Posição Angular. Dado um corpo rígido executando um movimento circular em torno de um eixo fixo: Unidades: [θ]=rad. πrad=180.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Posição Angular. Dado um corpo rígido executando um movimento circular em torno de um eixo fixo: Unidades: [θ]=rad. πrad=180."

Transcrição

1 Moimento Circular Restrições ao moimento: Rotação de corpo rígido; Rotação em torno de um eio fio. Estudo: Posição, elocidade e aceleração angular; Grandezas angulares e lineares; Inércia de Rotação e Energia Cinética de Rotação.

2 Posição Angular Dado um corpo rígido eecutando um moimento circular em torno de um eio fio: Unidades: Radianos []=rad Graus r πrad=18 > Grados '< π rad=2 gon + sentido horário sentido anti-horário Reoluções 2 πrad=1re

3 Posição Angular Posição angular é uma grandeza adimensional. π rad π/2rad 1 1uc Radianos: é definido como sendo o comprimento do arco de circunferência em um círculo de raio unitário π rad π: 1 3 π/2rad é o comprimento de meia circunferência em um círculo de raio unitário.

4 Variação da Posição Angular Moimento circular de um corpo rígido raio constante: Δ = f i f i

5 Velocidade Angular t f t i ω Unidades: [ω]= [Δ ] [ ] = rad s =rad / s f i Outras unidades: re /s=rps 1re/ s=2 π rad/ s Média: ω= Δ re /min=rpm 1re/min= 2 π 6 rad / s

6 Velocidade Angular t f ω i Instantânea: ω= lim Δ f i t i ω= d d t

7 Aceleração Angular ω f t f ω i Média: α= Δ ω t i f i Instantânea: α= lim Δ ω α= d ω d t

8 Aceleração Constante Grandezas Linear = Δ a= Δ = d d t a= d d t Angular ω= Δ α= Δ ω ω= d d t α= d ω d t a=a = f + i 2 = Δ a= Δ Aceleração constate α=α ω= ω f +ω i 2 ω= Δ α= Δ ω

9 Aceleração Constante Aceleração constate Linear = +at Δ = (+ ) 2 t Angular ω=ω +α t Δ = ω+ω 2 t Δ = t+ 1 2 a t2 Δ =ω t+ 1 2 αt2 Δ = t 1 2 a t2 2 = 2 +2 a Δ Δ =ωt 1 2 α t2 ω 2 =ω 2 +2α Δ

10 Grandezas Lineares e Angulares Relacionar as grandezas Lineares às grandezas Angulares. 1 1uc 1 1 1

11 Grandezas Lineares e Angulares Relacionar as grandezas Lineares às grandezas Angulares. S=r r 1 S=r deriando esta epressão em relação ao tempo: d S d t d (r ) = = d r d t d t +r d d t com r constante d S d t =r d d t =r ω

12 Grandezas Lineares e Angulares A elocidade tangencial é proporcional a distância do eio de rotação. 1 =r 1 ω 1 2 =r 2 ω 3 2 S 3 S 2 S 1 ω 3 =r 3 ω r 1 >r 2 >r 3 1 > 2 > 3

13 Grandezas Lineares e Angulares Deriando a elocidade tangencial =r ω a t ainda com r constante d d t =r d ω d t a t =r α Esta aceleração mede a taa com que o módulo da elocidade tangencial aria no tempo.

14 Aceleração Radial Suponha um corpo eecutando um moimento circular a elocidade constante. i i = f = f r i f = cos a= Δ = Δ Δ = f i = = sen Calculando a aceleração média no interalo if: a= a i+ a j i+ Δ Δ = f i = 2 j

15 Aceleração Radial f S a i a= a j a = 2 2 sen = Como a elocidade é constante: = S = 2(r ) = 2r a = 2 2 sen 2r a = = 2 r lim sen r sen = 2 = 2 r

16 Aceleração Num moimento circular pode haer dois tipos de aceleração: r (t) a t Aceleração tangencial: a t = d d t =r α Que mede a taa com que a elocidade tangencial muda no tempo. Aceleração radial: = 2 r É sempre diferente de zero em todo moimento circular

17 Aceleração Δ Δ Δ A aceleração tangencial pode ser zero em um moimento circular: a t = =const ; α= r Já a aceleração radial é necessária para o corpo fazer o moimento circular, alterando a direção do seu moimento a cada instante. = 2 r

18 Energia Cinética de Rotação Duas massas são fiadas nas etremidades de uma haste rígida, de massa desprezíel, giram em torno de um ponto fio. A energia cinética do sistema: m 1 1 ω r 2 r 1 2 m 2 K=K 1 + K 2 K= 1 2 m m K= 1 2 m 1r 1 2 ω m 2r 2 2 ω 2 1 =r 1 ω 2 =r 2 ω K= 1 2 (m 1r 1 2 +m 2 r 2 2 )ω 2 I=m 1 r 1 2 +m 2 r 2 2

19 Energia Cinética de Rotação Energia Cinética de Rotação K R = 1 Se comparado a 2 I ω2 Energia Cinética de K T = 1 2 M 2 Translação: Inércia de Rotação para corpos puntiformes: 2 I= m i r i Unidade: [I]=[m][r 2 ]=kg m 2

20 Eemplo Uma esfera pequena, de 25g, é presa a uma haste de massa despresíel, inicialmente a a 1,m de uma etremidade que está fiada a um eio giratório. (a) determine a inércia de rotação deste sistema e a sua energia cinática, quando este girar a 1rps. I= m i r i 2 =,25 1, 2 I =,25 kg m 2 ω=1 2 π=62,8rad / s K R = 1 2 I ω2 = 1 2,25 62,82 K R =493 J

21 Eemplo (a) se a massa for moida para a 1,3m de distância do eio de rotação, calcule noamente sua inércia de rotação e energia cinética. I= m i r i 2 =,25 1,3 2 I =,423 kg m 2 K R = 1 2 I ω2 = 1 2,423 62,82 K R =833 J (1,3 1,)m 1, m =3 % ( ) J 493 J =69 % Obsere que um aumento de 3% na distância entre a massa e o eio de rotação gerou um aumento de 69% na energia cinética de rotação do sistema, a mesma elocidade angular.

Para cada partícula num pequeno intervalo de tempo t a percorre um arco s i dado por. s i = v i t

Para cada partícula num pequeno intervalo de tempo t a percorre um arco s i dado por. s i = v i t Capítulo 1 Cinemática dos corpos rígidos O movimento de rotação apresenta algumas peculiaridades que precisam ser entendidas. Tem equações horárias, que descrevem o movimento, semelhantes ao movimento

Leia mais

Resumo com exercícios resolvidos do assunto:

Resumo com exercícios resolvidos do assunto: www.engenhariafacil.weebly.com (0)- CONSIDERAÇÕES INICIAIS: r = xi + yj Resumo com exercícios resolvidos do assunto: Rotação de Corpos Rígidos (0.1) r = cos θ i + sin θ j -->vetor na direção do raio da

Leia mais

v = velocidade média, m/s; a = aceleração média do corpo, m/s 2 ;

v = velocidade média, m/s; a = aceleração média do corpo, m/s 2 ; 1. Cinemática Universidade Estadual do Norte Fluminense Darcy Ribeiro Centro de Ciências e Tecnologias Agropecuárias - Laboratório de Engenharia Agrícola EAG 0304 Mecânica Aplicada Prof. Ricardo Ferreira

Leia mais

Caro (a) Aluno (a): Este texto apresenta uma revisão sobre movimento circular uniforme MCU. Bom estudo e Boa Sorte!

Caro (a) Aluno (a): Este texto apresenta uma revisão sobre movimento circular uniforme MCU. Bom estudo e Boa Sorte! TEXTO DE EVISÃO 15 Movimento Circular Caro (a) Aluno (a): Este texto apresenta uma revisão sobre movimento circular uniforme MCU. om estudo e oa Sorte! 1 - Movimento Circular: Descrição do Movimento Circular

Leia mais

ROLAMENTO, TORQUE E MOMENTUM ANGULAR Física Geral I (1108030) - Capítulo 08

ROLAMENTO, TORQUE E MOMENTUM ANGULAR Física Geral I (1108030) - Capítulo 08 ROLAMENTO, TORQUE E MOMENTUM ANGULAR Física Geral I (1108030) - Capítulo 08 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 21 Sumário Rolamento Rolamento como rotação e translação combinados e como uma

Leia mais

Exercícios de Mecânica - Área 3

Exercícios de Mecânica - Área 3 1) O bloco de peso 10lb tem uma velocidade inicial de 12 pés/s sobre um plano liso. Uma força F = (3,5t) lb onde t é dado em segundos, age sobre o bloco durante 3s. Determine a velocidade final do bloco

Leia mais

-----------------------------------------------------------------------------------------------------------

----------------------------------------------------------------------------------------------------------- CINEMÁTICA DO MOVIMENTO CIRCULAR www.nilsong.com.br I) RESUMO DE FÓRMULS DO MOVIMENTO CIRCULAR ( circular uniforme e uniformente variado) -----------------------------------------------------------------------------------------------

Leia mais

06-11-2015. Sumário. Da Terra à Lua. Movimentos no espaço 02/11/2015

06-11-2015. Sumário. Da Terra à Lua. Movimentos no espaço 02/11/2015 Sumário UNIDADE TEMÁTICA 1 Movimentos na Terra e no Espaço. Correção do 1º Teste de Avaliação. Movimentos no espaço. Os satélites geoestacionários. - O Movimentos de satélites. - Características e aplicações

Leia mais

TRIGONOMETRIA CICLO TRIGONOMÉTRICO

TRIGONOMETRIA CICLO TRIGONOMÉTRICO TRIGONOMETRIA CICLO TRIGONOMÉTRICO Arcos de circunferência A e B dividem a circunferência em duas partes. Cada uma dessas partes é um arco de circunferência (ou apenas arco). A e B são denominados extremidades

Leia mais

5. Derivada. Definição: Se uma função f é definida em um intervalo aberto contendo x 0, então a derivada de f

5. Derivada. Definição: Se uma função f é definida em um intervalo aberto contendo x 0, então a derivada de f 5 Derivada O conceito de derivada está intimamente relacionado à taa de variação instantânea de uma função, o qual está presente no cotidiano das pessoas, através, por eemplo, da determinação da taa de

Leia mais

MATEMÁTICA II. Aula 5. Trigonometria na Circunferência Professor Luciano Nóbrega. 1º Bimestre

MATEMÁTICA II. Aula 5. Trigonometria na Circunferência Professor Luciano Nóbrega. 1º Bimestre 1 MATEMÁTICA II Aula 5 Trigonometria na Circunferência Professor Luciano Nóbrega 1º Bimestre 2 ARCOS e ÂNGULOS A medida de um arco é, por definição, a medida do ângulo central correspondente. As unidades

Leia mais

Geometria Diferencial de Curvas Espaciais

Geometria Diferencial de Curvas Espaciais Geometria Diferencial de Curvas Espaciais 1 Aceleração tangencial e centrípeta Fernando Deeke Sasse Departamento de Matemática CCT UDESC Mostremos que a aceleração de uma partícula viajando ao longo de

Leia mais

Resistência dos Materiais

Resistência dos Materiais Aula 4 Deformações e Propriedades Mecânicas dos Materiais Tópicos Abordados Nesta Aula Estudo de Deformações, Normal e por Cisalhamento. Propriedades Mecânicas dos Materiais. Coeficiente de Poisson. Deformação

Leia mais

A) -5,5i - 4,3j - 8,8k B) -19,5i - 16,7j - 14,9k. 5,3i - 1,2j + 4,3k. 0,5i + 6,0j - 4,5k. 9,5i - 6,1j - 4,0k

A) -5,5i - 4,3j - 8,8k B) -19,5i - 16,7j - 14,9k. 5,3i - 1,2j + 4,3k. 0,5i + 6,0j - 4,5k. 9,5i - 6,1j - 4,0k Page 1 of 13 Exercício 1 Exercício 2 Exercício 3 Exercício 4 Exercício 5 Exercício 6 Exercício 7 Exercício 8 Exercício 9 Exercício 10 Exercício 11 Exercício 12 Exercício 13 Exercício 14 Exercício 15 Exercício

Leia mais

Unidade 10 Trigonometria: Conceitos Básicos. Arcos e ângulos Circunferência trigonométrica

Unidade 10 Trigonometria: Conceitos Básicos. Arcos e ângulos Circunferência trigonométrica Unidade 10 Trigonometria: Conceitos Básicos Arcos e ângulos Circunferência trigonométrica Arcos e Ângulos Quando em uma corrida de motocicleta um piloto faz uma curva, geralmente, o traçado descrito pela

Leia mais

Disciplina Física 1. Prof. Rudson R. Alves Bacharel em Física pela UFES Mestrado IFGW UNICAMP. Prof. da UVV desde 1998 Engenharias desde 2000

Disciplina Física 1. Prof. Rudson R. Alves Bacharel em Física pela UFES Mestrado IFGW UNICAMP. Prof. da UVV desde 1998 Engenharias desde 2000 Disciplina Física 1 Prof. Rudson R. Alves Bacharel em Física pela UFES Mestrado IFGW UNICAMP Prof. da UVV desde 1998 Engenharias desde 2000 Física 1 - Mecânica BIBLIOGRAFIA BÁSICA: HALLIDAY, D., RESNICK

Leia mais

Exemplos: sen(36º)=0.58, cos(36º)=0.80 e tg(36º)=0.72, Calcular o valor de x em cada figura:

Exemplos: sen(36º)=0.58, cos(36º)=0.80 e tg(36º)=0.72, Calcular o valor de x em cada figura: REVISÃO RELAÇÕES TRIGONOMÉTRICAS E REDUÇÃO AO PRIMEIRO QUADRANTE DO CICLO TRIGONOMÉTRICO TURMA: ª SÉRIE DO ENSINO MÉDIO PROF. LUCAS FACTOR Trigonometria no Triangulo Retângulo Considere o triangulo retângulo

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA UFPB CENTRO DE CIÊNCIAS AGRÁRIAS - CCA Departamento de Solos e Engenharia Rural - DSER. Prof. Dr. Guttemberg Silvino

UNIVERSIDADE FEDERAL DA PARAÍBA UFPB CENTRO DE CIÊNCIAS AGRÁRIAS - CCA Departamento de Solos e Engenharia Rural - DSER. Prof. Dr. Guttemberg Silvino UNIVERSIDADE FEDERAL DA PARAÍBA UFPB CENTRO DE CIÊNCIAS AGRÁRIAS - CCA Departamento de Solos e Engenharia Rural - DSER Prof. Dr. Guttemberg Silvino UNIDADES DE MEDIDAS LINEAR O metro (m) é uma unidade

Leia mais

FÍSICA - 1 o ANO MÓDULO 27 TRABALHO, POTÊNCIA E ENERGIA REVISÃO

FÍSICA - 1 o ANO MÓDULO 27 TRABALHO, POTÊNCIA E ENERGIA REVISÃO FÍSICA - 1 o ANO MÓDULO 27 TRABALHO, POTÊNCIA E ENERGIA REVISÃO Fixação 1) O bloco da figura, de peso P = 50N, é arrastado ao longo do plano horizontal pela força F de intensidade F = 100N. A força de

Leia mais

Questões Conceituais

Questões Conceituais Questões em Aula Questões Conceituais QC.1) Determine os sinais positivo ou negativo da posição, da velocidade e da aceleração da partícula da Fig. Q1.7. QC.) O movimento de uma partícula é apresentado

Leia mais

Lados de um triângulo retângulo. MA092 Geometria plana e analítica. Mudando o ângulo. Trabalhando no plano Cartesiano

Lados de um triângulo retângulo. MA092 Geometria plana e analítica. Mudando o ângulo. Trabalhando no plano Cartesiano Lados de um triângulo retângulo MA092 Geometria plana e analítica. Catetos de um triângulo retângulo em função da hipotenusa e do ângulo θ: sen(θ) = y z y = z sen(θ) Francisco A. M. Gomes cos(θ) = x z

Leia mais

Prof. A.F.Guimarães Questões Cinemática 7 Lançamentos Questão 2

Prof. A.F.Guimarães Questões Cinemática 7 Lançamentos Questão 2 Questão Prof. A.F.Guimarães Questões Cinemática 7 Lançamentos Questão (UFCE) A fiura a seuir mostra a trajetória da bola lançada pelo oleiro Dida, no tiro de meta. Desprezando o efeito do ar, um estudante

Leia mais

FÍSICA. Adote a aceleração da gravidade g = 10 m/s 2.

FÍSICA. Adote a aceleração da gravidade g = 10 m/s 2. FÍSICA Adote a aceleração da gravidade g = 10 m/s 2. 1. As faixas de aceleração das auto-estradas devem ser longas o suficiente para permitir que um carro partindo do repouso atinja a velocidade de 100

Leia mais

LEIS DE NEWTON. a) Qual é a tensão no fio? b) Qual é a velocidade angular da massa? Se for necessário, use: sen 60 = 0,87, cos 60 = 0,5.

LEIS DE NEWTON. a) Qual é a tensão no fio? b) Qual é a velocidade angular da massa? Se for necessário, use: sen 60 = 0,87, cos 60 = 0,5. LEIS DE NEWTON 1. Um pêndulo cônico é formado por um fio de massa desprezível e comprimento L = 1,25 m, que suporta uma massa m = 0,5 kg na sua extremidade inferior. A extremidade superior do fio é presa

Leia mais

Exercícios Selecionados de Física

Exercícios Selecionados de Física Exercícios Selecionados de Física Q.1 (Miakishev) Dois carros movem-se com velocidades constantes v 1 e v em estradas que se cruzam num ângulo α. Determinar a grandeza e a direção da velocidade de um carro

Leia mais

MOVIMENTO CIRCULAR UNIFORME Força centrípeta

MOVIMENTO CIRCULAR UNIFORME Força centrípeta Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T1 FÍSICA EXPERIMENTAL I - 2007/2008 MOVIMENTO CIRCULAR UNIFORME Força centrípeta 1. Objectivos Verificar a relação entre a força

Leia mais

LISTA 03. Trabalho, energia cinética e potencial, conservação da energia

LISTA 03. Trabalho, energia cinética e potencial, conservação da energia UNIVERSIDADE DE SÃO PAULO INSTITUTO DE FÍSICA FEP2195 - Física Geral e Experimental para Engenharia I LISTA 03 Trabalho, energia cinética e potencial, conservação da energia 1. Um saco de farinha de 5,

Leia mais

XXVII CPRA LISTA DE EXERCÍCIOS FÍSICA (CINEMÁTICA)

XXVII CPRA LISTA DE EXERCÍCIOS FÍSICA (CINEMÁTICA) XXVII CPRA LISTA DE EXERCÍCIOS FÍSICA (CINEMÁTICA) 1) Na Figura 1, uma esfera lisa pode ser lançada por três escorregadores polidos. Ordene os escorregadores de acordo com o trabalho que a força gravitacional

Leia mais

aplicada no outro bloco exceder o valor calculado na alínea 4.1? R: 16 N; 2 ms -2 ; 1 ms -2

aplicada no outro bloco exceder o valor calculado na alínea 4.1? R: 16 N; 2 ms -2 ; 1 ms -2 Engenharia Electrotécnica e de Computadores Exercícios de Física Ficha 6 Dinâmica do Ponto Material Capítulo 3 no lectivo 2010-2011 Conhecimentos e capacidades a adquirir pelo aluno plicação dos conceitos

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA

UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA TEXTO: CÍRCULO TRIGONOMÉTRICO AUTORES: Mayara Brito (estagiária da BOM) André Brito (estagiário da BOM) ORIENTADOR:

Leia mais

CINEMÁTICA DO PONTO MATERIAL

CINEMÁTICA DO PONTO MATERIAL 1.0 Conceitos CINEMÁTICA DO PONTO MATERIAL Cinemática é a parte da Mecânica que descreve os movimentos. Ponto material é um corpo móvel cujas dimensões não interferem no estudo em questão. Trajetória é

Leia mais

1 Exercícios de Aplicações da Integral

1 Exercícios de Aplicações da Integral Cálculo I (5/) IM UFRJ Lista 6: Aplicações de Integral Prof. Milton Lopes e Prof. Marco Cabral Versão 9.5.5 Eercícios de Aplicações da Integral. Eercícios de Fiação Fi.: Esboce o gráco e calcule a área

Leia mais

PLANO DE ESTUDO TRIMESTRE:1º

PLANO DE ESTUDO TRIMESTRE:1º C O L É G I O K E N N E D Y / R E D E P I T Á G O R A S PLANO DE ESTUDO TRIMESTRE:1º PLANO DE ESTUDO PROFESSOR:MARCÃO DATA DA AVALIAÇÃO: 30/09/16 CONTEÚDO(S) A SER(EM) COBRADO(S) NA AVALIAÇÃO: DISCIPLINA:

Leia mais

Lista de exercícios nº 3

Lista de exercícios nº 3 F107 Física (Biologia) Turma B Prof. Odilon D. D. Couto Jr. Lista de exercícios nº 3 FORÇAS, LEIS DE NEWTON e EQUILÍBRIO Exercício 1: Um corpo de 10 kg apoiado sobre uma mesa sem atrito está sujeito à

Leia mais

Prof. Neckel FÍSICA 1 PROVA 1 TEMA 2 PARTE 1 PROF. NECKEL POSIÇÃO. Sistema de Coordenadas Nome do sistema Unidade do sistema 22/02/2016.

Prof. Neckel FÍSICA 1 PROVA 1 TEMA 2 PARTE 1 PROF. NECKEL POSIÇÃO. Sistema de Coordenadas Nome do sistema Unidade do sistema 22/02/2016. FÍSICA 1 PROVA 1 TEMA 2 PARTE 1 PROF. NECKEL Cinemática 1D POSIÇÃO Sistema de Coordenadas Nome do sistema Unidade do sistema Reta numérica real com origem Crescimento para direita, decrescimento para esquerda

Leia mais

Prova de Física Vestibular ITA 2001

Prova de Física Vestibular ITA 2001 Prova de Física Vestibular ITA 001 Versão 1.0 Física - ITA - 001 1. (ITA 01) Uma certa grandeza física A é definida como o produto da variação de energia de uma partícula pelo intervalo de tempo em que

Leia mais

- Cálculo 1 - Limites -

- Cálculo 1 - Limites - - Cálculo - Limites -. Calcule, se eistirem, os seguintes ites: (a) ( 3 3); (b) 4 8; 3 + + 3 (c) + 5 (d) 3 (e) 3. Faça o esboço do gráfico de f() = entre 4 f() e f(4)? 3. Seja f a função definida por f()

Leia mais

Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino*

Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino* ROTAÇÃO Física Geral I (1108030) - Capítulo 07 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 25 Translação e Rotação Sumário Definições, variáveis da rotação e notação vetorial Rotação com aceleração angular

Leia mais

Vamos dar uma voltinha?

Vamos dar uma voltinha? Vamos dar uma voltinha? PARA COMEÇAR!! Ciências da Natureza Ensino Médio A patinadora desliza sobre o gelo, braços estendidos, movimentos leves, música suave. De repente encolhe os braços junto ao corpo,

Leia mais

Física. Valor: 5 pontos. B) Determine a distância x entre o ponto em que o bloco foi posicionado e a extremidade em que a reação é maior.

Física. Valor: 5 pontos. B) Determine a distância x entre o ponto em que o bloco foi posicionado e a extremidade em que a reação é maior. Física 0. Uma haste de comprimento L e massa m uniformemente distriuída repousa sore dois apoios localizados em suas extremidades. Um loco de massa m uniformemente distriuída encontra-se sore a arra em

Leia mais

Capítulo TRABALHO E ENERGIA

Capítulo TRABALHO E ENERGIA Capítulo 6 TRABALHO E ENERGIA A B C DISCIPLINA DE FÍSICA CAPÍTULO 6 - TRABALHO E ENERGIA 6.1 Um bloco, com 20kg de massa, sobe uma rampa com 15º de inclinação e percorre 55,375 metros até parar. Os coeficientes

Leia mais

Engrenagens são elementos de máquinas que transmitem o movimento por meio de sucessivos engates de dentes, onde os dentes atuam como pequenas

Engrenagens são elementos de máquinas que transmitem o movimento por meio de sucessivos engates de dentes, onde os dentes atuam como pequenas Engrenagens Engrenagens são elementos de máquinas que transmitem o movimento por meio de sucessivos engates de dentes, onde os dentes atuam como pequenas alavancas. Classificação das Engrenagens As engrenagens

Leia mais

CONSERVAÇÃO DA POSIÇÃO DO CENTRO DE MASSA

CONSERVAÇÃO DA POSIÇÃO DO CENTRO DE MASSA CONSERVAÇÃO DA POSIÇÃO DO CENTRO DE MASSA Problemas deste tipo têm aparecido nas provas do ITA nos últimos dez anos. E por ser um assunto simples e rápido de ser abrodado, não vale apena para o aluno deiar

Leia mais

Assunto: Razões Trigonométricas no Triângulo Retângulo. 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras:

Assunto: Razões Trigonométricas no Triângulo Retângulo. 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras: Assunto: Razões Trigonométricas no Triângulo Retângulo 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras: b) 15 5 α α 1 resp: sen α =/5 cos α = /5 tgα=/ resp: sen α = 17 cos α

Leia mais

MÓDULO 4 MOVIMENTO CIRCULAR UNIFORME

MÓDULO 4 MOVIMENTO CIRCULAR UNIFORME MÓDULO 4 MOVIMENTO CIRCULAR UNIFORME Um móvel realiza um Movimento Circular Uniforme (MCU) quando descreve uma trajetória circular, percorrendo arcos iguais em tempos iguais. Elementos básicos do MCU:

Leia mais

Ensinando a trigonometria através de materiais concretos

Ensinando a trigonometria através de materiais concretos UNIVERSIDADE FEDERAL DO PARANÁ PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO À DOCÊNCIA SEMANA DA MATEMÁTICA 2014 Ensinando a trigonometria através de materiais concretos PIBID MATEMÁTICA 2009 CURITIBA

Leia mais

FÍSICA POLÍCIA RODOVIÁRIA FEDERAL

FÍSICA POLÍCIA RODOVIÁRIA FEDERAL FÍSICA POLÍCIA RODOVIÁRIA FEDERAL Conteúdo Programático 1. Conceitos Básicos de Trigonometria 2. Introdução à Cinemática Escalar 3. Movimento Uniforme (MU) 4. Movimento Uniformemente Variado (MUV) 5. Movimento

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos da física Capítulo 7 Ondas P. Da definição de densidade linear (), em: m L 600 0 kg 00 0 kg/m 0, kg/m m elocidade de propagação do pulso na corda depende apenas da intensidade da força de tração ( ) e

Leia mais

g 10 m / s Considere: a) 0,2 b) 0,5 c) 0,6 d) 0,8 e) 1,0

g 10 m / s Considere: a) 0,2 b) 0,5 c) 0,6 d) 0,8 e) 1,0 1. (Epcar (Afa) 015) Uma determinada caixa é transportada em um caminhão que percorre, com elocidade escalar constante, uma estrada plana e horizontal. Em um determinado instante, o caminhão entra em uma

Leia mais

a) o módulo da aceleração do carrinho; (a c = 0,50 m/s) b) o módulo da aceleração do sistema constituído por A e B; (a = 4,0 m/s 2 )

a) o módulo da aceleração do carrinho; (a c = 0,50 m/s) b) o módulo da aceleração do sistema constituído por A e B; (a = 4,0 m/s 2 ) 1 - Dois blocos, A e B, ambos de massa m, estão ligados por um fio leve e flexível, que passa por uma polia de massa desprezível, que gira sem atrito. O bloco A está apoiado sobre um carrinho de massa

Leia mais

Formulário. Física. Constante

Formulário. Física. Constante Física Formulário Factores Multiplicativos Factores Multiplicativos Prefixo Símbolo 1 000 000 000 000 = 10 12 tera T 1 000 000 000 = 10 9 giga G 1 000 000 = 10 6 mega M 1 000 = 10 3 quilo k 100 = 10 2

Leia mais

1) Cálculo do tempo de subida do objeto: V y. = V 0y. + γt s 0 = 4 10t s. t s. = 0,4s. 2) Cálculo do tempo total de vôo : t total.

1) Cálculo do tempo de subida do objeto: V y. = V 0y. + γt s 0 = 4 10t s. t s. = 0,4s. 2) Cálculo do tempo total de vôo : t total. 46 e FÍSICA No interior de um ônibus que trafega em uma estrada retilínea e horizontal, com velocidade constante de 90 km/h, um passageiro sentado lança verticalmente para cima um pequeno objeto com velocidade

Leia mais

A unidade de freqüência é chamada hertz e simbolizada por Hz: 1 Hz = 1 / s.

A unidade de freqüência é chamada hertz e simbolizada por Hz: 1 Hz = 1 / s. Movimento Circular Uniforme Um movimento circular uniforme (MCU) pode ser associado, com boa aproximação, ao movimento de um planeta ao redor do Sol, num referencial fixo no Sol, ou ao movimento da Lua

Leia mais

Exercícios de Física Movimento Harmônico Simples - MHS

Exercícios de Física Movimento Harmônico Simples - MHS Eercícios de Física Movimento Harmônico Simples - MHS 1.Um movimento harmônico simples é descrito pela função = 7 cos(4 t + ), em unidades de Sistema Internacional. Nesse movimento, a amplitude e o período,

Leia mais

Física Experimental - Mecânica - Conjunto para mecânica com painel multiuso - EQ032G.

Física Experimental - Mecânica - Conjunto para mecânica com painel multiuso - EQ032G. Índice Remissivo... 4 Abertura... 6 Guarantee / Garantia... 7 Certificado de Garantia Internacional... 7 As instruções identificadas no canto superior direito da página pelos números que se iniciam pelos

Leia mais

1º ANO 20 FÍSICA 1º Bimestral 28/03/12

1º ANO 20 FÍSICA 1º Bimestral 28/03/12 Nome do aluno Turma Nº Questões Disciplina Trimestre Trabalho Data 1º ANO 20 FÍSICA 1º Bimestral 28/03/12 1. (Faap-1996) A velocidade de um avião é de 360km/h. Qual das seguintes alternativas expressa

Leia mais

Desafio em Física 2015 PUC-Rio 03/10/2015

Desafio em Física 2015 PUC-Rio 03/10/2015 Desafio em Física 2015 PUC-Rio 03/10/2015 Nome: GABARITO Identidade: Número de inscrição no Vestibular: Questão Nota 1 2 3 4 5 6 7 8 9 Nota Final Questão 1 No circuito elétrico mostrado na figura abaixo

Leia mais

MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA (CONCURSO PUBLICO PARA INGRESSO NO CORPO DE ENGENHEIROS DA MARINHA / CP-CEM/2016)

MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA (CONCURSO PUBLICO PARA INGRESSO NO CORPO DE ENGENHEIROS DA MARINHA / CP-CEM/2016) MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA (CONCURSO PUBLICO PARA INGRESSO NO CORPO DE ENGENHEIROS DA MARINHA / CP-CEM/2016) ESTÁ AUTORIZADA A UTILIZAÇÃO DE RÉGUA SIMPLES PROVA ESCRITA DE MÚLTIPLA

Leia mais

Tópicos de Física Moderna Engenharia Informática

Tópicos de Física Moderna Engenharia Informática EXAME - ÉPOCA NORMAL 7 de Junho de 007 1. Indique, de entre as afirmações seguintes, as que são verdadeiras e as que são falsas. a) A grandeza T na expressão cinética mv T = é o período de oscilações.

Leia mais

TRIGONOMETRIA III) essa medida é denominada de tangente de α e indicada

TRIGONOMETRIA III) essa medida é denominada de tangente de α e indicada MTEMÁTIC TRIGONOMETRI. TRIÂNGULO RETÂNGULO.. Definição Define-se como triângulo retângulo a qualquer triângulo que possua um de seus ângulos internos reto (medida de 90º). Representação e Elementos Catetos:

Leia mais

Tópico 2. Funções elementares

Tópico 2. Funções elementares Tópico. Funções elementares.6 Funções trigonométricas A trigonometria (do grego trigonon triângulo + metron medida ) é um ramo da matemática que estuda os triângulos, particularmente triângulos em um plano

Leia mais

PROGRAMAÇÃO DE COMPUTADORES I - BCC701-2015 Lista de Exercícios do Módulo 1 - Preparação para a Prova 1

PROGRAMAÇÃO DE COMPUTADORES I - BCC701-2015 Lista de Exercícios do Módulo 1 - Preparação para a Prova 1 PROGRAMAÇÃO DE COMPUTADORES I - BCC701-2015 Lista de Exercícios do Módulo 1 - Preparação para a Prova 1 Exercício 1 Apesar da existência do Sistema Internacional (SI) de Unidades, ainda existe a divergência

Leia mais

Exercícios sobre ENGRENAGENS. Prof. Luciano Soares Pedroso

Exercícios sobre ENGRENAGENS. Prof. Luciano Soares Pedroso 1. (Unicamp) Considere as três engrenagens acopladas simbolizadas na figura a seguir. A engrenagem A tem 50 dentes e gira no sentido horário, indicado na figura, com velocidade angular de 100 rpm (rotação

Leia mais

Lista 10: Momento Angular. Lista 10: Momento Angular

Lista 10: Momento Angular. Lista 10: Momento Angular Lista 10: Momento Angular NOME: Matrícula: Turma: Prof. : Importante: i. Ler os enunciados com atenção. ii. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. iii. Analisar

Leia mais

NOTAS DE AULA - GEOMETRIA ANALÍTICA CÔNICAS E POLARES ERON E ISABEL

NOTAS DE AULA - GEOMETRIA ANALÍTICA CÔNICAS E POLARES ERON E ISABEL NOTAS DE AULA - GEOMETRIA ANALÍTICA CÔNICAS E POLARES ERON E ISABEL SALVADOR BA 007 Conteúdo destas notas Cônicas Translação dos eios coordenados Rotação dos eios coordenados Parábola Elipse Hipérbole

Leia mais

Programa da cadeira Física I Cursos: Matemática, Engenharia Informática, Engenharia de Telecomunicações e Redes

Programa da cadeira Física I Cursos: Matemática, Engenharia Informática, Engenharia de Telecomunicações e Redes Programa da cadeira Física I Cursos: Matemática, Engenharia Informática, Engenharia de Telecomunicações e Redes Ano lectivo 2005-2006, 1º semestre Docentes: Prof. Dr. Mikhail Benilov (aulas teóricas, regência

Leia mais

17 A figura representa uma demonstração simples que costuma ser usada para ilustrar a primeira lei de Newton.

17 A figura representa uma demonstração simples que costuma ser usada para ilustrar a primeira lei de Newton. 17 ÍSICA A figura representa uma demonstração simples que costuma ser usada para ilustrar a primeira lei de Newton. O copo, sobre uma mesa, está com a boca tampada pelo cartão c e, sobre este, está a moeda

Leia mais

Halliday & Resnick Fundamentos de Física

Halliday & Resnick Fundamentos de Física Halliday & Resnick Fundamentos de Física Mecânica Volume 1 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica,

Leia mais

NOME: N O : TURMA: PROFESSOR: Glênon Dutra

NOME: N O : TURMA: PROFESSOR: Glênon Dutra Apostila de Revisão n 2 DISCIPLINA: Física NOME: N O : URMA: PROFESSOR: Glênon Dutra DAA: Mecânica - 2. FORÇAS E LEIS DE NEWON É importante que o candidato saiba, em uma situação específica, identificar

Leia mais

CURVAS HORIZONTAIS COM TRANSIÇÃO

CURVAS HORIZONTAIS COM TRANSIÇÃO CURVAS HORIZONTAIS COM TRANSIÇÃO Introdução Trecho reto para uma curva circular: Variação instantânea do raio infinito para o raio finito da curva circular Surgimento brusco de uma força centrífuga Desconforto

Leia mais

Cinemática: Conceitos Básicos

Cinemática: Conceitos Básicos Cinemática: Conceitos Básicos Ponto Material e Localização Em cinemática, estudamos o movimento de um corpo qualquer, que pode ser um homem, um animal, um planeta, um meio de transporte, etc. Chamamos

Leia mais

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta Questão São conhecidos os valores calóricos dos seguintes alimentos: uma fatia de pão integral, 55 kcal; um litro de leite, 550 kcal; 00 g de manteiga,.00 kcal; kg de queijo,.00 kcal; uma banana, 80 kcal.

Leia mais

Movimento uniformemente variado. Capítulo 4 (MUV)

Movimento uniformemente variado. Capítulo 4 (MUV) Movimento uniformemente variado Capítulo 4 (MUV) Movimento uniformemente variado MUV aceleração escalar (α) é constante e não nula. O quociente α = v t é constante e não nulo. Função horária da velocidade

Leia mais

CAPÍTULO I GEOMETRIA DAS MASSAS

CAPÍTULO I GEOMETRIA DAS MASSAS CPÍTULO I GEOMETRI DS MSSS I. SPECTOS GERIS pesar de não estar incluida dentro dos nossos objetivos principais, vamos estudar algumas grandezas características da geometria das massas com a finalidade

Leia mais

Novo Espaço Matemática A 11.º ano Proposta de Teste Intermédio [Novembro 2015]

Novo Espaço Matemática A 11.º ano Proposta de Teste Intermédio [Novembro 2015] Proposta de Teste Intermédio [Novembro 05] Nome: Ano / Turma: N.º: Data: - - Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado. Para cada resposta, identifica

Leia mais

A Aerodinâmica da Bola de Futebol

A Aerodinâmica da Bola de Futebol A Aerodinâmica da Bola de Futebol Carlos Eduardo Aguiar Instituto de Física Universidade Federal do Rio de Janeiro Resumo Motivação Resistência do ar A crise aerodinâmica Força de Magnus O gol que Pelé

Leia mais

Equilíbrio de Corpos Extensos

Equilíbrio de Corpos Extensos Equilíbrio de Corpos Extensos 1. (G1 - ifsp 2013) Em um parque de diversão, Carlos e Isabela brincam em uma gangorra que dispõe de dois lugares possíveis de se sentar nas suas extremidades. As distâncias

Leia mais

MOMENTO LINEAR - IMPULSO - COLISÕES

MOMENTO LINEAR - IMPULSO - COLISÕES ESQ - EXERCÍCIOS DE FISICA I 2 011 MOMENTO LINEAR - IMPULSO - COLISÕES EX - 01 ) Determinar a variação do momento linear de um caminhão entre um instante inicial nulo e o instante t = 5,0 s. O caminhão

Leia mais

Bacharelado Engenharia Civil

Bacharelado Engenharia Civil Bacharelado Engenharia Civil Física Geral e Experimental I Prof.a: Érica Muniz 1 Período Lançamentos Movimento Circular Uniforme Movimento de Projéteis Vamos considerar a seguir, um caso especial de movimento

Leia mais

Tópico 8. Aula Prática: Pêndulo Simples

Tópico 8. Aula Prática: Pêndulo Simples Tópico 8. Aula Prática: Pêndulo Simples 1. INTRODUÇÃO Um pêndulo é um sistema composto por uma massa acoplada a um pivô que permite sua movimentação livremente. A massa fica sujeita à força restauradora

Leia mais

A atmofera em movimento: força e vento. Capítulo 9 - Ahrens

A atmofera em movimento: força e vento. Capítulo 9 - Ahrens A atmofera em movimento: força e vento Capítulo 9 - Ahrens Pressão Lembre-se que A pressão é força por unidade de área Pressão do ar é determinada pelo peso do ar das camadas superiores Uma variação da

Leia mais

VESTIBULRA IME 2003 FÍSICA

VESTIBULRA IME 2003 FÍSICA ESTIBUA IME FÍSICA QUESTÃO Um pequeno refrigerador para estocar acinas está inicialmente desconectado da rede elétrica e o ar em seu interior encontra-se a uma temperatura de ºC e pressão de atm O refrigerador

Leia mais

(Séries de Problemas) Paulo Vargas Moniz Universidade da Beira Interior Departamento de Fisica

(Séries de Problemas) Paulo Vargas Moniz Universidade da Beira Interior Departamento de Fisica . Mecânica Clássica (Séries de Problemas) Paulo Vargas Moniz Universidade da Beira Interior Departamento de Fisica 1 1 a Serie 1. Considera um bloco B de massa m deslizando sobre um plano inclinado PI

Leia mais

O pêndulo simples é constituído por uma partícula de massa

O pêndulo simples é constituído por uma partícula de massa AULA 42 APLICAÇÕES DO MOVIMENTO HARMÔNICO SIMPLES OBJETIVOS: APLICAR A TEORIA DO MOVIMENTO HARMÔNICO SIMPLES A PÊNDULOS 42.1 PÊNDULO SIMPLES: O pêndulo simples é constituído por uma partícula de massa

Leia mais

Suponha que a velocidade de propagação v de uma onda sonora dependa somente da pressão P e da massa específica do meio µ, de acordo com a expressão:

Suponha que a velocidade de propagação v de uma onda sonora dependa somente da pressão P e da massa específica do meio µ, de acordo com a expressão: PROVA DE FÍSICA DO VESTIBULAR 96/97 DO INSTITUTO MILITAR DE ENGENHARIA (03/12/96) 1 a Questão: Valor : 1,0 Suponha que a velocidade de propagação v de uma onda sonora dependa somente da pressão P e da

Leia mais

UNIDADE IV: Cinemática Vetorial

UNIDADE IV: Cinemática Vetorial UNIDADE IV: Cinemática Vetorial 36 4.1- Vetores: As grandezas vetoriais são aquelas que envolvem os conceitos de direção e sentido para uma completa caracterização. Um vetor é a imagem de uma grandeza

Leia mais

Mecânica e Ondas. Trabalho de Laboratório. Conservação da Energia Mecânica da Roda de Maxwell

Mecânica e Ondas. Trabalho de Laboratório. Conservação da Energia Mecânica da Roda de Maxwell Mecânica e Ondas Trabalho de Laboratório Conservação da Energia Mecânica da Roda de Maxwell Objectivo Determinação do momento de inércia da roda de Maxwell. Estudo da transferência de energia potencial

Leia mais

a) N B > N A > N C. b) N B > N C > N A. c) N C > N B > N A. d) N A > N B > N C. e) N A = N C = N B.

a) N B > N A > N C. b) N B > N C > N A. c) N C > N B > N A. d) N A > N B > N C. e) N A = N C = N B. Prof. Renato SESI Carrão Física 1º. ano 2011 Lista de exercícios 1 (Aulas 13 a 24) *** Formulário *** v = Δx/Δt Δx = x f x i Δt = t f t i a = Δv/Δt Δv = v f v i F R = m.a g = 10 m/s 2 P = m.g F at = μ.n

Leia mais

Cap.12: Rotação de um Corpo Rígido

Cap.12: Rotação de um Corpo Rígido Cap.12: Rotação de um Corpo Rígido Do professor para o aluno ajudando na avaliação de compreensão do capítulo. Fundamental que o aluno tenha lido o capítulo. Introdução: Produto vetorial Ilustração da

Leia mais

TUBO DE PITOT. O tubo de Pitot é empregado para medição de velocidades principalmente em escoamento de gases como, por exemplo, na aviação.

TUBO DE PITOT. O tubo de Pitot é empregado para medição de velocidades principalmente em escoamento de gases como, por exemplo, na aviação. TUBO DE ITOT INTODUÇÃO Em muitos estudos experimentais de escoamentos é necessário determinar o módulo e a direção da elocidade do fluido em alguns pontos da região estudada. pesar de ser impossíel a obtenção

Leia mais

Trigonometria. Relação fundamental. O ciclo trigonométrico. Pré. b c. B Sabemos que a 2 = b 2 + c 2, dividindo os dois membros por a 2 : a b c 2 2 2

Trigonometria. Relação fundamental. O ciclo trigonométrico. Pré. b c. B Sabemos que a 2 = b 2 + c 2, dividindo os dois membros por a 2 : a b c 2 2 2 Trigonometria Relação fundamental C b a A c B Sabemos que a = b + c, dividindo os dois membros por a : a b c = + a a a sen + cos = Temos também que: b c senα= e cosα= a a Como b tgα= c, concluímos que:

Leia mais

Movimento Circular ( ) ( ) Gabarito: Página 1 = =. Na montagem Q: v 1. Velocidade linear da serra: v 2Q. Resposta da questão 1: [E]

Movimento Circular ( ) ( ) Gabarito:  Página 1 = =. Na montagem Q: v 1. Velocidade linear da serra: v 2Q. Resposta da questão 1: [E] Gabarito: Moimento Circular Na montagem Q: Velocidade da polia do motor: Velocidade linear da serra: Q esposta da questão : ados: f = 000 rpm = 50 Hz; = 80 mm = 0,08 m; Δ t = 0,8 s ΔS = Δt ΔS = ω Δt ΔS

Leia mais

Capítulo 13. Quantidade de movimento e impulso

Capítulo 13. Quantidade de movimento e impulso Capítulo 13 Quantidade de movimento e impulso Quantidade de movimento e impulso Introdução Neste capítulo, definiremos duas grandezas importantes no estudo do movimento de um corpo: uma caracterizada pela

Leia mais

Metrologia Professor: Leonardo Leódido

Metrologia Professor: Leonardo Leódido Metrologia Professor: Leonardo Leódido Sumário Definição Conceitos Básicos Classificação de Forma de Orientação de Posição Definição Tolerância pode ser definida como um intervalo limite no qual as imperfeições

Leia mais

LISTA DE EXERCÍCIOS DE FÍSICA

LISTA DE EXERCÍCIOS DE FÍSICA LISTA DE EXERCÍCIOS DE FÍSICA / /2012 ALUNO: N.º TURMA 01. Em um jogo de basebol, o rebatedor aplica uma força de contato do taco com a bola. Com a tecnologia atual, é possível medir a força média aplicada

Leia mais

Dinâmica do Movimento Circular

Dinâmica do Movimento Circular Dinâmica do Movimento Circular 1. (Unesp 2014) Em um show de patinação no gelo, duas garotas de massas iguais giram em movimento circular uniforme em torno de uma haste vertical fixa, perpendicular ao

Leia mais

Tema de Física Eletrostática Força elétrica e campo elétrico Prof. Alex S. Vieira

Tema de Física Eletrostática Força elétrica e campo elétrico Prof. Alex S. Vieira Tema de Física Eletrostática Força elétrica e campo elétrico 1) Se, após o contato e posterior separação, F 2 é o módulo da força coulombiana entre X e Y, podese afirmar corretamente que o quociente F

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 7

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 7 Potencial Elétrico Quando estudamos campo elétrico nas aulas passadas, vimos que ele pode ser definido em termos da força elétrica que uma carga q exerce sobre uma carga de prova q 0. Essa força é, pela

Leia mais

A figura abaixo mostra a variação de direção do vetor velocidade em alguns pontos.

A figura abaixo mostra a variação de direção do vetor velocidade em alguns pontos. EDUCANDO: Nº: TURMA: DATA: / / LIVRES PARA PENSAR EDUCADOR: Rosiméri dos Santos ESTUDOS DE RECUPERAÇÃO - MOVIMENTO CIRCULAR UNIFORME Introdução Dizemos que uma partícula está em movimento circular quando

Leia mais

EXERCÍCIOS PARA PROVA ESPECÍFICA E TESTÃO 1 ANO 4 BIMESTRE

EXERCÍCIOS PARA PROVA ESPECÍFICA E TESTÃO 1 ANO 4 BIMESTRE 1. (Unesp 89) Um cubo de aço e outro de cobre, ambos de massas iguais a 20 g estão sobre um disco de aço horizontal, que pode girar em torno de seu centro. Os coeficientes de atrito estático para aço-aço

Leia mais