 40 6x 0 6.10 0 60 0 40 0) Pnteir pequen (hras): 30-1 hra 60 minuts 1 -? 30 60 1 x x 4 min Prtant, 1h4min

Leia mais

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A.

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A. MÓDULO - AULA Aul Técnics de Integrção Substituição Trigonométric Objetivo Conhecer técnic de integrção chmd substituição trigonométric. Introdução Você prendeu, no Cálculo I, que integrl de um função

Leia mais

Bhaskara e sua turma Cícero Thiago B. Magalh~aes

Bhaskara e sua turma Cícero Thiago B. Magalh~aes 1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como

Leia mais

Recordando produtos notáveis

Recordando produtos notáveis Recordndo produtos notáveis A UUL AL A Desde ul 3 estmos usndo letrs pr representr números desconhecidos. Hoje você sbe, por exemplo, que solução d equção 2x + 3 = 19 é x = 8, ou sej, o número 8 é o único

Leia mais

Autómatos Finitos Determinísticos. 4.1 Validação de palavras utilizando Autómatos

Autómatos Finitos Determinísticos. 4.1 Validação de palavras utilizando Autómatos Licencitur em Engenhri Informátic DEI/ISEP Lingugens de Progrmção 26/7 Fich 4 Autómtos Finitos Determinísticos Ojectivos: Vlidção de plvrs utilizndo Autómtos Finitos; Conversão de utómtos finitos não determinísticos

Leia mais

Prof. Doherty Andrade- DMA/UEM DMA-UEM-2004

Prof. Doherty Andrade- DMA/UEM DMA-UEM-2004 Integrção Numéric Prof. Doherty Andrde- DMA/UEM DMA-UEM-4 Preliminres Nests nots o nosso interesse é clculr numericmente integris f(x)dx. A idéi d integrção numéric reside n proximção d função integrnd

Leia mais

um número finito de possibilidades para o resto, a saber, 0, 1, 2,..., q 1. Portanto, após no máximo q passos,

um número finito de possibilidades para o resto, a saber, 0, 1, 2,..., q 1. Portanto, após no máximo q passos, Instituto de Ciêncis Exts - Deprtmento de Mtemátic Cálculo I Profª Mri Juliet Ventur Crvlho de Arujo Cpítulo : Números Reis - Conjuntos Numéricos Os primeiros números conhecidos pel humnidde são os chmdos

Leia mais

Índice. Matrizes, Determinantes e Sistemas Lineares. Resumo Teórico...1 Exercícios...5 Dicas...6 Resoluções...7

Índice. Matrizes, Determinantes e Sistemas Lineares. Resumo Teórico...1 Exercícios...5 Dicas...6 Resoluções...7 Índice Mtrizes, Determinntes e Sistems Lineres Resumo Teórico...1 Exercícios...5 Dics...6 Resoluções...7 Mtrizes, Determinntes e Sistems Lineres Resumo Teórico Mtrizes Representção A=( ij )x3pode ser representd

Leia mais

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Determinantes

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Determinantes Universidde Federl de Pelots Vetores e Álgebr Liner Prof : Msc. Merhy Heli Rodrigues Determinntes Determinntes Definição: Determinnte é um número ssocido um mtriz qudrd.. Determinnte de primeir ordem Dd

Leia mais

. Estas equações são equações paramétricas da curva C.

. Estas equações são equações paramétricas da curva C. Universidde Federl d Bhi -- UFBA Deprtmento de Mtemátic, Cálculo IIA, Prof. Adrino Ctti Cálculo de áres de figurs plns (curvs sob equções prmétrics) (por Prof. Elin Prtes) Exemplo : Sej o círculo C de

Leia mais

Definição: uma permutação do conjunto de inteiros {1, 2,..., n} é um rearranjo destes inteiros em alguma ordem sem omissões ou repetições.

Definição: uma permutação do conjunto de inteiros {1, 2,..., n} é um rearranjo destes inteiros em alguma ordem sem omissões ou repetições. DETERMINANTES INTRODUÇÃO Funções determinnte, são funções reis de um vriável mtricil, o que signific que ssocim um número rel (X) um mtriz qudrd X Sus plicções envolvem crcterizção de mtriz invertível,

Leia mais

Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A?

Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A? PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO ============================================================================================= Determinntes - O vlor

Leia mais

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b]

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b] Interl Deinid Se é um unção de, então su interl deinid é um interl restrit à vlores em um intervlo especíico, dimos, O resultdo é um número que depende pens de e, e não de Vejmos deinição: Deinição: Sej

Leia mais

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução (9) - www.elitecmpins.com.br O ELITE RESOLVE MATEMÁTICA QUESTÃO Se Améli der R$, Lúci, então mbs ficrão com mesm qunti. Se Mri der um terço do que tem Lúci, então est ficrá com R$, mis do que Améli. Se

Leia mais

Lugar Geométrico das Raízes. Lugar Geométrico das Raízes. Lugar Geométrico das Raízes

Lugar Geométrico das Raízes. Lugar Geométrico das Raízes. Lugar Geométrico das Raízes Cnstruíd dretamente a partr ds póls e zers da funçã de transferênca de malha aberta H(. Os póls de malha fechada sã sluçã da equaçã + H( = 0, u: arg( H( ) = ± 80 (k+), k = 0,,,... H( = Para cada pnt s

Leia mais

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial º semestre de Engenhri Civil/Mecânic Cálculo Prof Olg (º sem de 05) Função Eponencil Definição: É tod função f: R R d form =, com R >0 e. Eemplos: = ; = ( ) ; = 3 ; = e Gráfico: ) Construir o gráfico d

Leia mais

Aula de solução de problemas: cinemática em 1 e 2 dimensões

Aula de solução de problemas: cinemática em 1 e 2 dimensões Aul de solução de problems: cinemátic em 1 e dimensões Crlos Mciel O. Bstos, Edurdo R. Azevedo FCM 01 - Físic Gerl pr Químicos 1. Velocidde instntâne 1 A posição de um corpo oscil pendurdo por um mol é

Leia mais

Unidade 2 Geometria: ângulos

Unidade 2 Geometria: ângulos Sugestões de tividdes Unidde 2 Geometri: ângulos 7 MTEMÁTIC 1 Mtemátic 1. Respond às questões: 5. Considere os ângulos indicdos ns rets ) Qul é medid do ângulo correspondente à metde de um ân- concorrentes.

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

Conceito Representação Propriedades Desenvolvimento de Laplace Matriz Adjunta e Matriz Inversa

Conceito Representação Propriedades Desenvolvimento de Laplace Matriz Adjunta e Matriz Inversa Algebr Liner Boldrini/Cost/Figueiredo/Wetzler Objetivo: Clculr determinntes pelo desenvolvimento de Lplce Inverter Mtrizes Conceito Representção Proprieddes Desenvolvimento de Lplce Mtriz Adjunt e Mtriz

Leia mais

Resolução 2 o Teste 26 de Junho de 2006

Resolução 2 o Teste 26 de Junho de 2006 Resolução o Teste de Junho de roblem : Resolução: k/m m k/m k m 3m k m m 3m m 3m H R H R R ) A estti globl obtém-se: α g = α e + α i α e = ret 3 = 3 = ; α i = 3 F lint = = α g = Respost: A estrutur é eteriormente

Leia mais

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli Introdução à Integrl Definid Aul 04 Mtemátic II Agronomi Prof. Dnilene Donin Berticelli Áre Desde os tempos mis ntigos os mtemáticos se preocupm com o prolem de determinr áre de um figur pln. O procedimento

Leia mais

1 Assinale a alternativa verdadeira: a) < <

1 Assinale a alternativa verdadeira: a) < < MATEMÁTICA Assinle lterntiv verddeir: ) 6 < 7 6 < 6 b) 7 6 < 6 < 6 c) 7 6 < 6 < 6 d) 6 < 6 < 7 6 e) 6 < 7 6 < 6 Pr * {} temos: ) *, * + e + * + ) + > + + > ) Ds equções (I) e (II) result 7 6 < ( 6 )

Leia mais

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que:

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que: Cpítulo 8 Integris Imprópris 8. Introdução A eistênci d integrl definid f() d, onde f é contínu no intervlo fechdo [, b], é grntid pelo teorem fundmentl do cálculo. Entretnto, determinds plicções do Cálculo

Leia mais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais POTÊNCIAS A potênci de epoente n ( n nturl mior que ) do número, representd por n, é o produto de n ftores iguis. n =...... ( n ftores) é chmdo de bse n é chmdo de epoente Eemplos =... = 8 =... = PROPRIEDADES

Leia mais

Matemática Fascículo 03 Álvaro Zimmermann Aranha

Matemática Fascículo 03 Álvaro Zimmermann Aranha Mtemátic Fscículo 03 Álvro Zimmerm Arh Ídice Progressão Aritmétic e Geométric Resumo Teórico... Exercícios...3 Dics...4 Resoluções...5 Progressão Aritmétic e Geométric Resumo teórico Progressão Aritmétic

Leia mais

Semelhança e áreas 1,5

Semelhança e áreas 1,5 A UA UL LA Semelhnç e áres Introdução N Aul 17, estudmos o Teorem de Tles e semelhnç de triângulos. Nest ul, vmos tornr mis gerl o conceito de semelhnç e ver como se comportm s áres de figurs semelhntes.

Leia mais

MATRIZES. 1) (CEFET) Se A, B e C são matrizes do tipo 2x3, 3x1 e 1x4, respectivamente, então o produto A.B.C. (a) é matriz do tipo 4 x 2

MATRIZES. 1) (CEFET) Se A, B e C são matrizes do tipo 2x3, 3x1 e 1x4, respectivamente, então o produto A.B.C. (a) é matriz do tipo 4 x 2 MATRIZES ) (CEFET) Se A, B e C são mtrizes do tipo, e 4, respectivmente, então o produto A.B.C () é mtriz do tipo 4 () é mtriz do tipo 4 (c) é mtriz do tipo 4 (d) é mtriz do tipo 4 (e) não é definido )

Leia mais

Unidimensional pois possui apenas uma única dimensão

Unidimensional pois possui apenas uma única dimensão Vetores e Mtrizes José Augusto Brnusks Deprtmento de Físic e Mtemátic FFCLRP-USP Sl 6 Bloco P Fone (6) 60-6 Nest ul veremos estruturs de ddos homogênes: vetores (ou rrys) e mtrizes Esss estruturs de ddos

Leia mais

Prova 1 Soluções MA-602 Análise II 27/4/2009 Escolha 5 questões

Prova 1 Soluções MA-602 Análise II 27/4/2009 Escolha 5 questões Prov 1 Soluções MA-602 Análise II 27/4/2009 Escolh 5 questões 1. Sej f : [, b] R um função limitd. Mostre que f é integrável se, e só se, existe um sequênci de prtições P n P [,b] do intervlo [, b] tl

Leia mais

Rresumos das aulas teóricas Cap Capítulo 4. Matrizes e Sistemas de Equações Lineares

Rresumos das aulas teóricas Cap Capítulo 4. Matrizes e Sistemas de Equações Lineares Rresumos ds uls teórics ------------------ Cp ------------------------------ Cpítulo. Mtrizes e Sistems de Equções ineres Sistems de Equções ineres Definições Um sistem de m equções lineres n incógnits,

Leia mais

Física Geral e Experimental I (2011/01)

Física Geral e Experimental I (2011/01) Diretori de Ciêncis Exts Lbortório de Físic Roteiro Físic Gerl e Experimentl I (/ Experimento: Cinemátic do M. R. U. e M. R. U. V. . Cinemátic do M.R.U. e do M.R.U.V. Nest tref serão borddos os seguintes

Leia mais

Exercícios. setor Aula 25

Exercícios. setor Aula 25 setor 08 080409 080409-SP Aul 5 PROGRESSÃO ARITMÉTICA. Determinr o número de múltiplos de 7 que estão compreendidos entre 00 e 000. r 7 00 7 PA 05 30 4 n 994 00 98 98 + 7 05 n + (n ) r 994 05 + (n ) 7

Leia mais

(x, y) dy. (x, y) dy =

(x, y) dy. (x, y) dy = Seção 7 Função Gm A expressão n! = 1 3... n (1 está definid pens pr vlores inteiros positivos de n. Um primeir extensão é feit dizendo que! = 1. Ms queremos estender noção de ftoril inclusive pr vlores

Leia mais

Cálculo III-A Módulo 8

Cálculo III-A Módulo 8 Universidde Federl Fluminense Instituto de Mtemátic e Esttístic Deprtmento de Mtemátic Aplicd álculo III-A Módulo 8 Aul 15 Integrl de Linh de mpo Vetoril Objetivo Definir integris de linh. Estudr lgums

Leia mais

Cálculo de Limites. Sumário

Cálculo de Limites. Sumário 6 Cálculo de Limites Sumário 6. Limites de Sequêncis................. 3 6.2 Exercícios Recomenddos............... 5 6.3 Limites de Funções.................. 7 6.4 Exercícios Recomenddos...............

Leia mais

TRIGONOMETRIA. A trigonometria é uma parte importante da Matemática. Começaremos lembrando as relações trigonométricas num triângulo retângulo.

TRIGONOMETRIA. A trigonometria é uma parte importante da Matemática. Começaremos lembrando as relações trigonométricas num triângulo retângulo. TRIGONOMETRIA A trigonometri é um prte importnte d Mtemátic. Começremos lembrndo s relções trigonométrics num triângulo retângulo. Num triângulo ABC, retângulo em A, indicremos por Bˆ e por Ĉ s medids

Leia mais

C Sistema destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO

C Sistema destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET  RACIOCÍNIO LÓGICO Pr Ordendo RACIOCÍNIO LÓGICO AULA 06 RELAÇÕES E FUNÇÕES O pr ordendo represent um ponto do sistem de eixos rtesinos. Este sistem é omposto por um pr de rets perpendiulres. A ret horizontl é hmd de eixo

Leia mais

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática 1 NÚMEROS E OPERAÇÕES 1.1 Lingugem Mtemátic AULA 1 1 1.2 Conjuntos Numéricos Chm-se conjunto o grupmento num todo de objetos, bem definidos e discerníveis, de noss percepção ou de nosso entendimento, chmdos

Leia mais