Cálculo das Probabilidades II

Tamanho: px
Começar a partir da página:

Download "Cálculo das Probabilidades II"

Transcrição

1 Universidade do Estado do Rio de Janeiro Instituto de Matemática e Estatística Departamento de Estatística Cálculo das Probabilidades II Prof: Mariane Branco Alves 2006 Mariane Branco Alves - Todos os direitos reservados.

2 Reserve tempo à reflexão. O menor detalhe pode ser o mais essencial. SHERLOCK HOLMES (trecho de "A Aventura do Círculo Vermelho", Sir Arthur Connan Doyle)

3 Sumário 1 Revisão de Conceitos Fundamentais em Probabilidade Interpretações de Probabilidade e Definição Axiomática Definição Axiomática Probabilidade Condicional e Independência Regra da Multiplicação Regra da Probabilidade Total Teorema de Bayes Independência Exercícios 11 2 Variáveis Aleatórias Discretas Introdução Alguns Modelos Probabilísticos para Variáveis Aleatórias Discretas Uniforme Bernoulli(p) Binomial(n,p) Hipergeométrica(N,n,r) Geométrica(p) Pascal(r,p) ou Binomial Negativa(r,p) Poisson(λ) Momentos de Variáveis Aleatórias Discretas Exercícios 24 3 Variáveis Aleatórias Contínuas Introdução Alguns Modelos Probabilísticos para Variáveis Aleatórias Contínuas Uniforme Contínua(a,b) Normal(µ,σ 2 ) Exponencial(λ) Gama(α, λ) Qui-quadrado(n) Beta(α, β) Weibull(α, λ) T de Student(k) F de Fisher-Snedcor(d 1,d 2 ) 41 3

4 SUMÁRIO Momentos de Variáveis Aleatórias Contínuas Exercícios 43 4 Funções de Variáveis Aleatórias Distribuição de Y = h(x) Caso1: X é variável aleatória discreta e Y = h(x) é variável aleatória discreta Caso2: X é variável aleatória contínua e Y = h(x) é variável aleatória discreta Caso3: X é variável aleatória contínua e Y = h(x) é variável aleatória contínua Esperança de Y = h(x) Exercícios 51 5 Funções Geratrizes de Momentos Introdução Uso de M X (t) para determinação dos momentos de X Propriedades da Função Geratriz de Momentos Uso de Funções Geratrizes de Momentos para a Determinação de Propriedades Reprodutivas Exercícios 57

5 CAPÍTULO 1 Revisão de Conceitos Fundamentais em Probabilidade 1.1 Interpretações de Probabilidade e Definição Axiomática Definição 1.1. : Um experimento que pode fornecer diferentes resultados, se repetido essencialmene sob as mesmas condições, é dito experimento aleatório. Notação: ε Definição 1.2. O conjunto de todos os possíveis resultados de um experimento aleatório ε é denominado espaço amostral de ε. Notação: Ω Definição 1.3. Um evento é um subconjunto do espaço amostral de um experimento aleatório. Notação: letras maiúsculas. Definição 1.4. Dois evento A e B são disjuntos ou mutuamente exclusivos ou mutuamente excludentes se A B = /0. Objetivo: Atribuir um número real a cada evento o qual avaliará quão verossímil será a ocorrência de A quando o experimento for realizado. Este número será a probabilidade associada ao evento A. Freqüentista: A probabilidade associada a um evento é dada pela freqüência relativa com que tal evento ocorreria, caso o experimento aleatório fosse repetido um grande número de vezes, sob as mesmas condições. Críticas: Quão grande deve ser o número de repetições do experimento aleatórios? Na prática, só seria aplicável a experimentos dos quais se possa fazer um grande número de repetições. Clássica: Se um espaço amostral Ω é composto por n resultados igualmente verossímeis, então a probabilidade associada a cada resultado é 1/n. Se o evento A é formado por n A resultados, então P(A) = n A n. Críticas: A definição é circular Como calcular probabilidades o espaçamostral não é finito ou não tem elementos equiprováveis? 5

6 1.1 INTERPRETAÇÕES DE PROBABILIDADE E DEFINIÇÃO AXIOMÁTICA 6 Subjetiva: A probabilidade que cada pessoa atribui a um evento é uma representação de suas crenças sobre o processo estudado, baseado em sua informação prévia sobre este processo. Críticas: Garantir a consistência e ausência de contradições nas atribuições subjetivas para problemas complexos é difícil. Pessoas diferentes podem fazer atribuições diferentes Definição Axiomática Definição 1.5. Seja ε um experimento aleatório e Ω o espaço amostral associado a ε. A distribuição de probabilidades ou, simplesmente, probabilidade em Ω é uma especificação de números P(.) que satisfazem a: (i) Para qualquer evento A, P(A) 0 (ii) P(Ω) = 1 (iii) Para qualquer seqüência de eventos disjuntos A 1,A 2,, ( ) P = P(A i ). i=1 i=1 Decorrem dos axiomas (i), (ii) e (iii) as seguintes propriedades (demonstrar!): P.1: P(/0) = 0. P.2: Para qualquer seqüência de n eventos disjuntos A 1,A 2,,A n : ( ) n n P = P(A i ). i=1 i=1 P.3: Se A c é o evento complementar a A, então P(A c ) = 1 P(A), A. P.4: A,0 P(A) 1. P.5: Se A B, então P(A) P(B). P.6: Para quaiquer dois eventos A e B, P(A B) = P(A) + P(B) P(A B). Extensão: Sejam A 1,A 2,,A n eventos quaisquer. Então: ) P ( n i=1 = n i=1 P(A i ) P(A i A j ) + P(A i A j A k ) + i< j i< j<k

7 1.2 PROBABILIDADE CONDICIONAL E INDEPENDÊNCIA Probabilidade Condicional e Independência Exemplo 1.1. ε : Lançamento de um dado não-viciado Ω = {1,2,3,4,5,6}. Seja o evento A: resultado 6 A = {6}. Como o espaço amostral é finito, com elementos equiprováveis, então: P(A) = n A n = 1 6. Seja, agora, o evento B: resultado par B = {2,4,6}. A probabilidade de que o resultado seja 6, uma vez que se saiba que o resultado é par, é 1 6. Definição 1.6. A probabilidade condicional de um evento A, dado um evento B, é: P(A B) = No exemplo anterior, tem-se: P(A B), se P(B) > 0. (1.1) P(B) P(A B) = n A B n n Bn = n A B n B = 1 6, pois (A B) = {6} Regra da Multiplicação De (1.1) tem-se, diretamente, que: P(A B) = P(B)P(A B) = P(A)P(B A) (1.2) Regra da Probabilidade Total Definição 1.7. Uma coleção de eventos A 1,A 2,,A n forma uma partição do espaço amostral Ω se os eventos A i s são disjuntos (A i A j = /0, i j) e exaustivos ( n i=1 A i = Ω).

8 1.2 PROBABILIDADE CONDICIONAL E INDEPENDÊNCIA 8 Sejam A 1,A 2,,A n eventos formando uma partição do espaço amostral Ω e B um evento qualquer em Ω. Então: P(B) = P[{B A 1 } {B A 2 } {B A n }] disj. = P(B A 1 ) + P(B A 2 ) + P(B A n ) (1.2) = P(B A 1 )P(A 1 ) + + P(B A n )P(A n ) (1.3) Teorema de Bayes Sejam A 1,A 2,,A n eventos formando uma partição do espaço amostral Ω, B um evento qualquer em Ω e suponha conhecidas P(B A i ) e P(A i ), i = 1,2, n. Então: P(A j B) (1.1) = P(A j B) P(B) (1.2) = P(B A j)p(a j ) P(B) (1.3) = P(B A j )P(A j ) P(B A 1 )P(A 1 ) + + P(B A n )P(A n ) (1.4) Exercício: Um certo item é produzido exclusivamente em uma das unidades de uma fábrica: I, II ou III. Sabe-se que o volume de produção da unidade I é o dobro da unidade II e que II e III têm volumes iguais de produção. Ainda, são defeituosos: 2% dos produtos fabricados na unidade I, 2% dos fabricados na unidade II e 4% dos fabricados na unidade III. Se todos os itens são armazenados em um depósito comum e seleciona-se um item ao acaso: (a) qual é a probabilidade de que seja defeituoso? (b) qual é a probabilidade de que tenha sido produzido na fábrica I, se é defeituoso? (c) qual é a probabilidade de que tenha sido produzido na fábrica I, se não é defeituoso? Independência Definição 1.8. Dois eventos A e B são ditos independentes se P(A B) = P(A) P(B). (1.5)

9 1.2 PROBABILIDADE CONDICIONAL E INDEPENDÊNCIA 9 Observe-se que se A e B são independentes, então, de (1.1) tem-se que: P(A B) P(A B) = P(B) P(A B) P(B A) = P(A) (1.5) = (1.5) = P(A) P(B) = P(A) P(B) P(A) P(B) = P(B) (1.6) P(A) Exemplo 1.2. ε: Lançamento simultâneo de um dado e uma moeda, ambos não-viciados. Ω = {(CA,1)(CA,2)(CA,3)(CA,4)(CA,5)(CA,6)(CO,1)(CO,2)(CO,3)(CO,4)(CO,5) (CO,6)}. Sejam os eventos: A : {(6,CA),(6,CO)}: resultado 6 B : {(2,CA),(2,CO),(4,CA),(4,CO),(6,CA),(6,CO)}: resultado par C : {(CO,1),(CO,2),(CO,3),(CO,4),(CO,5),(CO,6)}: resultado coroa. Como o espaço amostral é finito e com elementos equiprováveis, tem-se: P(A) = n A n = 2 12 = 1 6 P(A B) = P(A B) P(B) = n A B n n Bn = n A B n B = 2 6 = 1 3 P(A), A e B são dependentes. P(A C) = P(A C) P(C) = n A C n n Cn = n A C n C = 1 6 = 1 6 = P(A), A e C são independentes. Importante: Disjunção Independência: Em geral, eventos disjuntos são it dependentes, a menos que a probabilidade de pelo menos um deles seja nula. Prova: Suponha que A e B sejam disjuntos. Então P(A B) = 0. Se, além de disjuntos, forem independentes, então P(A B) = P(A) P(B), o que implica que P(A) = 0 ou P(B) = 0 ou ambas.

10 1.2 PROBABILIDADE CONDICIONAL E INDEPENDÊNCIA 10 Obs: A informação de independência entre eventos interfere no cálculo de probabilidades de interseções. A informação de disjunção entre eventos interfere na forma como são calculadas probabilidades de uniões Exemplo 1.3. Calculando probabilidades para eventos associados a espaços amostrais em que os elementos não são equiprováveis. ε : Selecionam-se, aleatoriamente, 4 pessoas e verifica-se a condição doente ou sadio para cada uma. Hipóteses: Assuma que haja independência entre os indivíduos e que a probabilidade de que qualquer indivíduo seja sadio é p. Seja o evento: A: Dois indivíduos, entre os 4 observados, são sadios. Denote-se por: S: indivíduo sadio ("sucesso") F: indivíduo doente ("fracasso"). Determine P(A). Espaço amostral e probabilidade associada a cada um de seus elementos: i w i P(w i ) 1 FFFF P(w 1 ) = P(F 1 F 2 F 3 F 4 ) ind = P(F 1 )P(F 2 )P(F 3 )P(F 4 ) = (1 p) 4 2 SFFF P(w 2 ) = P(S 1 F 2 F 3 F 4 ) ind = P(S 1 )P(F 2 )P(F 3 )P(F 4 ) = p(1 p) 3 3 FSFF P(w 3 ) = P(F 1 S 2 F 3 F 4 ) ind = P(F 1 )P(S 2 )P(F 3 )P(F 4 ) = p(1 p) 3 4 FFSF P(w 4 ) = P(F 1 F 2 S 3 F 4 ) ind = P(F 1 )P(F 2 )P(S 3 )P(F 4 ) = p(1 p) 3 5 FFFS P(w 5 ) = P(F 1 F 2 F 3 S 4 ) ind = P(F 1 )P(F 2 )P(F 3 )P(S 4 ) = p(1 p) 3 6 SSFF P(w 6 ) = P(S 1 S 2 F 3 F 4 ) ind = P(S 1 )P(S 2 )P(F 3 )P(F 4 ) = p 2 (1 p) 2 7 SFSF P(w 7 ) = P(S 1 F 2 F 3 F 4 ) ind = P(S 1 )P(F 2 )P(S 3 )P(F 4 ) = p 2 (1 p) 2 8 SFFS P(w 8 ) = P(S 1 F 2 F 3 S 4 ) ind = P(S 1 )P(F 2 )P(F 3 )P(S 4 ) = p 2 (1 p) 2 9 FSSF P(w 9 ) = P(F 1 S 2 S 3 F 4 ) ind = P(F 1 )P(S 2 )P(S 3 )P(F 4 ) = p 2 (1 p) 2 10 FSFS P(w 10 ) = P(F 1 S 2 F 3 S 4 ) ind = P(F 1 )P(S 2 )P(F 3 )P(S 4 ) = p 2 (1 p) 2 11 FFSS P(w 11 ) = P(F 1 F 2 S 3 S 4 ) ind = P(F 1 )P(F 2 )P(S 3 )P(S 4 ) = p 2 (1 p) 2 12 FSSS P(w 12 ) = P(F 1 S 2 S 3 S 4 ) ind = P(F 1 )P(S 2 )P(S 3 )P(S 4 ) = p 3 (1 p) 13 SFSS P(w 13 ) = P(S 1 F 2 S 3 S 4 ) ind = P(S 1 )P(F 2 )P(S 3 )P(S 4 ) = p 3 (1 p) 14 SSFS P(w 14 ) = P(S 1 S 2 F 3 S 4 ) ind = P(S 1 )P(S 2 )P(F 3 )P(S 4 ) = p 3 (1 p) 15 SSSF P(w 15 ) = P(S 1 S 2 S 3 F 4 ) ind = P(S 1 )P(S 2 )P(S 3 )P(F 4 ) = p 3 (1 p) 16 SSSS P(w 16 ) = P(S 1 S 2 S 3 S 4 ) ind = P(S 1 )P(S 2 )P(S 3 )P(S 4 ) = p 4

11 1.3 EXERCÍCIOS 11 Finalmente, P(A) = P(w 6 w 7 w 8 w 9 w 10 w 11 ) dis j. = 11 i=6 P(w i ) = 6p 2 (1 p) 2. Questão: E se desejássemos determinar P(A), mas agora com base em uma amostra de tamanho 50? Obviamente o espaço amostral Ω torna-se mais complexo e, portanto, o cálculo de probabilidades diretamente em Ω fica mais difícil. Muitas vezes, o espaço amostral sequer é finito!! Solução: Tratamento das quantidades de interesse em ε e reconhecimento de leis de formação no cálculo de probabilidades. 1.3 Exercícios 1. Determine um espaço amostral para cada um dos seguintes experimentos aleatórios: a) Investigam-se famílias com 4 crianças, anotando-se a configuração segundo o sexo. b) Numa entrevista telefônica com 250 assinantes, pergunta-se se o proprietário tem ou não máquina de secar roupa. c) Mede-se a duração de lâmpadas, deixanso-as acesas até que queimem. d) Um fichário com 10 nomes contém 3 nomes de mulheres. Seleciona-se ficha após ficha, até o último nome de mulher ser selecionado e anota-se o número de fichas selecionadas. e) De um grupo de 5 pessoas {A,B,C,D,E} sorteiam-se duas, uma após a outra, com reposição, e anota-se a configuração formada. f) Idem, considerando sorteio sem reposição. 2. Expresse em termos de operações entre eventos: a) A ocorre, mas B não ocorre. b) Exatamente um dos eventos A e B ocorre. c) Nenhum dos eventos A e B ocorrem. 3. Na figura 1 (ao final da lista), temos um sistema com três componentes funcionando independentemente, com confiabilidades (probabilidades de funcionamento) p 1, p 2 e p 3. Obtenha a confiabilidade do sistema. 4. Na tabela a seguir, os números que aparecem são as probabilidades das interseções entre os eventos em questão. Verifique se A e B são independentes.

12 1.3 EXERCÍCIOS Supondo que todos os componentes do sistema representado na figura 2 (ao final da lista) tenham confiabilidade p e funcionem independentemente, obtenha a confiabilidade do sistema. 6. Uma companhia produz circuitos integrados em três fábricas: I, II e III. A fábrica I produz 40% dos circuitos, enquanto a II e a III produzem 30% cada uma. As probabilidades de que um circuito integrado produzido por estas fábricas não funcione são 0,01,0,04 e 0,03, respectivamente. a) Escolhido um circuito na produção conjunta das três fábricas, qual é a probabilidade de não funcionar? b) Caso o circuito escolhido não funcione, qual é a probabilidade de ter sido fabricado por I? c) Caso o circuito escolhido funcione, qual é a probabilidade de ter sido fabricado por I? 7. Uma companhia de seguros analisou a freqüência com que 2000 segurados (1000 homens e 1000 mulheres) usaram hospital. Os resultados são apresentados na tabela a seguir: a) Qual a probabilidade de que uma pessoa segurada use o hospital? b) O uso do hospital independe do sexo do segurado? 8. Para se estudar o comportamento do mercado automobilístico, as marcas foram divididas em 3 categorias: marca F, marca W e as demais reunidas como marca X. Um estudo sobre os hábitos de mudança de marca mostrou o seguinte quadro de probabilidades:

13 1.3 EXERCÍCIOS 13 O primeiro carro que um indivíduo compra é da marca W com probabilidade 50 a) Qual é a probabilidade de que o terceiro carro de um indivíduo seja da marca W? b) Se o terceiro carro é da marca W, qual é a probabilidade de o primeiro também ter sido W? 9. Mostre que se A e B são eventos independentes, então: P(A B c ) = P(A).P(B c ) e P(A c B c ) = P(A c ).P(B c ). 10. Sejam A e B eventos tais que P(A) = 0,4, P(A B) = 0,7 e P(B) = p. a) Para qual valor de p A e B são disjuntos? b) Para qual valor de p A e B são independentes? 11. Suponha que nos sistemas representados nas figuras 3.a e 3.b, a probabilidade de que cada relé esteja fechado seja p e que a abertura ou fechamento de cada relé independa dos demais. Em cada caso, determine a probabilidade de que a corrente passe de L para R.

14 CAPÍTULO 2 Variáveis Aleatórias Discretas 2.1 Introdução Definição 2.1. Uma variável aleatória é uma função que confere um número real a cada resultado no espaço amostral de um experimento aleatório: X : Ω R X R w X(w) Se o conjunto R X de valores possíveis de X for finito ou infinito enumerável, X é variável aleatória discreta. Caso contrário, X é variável aleatória contínua. Notação: Variáveis aleatórias são denotadas por letras maiúsculas. Realizações valores observados de variáveis aleatórias são denotados por letras minúsculas Exemplo 2.1. ε : Seleção aleatória de 100 pessoas. Defina as variáveis aleatórias: X: número de pessoas, entre as 100, que possuem uma característica de interesse. R X = {0,1,2,3,,100} finito X é v.a. discreta. Y : proporção de pessoas, entre as 100, que possuem uma característica de interesse. 1 R Y = {0, 100, 2 100, 3 100,,1} finito Y é v.a. discreta. Z: altura de cada uma das 100 pessoas. R Z = R + infinito, não enumerável Z é v.a. contínua. W: Número de pessoa selecionadas, com reposição, entre as 100, até que se encontre uma que tenha a característica de interesse R W = {1,2,3, } infinito, enumerável W é v.a. discreta. Definição 2.2. A função de distribuição acumulada (f.d.a) de uma variável aleatória X é dada por: F X : R [0,1] x F X (x) = P(X x). (2.1) 14

15 2.1 INTRODUÇÃO 15 Definição 2.3. A função de probabilidade (f.p.) de uma variável aleatória discreta X é dada por: e satisfaz a: (i) p X (x) 0, x (ii) R p X (x) = 1. p X : R [0,1] x p X (x) = P(X = x) (2.2) Se X é variável aleatória discreta, então sua f.d.a. á calculada da seguinte forma: F X (x) = P(X x) = p X (x j ). (2.3) x j x A função de distribuição acumula, no caso discreto, tem a forma de função escada, como ilustra a figura 2.1, anulando-se quando x e tendendo a 1 quando x. Ainda, apresenta saltos de magnitude p X (x) e os pontos de descontinuidade são os possíveis valores de X. Figura 2.1 Função de distribuição acumulada de uma variável aleatória discreta Assim como se pode obter a f.d.a. F X (x) a partir da f.p. p X (x), a recíproca também vale: p X (x) = F X (x) F X (x ), F X (x ) = lim x x F X(x). (2.4) Definição 2.4. A coleção de pares [x i, p X (x i )] é denominada distribuição de probabilidades de X.

16 2.2 ALGUNS MODELOS PROBABILÍSTICOS PARA VARIÁVEIS ALEATÓRIAS DISCRETAS Alguns Modelos Probabilísticos para Variáveis Aleatórias Discretas Exemplo 2.2. Voltemos ao exemplo 1.3. Defina a variável aleatória: X Número de pessoas sadias, entre as 4 selecionadas. Tem-se, então: i w i P(w i ) x 1 FFFF (1 p) SFFF p(1 p) FSFF p(1 p) FFSF p(1 p) FFFS p(1 p) SSFF p 2 (1 p) SFSF p 2 (1 p) SFFS p 2 (1 p) FSSF p 2 (1 p) FSFS p 2 (1 p) FFSS p 2 (1 p) FSSS p 3 (1 p) 3 13 SFSS p 3 (1 p) 3 14 SSFS p 3 (1 p) 3 15 SSSF p 3 (1 p) 3 16 SSSS p 4 4 Portanto, a distribuição de X é: x p X (x) = P(X = x) 0 (1 p) 4 = 1 4p(1 p) 3 = 2 6p 2 (1 p) 2 = 3 4p 3 (1 p) = 4 p 4 = ( ) 4 p 0 0 (1 p) 4 0 ( ) 4 p 1 1 (1 p) 4 1 ( ) 4 p 2 2 (1 p) 4 2 ( ) 4 p 3 3 (1 p) 4 3 ( ) 4 p 4 4 (1 p) 4 4 Ou, resumidamente: p X (x) = ( ) 4 p x (1 p) 4 x, x x = 0,1,2,3,4 = 0, para outros valores de X.

17 2.2 ALGUNS MODELOS PROBABILÍSTICOS PARA VARIÁVEIS ALEATÓRIAS DISCRETAS 17 Observe que foi possível obter uma lei de formação ou fórmula fechada para ao cálculo das probabilidades associadas a quaisquer valores da variável aleatória X. Tem-se, então, um modelo probabilístico para X. Questão: Sob as mesmas condições anteriores, qual seria a distribuiçào de probabilidade da variável aleatória Y : número de sadios entre 100 pacientes selecionados? Passaremos a descrever, nas subseções a seguir, alguns dos modelos probabilísticos discretos mais usuais Uniforme Suponha um experimento aleatório ε determinado pela seleção aleatória de um valor, entre n valores possíveis, com espaço amostral Ω = {a 1,a 2,,a n }. Seja X a variável aleatória que indica o valor selecionado. X : Ω R X = {x 1,x 2,,x n } w X(w) Note-se que, em geral, nesse caso, X é a função identidade, levando cada elemento do espaço amostral, a i, a x i = a i. Diz-se que a variável aleatória discreta X tem distribuição Uniforme se os n possíveis valores de X, R X = {x 1,x 2,,x n } ocorrem todos com mesma probabilidade. Portanto, a função de probabilidade de X é: { 1n, x = x p X (x) = 1,x 2,,x n 0, c.c. (2.5) Notação: X U{x 1,x 2,,x n } Bernoulli(p) Suponha um experimento aleatório ε dado pela seleção aleatória de um elemento, que pode ser "sucesso" (S, com probabilidade p) ou "fracasso" (F, com probabilidade 1 p, tendo-se, portanto, espaço amostral Ω = {S,F}. Seja X a variável aleatória indicadora de sucesso, isto é,. { 1, se ocorre sucesso X = 0, c.c. X : Ω R X = {1,0} w X(w)

18 2.2 ALGUNS MODELOS PROBABILÍSTICOS PARA VARIÁVEIS ALEATÓRIAS DISCRETAS 18 A função de probabilidade de X é: { p p X (x) = x (1 p) 1 x, x = 0,1 0, c.c. (2.6) Notação: X Ber(p) Binomial(n,p) Seja o experimento aleatório ε composto por n repetições de ensaios de Bernoulli independentes, todos com probabilidade de "sucesso" p, resultantes da seleção aleatória e com reposição de n elementos de uma população com tamanho qualquer. O espaço amostral associado a ε pode ser escrito como Ω = {a 1,a 2,,a n : a i = S ou F}. Denote por X variável aleatória que representa o número de sucessos observados nas n repetições. A função de probabilidade de X é: X : Ω R X = {0,1,2,,n} w X(w) ( ) n p p X (x) = x x (1 p) n x, x = 0,1,2,,n 0, c.c. (2.7) Notação: X Bin(n, p) Obs: X Bin(1, p) X Ber(p) Hipergeométrica(N,n,r) Adimita agora que o experimento aleatório de interesse, ε, seja composto por n repetições de ensaios de Bernoulli dependentes, todos com probabilidade de "sucesso" N r, resultantes da seleção aleatória e sem reposição de uma amostra de tamanho n, a partir de uma população com N elementos, dos quais r são sucessos. Pode-se, então, representar o espaço amostral do experimento por: Ω = {a 1,a 2,,a n : a i = S ou F,a i a j,i j}. Seja X variável aleatória que registra o número de sucessos nas n repetições. A função de probabilidade de X é: X : Ω R X = {0,1,2,,min(n,r)} w X(w)

19 2.2 ALGUNS MODELOS PROBABILÍSTICOS PARA VARIÁVEIS ALEATÓRIAS DISCRETAS 19 )( N r ) p X (x) = ( r x ( N n 0, c.c. n x ), x = 0,1,2,,min(n,r) (2.8) Notação: X Hip(N,n,r) Aproximação da Hipergeométrica pela Binomial: As condições do experimento aleatório realizado no modelo Binomial diferem daquelas sob os quais vale o modelo Hipergeométrico apenas quanto à forma de seleção da amosta: com reposição ou sem reposição. Entretanto, se o tamanho da amostra for pequeno em relação à população, dificilmente um mesmo elemento será selecionado mais que uma vez e, portanto, a amostragem com reposição fornece resultados próximos aos da amostragem com reposição. Assim, se, no modelo Hipergeométrico, n < 0,10N X Hip(N,n,r) X Bin ( n, r N ) Geométrica(p) Seja ε o experimento aleatório dado por repetições de ensaios de Bernoulli independentes, todos com probabilidade de "sucesso" p, resultantes da seleção aleatória e com reposição de elementos até obter sucesso, tendo, portanto, espaço amostral: Ω = {S, FS, FFS, }. Defina X como a variável aleatória que representa o número de ensaios de Bernoulli até obter o 1 o sucesso. A função de probabilidade de X é: X : Ω R X = {1,2, } w X(w) { (1 p) p X (x) = x 1 p, x = 1,2, 0, c.c. (2.9) Notação: X Geo(p)

20 2.2 ALGUNS MODELOS PROBABILÍSTICOS PARA VARIÁVEIS ALEATÓRIAS DISCRETAS 20 Se X Geo(p), então: Propriedade de Falta de Memória da Geométrica: P(X > t + s X > t) = P(X > s) (2.10) Exercício: Demonstre a Propriedade de Falta de Memória da distribuição Geométrica. Dica: use a definição de probabilidade condicional e o fato de que a soma dos termos de uma P.G de razão q: S n = a 1(1 q n ). 1 q Pascal(r,p) ou Binomial Negativa(r,p) Seja o experimento aleatório ε composto por repetições de ensaios de Bernoulli independentes, todos com probabilidade de "sucesso" p, resultantes da seleção aleatória e com reposição de elementos até obter r sucessos. O espaço amostral é dado por Ω = {a 1,a 2,,a k : a k = S e (r 1)dos a i s são S,i < k,k r}. Defina X: a variável aleatória que registra o número de ensaios de Bernoulli até obter r sucessos. A função de probabilidade de X é: X : Ω R X = {r,r + 1, } w X(w) ( x 1 p X (x) = r 1 0, c.c. ) p r (1 p) n r, x = r,r + 1, (2.11) Notação: X Pas(r, p) Obs: X Pas(1, p) X Geo(p) Poisson(λ) Definição 2.5. Um Processo de Poisson é definido pelas seguintes hipóteses: 1. Os números de ocorrências do processo durante intervalos de tempo não-sobrepostos constituem variáveis aleatórias independentes;

21 2.2 ALGUNS MODELOS PROBABILÍSTICOS PARA VARIÁVEIS ALEATÓRIAS DISCRETAS Se X t é o número de ocorrências do processo no intervalo de [0,t) e Y t é o número de ocorrências do processo no intervalo de [t,t 1 +t), para qualquer t 1 > 0, então as variáveis aleatórias X t e Y t têm a mesma distribuição de probabilidade; 3. Seja p n (t) = P(X t = n). Então p 1 ( t) λ t, se t for suficientemente pequeno, onde λ é uma constante positiva; 4. Para t suficientemente pequeno, k=2 p k( t) 0; 5. X 0 = 0 ou, equivalentemente, p 0 (0) = 1. O Modelo Poisson Seja um experimento aleatório ε satisfazendo as condições do Processo de Poisson e defina X t como a variável aleatória que denota o número de ocorrências do Processo de Poisson em um intervalo qualquer de comprimento t. A função de probabilidade de X t é obtida resolvendo-se uma equação diferencial definida pelas hipóteses (a)-(e) (v. Paul Meyer para demonstração) e dada por: p X t (x) = { e λ t (λ t) x x! x = 0,1, 0, c.c. Alguns exemplos usuais de Processos de Poisson são: (2.12) Número de chamadas chegando a uma central telefônica, durante um período de t instantes; Número de estrelas encontradas em uma parte da Via Láctea com volume t; Número de glóbulos sangüíneos visíveis em um microscópio, por unidade quadrada de área. Exemplo 2.3. Suponha que o número de ligações chegando a uma central telefônica tenha distribuição de Poisson com parâmetro λ= 5 ligações/minuto. Determine: (a) A probabilidade de ocorrerem mais que 2 ligações em 1 minuto (b) Idem, em 10 minutos.

22 2.2 ALGUNS MODELOS PROBABILÍSTICOS PARA VARIÁVEIS ALEATÓRIAS DISCRETAS 22 Exemplo 2.4. Em um cruzamento com tráfego intenso, a probabilidade de um carro sofre acidente é bastante pequena e estimada como p = Durante certa parte do dia, por exemplo daàs 18:00h, um grande número de carros passa pelo cruzamento, algo como carros. (a) Nessas condições, qual é a probabilidade de que 2 ou mais carros se acidem naquele período? (b) E se o número de carros passando pelo cruzamento for ? (c) E se o número de carros passando pelo cruzamento for ? Aproximação da Binomial(n,p) pela Poisson(np) Teorema 2.1. Seja X Bin(n, p). Então, quando n e p 0, de tal forma que np = λ, a distribuição de Xaproxima-se da Poisson(λ = np) Demonstração: p X (x) = = = ( n x ) p x (1 p) n x, x = 0,1,2,,n n! x!(n x)! px (1 p) n x n(n 1)(n 2) (n x + 1 p x (1 p) n x. (2.13) x! Façamos λ = np. p = λ n. p X (x) = = n(n 1) (n (x 1)) x! ( λ n ) x ( n λ ( n ) ( ) ( ) n 1 n (x 1) λ x n n n x! ( = ) ( 1 n ) (x 1) λ x n x! n ) n x ( ) n n λ n ( ) x n λ n ) n ( n λ n ( n λ n Agora, faça n, de tal forma que np = λ permaneça constante, o que implica que p 0. lim p X(x) = λ x ( n x! lim 1 1 ) n n n = λ x e λ. x! ) x.

23 2.3 MOMENTOS DE VARIÁVEIS ALEATÓRIAS DISCRETAS 23 Voltemos ao exemplo 2.4. Aplicando a aproximação, para n = , temos: X a Poisson( } {{ } ) 1 P(X 2) = 1 P(X = 0) P(X = 1) 1 e e = 1 2e 1 = ! 1! 2.3 Momentos de Variáveis Aleatórias Discretas Definição 2.6. O k-ésimo momento de uma variável aleatória X é dado por: µ k = E[X k ] (2.14) Se X é variável aleatória discreta, então seu k-ésimo momento pode ser calculado por: Em particular, E[X] = µ 1 V [X] = E[X 2 ] E 2 [X] = µ 2 µ 2 1 µ k = E[X k ] = x k p X (x) (2.15) x A tabela a seguir resume o valor esperado e a variância de algumas variáveis aleatórias discretas. Distribuição de X E[X] V [X] Bernoulli(p) p p(1 p) Binomial(n, p) np np(1 p) N n Hipergeométrica(N, n, r) np N 1 (p(1 p), p = N r Geométrica(p) 1 p (1 p) p 2 Pascal(r, p) r p r(1 p) p 2 Poisson(λ) λ λ

24 2.4 EXERCÍCIOS Exercícios 1. De um lote que contém 25 peças, das quais 5 são defeituosas, são escolhidas 4 ao acaso. Seja X o número de defeituosas encontradas. Estabeleça a distribuição de probabilidade de X, quando: a) As peças forem escolhidas com reposição; b) As peças forem escolhidas sem reposição. 2. Sabe-se que a v. a. X assume os valores 1, 2 e 3 e que sua f.d.a. F(x) é tal que: F(1) F(1 ) = 1/3; F(2) F(2 ) = 1/6; F(3) F(3 ) = 1/2. Obtenha a distribuição de X, a f.d.a. F(x) de X e seus respectivos gráficos. Obs: F(l ) é o limite de F(x) quando x tende a l pela esquerda. 3. Uma fábrica produz 10 recipientes de vidro por dia. Deve-se supor que exista uma probabilidade constante p = 0, 1 de produzir um recipiente defeituoso. Antes que esses recipientes sejam estocados, eles são inspecionados e e os defeituosos são separados. Admita que exista uma probabilidade constante r = 0,1 de que um recpiente defeituoso seja mal classificado. Faça X igual ao número de recipientes classificados como defeituosos ao fim de um dia de produção. Admita que todos os recipientes fabricados em um dia sejam inspecionados naquele mesmo dia. a) Calcule P(X = 3) e P(X > 3). b) Obtenha a expressão de P(X = k) 4. Uma indústria fabrica peças, das quais 20% são defeituosas. Dois compradores, A e B, classificam as peças adquiridas em categorias I e II, pagando 1,20 u.m. e 0,80 u.m., respectivamente, para cada categoria. A classificação é feita de acordo com os seguintes critérios: Comprador A: Retira uma amostra aleatória de 5 peças. Se encontrar mais que uma defeituosa, classifica como II. Comprador B: Retira uma amostra aleatória de 10 peças. Se encontrar mais que duas defeituosa, classifica como II. a) Determine a função de probabilidade das variáveis aleatórias V A e V B. respectivamente os preços de venda aos compradores A e B. b) Determine a função de distribuição acumulada de V A e V B. c) Em média, qual dos compradores oferece maior lucro? d) Em uma situação de tomada de decisão real, o maior lucro médio (ou esperado) seria suficiente para definir a escolha? Que outros critérios poderiam ser levados em conta? 5. Uma companhia de seguros descobriu que somente cerca de 0,1% da população está incluída em certo tip de acidente a cada ano. Se seus segurados são escolhidos, ao caso, na população; qual é a probabilidade de que não mais que 5 de seus clientes venham a estar incluídos em tal acidente no próximo ano?

25 2.4 EXERCÍCIOS Uma fonte radioativa é observada por 7 intervalos de tempo, cada um com dez segundos de duração. O número de partículas emitidas durante cada período é contado. Suponha que o número de partículas emitidas, X, tenha distribuição de Poisson e que, em média, sejam emitidas 0,5 partículas por segundo. a) Qual é a probabiliadde de que, a cada um dos 7 intervalolos de tempo, 4 ou mais partículas sejam emitidas? b) Qual é a probabilidade de que, em ao menos 1 dos 7 intervalos, 4 ou mais partículas sejam emitidas? 7. A probabilidade de um bem sucedido lançamento de foguete é 0,8. Suponha que tentativas de lançamento sejam feitas até que tenham ocorrido 3 lançamentos bem sucedidos. a) Qual é a probabilidade de que exatamente 6 tentativas sejam necessárias? b) Qual é a probabilidade de que menos de 6 tentativas sejam necessárias? c) Se cada tentativa de lançamento custa u.m. e se um lançamento falho custa 500 u.m. adicionais, determine o custo esperado da operação. d) Suponha agora que as tentativas sejam feitas até que três lançamentos consecutivos sejam bem sucedidos. Responda novamente as perguntas (a) e (b) nesse caso. 8. A probabilidade de que um bit seja transmitido com erro por um canal de transmissão digital é 0,1. Assuma que as transmissões sejam ensaios independentes. a) Seja X o número de bits transmitidos até que ocorra o primeiro erro. Determine a distribuição de X. b) Determine a probabilidade de se precisar observar mais que 5 ensaios de transmissão. c) Determine a probabilidade de se precisar observar mais que 5 ensaios de transmissão, após já se ter observado 3 ensaios, sem que ocorresse erro. d) Determine o número esperado e o coeficiente de variação do número de ensaios até o primeiro erro. O número esperado de ensaior é um bom preditor nesse caso? e) Seja Y o número de transmissões até a ocorrência do quarto erro. Determine a distribuição de Y. f) Determine a probabilidade de se precisar observar no máximo 6 ensaios de transmissão g) Determine o número esperado e o coeficiente de variação do número de ensaios até o quarto erro. 9. O número de navios petroleiros que chegam a uma certa refinaria, a cada dia, tem distribuição Poisson, com parâmetro λ = 2. As atuais instalações do porto podem atender a três petroleiros por dia. Se mais de três petroleiros aportarem por dia, os excedentes a três deverão seguir para outro porto. a) Em um dia, qual é a probabilidade de se ter de mandar petroleiros a outro porto?

PE-MEEC 1S 09/10 118. Capítulo 4 - Variáveis aleatórias e. 4.1 Variáveis. densidade de probabilidade 4.2 Valor esperado,

PE-MEEC 1S 09/10 118. Capítulo 4 - Variáveis aleatórias e. 4.1 Variáveis. densidade de probabilidade 4.2 Valor esperado, Capítulo 4 - Variáveis aleatórias e distribuições contínuas 4.1 Variáveis aleatórias contínuas. Função densidade de probabilidade 4.2 Valor esperado, variância e algumas das suas propriedades. Moda e quantis

Leia mais

Aula 2: Variáveis Aleatórias Discretas e Contínuas e suas Principais Distribuições.

Aula 2: Variáveis Aleatórias Discretas e Contínuas e suas Principais Distribuições. Aula 2: Variáveis Aleatórias Discretas e Contínuas e suas Principais Distribuições. Prof. Leandro Chaves Rêgo Programa de Pós-Graduação em Engenharia de Produção - UFPE Recife, 14 de Março de 2012 Tipos

Leia mais

LISTA DE EXERCÍCIOS VARIÁVEIS ALEATÓRIAS

LISTA DE EXERCÍCIOS VARIÁVEIS ALEATÓRIAS LISTA DE EXERCÍCIOS VARIÁVEIS ALEATÓRIAS 1. Construir um quadro e o gráfico de uma distribuição de probabilidade para a variável aleatória X: número de coroas obtidas no lançamento de duas moedas. 2. Fazer

Leia mais

Distribuição Uniforme Discreta. Modelos de distribuições discretas. Distribuição de Bernoulli. Distribuição Uniforme Discreta

Distribuição Uniforme Discreta. Modelos de distribuições discretas. Distribuição de Bernoulli. Distribuição Uniforme Discreta Distribuição Uniforme Discreta Modelos de distribuições discretas Notas de Aula da Profa. Verónica González-López e do Prof. Jesús Enrique García, digitadas por Beatriz Cuyabano. Acréscimos e modicações:

Leia mais

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística Universidade Federal do Paraná Departamento de Informática Reconhecimento de Padrões Revisão de Probabilidade e Estatística Luiz Eduardo S. Oliveira, Ph.D. http://lesoliveira.net Conceitos Básicos Estamos

Leia mais

Descreve de uma forma adequada o

Descreve de uma forma adequada o EST029 Cálculo de Probabilidade I Cap. 8 - Variáveis Aleatórias Contínuas Prof. Clécio da Silva Ferreira Depto Estatística - UFJF 1 Variável Aleatória Normal Caraterização: Descreve de uma forma adequada

Leia mais

Bioestatística Aula 3

Bioestatística Aula 3 Aula 3 Castro Soares de Oliveira Probabilidade Probabilidade é o ramo da matemática que estuda fenômenos aleatórios. Probabilidade é uma medida que quantifica a sua incerteza frente a um possível acontecimento

Leia mais

Logo, para estar entre os 1% mais caros, o preço do carro deve ser IGUAL OU SUPERIOR A:

Logo, para estar entre os 1% mais caros, o preço do carro deve ser IGUAL OU SUPERIOR A: MQI 00 ESTATÍSTICA PARA METROLOGIA - SEMESTRE 008.0 Teste 6/05/008 GABARITO PROBLEMA O preço de um certo carro usado é uma variável Normal com média R$ 5 mil e desvio padrão R$ 400,00. a) Você está interessado

Leia mais

CAPÍTULO 4 Exercícios Resolvidos

CAPÍTULO 4 Exercícios Resolvidos CAPÍTULO 4 Exercícios Resolvidos R4.1) Condição para concretização de uma venda Um certo tipo de componente é vendido em lotes de 1000 itens. O preço de venda do lote é usualmente de 60 u.m. Um determinado

Leia mais

Inferência Estatística

Inferência Estatística Universidade Federal Fluminense Instituto de Matemática e Estatística Inferência Estatística Ana Maria Lima de Farias Departamento de Estatística Conteúdo 1 Inferência estatística Conceitos básicos 1 1.1

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Introdução a Probabilidade Existem dois tipos

Leia mais

Tipos de Modelos. Exemplos. Modelo determinístico. Exemplos. Modelo probabilístico. Causas Efeito. Determinístico. Sistema Real.

Tipos de Modelos. Exemplos. Modelo determinístico. Exemplos. Modelo probabilístico. Causas Efeito. Determinístico. Sistema Real. Tipos de Modelos Sistema Real Determinístico Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Probabilístico Modelo determinístico Exemplos Gravitação F GM M /r Causas Efeito Aceleração

Leia mais

Variáveis Aleatórias Contínuas

Variáveis Aleatórias Contínuas Variáveis aleatórias contínuas: vamos considerar agora uma lista de quantidades as quais não é possível associar uma tabela de probabilidades pontuais ou frequências tempo de duração de uma chamada telefônica

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte IV 2012/02 Distribuição Exponencial Vamos relembrar a definição de uma variável com Distribuição Poisson. Número de falhas ao longo

Leia mais

Primeira Lista de Exercícios de Estatística

Primeira Lista de Exercícios de Estatística Primeira Lista de Exercícios de Estatística Professor Marcelo Fernandes Monitor: Márcio Salvato 1. Suponha que o universo seja formado pelos naturais de 1 a 10. Sejam A = {2, 3, 4}, B = {3, 4, 5}, C =

Leia mais

Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência.

Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Professor: Leandro Zvirtes UDESC/CCT Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Há dois tipos de

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Segunda Lista de Exercícios 01 de julho de 2013 1 Uma indústria fabrica peças, das quais 1 5 são defeituosas. Dois compradores, A e B, classificam os lotes de peças adquiridos em

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE

DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÕES DE PROBABILIDADE i1 Introdução Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Há dois tipos

Leia mais

Probabilidade - aula III

Probabilidade - aula III 27 de Março de 2014 Regra da Probabilidade Total Objetivos Ao final deste capítulo você deve ser capaz de: Usar a regra da multiplicação para calcular probabilidade de eventos Usar a Regra da Probabilidade

Leia mais

4. σ 2 Var X p x q e σ Dp X Podemos escrever o modelo do seguinte modo:

4. σ 2 Var X p x q e σ Dp X Podemos escrever o modelo do seguinte modo: Distribuições de Probabilidades Quando aplicamos a Estatística na resolução de problemas administrativos, verificamos que muitos problemas apresentam as mesmas características o que nos permite estabelecer

Leia mais

Métodos de Monte Carlo

Métodos de Monte Carlo Departamento de Estatística - UFJF Outubro e Novembro de 2014 são métodos de simulação São utilizados quando não temos uma forma fechada para resolver o problema Muito populares em Estatística, Matemática,

Leia mais

Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Notas da Disciplina de Estatística (versão 8.

Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Notas da Disciplina de Estatística (versão 8. Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Notas da Disciplina de Estatística (versão 8.) PROBABILIDADE Dizemos que a probabilidade é uma medida da quantidade de

Leia mais

Probabilidade. Distribuição Exponencial

Probabilidade. Distribuição Exponencial Probabilidade Distribuição Exponencial Aplicação Aplicada nos casos onde queremos analisar o espaço ou intervalo de acontecimento de um evento; Na distribuição de Poisson estimativa da quantidade de eventos

Leia mais

CAPÍTULO 5 - Exercícios

CAPÍTULO 5 - Exercícios CAPÍTULO 5 - Exercícios Distibuições de variáveis aleatórias discretas: Binomial 1. Se 20% dos parafusos produzidos por uma máquina são defeituosos, determinar a probabilidade de, entre 4 parafusos escolhidos

Leia mais

Aula de Exercícios - Variáveis Aleatórias Discretas - Modelos Probabiĺısticos

Aula de Exercícios - Variáveis Aleatórias Discretas - Modelos Probabiĺısticos Aula de Exercícios - Variáveis Aleatórias Discretas - Modelos Probabiĺısticos Organização: Airton Kist Digitação: Guilherme Ludwig Exercício Se X b(n, p), sabendo-se que E(X ) = 12 e σ 2 = 3, determinar:

Leia mais

Aula 1: Introdução à Probabilidade

Aula 1: Introdução à Probabilidade Aula 1: Introdução à Probabilidade Prof. Leandro Chaves Rêgo Programa de Pós-Graduação em Engenharia de Produção - UFPE Recife, 07 de Março de 2012 Experimento Aleatório Um experimento é qualquer processo

Leia mais

2 Modelo para o Sistema de Controle de Estoque (Q, R)

2 Modelo para o Sistema de Controle de Estoque (Q, R) Modelo para o Sistema de Controle de Estoque (, ) Neste capítulo é apresentado um modelo para o sistema de controle de estoque (,). Considera-se que a revisão dos estoques é continua e uma encomenda de

Leia mais

Estatística stica para Metrologia

Estatística stica para Metrologia Aula 5 Estatística stica para Metrologia Aula 5 Variáveis Contínuas Uniforme Exponencial Normal Lognormal Mônica Barros, D.Sc. Maio de 008 1 Distribuição Uniforme A probabilidade de ocorrência em dois

Leia mais

A probabilidade representa o resultado obtido através do cálculo da intensidade de ocorrência de um determinado evento.

A probabilidade representa o resultado obtido através do cálculo da intensidade de ocorrência de um determinado evento. Probabilidade A probabilidade estuda o risco e a ocorrência de eventos futuros determinando se existe condição de acontecimento ou não. O olhar da probabilidade iniciou-se em jogos de azar (dados, moedas,

Leia mais

Probabilidade 1. José Carlos Fogo

Probabilidade 1. José Carlos Fogo Probabilidade 1 José Carlos Fogo Junho 2014 Sumário Sumário 1 Conceitos Básicos e Definições 3 1.1 Relações entre conjuntos............................. 3 1.2 Algumas definições em probabilidade:.....................

Leia mais

Probabilidade. Distribuição Exponencial

Probabilidade. Distribuição Exponencial Probabilidade Distribuição Exponencial Aplicação Aplicada nos casos onde queremos analisar o espaço ou intervalo de acontecimento de um evento; Na distribuição de Poisson estimativa da quantidade de eventos

Leia mais

Cláudio Tadeu Cristino 1. Julho, 2014

Cláudio Tadeu Cristino 1. Julho, 2014 Inferência Estatística Estimação Cláudio Tadeu Cristino 1 1 Universidade Federal de Pernambuco, Recife, Brasil Mestrado em Nutrição, Atividade Física e Plasticidade Fenotípica Julho, 2014 C.T.Cristino

Leia mais

UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo

UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo UNIVERSIDADE DE SÃO PAULO Faculdade de Arquitetura e Urbanismo DISTRIBUIÇÃO AMOSTRAL ESTIMAÇÃO AUT 516 Estatística Aplicada a Arquitetura e Urbanismo 2 DISTRIBUIÇÃO AMOSTRAL Na aula anterior analisamos

Leia mais

Probabilidade. O segundo aspecto é a incerteza inerente às decisões que podem ser tomadas sobre determinado problema.

Probabilidade. O segundo aspecto é a incerteza inerente às decisões que podem ser tomadas sobre determinado problema. Probabilidade No capítulo anterior, procuramos conhecer a variabilidade de algum processo com base em observações das variáveis pertinentes. Nestes três próximos capítulos, continuaremos a estudar os processos

Leia mais

DISTRIBUIÇÃO NORMAL 1

DISTRIBUIÇÃO NORMAL 1 DISTRIBUIÇÃO NORMAL 1 D ensid ade Introdução Exemplo : Observamos o peso, em kg, de 1500 pessoas adultas selecionadas ao acaso em uma população. O histograma por densidade é o seguinte: 0.04 0.03 0.02

Leia mais

Lista 5 - Introdução à Probabilidade e Estatística

Lista 5 - Introdução à Probabilidade e Estatística UNIVERSIDADE FEDERAL DO ABC Lista 5 - Introdução à Probabilidade e Estatística Variáveis Aleatórias 1 Duas bolas são escolhidas aleatoriamente de uma urna que contém 8 bolas brancas, 4 pretas e 2 laranjas.

Leia mais

Estatística e Probabilidade. Aula 4 Cap 03. Probabilidade

Estatística e Probabilidade. Aula 4 Cap 03. Probabilidade Estatística e Probabilidade Aula 4 Cap 03 Probabilidade Estatística e Probabilidade Método Estatístico Estatística Descritiva Estatística Inferencial Nesta aula... aprenderemos como usar informações para

Leia mais

CAPÍTULO 9 Exercícios Resolvidos

CAPÍTULO 9 Exercícios Resolvidos CAPÍTULO 9 Exercícios Resolvidos R9.1) Diâmetro de esferas de rolamento Os dados a seguir correspondem ao diâmetro, em mm, de 30 esferas de rolamento produzidas por uma máquina. 137 154 159 155 167 159

Leia mais

Distibuições de variáveis aleatórias discretas: = p = 1 n, para todo i = 1, 2,..., n. Prof. Luiz Alexandre Peternelli

Distibuições de variáveis aleatórias discretas: = p = 1 n, para todo i = 1, 2,..., n. Prof. Luiz Alexandre Peternelli CAPÍTULO 5 - Algumas distribuições de variáveis aleatórias discretas e contínuas (parte considerada incompleta visto o volume de informações importantes não incluídas, além de eercícios. Tais informações

Leia mais

CAPÍTULO 5 Exercícios Resolvidos

CAPÍTULO 5 Exercícios Resolvidos CAPÍTULO 5 Exercícios Resolvidos R5.) Casais com no máximo filhos Consideremos o conjunto dos casais que têm no máximo dois filhos. Admitamos que dentro desse contexto, cada uma das possibilidades em termos

Leia mais

CAP4: Distribuições Contínuas Parte 1 Distribuição Normal

CAP4: Distribuições Contínuas Parte 1 Distribuição Normal CAP4: Distribuições Contínuas Parte 1 Distribuição Normal Quando a variável sendo medida é expressa em uma escala contínua, sua distribuição de probabilidade é chamada distribuição contínua. Exemplo 4.1

Leia mais

Inferência Estatística Aula 3

Inferência Estatística Aula 3 Inferência Estatís Aula 3 Agosto de 008 Mônica Barros Conteúdo Revisão de Probabilidade Algumas das principais distribuições discretas Distribuição de Poisson Distribuição Poisson como aproximação da Binomial

Leia mais

Solução: X é Binomial(7; 0,4). (a) P(X = 0) = 0,6 7 = 0,0280. (b) P(X 3) = 1 P(X 2) = 1 [P(X = 0) + P(X = 1) + P(X = 2)] =

Solução: X é Binomial(7; 0,4). (a) P(X = 0) = 0,6 7 = 0,0280. (b) P(X 3) = 1 P(X 2) = 1 [P(X = 0) + P(X = 1) + P(X = 2)] = CAPÍTULO 2 Exercícios Resolvidos 1. Turbulência no avião A probabilidade de ocorrência de turbulência em um determinado percurso a ser feito por uma aeronave é de 0,4 em um circuito diário. Seja X o número

Leia mais

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES Caros concurseiros, Como havia prometido, seguem comentários sobre a prova de estatística do ICMS RS. Em cada questão vou fazer breves comentários, bem como indicar eventual possibilidade de recurso. Não

Leia mais

MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS

MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS Definições Variáveis Aleatórias Uma variável aleatória representa um valor numérico possível de um evento incerto. Variáveis aleatórias

Leia mais

Variáveis Aleatórias Discretas e Distribuições de Probabilidade

Variáveis Aleatórias Discretas e Distribuições de Probabilidade Variáveis Aleatórias Discretas e Distribuições de Probabilidade Objetivos do aprendizado a.determinar probabilidades a partir de funções de probabilidade b.determinar probabilidades a partir de funções

Leia mais

Espaço Amostral ( ): conjunto de todos os

Espaço Amostral ( ): conjunto de todos os PROBABILIDADE Espaço Amostral (): conjunto de todos os resultados possíveis de um experimento aleatório. Exemplos: 1. Lançamento de um dado. = {1,, 3, 4,, 6}. Doador de sangue (tipo sangüíneo). = {A, B,

Leia mais

Introdução à Inferência Estatística

Introdução à Inferência Estatística Introdução à Inferência Estatística 1. População: conjunto de indivíduos, ou itens, com pelo menos uma característica em comum. Também será denotada por população objetivo, que é sobre a qual desejamos

Leia mais

Probabilidade. Distribuição Normal

Probabilidade. Distribuição Normal Probabilidade Distribuição Normal Distribuição Normal Uma variável aleatória contínua tem uma distribuição normal se sua distribuição é: simétrica apresenta (num gráfico) forma de um sino Função Densidade

Leia mais

Distribuições: Binomial, Poisson e Normal. Distribuição Binomial

Distribuições: Binomial, Poisson e Normal. Distribuição Binomial Distribuições: Binomial, Poisson e Normal Distribuição Binomial Monitor Adan Marcel e Prof. Jomar 1. Uma remessa de 800 estabilizadores de tensão é recebida pelo controle de qualidade de uma empresa. São

Leia mais

3ª lista de exercícios sobre cálculo de probabilidades, axiomas, propriedades, teorema da probabilidade total e teorema de Bayes

3ª lista de exercícios sobre cálculo de probabilidades, axiomas, propriedades, teorema da probabilidade total e teorema de Bayes 3ª lista de exercícios sobre cálculo de probabilidades, axiomas, propriedades, teorema da probabilidade total e teorema de Bayes 1) Quatro moedas são lançadas e observa-se a seqüência de caras e coroas

Leia mais

Somatórias e produtórias

Somatórias e produtórias Capítulo 8 Somatórias e produtórias 8. Introdução Muitas quantidades importantes em matemática são definidas como a soma de uma quantidade variável de parcelas também variáveis, por exemplo a soma + +

Leia mais

Regra do Evento Raro p/ Inferência Estatística:

Regra do Evento Raro p/ Inferência Estatística: Probabilidade 3-1 Aspectos Gerais 3-2 Fundamentos 3-3 Regra da Adição 3-4 Regra da Multiplicação: 3-5 Probabilidades por Meio de Simulações 3-6 Contagem 1 3-1 Aspectos Gerais Objetivos firmar um conhecimento

Leia mais

Probabilidade. Distribuição Binomial

Probabilidade. Distribuição Binomial Probabilidade Distribuição Binomial Distribuição Binomial (Experimentos de Bernoulli) Considere as seguintes experimentos/situações práticas: Conformidade de itens saindo da linha de produção Tiros na

Leia mais

ESTATÍSTICA - CURSO 1

ESTATÍSTICA - CURSO 1 MINISTÉRIO DA CIÊNCIA E TECNOLOGIA INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS ESTATÍSTICA - CURSO 1 Dra. Corina da Costa Freitas MSc. Camilo Daleles Rennó MSc. Manoel Araújo Sousa Júnior Material de referência

Leia mais

Introdução à análise de dados discretos

Introdução à análise de dados discretos Exemplo 1: comparação de métodos de detecção de cárie Suponha que um pesquisador lhe apresente a seguinte tabela de contingência, resumindo os dados coletados por ele, oriundos de um determinado experimento:

Leia mais

CONCEITOS. Evento: qualquer subconjunto do espaço amostral. Uma primeira idéia do cálculo de probabilidade. Eventos Teoria de conjuntos

CONCEITOS. Evento: qualquer subconjunto do espaço amostral. Uma primeira idéia do cálculo de probabilidade. Eventos Teoria de conjuntos INTRODUÇÃO À PROAILIDADE Exemplos: O problema da coincidência de datas de aniversário O problema da mega sena A teoria das probabilidade nada mais é do que o bom senso transformado em cálculo A probabilidade

Leia mais

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1 1 INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1 1. Origem histórica É possível quantificar o acaso? Para iniciar,

Leia mais

4) Quais dos seguintes pares de eventos são mutuamente exclusivos:

4) Quais dos seguintes pares de eventos são mutuamente exclusivos: INE 7002 LISTA DE EXERCÍCIOS PROBABILIDADE Lista de Exercícios - Probabilidade 1 1) Lâmpadas que se apresentam em perfeitas condições são ensaiadas quanto ao tempo de vida. Um instrumento é acionado no

Leia mais

Notas de Aula do Curso ET101: Estatística 1 - Área 2

Notas de Aula do Curso ET101: Estatística 1 - Área 2 Notas de Aula do Curso ET101: Estatística 1 - Área 2 Leandro Chaves Rêgo, Ph.D. 2008.2 Prefácio Estas notas de aula foram feitas para compilar o conteúdo de várias referências bibliográcas tendo em vista

Leia mais

Distribuições de Probabilidade Distribuição Normal

Distribuições de Probabilidade Distribuição Normal PROBABILIDADES Distribuições de Probabilidade Distribuição Normal BERTOLO PRELIMINARES Quando aplicamos a Estatística na resolução de situações-problema, verificamos que muitas delas apresentam as mesmas

Leia mais

Teoria das Probabilidades I. Ana Maria Lima de Farias Universidade Federal Fluminense

Teoria das Probabilidades I. Ana Maria Lima de Farias Universidade Federal Fluminense Teoria das Probabilidades I Ana Maria Lima de Farias Universidade Federal Fluminense Conteúdo 1 Probabilidade - Conceitos Básicos 1 1.1 Introdução....................................... 1 1.2 Experimento

Leia mais

(b) Qual a probabilidade de ter sido transmitido um zero, sabendo que foi recebido um (1.0) zero?

(b) Qual a probabilidade de ter sido transmitido um zero, sabendo que foi recebido um (1.0) zero? Grupo I 5.0 valores 1. Um sistema de comunicação binária transmite zeros e uns com probabilidade 0.5 em qualquer dos casos. Devido ao ruído existente no canal de comunicação há erros na recepção: transmitido

Leia mais

Estatística Aplicada para Engenharia Inferência para Duas Populações

Estatística Aplicada para Engenharia Inferência para Duas Populações Universidade Federal Fluminense Instituto de Matemática e Estatística Estatística Aplicada para Engenharia Inferência para Duas Populações Ana Maria Lima de Farias Departamento de Estatística Conteúdo

Leia mais

Exercícios Resolvidos da Distribuição Binomial

Exercícios Resolvidos da Distribuição Binomial . a. Estabeleça as condições exigidas para se aplicar a distribuição binomial? b. Qual é a probabilidade de caras em lançamentos de uma moeda honesta? c. Qual é a probabilidade de menos que caras em lançamentos

Leia mais

2 T Probabilidade: Definições básicas. 3 T Probabilidade: Definições básicas

2 T Probabilidade: Definições básicas. 3 T Probabilidade: Definições básicas Programa do Curso Métodos Estatísticos sticos de Apoio à Decisão Aula 4 Mônica Barros, D.Sc. Julho de 2008 Disciplina Métodos Estatísticos de Apoio à Decisão - BI MASTER 2008 Responsável Mônica Barros

Leia mais

Aula 11 Esperança e variância de variáveis aleatórias discretas

Aula 11 Esperança e variância de variáveis aleatórias discretas Aula 11 Esperança e variância de variáveis aleatórias discretas Nesta aula você estudará os conceitos de média e variância de variáveis aleatórias discretas, que são, respectivamente, medidas de posição

Leia mais

Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti. Distribuição Normal

Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti. Distribuição Normal Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Distribuição Normal 1. Introdução O mundo é normal! Acredite se quiser! Muitos dos fenômenos aleatórios que encontramos na

Leia mais

Lista IV - Curva Normal. Professor Salvatore Estatística I

Lista IV - Curva Normal. Professor Salvatore Estatística I Lista IV - Curva Normal Professor Salvatore Estatística I 19/12/2011 Consulta à tabela Normal: 1. Estabeleça a área entre 0 (zero) e Zi igual a a. + 1,35 b. + 1,58 c. +2,05 d. +2,76 e. -1,26 f. -2,49 g.

Leia mais

1 Variáveis Aleatórias

1 Variáveis Aleatórias Variáveis Aleatórias Exercício Num lançamento de 3 moedas equilibradas seja X avariável aleatória que representa o número de caras saídas Escreva a função de probabilidade de X Exercício Quantasvezessedevelançarumdadoaoarparaqueaprobabilidade

Leia mais

Noções de Probabilidade e Estatística CAPÍTULO 2

Noções de Probabilidade e Estatística CAPÍTULO 2 Noções de Probabilidade e Estatística Resolução dos Exercícios Ímpares CAPÍTULO 2 Felipe E. Barletta Mendes 8 de outubro de 2007 Exercícios da seção 2.1 1 Para cada um dos casos abaixo, escreva o espaço

Leia mais

Lista 09: Estimação de Parâmetros

Lista 09: Estimação de Parâmetros INSTITUTO TECNOLÓGICO DE AERONÁUTICA DIVISÃO DE ENGENHARIA MECÂNICA-AERONÁUTICA MB-210: Probabilidade e Estatística Lista 09: Estimação de Parâmetros Prof. Denise Beatriz Ferrari denise@ita.br 2 o Sem/2013

Leia mais

CAP5: Amostragem e Distribuição Amostral

CAP5: Amostragem e Distribuição Amostral CAP5: Amostragem e Distribuição Amostral O que é uma amostra? É um subconjunto de um universo (população). Ex: Amostra de sangue; amostra de pessoas, amostra de objetos, etc O que se espera de uma amostra?

Leia mais

Distribuições de Probabilidade Distribuição Binomial

Distribuições de Probabilidade Distribuição Binomial PROBABILIDADES Distribuições de Probabilidade Distribuição Binomial BERTOLO PRELIMINARES Quando aplicamos a Estatística na resolução de situações-problema, verificamos que muitas delas apresentam as mesmas

Leia mais

Unidade II ESTATÍSTICA DESCRITIVA

Unidade II ESTATÍSTICA DESCRITIVA ESTATÍSTICA DESCRITIVA 5 Unidade II 2 PROBABILIDADE 10 15 20 25 30 35 2.1 Panorama histórico O estudo científico da probabilidade é um fato moderno. Segundo Eves (2004), é surpreendente que os matemáticos

Leia mais

Distribuição de Erlang

Distribuição de Erlang Distribuição de Erlang Uma variável aleatória exponencial descreve a distância até que a primeira contagem é obtida em um processo de Poisson. Generalização da distribuição exponencial : O comprimento

Leia mais

Capítulo 3 Modelos Estatísticos

Capítulo 3 Modelos Estatísticos Capítulo 3 Modelos Estatísticos Slide 1 Resenha Variáveis Aleatórias Distribuição Binomial Distribuição de Poisson Distribuição Normal Distribuição t de Student Distribuição Qui-quadrado Resenha Slide

Leia mais

Testes de Ajustamento (testes da bondade do ajustamento)

Testes de Ajustamento (testes da bondade do ajustamento) Testes de Ajustamento (testes da bondade do ajustamento) Os testes de ajustamento servem para testar a hipótese de que uma determinada amostra aleatória tenha sido extraída de uma população com distribuição

Leia mais

M501 Probabilidade, Estatística e Processos Estocásticos

M501 Probabilidade, Estatística e Processos Estocásticos Notas de aula M501 Probabilidade, Estatística e Processos Estocásticos Dayan Adionel Guimarães Novembro de 007 Agradecimento Aos professores: Dr. José Marcos Câmara Brito Dr. Carlos Alberto Ynoguti M.Sc.

Leia mais

NOTAS DE AULA - ESTATÍSTICA PROBABILIDADE DISTRIBUIÇÃO DE PROBABILIDADE

NOTAS DE AULA - ESTATÍSTICA PROBABILIDADE DISTRIBUIÇÃO DE PROBABILIDADE NOTAS DE AULA - ESTATÍSTICA ROBABILIDADE DISTRIBUIÇÃO DE ROBABILIDADE ISABEL C. C. LEITE SALVADOR BA 007 Estatística rof.ª Isabel C. C. Leite 1 Introdução robabilidades De modo geral ao estudarmos qualquer

Leia mais

ALGUNS TóPICOS DE CONTAGEM E PROBABILIDADE

ALGUNS TóPICOS DE CONTAGEM E PROBABILIDADE ALGUNS TóPICOS DE CONTAGEM E PROBABILIDADE MAT30 200/ O objetivo destas notas é ilustrar como a ideia de fazer aproximações permite uma compreensão melhor de diversos problemas de combinatória e probabilidade..

Leia mais

APLICAÇÕES DA DERIVADA

APLICAÇÕES DA DERIVADA Notas de Aula: Aplicações das Derivadas APLICAÇÕES DA DERIVADA Vimos, na seção anterior, que a derivada de uma função pode ser interpretada como o coeficiente angular da reta tangente ao seu gráfico. Nesta,

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Terceira Lista de Exercícios 22 de julho de 20 Seja X uma VA contínua com função densidade de probabilidade f dada por Calcule P ( < X < 2. f(x = 2 e x x R. A fdp dada tem o seguinte

Leia mais

Estatística stica para Metrologia

Estatística stica para Metrologia Estatística stica para Metrologia Aula 2 Definições básicas Introdução à robabilidade Mônica Barros, D.Sc. Março o de 2008 1 2 robabilidades Introdução robabilidade faz parte do nosso dia a dia, por exemplo:

Leia mais

AULAS 13, 14 E 15 Correlação e Regressão

AULAS 13, 14 E 15 Correlação e Regressão 1 AULAS 13, 14 E 15 Correlação e Regressão Ernesto F. L. Amaral 23, 28 e 30 de setembro de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de

Leia mais

CAPÍTULO I - ELEMENTOS DE PROBABILIDADE

CAPÍTULO I - ELEMENTOS DE PROBABILIDADE CAPÍTULO I - ELEMENTOS DE PROBABILIDADE 1.1 INTRODUÇÃO Em geral, um experimento ao ser observado e repetido sob um mesmo conjunto especificado de condições, conduz invariavelmente ao mesmo resultado. São

Leia mais

Tipos de variáveis aleatórias

Tipos de variáveis aleatórias Tipos de variáveis aleatórias Variáveis aleatórias discretas se assumem um conjunto finito ou infinito numerável de valores. Exemplos: número de pintas que sai no lançamento de um dado; registo, a intervalos

Leia mais

Utilizando-se as relações entre as funções básicas é possível obter as demais funções de sobrevivência.

Utilizando-se as relações entre as funções básicas é possível obter as demais funções de sobrevivência. MÉTODOS PARAMÉTRICOS PARA A ANÁLISE DE DADOS DE SOBREVIVÊNCIA Nesta abordagem paramétrica, para estimar as funções básicas da análise de sobrevida, assume-se que o tempo de falha T segue uma distribuição

Leia mais

PROBABILIDADE. Aula 5

PROBABILIDADE. Aula 5 Curso: Psicologia Disciplina: Métodos Quantitativos Profa. Valdinéia Data: 28/10/15 PROBABILIDADE Aula 5 Geralmente a cada experimento aparecem vários resultados possíveis. Por exemplo ao jogar uma moeda,

Leia mais

Lógica e Raciocínio. Decisão sob Risco Probabilidade. Universidade da Madeira. http://dme.uma.pt/edu/ler/

Lógica e Raciocínio. Decisão sob Risco Probabilidade. Universidade da Madeira. http://dme.uma.pt/edu/ler/ Lógica e Raciocínio Universidade da Madeira http://dme.uma.pt/edu/ler/ Decisão sob Risco Probabilidade 1 Probabilidade Em decisões sob ignorância a probabilidade dos diferentes resultados e consequências

Leia mais

I NTRODUÇÃO. SÉRIE: Probabilidade

I NTRODUÇÃO. SÉRIE: Probabilidade SUMÁRIO 1. COMBINATÓRIA... 5 1.1. CONJUNTOS... 5 1.2. OPERAÇÕES COM CONJUNTOS... 5 1.3. APLICAÇÕES DOS DIAGRAMAS DE VENN... 6 1.4. FATORIAL... 6 1.5. PRINCÍPIO FUNDAMENTAL DA CONTAGEM (PRINCÍPIO MULTIPLICATIVO)...

Leia mais

PROBABILIDADES E ESTATÍSTICA

PROBABILIDADES E ESTATÍSTICA PROBABILIDADES E ESTATÍSTICA Ao conjunto de todos os resultados possíveis, de uma eperiência aleatória, chamamos espaço amostral e representamos por S. Define-se acontecimento como sendo um subconjunto

Leia mais

Revisão de Estatística Aplicada a Finanças

Revisão de Estatística Aplicada a Finanças Revisão de Estatística Aplicada a Finanças INTRODUÇÃO A revisão que apresentaremos destina-se a examinar conceitos importantes de Estatística, que tornem possível a compreensão do conteúdo do livro de

Leia mais

NOÇÕES DE PROBABILIDADE

NOÇÕES DE PROBABILIDADE NOÇÕES DE PROBABILIDADE Fenômeno Aleatório: situação ou acontecimento cujos resultados não podem ser determinados com certeza. Exemplos: 1. Resultado do lançamento de um dado;. Hábito de fumar de um estudante

Leia mais

Espaços Amostrais Finitos

Espaços Amostrais Finitos EST029 Cálculo de Probabilidade I Cap. 2: Espaços Amostrais Finitos Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Espaços Amostrais Finitos Espaço amostral S = {a 1, a 2, a 3,..., a k } (finito)

Leia mais

PROBABILIDADE PROFESSOR: ANDRÉ LUIS

PROBABILIDADE PROFESSOR: ANDRÉ LUIS PROBABILIDADE PROFESSOR: ANDRÉ LUIS 1. Experimentos Experimento determinístico: são aqueles em que o resultados são os mesmos, qualquer que seja o número de ocorrência dos mesmos. Exemplo: Um determinado

Leia mais

1 Probabilidade Condicional - continuação

1 Probabilidade Condicional - continuação 1 Probabilidade Condicional - continuação Exemplo: Sr. e Sra. Ferreira mudaram-se para Campinas e sabe-se que têm dois filhos sendo pelo menos um deles menino. Qual a probabilidade condicional que ambos

Leia mais

Universidade Federal do ABC. Sinais Aleatórios. Prof. Marcio Eisencraft

Universidade Federal do ABC. Sinais Aleatórios. Prof. Marcio Eisencraft Universidade Federal do ABC Sinais Aleatórios Prof. Marcio Eisencraft São Paulo 2011 Capítulo 1 Probabilidades Neste curso, trata-se dos fenômenos que não podem ser representados de forma determinística

Leia mais

Tópicos em Inferência Estatística. Frases. Roteiro. 1. Introdução

Tópicos em Inferência Estatística. Frases. Roteiro. 1. Introdução Tópicos em Inferência Estatística Frases Torture os dados por um tempo suficiente, e eles contam tudo! fonte: mcrsoft@aimnet.com (Barry Fetter) Um homem com um relógio sabe a hora certa. Um homem com dois

Leia mais

INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE

INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE INE 5 LISTA DE EERCÍCIOS DE PROBABILIDADE INE 5 Gabarito da Lista de Exercícios de Probabilidade ) Em um sistema de transmissão de dados existe uma probabilidade igual a 5 de um dado ser transmitido erroneamente.

Leia mais