tica Professor Renato Tião

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "tica Professor Renato Tião"

Transcrição

1 Números complexos Algumas equações do segudo grau como x + 1 = 0 ão possuem solução o uverso real e o estudo destas soluções ão pareca ecessáro até o século XVI quado o matemátco aphael Bombell publcou uma obra que dscute a resolução de equações de tercero grau. Nesta obra ecotramos a resolução da equação x = 15x+ 4 por um processo smlar ao apresetado a segur: Prmero a equação é comparada à detdade (a + b) ab(a + b) + A + B, com A = a e B = b. Faedo x = a + b, esta detdade obtemos o sstema: ab = 15. A + B = 4 De ab = 15 temos ab = 5, relação que elevada ao cubo fca: a b = 15, ou seja: AB = 15. A + B = 4 Agora basta resolver o sstema para obtermos x = A + B. A B = 15 A resolução deste sstema passa pela equação quadrátca = 0, em que a cógta represeta tato A quato B, mas esta equação apreseta dscrmate é egatvo: = 484. Até esta publcação, ehum matemátco hava se deparado com a ecessdade de terpretar a ra quadrada de um úmero egatvo. E, se ão fosse o fato de que a equação x = 15x+ 4 tem solução real x = 4, provavelmete ão teríamos crado o cojuto dos úmeros complexos. O cojuto dos úmeros complexos Em 179, uma publcação do matemátco Leoard Euler sugere o símbolo para represetar 1 e, sedo assm, uma expressão como 9 = 9 ( 1) = 1 fca represetada por. Chamamos o úmero de udade magára, e seus múltplos ão ulos como e formam um cojuto umérco deomado de cojuto dos úmeros magáros puros. O cojuto dos úmeros complexos é formado por todas as possíves adções etre úmeros reas e magáros puros: Todas as propredades artmétcas váldas em N, também são váldas em Z. Além dsso, o cojuto Z apreseta propredades cocebíves em N como, por exemplo, a regra de sal: ( = +). Esta relação etre cojutos umércos é chamada de HEANÇA. Se dos cojutos umércos A e B são tas que A B, etão B herda todas as propredades artmétcas váldas em A e apreseta ovas propredades a respeto de seus ovos elemetos, desde que estas ovas propredades ão cotrarem as propredades herdadas. Desta forma cojuto dos úmeros complexos herda todas as propredades váldas o cojuto dos úmeros reas e apreseta, detre outras propredades, úmero cujos quadrados são egatvos. Há dos mportates subcojutos de C que devem ser levados em cosderação: o cojuto dos úmeros reas e o cojuto dos úmeros magáros puros. C * a + b é úmero real b = 0 a + b é magáro puro a = 0 e b 0 Desta forma temos, por exemplo, que o úmero 4 é um complexo real, pos pode ser escrto a forma a + b, com a = 4 e b = 0, ou seja: 4 = 4 + 0, ao passo que o úmero 4 é magáro puro, pos com a = 0 e b = 4, temos que: a + b = = 4. Já o úmero é complexo, mas ão é real em magáro puro.

2 Igualdade em C Curso de lguagem matemátca Dados dos úmeros complexos em suas formas algébrcas = a + b e w = c + d temos que estes dos úmeros são guas se, e somete se, tverem a mesma parte real e a mesma parte magára. a = c = w a + b = c + d b = d Adção em C + w = ( a + b) + ( c + d ) = a + c + b + d = ( a + c) + ( b + d) Multplcação em C w = a + b c + d = ac + ad + cb + cd = ac bd + cb + ad Números Iteros de Gauss ( ) ( ) ( ) ( ) No íco do século XIX o astrôomo e matemátco Carl Fredrch Gauss publcou algus artgos que tratam dos úmeros complexos da forma a + b com a e b teros. Cohecdos hoje como teros de Gauss, estes úmeros podem ser represetados geometrcamete por uma malha quadrculada de potos coplaares como mostram as fguras a segur: Uma ve escolhdo um poto desta malha para represetar o úmero ero, temos que os quatro potos mas próxmos do poto ero represetam os úmeros 1 (à dreta), 1 (à esquerda), (acma) e (abaxo). Potêcas teras da udade magára As potêcas teras da udade magára formam um cclo com período de quatro termos, sedo eles os úmeros 1,, 1 e. Como o cojuto dos complexos herda do cojuto dos reas a propredade que d ser utára toda potêca de expoete ulo, temos que 0 = 1 e, portato: , 0 = 1, 1 =, = 1, =, 4 = 1, =, = 1, =, = 1, =, = 1, r + Assm, para tero, temos: =, em que r {0, 1,, } é o resto da dvsão de pelo úmero O plao de Wessel-Argad-Gauss No século XVI, matemátcos como afael Bombell, efretaram a ecessdade da terpretação de raíes quadradas de úmeros egatvos. Dos séculos depos, estes estudos foram amplados por Wessel, Argad e Gauss que hoje são cosderados os cradores da teora dos úmeros complexos. Parte da evolução desta teora deve-se à represetação cartesaa dos úmeros complexos proposta, em 1797, pelo topógrafo orueguês Gaspar Wessel, e posterormete por obert Argad em 1806, mas fo um trabalho publcado por Gauss, em 181, que realmete dfudu a déa do plao complexo. Trata-se de uma adaptação do plao cartesao tradcoal, a qual o exo das abscssas cotua represetado o cojuto dos úmeros reas equato o exo das ordeadas, com exceção da orgem, passa a represetar o cojuto dos magáros puros. Assm, um úmero complexo = a + b passa a ser represetado, o plao complexo, por seu afxo: o par ordeado ( a;b) Cclo das potêcas teras da udade magára

3 A prmera, das fguras a segur, apreseta um úmero complexo o segudo quadrate, ou seja, com parte real egatva (a<0) e parte magára postva (b>0); a seguda fgura apreseta o vetor Z assocado, e a tercera fgura destaca o módulo e o argumeto desse vetor. O módulo de um úmero complexo ão ulo = a + b é o úmero real postvo que represeta o tamaho do vetor Z, e pode ser obtdo como a medda da dagoal do retâgulo de lados a e b a seguda fgura, aplcado-se o teorema de Ptágoras: a b = a + b = a + b. Uma ve que a = e() e b = Im() são úmeros reas, temos que seus quadrados são postvos, sedo etão desecessáro dcá-los em módulo detro do radcal. Desta forma temos que: = e() + Im() O argumeto de um úmero complexo é a medda, em graus ou radaos, de um arco trgoométrco determado pelo vetor assocado ao úmero complexo e o sem-exo dos úmeros reas postvos. Como o modelo trgoométrco admte a exstêca de dversos arcos côgruos chamamos de argumeto prcpal ao arco de meor valor postvo. Assm, temos que os arcos de 40º, 10º e 480º podem, por exemplo, ser argumetos de um mesmo úmero complexo e, este caso, seu argumeto prcpal será gual a 10º. As relações etre o módulo de um úmero complexo, suas partes real e magára, e seu argumeto prcpal θ são expressas por: Im() seθ = Im( ) = seθ e() ( ) θ = Arg cosθ = e( ) = cosθ Im() tgθ = e() O par ordeado (, θ), formado pelo módulo de um complexo e um de seus argumetos, apreseta o que chamamos de coordeadas polares do complexo. As coordeadas polares de um úmero complexo são usadas para represetá-lo em sua forma trgoométrca: ( ) = cosθ+ seθ Fórmulas de Movre Cosdere dos úmeros complexos Z e W cujas partes reas são respectvamete a e c, as partes magaras são respectvamete b e d e cujos argumetos são respectvamete α e β. Assm podemos represetar esses úmeros de dversas formas: Z = a + b = ( a ; b ) = Z ( cos α + se α) = Z cs( α) = ( Z ; α ) W = c + d = ( c ; d ) = W ( cosβ + se β) = W cs( β) = ( W ; β ) Forma algébrca Coordeadas cartesaas (Afxo) Z a Forma trgoométrca Forma trgoométrca abrevada Coordeadas polares Para efetuar a adção e a subtração etre estes dos úmeros complexos recomeda-se o uso da forma algébrca. Multplcações e dvsões podem ser efetuadas com efcêca tato a forma algébrca quato as formas trgoométrcas ou a forma polar. Já a potecação e a radcação são efetuadas com mas efcêca pelas formas trgoométrcas ou pela forma polar. b θ = Arg()

4 Para obter o produto etre dos úmeros complexos Z e W, a formas trgoométrcas ou a forma polar, basta multplcarmos os módulos e somarmos seus argumetos: ( ) ( ) Z W = Z W cos α + β + se α + β ( Z ; α) ( W ; β ) = ( Z W ; α + β ) Para obter o quocete etre os úmeros complexos Z e W 0, a formas trgoométrcas ou a forma polar, basta dvdrmos seus módulos e subtrarmos seus argumetos: Z W = Z cos( ) se ( ) W α β + α β ( ) ( W ; ) Z ; α Z = ; α β β W Para obter a -ésma potêca de um úmero complexos Z, a formas trgoométrcas ou a forma polar, basta elevarmos seu módulo à -ésma potêca e multplcarmos por o seu argumeto: ( ) ( ) Z = Z cos α + se α ( ) Z ; α = ( Z ; α ) Agora, para resolver equações evolvedo úmeros complexos expressos as formas trgoométrcas ou a forma polar, devemos atetar ao fato de que um mesmo úmero complexo pode ser apresetado por dversos argumetos dferetes. Por exemplo, se Z é um úmero magáro puro como, etão seu módulo é gual a mas seu argumeto pode ser expresso tato por 90º como por 70º ou 60º. Assm, a forma polar, temos que: (, 90º) = (, 70º) = (, 60º) Quado escrtos uma da formas trgoométrcas ou a forma polar, os úmeros complexos obedecem às segutes propredades: Z é real α = k π, com k Z π Z é magáro puro α = + k π, com k Z Exercícos: 1. esolver em C a equação x x + 5 = 0.. Sedo = 4 e w = + determe: a) + w b) w c) w d) e) w w f) w Z = W Z = W α = β + k π, com k Z Fuvest. Sabedo que α é um úmero real e que a parte magára do úmero complexo etão α é: + α + é ero, A) 4 B) C) 1 D) E) 4 4. Sedo Z o úmero complexo que satsfa à equação Z + 4Z = em que é a udade magára e Z dca o cojugado do úmero Z, etão o produto gual a: A) B) 4 C) 8 D) 16 E) Z Z é

5 5. Sedo a udade magára, calcule o valor da expressão E = Cosdere a fução p(x) = x 81 e faça o que se pede em cada um dos tes a segur: a) Decompoha p(x) em fatores de prmero grau. b) esolva à equação p(x) = 0 o uverso dos úmeros complexos. c) epresete, o plao complexo, cada uma das soluções ecotradas, escreva suas coordeadas polares e suas respectvas formas trgoométrcas. 8. No plao complexo, os vértces A e B de um quadrado ABCD são respectvamete represetados pelos afxos dos úmeros complexos = 0 e w = 4 +. Sabedo que o vértce D pertece ao segudo quadrate pode-se coclur que o vértce C é represetado pelo afxo do úmero A) 7 + B) C) + 6 D) 6 + E) + 9 Ufesp. Os úmeros complexos 1, = e = a + a, ode a é um úmero real postvo, represetam o plao complexo vértces de um trâgulo eqülátero. Dado que 1 =, o valor de a é A) B) 1 C) D) E) 1 d) Calcule a área do polígoo cujos vértces são os afxos das soluções da equação p(x) = 0. 7 Ufesp. Quatro úmeros complexos represetam, o plao complexo, vértces de um paralelogramo. Três dos úmeros são 1 =, 5 = 1 e = 1+. O quarto úmero tem as partes real e magára postvas. Esse úmero é: A) + 11 B) + C) D) + E) FGV. Um poto do plao cartesao pode ser descrto pelas suas coordeadas retagulares ( x, y ) ou pelas suas coordeadas polares ( r, θ ), sedo r a dstâca etre o poto e a orgem do sstema e θ a medda, em radaos, do arco que o exo x descreve o setdo at-horáro, até ecotrar OP. Em geral, 0 θ < π. As relações utladas para que se passe de um sstema de coordeadas a outro são as segutes: y x y r = x + y ; seθ = ; cosθ = ; tgθ = r r x As coordeadas polares do poto P(1,1) são: A) (, π ) π B), π C), 4 π D), 4 π E),

6 11. Sedo Z = 1 + e W = +, calcule: a) Z + W = b) Z W = 1. Escreva os úmeros Z e W do exercíco ateror a forma trgoométrca. 16 Fuvest. A fgura represeta o úmero 1+ w = o plao complexo, sedo = 1 a udade magára. w 1. Utlado as formas trgoométrcas dos úmeros complexos Z e W obtdas o exercíco ateror, determe os valores de: a) Z W = Nestas codções, determe: a) as partes real e magára dos úmeros 1 w e w. 1 b) Z W = c) Z + W = 5 b) a represetação dos úmeros 1 w e w a fgura. 14 Uesp. Cosdere o úmero complexo π π = cos + se. O valor de 6 6 A) B) 1 + C) D) E) é: c) as raíes complexas da equação 1 = Uesp. As soluções da equação é um úmero complexo e = 1, são: 1 =, ode 15. Determe o meor tero postvo para o qual 1 + seja real. A) B) C) D) E) 1 = ± + ou =. 1 = ± ou =. 1 = ± + ou =. 1 = ± ou =. 1 = ± ou =.

Números Complexos. 2. (IME) Seja z um número complexo de módulo unitário que satisfaz a condição z 2n 1, onde n é um número inteiro positivo.

Números Complexos. 2. (IME) Seja z um número complexo de módulo unitário que satisfaz a condição z 2n 1, onde n é um número inteiro positivo. Números Complexos. (IME) Cosdere os úmeros complexos Z se α cos α e Z cos α se α ode α é um úmero real. Mostre que se Z Z Z etão R e (Z) e I m (Z) ode R e (Z) e I m (Z) dcam respectvamete as partes real

Leia mais

Módulo: Binômio de Newton e o Triângulo de Pascal. Binômio de Newton e o Triângulo de Pascal. 2 ano do E.M.

Módulo: Binômio de Newton e o Triângulo de Pascal. Binômio de Newton e o Triângulo de Pascal. 2 ano do E.M. Módulo: Bômo de Newto e o Trâgulo de Pascal Bômo de Newto e o Trâgulo de Pascal ao do EM Módulo: Bômo de Newto e o Trâgulo de Pascal Bômo de Newto e o Trâgulo de Pascal Exercícos Itrodutóros Exercíco Para

Leia mais

RESUMO E EXERCÍCIOS NÚMEROS COMPLEXOS ( )

RESUMO E EXERCÍCIOS NÚMEROS COMPLEXOS ( ) NÚMEROS COMPLEXOS Forma algébrca e geométrca Um úmero complexo é um úmero da forma a + b, com a e b reas e = 1 (ou, = -1), chamaremos: a parte real; b parte magára; e udade magára. Fxado um sstema de coordeadas

Leia mais

Números Complexos Sumário

Números Complexos Sumário Números Complexos Sumáro. FORMA ALGÉBRICA DOS NÚMEROS COMPLEXOS.. Adção de úmeros complexos... Propredades da operação de adção.. Multplcação de úmeros complexos... Propredades da operação de multplcação..

Leia mais

Licenciatura em Ciências USP/ Univesp funções polinomiais 4

Licenciatura em Ciências USP/ Univesp funções polinomiais 4 Lcecatura em Cêcas USP/Uvesp FUNÇÕES POLINOMIAIS 4 51 TÓPICO Gl da Costa Marques 4.1 Potecação 4. Fuções Polomas de grau 4.3 Fução Polomal do Segudo Grau ou Fução Quadrátca 4.4 Aálse da Forma Geral dos

Leia mais

QUESTÕES DISCURSIVAS Módulo 01 (com resoluções)

QUESTÕES DISCURSIVAS Módulo 01 (com resoluções) QUESTÕES DISCURSIVAS Módulo 0 (com resoluções D (Fuvest-SP/00 Nos tens abaxo, denota um número complexo e a undade magnára ( Suponha a Para que valores de tem-se? b Determne o conjunto de todos os valores

Leia mais

É o quociente da divisão da soma dos valores das variáveis pelos números deles:

É o quociente da divisão da soma dos valores das variáveis pelos números deles: Meddas de Posção. Itrodução Proª Ms. Mara Cytha O estudo das dstrbuções de requêcas, os permte localzar a maor cocetração de valores de uma dstrbução. Porém, para ressaltar as tedêcas característcas de

Leia mais

QUESTÕES DISCURSIVAS Módulo

QUESTÕES DISCURSIVAS Módulo QUESTÕES DISCURSIVAS Módulo 0 009 D (FUVEST-SP 008 A fgura ao lado represeta o úero + o plao coplexo, sedo a udade agára Nessas codções, a detere as partes real e agára de e b represete e a fgura a segur

Leia mais

Como CD = DC CD + DC = 0

Como CD = DC CD + DC = 0 (9-0 www.eltecampas.com.br O ELITE RESOLVE IME 008 MATEMÁTICA - DISCURSIVAS MATEMÁTICA QUESTÃO Determe o cojuto-solução da equação se +cos = -se.cos se + cos = se cos ( se cos ( se se.cos cos + + = = (

Leia mais

4 Capitalização e Amortização Compostas

4 Capitalização e Amortização Compostas 4.1 Itrodução Quado queremos fazer um vestmeto, podemos depostar todos os meses uma certa quata em uma cadereta de poupaça; quado queremos comprar um bem qualquer, podemos fazê-lo em prestações, a serem

Leia mais

2-Geometria da Programação Linear

2-Geometria da Programação Linear I 88 Otmzação Lear -Geometra da Programação Lear ProfFeradoGomde DC-FEEC-Ucamp Coteúdo. Poledros e cojutos coveos. Potos etremos vértces soluções báscas factíves 3. Poledros a forma padrão 4. Degeeração

Leia mais

1) Escrever um programa que faça o calculo de transformação de horas em minuto onde às horas devem ser apenas número inteiros.

1) Escrever um programa que faça o calculo de transformação de horas em minuto onde às horas devem ser apenas número inteiros. Dscpla POO-I 2º Aos(If) - (Lsta de Eercícos I - Bmestre) 23/02/2015 1) Escrever um programa que faça o calculo de trasformação de horas em muto ode às horas devem ser apeas úmero teros. Deverá haver uma

Leia mais

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL Faculdade de Tecologa de Cataduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL 5. Meddas de Posção cetral ou Meddas de Tedêca Cetral Meddas de posção cetral preocupam-se com a caracterzação e a

Leia mais

CURSO SOBRE MEDIDAS DESCRITIVA Adriano Mendonça Souza Departamento de Estatística - UFSM -

CURSO SOBRE MEDIDAS DESCRITIVA Adriano Mendonça Souza Departamento de Estatística - UFSM - CURSO SOBRE MEDIDAS DESCRITIVA Adrao Medoça Souza Departameto de Estatístca - UFSM - O telecto faz pouco a estrada que leva à descoberta. Acotece um salto a coscêca, chame-o você de tução ou do que quser;

Leia mais

Medidas de Localização

Medidas de Localização 07/08/013 Udade : Estatístca Descrtva Meddas de Localzação João Garbald Almeda Vaa Cojuto de dados utlzação de alguma medda de represetação resumo dos dados. E: Um cojuto com 400 observações como aalsar

Leia mais

UNICAMP - 2004. 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

UNICAMP - 2004. 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR UNICAMP - 004 ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Em uma sala há uma lâmpada, uma televisão [TV] e um aparelho de ar codicioado [AC]. O cosumo da lâmpada equivale

Leia mais

MA12 - Unidade 4 Somatórios e Binômio de Newton Semana de 11/04 a 17/04

MA12 - Unidade 4 Somatórios e Binômio de Newton Semana de 11/04 a 17/04 MA1 - Udade 4 Somatóros e Bômo de Newto Semaa de 11/04 a 17/04 Nesta udade troduzremos a otação de somatóro, mostrado como a sua mapulação pode sstematzar e facltar o cálculo de somas Dada a mportâca de

Leia mais

FORMA TRIGONOMÉTRICA. Para ilustrar, calcularemos o argumento de z 1 i 3 e w 2 2i AULA 34 - NÚMEROS COMPLEXOS

FORMA TRIGONOMÉTRICA. Para ilustrar, calcularemos o argumento de z 1 i 3 e w 2 2i AULA 34 - NÚMEROS COMPLEXOS 145 AULA 34 - NÚMEROS COMPLEXOS FORMA TRIGONOMÉTRICA Argumeto de um Número Complexo Seja = a + bi um úmero complexo, sedo P seu afixo o plao complexo. Medido-se o âgulo formado pelo segmeto OP (módulo

Leia mais

( x) Método Implícito. No método implícito as diferenças são tomadas no tempo n+1 ao invés de tomá-las no tempo n, como no método explícito.

( x) Método Implícito. No método implícito as diferenças são tomadas no tempo n+1 ao invés de tomá-las no tempo n, como no método explícito. PMR 40 Mecâca Computacoal Método Implícto No método mplícto as dfereças são tomadas o tempo ao vés de tomá-las o tempo, como o método explícto. O método mplícto ão apreseta restrção em relação ao valor

Leia mais

(1) Raízes n-ésimas. r cos. nϕ = θ + 2kπ; k = 0, 1, 2, 3, 4,... ρ n cos nϕ = r cos θ ρ n = r ρ= (r) 1/n. Portanto:

(1) Raízes n-ésimas. r cos. nϕ = θ + 2kπ; k = 0, 1, 2, 3, 4,... ρ n cos nϕ = r cos θ ρ n = r ρ= (r) 1/n. Portanto: Raís -ésmas A ra -ésma d um úmro complxo s é o complxo s Vamos vr qu os complxos possum raís dfrts!!! Em coordadas polars: s r cos θ s θ ρ cos ϕ s ϕ Aplcado Movr trmos: r cos θ s θ ρ cos ϕ s ϕ Portato:

Leia mais

As operações de adição, subtração e multiplicação são feitas de maneira natural, considerando-se o número complexo como um binômio.

As operações de adição, subtração e multiplicação são feitas de maneira natural, considerando-se o número complexo como um binômio. NÚMEROS COMPLEXOS Prof Eduardo Nagel. DEFINIÇÃO No conjunto dos números reais R, temos que a = a. a é sempre um número não negativo para todo a. Ou seja, não é possível extrair a rai quadrada de um número

Leia mais

CAPÍTULO 9 - Regressão linear e correlação

CAPÍTULO 9 - Regressão linear e correlação INF 6 Prof. Luz Alexadre Peterell CAPÍTULO 9 - Regressão lear e correlação Veremos esse capítulo os segutes assutos essa ordem: Correlação amostral Regressão Lear Smples Regressão Lear Múltpla Correlação

Leia mais

Curso Mentor. Radicais ( ) www.cursomentor.wordpress.com. Definição. Expoente Fracionário. Extração da Raiz Quadrada. Por definição temos que:

Curso Mentor. Radicais ( ) www.cursomentor.wordpress.com. Definição. Expoente Fracionário. Extração da Raiz Quadrada. Por definição temos que: Curso Metor www.cursometor.wordpress.com Defiição Por defiição temos que: Radicais a b b a, N, Observação : Se é par devemos ter que a é positivo. Observação : Por defiição temos:. 0 0 Observação : Chamamos

Leia mais

Regressão Linear - Introdução

Regressão Linear - Introdução Regressão Lear - Itrodução Na aálse de regressão lear pretede-se estudar e modelar a relação (lear) etre duas ou mas varáves. Na regressão lear smples relacoam-se duas varáves, x e Y, através do modelo

Leia mais

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi REGESD Prolc Matemátca e Realdade- Profª Suz Samá Pto e Profº Alessadro da Slva Saad Meddas de Posção ou Tedêca Cetral As meddas de posção ou meddas de tedêca cetral dcam um valor que melhor represeta

Leia mais

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø.

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø. Professor Maurco Lutz 1 EGESSÃO LINEA SIMPLES A correlação lear é uma correlação etre duas varáves, cujo gráfco aproma-se de uma lha. O gráfco cartesao que represeta essa lha é deomado dagrama de dspersão.

Leia mais

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados 3.1. Meddas de Tedêca Cetral CAPÍTULO 3 MEDIDA DE TENDÊNCIA CENTRAL E VARIABILIDADE UFRG 1 Há váras meddas de tedêca cetral. Etre elas ctamos a méda artmétca, a medaa, a méda harmôca, etc. Cada uma dessas

Leia mais

Forma padrão do modelo de Programação Linear

Forma padrão do modelo de Programação Linear POGAMAÇÃO LINEA. Forma Padrão do Modelo de Programação Lear 2. elações de Equvalêca 3. Suposções da Programação Lear 4. Eemplos de Modelos de PPL 5. Suposções da Programação Lear 6. Solução Gráfca e Iterpretação

Leia mais

Fundamentos de Matemática I FUNÇÕES POLINOMIAIS4. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

Fundamentos de Matemática I FUNÇÕES POLINOMIAIS4. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques FUNÇÕES POLINOMIAIS4 Gl da Costa Marques Fudametos de Matemátca I 4.1 Potecação de epoete atural 4. Fuções polomas de grau 4. Fução polomal do segudo grau ou fução quadrátca 4.4 Aálse do gráfco de uma

Leia mais

Estatística Descritiva

Estatística Descritiva Estatístca Descrtva Cocetos Báscos População ou Uverso Estatístco: coj. de elemetos sobre o qual cde o estudo estatístco; Característca Estatístca ou Atrbuto: a característca que se observa os elemetos

Leia mais

Estatística - exestatmeddisper.doc 25/02/09

Estatística - exestatmeddisper.doc 25/02/09 Estatístca - exestatmeddsper.doc 5/0/09 Meddas de Dspersão Itrodução ão meddas estatístcas utlzadas para avalar o grau de varabldade, ou dspersão, dos valores em toro da méda. ervem para medr a represetatvdade

Leia mais

Sumário. Mecânica. Sistemas de partículas

Sumário. Mecânica. Sistemas de partículas umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - stemas de partículas e corpo rígdo. - Cetro de massa. - Como determar o cetro de massa dum sstema de partículas. - Vetor

Leia mais

MEDIDAS DE DISPERSÃO:

MEDIDAS DE DISPERSÃO: MEDID DE DIPERÃO: fução dessas meddas é avalar o quato estão dspersos os valores observados uma dstrbução de freqüêca ou de probabldades, ou seja, o grau de afastameto ou de cocetração etre os valores.

Leia mais

IND 1115 Inferência Estatística Aula 9

IND 1115 Inferência Estatística Aula 9 Coteúdo IND 5 Iferêca Estatístca Aula 9 Outubro 2004 Môca Barros Dfereça etre Probabldade e Estatístca Amostra Aleatóra Objetvos da Estatístca Dstrbução Amostral Estmação Potual Estmação Bayesaa Clássca

Leia mais

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12 MEDIDAS DE POSIÇÃO: São meddas que possbltam represetar resumdamete um cojuto de dados relatvos à observação de um determado feômeo, pos oretam quato à posção da dstrbução o exo dos, permtdo a comparação

Leia mais

MAE116 Noções de Estatística

MAE116 Noções de Estatística Grupo C - º semestre de 004 Exercíco 0 (3,5 potos) Uma pesqusa com usuáros de trasporte coletvo a cdade de São Paulo dagou sobre os dferetes tpos usados as suas locomoções dáras. Detre ôbus, metrô e trem,

Leia mais

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Val, Dr. http://www.pucrs.br/famat/val/ val@pucrs.br Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Obetvos A Aálse de

Leia mais

Capítulo 2 O conceito de Função de Regressão Populacional (FRP) e Função de Regressão Amostral (FRA)

Capítulo 2 O conceito de Função de Regressão Populacional (FRP) e Função de Regressão Amostral (FRA) I Metodologa da Ecoometra O MODELO CLÁSSICO DE REGRESSÃO LINEAR. Formulação da teora ou da hpótese.. Especfcação do modelo matemátco da teora. 3. Especfcação do modelo ecoométrco da teora. 4. Obteção de

Leia mais

FINANCIAMENTOS UTILIZANDO O EXCEL

FINANCIAMENTOS UTILIZANDO O EXCEL rofessores Ealdo Vergasta, Glóra Márca e Jodála Arlego ENCONTRO RM 0 FINANCIAMENTOS UTILIZANDO O EXCEL INTRODUÇÃO Numa operação de empréstmo, é comum o pagameto ser efetuado em parcelas peródcas, as quas

Leia mais

Matemática Ficha de Trabalho

Matemática Ficha de Trabalho Matemátca Fcha de Trabalho Meddas de tedêca cetral - 0º ao MEDIDAS DE LOCALIZAÇÃO Num estudo estatístco, depos de recolhdos e orgazados os dados, há a ase de trar coclusões através de meddas que possam,

Leia mais

Matemática C Semiextensivo V. 2

Matemática C Semiextensivo V. 2 Matemátca C Semetesvo V. Eercícos 0) Através da observação dreta do gráfco, podemos coclur que: a) País. b) País. c) 00 habtates. d) 00 habtates. e) 00 0 0 habtates. 0) C Através do gráfco, podemos costrur

Leia mais

16/03/2014. IV. Juros: taxa efetiva, equivalente e proporcional. IV.1 Taxa efetiva. IV.2 Taxas proporcionais. Definição:

16/03/2014. IV. Juros: taxa efetiva, equivalente e proporcional. IV.1 Taxa efetiva. IV.2 Taxas proporcionais. Definição: 6// IV. Juros: taxa efetva, equvalete e proporcoal Matemátca Facera Aplcada ao Mercado Facero e de Captas Professor Roaldo Távora IV. Taxa efetva Defção: É a taxa de juros em que a udade referecal de seu

Leia mais

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1.

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1. Iterpolação Iterpolação é um método que permte costrur um ovo cojuto de dados a partr de um cojuto dscreto de dados potuas cohecdos. Em egehara e cêcas, dspõese habtualmete de dados potuas, obtdos a partr

Leia mais

n. A densidade de corrente associada a esta espécie iônica é J n. O modelo está ilustrado na figura abaixo.

n. A densidade de corrente associada a esta espécie iônica é J n. O modelo está ilustrado na figura abaixo. Equlíbro e o Potecal de Nerst 5910187 Bofísca II FFCLRP USP Prof. Atôo Roque Aula 11 Nesta aula, vamos utlzar a equação para o modelo de eletrodfusão o equlíbro obtda a aula passada para estudar o trasporte

Leia mais

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento. Prof. Lorí Val, Dr. val@pucrs.r http://www.pucrs.r/famat/val/ Em mutas stuações duas ou mas varáves estão relacoadas e surge etão a ecessdade de determar a atureza deste relacoameto. A aálse de regressão

Leia mais

Cursos de Licenciatura em Ensino de Matemática e de EGI. Teoria de Probabilidade

Cursos de Licenciatura em Ensino de Matemática e de EGI. Teoria de Probabilidade Celso Albo FACULDADE DE CIÊNCIAS NATURAIS E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Campus de Lhaguee, Av. de Moçambque, km, Tel: +258 240078, Fax: +258 240082, Maputo Cursos de Lcecatura em Eso de Matemátca

Leia mais

INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA

INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA 003 Iformações: relembra-se os aluos teressados que a realzação de acções presecas só é possível medate solctação vossa, por escrto, à assstete da cadera. A realzação

Leia mais

Capítulo 5 CINEMÁTICA DIRETA DE ROBÔS MANIPULADORES

Capítulo 5 CINEMÁTICA DIRETA DE ROBÔS MANIPULADORES Cemátca da Posção de Robôs Mapuladores Capítulo 5 CINEMÁTICA DIRETA DE ROBÔS MANIPULADORES A cemátca de um robô mapulador é o estudo da posção e da velocdade do seu efetuador e dos seus lgametos. Quado

Leia mais

Prof. Eugênio Carlos Stieler

Prof. Eugênio Carlos Stieler http://www.uemat.br/eugeo Estudar sem racocar é trabalho 009/ TAXA INTERNA DE RETORNO A taa tera de retoro é a taa que equalza o valor presete de um ou mas pagametos (saídas de caa) com o valor presete

Leia mais

Prof. Eugênio Carlos Stieler

Prof. Eugênio Carlos Stieler UNEMAT Uversdade do Estado de Mato Grosso Matemátca Facera http://www2.uemat.br/eugeo SÉRIE DE PAGAMENTOS 1. NOÇÕES SOBRE FLUXO DE CAIXA Prof. Eugêo Carlos Steler Estudar sem racocar é trabalho perddo

Leia mais

SUBSTITUIÇÕES ENVOLVENDO NÚMEROS COMPLEXOS Diego Veloso Uchôa

SUBSTITUIÇÕES ENVOLVENDO NÚMEROS COMPLEXOS Diego Veloso Uchôa Nível Avaçado SUBSTITUIÇÕES ENVOLVENDO NÚMEROS COMPLEXOS Dego Veloso Uchôa É bastate útl e probleas de olpíada ode teos gualdades ou quereos ecotrar u valor de u soatóro fazeros substtuções por úeros coplexos

Leia mais

Exercícios - Sequências de Números Reais (Solução) Prof Carlos Alberto S Soares

Exercícios - Sequências de Números Reais (Solução) Prof Carlos Alberto S Soares Exercícos - Sequêcas de Números Reas (Solução Prof Carlos Alberto S Soares 1 Dscuta a covergêca da sequẽca se(2. Calcule, se exstr, lm se(2. Solução 1 Observe que se( 2 é lmtada e 1/ 0, portato lm se(2

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES INTERPOLAÇÃO

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES INTERPOLAÇÃO Uversdade Federal do Ro Grade FURG Isttuto de Matemátca, Estatístca e Físca IMEF Edtal CAPES INTERPOLAÇÃO Pro. Atôo Mauríco Mederos Alves Proª Dese Mara Varella Martez Matemátca Básca ara Cêcas Socas II

Leia mais

CAPÍTULO III. Aproximação de funções pelo método dos Mínimos Quadrados

CAPÍTULO III. Aproximação de funções pelo método dos Mínimos Quadrados Métodos Nuércos CAPÍULO III C. Balsa & A. Satos Aproxação de fuções pelo étodo dos Míos Quadrados. Algus cocetos fudaetas de Álgebra Lear Relebraos esta secção algus cocetos portates da álgebra Lear que

Leia mais

MÓDULO 8 REVISÃO REVISÃO MÓDULO 1

MÓDULO 8 REVISÃO REVISÃO MÓDULO 1 MÓDULO 8 REVISÃO REVISÃO MÓDULO A Estatístca é uma técca que egloba os métodos cetícos para a coleta, orgazação, apresetação, tratameto e aálse de dados. O objetvo da Estatístca é azer com que dados dspersos

Leia mais

MATEMÁTICA LISTA DE EXERCÍCIOS NÚMEROS COMPLEXOS

MATEMÁTICA LISTA DE EXERCÍCIOS NÚMEROS COMPLEXOS MATEMÁTICA LISTA DE EXERCÍCIOS NÚMEROS COMPLEXOS PROF: Claudo Saldan CONTATO: saldan.mat@gmal.com PARTE 0 -(MACK SP/00/Janero) Se y = x, sendo x= e =, o valor de (xy) é a) 9 9 9 9 e) 9 0 -(FGV/00/Janero)

Leia mais

Capítulo 1: Erros em cálculo numérico

Capítulo 1: Erros em cálculo numérico Capítulo : Erros em cálculo umérco. Itrodução Um método umérco é um método ão aalítco, que tem como objectvo determar um ou mas valores umércos, que são soluções de um certo problema. Ao cotráro das metodologas

Leia mais

Capítulo 6 - Centro de Gravidade de Superfícies Planas

Capítulo 6 - Centro de Gravidade de Superfícies Planas Capítulo 6 - Cetro de ravdade de Superfíces Plaas 6. Itrodução O Cetro de ravdade (C) de um sóldo é um poto localzado o própro sóldo, ou fora dele, pelo qual passa a resultate das forças de gravdade que

Leia mais

Desigualdades (por Iuri de Silvio ITA-T11)

Desigualdades (por Iuri de Silvio ITA-T11) Desigualdades (por Iuri de Silvio ITA-T) Apresetação O objetivo desse artigo é apresetar as desigualdades mais importates para quem vai prestar IME/ITA, e mostrar como elas podem ser utilizadas a resolução

Leia mais

Requisitos metrológicos de instrumentos de pesagem de funcionamento não automático

Requisitos metrológicos de instrumentos de pesagem de funcionamento não automático Requstos metrológcos de strumetos de pesagem de fucoameto ão automátco 1. Geeraldades As balaças estão assocadas de uma forma drecta à produção do betão e ao cotrolo da qualdade do mesmo. Se são as balaças

Leia mais

Centro de massa, momento linear de sistemas de partículas e colisões

Centro de massa, momento linear de sistemas de partículas e colisões Cetro de massa, mometo lear de sstemas de partículas e colsões Prof. Luís C. Pera stemas de partículas No estudo que temos vdo a fazer tratámos os objectos, como, por exemplo, blocos de madera, automóves,

Leia mais

Exercícios de Aprofundamento Mat Polinômios e Matrizes

Exercícios de Aprofundamento Mat Polinômios e Matrizes . (Unicamp 05) Considere a matriz A A e A é invertível, então a) a e b. b) a e b 0. c) a 0 e b 0. d) a 0 e b. a 0 A, b onde a e b são números reais. Se. (Espcex (Aman) 05) O polinômio q(x) x x deixa resto

Leia mais

Estatística Notas de Aulas ESTATÍSTICA. Notas de Aulas. Professor Inácio Andruski Guimarães, DSc. Professor Inácio Andruski Guimarães, DSc.

Estatística Notas de Aulas ESTATÍSTICA. Notas de Aulas. Professor Inácio Andruski Guimarães, DSc. Professor Inácio Andruski Guimarães, DSc. Estatístca Notas de Aulas ESTATÍSTICA Notas de Aulas Professor Iáco Adrus Gumarães, DSc. Professor Iáco Adrus Gumarães, DSc. Estatístca Notas de Aulas SUMÁRIO CONCEITOS BÁSICOS 5. Estatístca. Estatístca

Leia mais

Análise de Regressão

Análise de Regressão Aálse de Regressão Prof. Paulo Rcardo B. Gumarães. Itrodução Os modelos de regressão são largamete utlzados em dversas áreas do cohecmeto, tas como: computação, admstração, egeharas, bologa, agrooma, saúde,

Leia mais

Determine a média de velocidade, em km/h, dos veículos que trafegaram no local nesse período.

Determine a média de velocidade, em km/h, dos veículos que trafegaram no local nesse período. ESTATÍSTICA - 01 1. (UERJ 01) Téccos do órgão de trâsto recomedaram velocdade máxma de 80 km h o trecho de uma rodova ode ocorrem mutos acdetes. Para saber se os motorstas estavam cumprdo as recomedações,

Leia mais

a prova de Matemática do ITA 2001

a prova de Matemática do ITA 2001 a prova de Matemática do ITA 00 O ANGLO RESOLVE A PROVA DE MATEMÁTICA DO ITA É trabalho pioeiro. Prestação de serviços com tradição de cofiabilidade. Costrutivo, procura colaborar com as Bacas Examiadoras

Leia mais

MODELO DE ISING BIDIMENSIONAL SEGUNDO A TÉCNICA DE MATRIZ DE TRANSFERÊNCIA

MODELO DE ISING BIDIMENSIONAL SEGUNDO A TÉCNICA DE MATRIZ DE TRANSFERÊNCIA UIVERSIDADE ESTADUAL DO CEARÁ RAFAEL DE LIMA BARBOSA MODELO DE ISIG BIDIMESIOAL SEGUDO A TÉCICA DE MATRIZ DE TRASFERÊCIA FORTALEZA CEARÁ 4 RAFAEL DE LIMA BARBOSA MODELO DE ISIG BIDIMESIOAL SEGUDO A TÉCICA

Leia mais

Capítulo 7. 1. Bissetrizes de duas retas concorrentes. Proposição 1

Capítulo 7. 1. Bissetrizes de duas retas concorrentes. Proposição 1 Capítulo 7 Na aula anterior definimos o produto interno entre dois vetores e vimos como determinar a equação de uma reta no plano de diversas formas. Nesta aula, vamos determinar as bissetrizes de duas

Leia mais

Métodos iterativos. Capítulo O Método de Jacobi

Métodos iterativos. Capítulo O Método de Jacobi Capítulo 4 Métodos teratvos 41 O Método de Jacob O Método de Jacob é um procedmeto teratvo para a resolução de sstemas leares Tem a vatagem de ser mas smples de se mplemetar o computador do que o Método

Leia mais

2 Avaliação da segurança dinâmica de sistemas de energia elétrica: Teoria

2 Avaliação da segurança dinâmica de sistemas de energia elétrica: Teoria Avalação da seguraça dâmca de sstemas de eerga elétrca: Teora. Itrodução A avalação da seguraça dâmca é realzada através de estudos de establdade trastóra. Nesses estudos, aalsa-se o comportameto dos geradores

Leia mais

Intervalo de Confiança para uma Média Populacional

Intervalo de Confiança para uma Média Populacional Estatística II Atoio Roque Aula 5 Itervalo de Cofiaça para uma Média Populacioal Um dos objetivos mais importates da estatística é obter iformação sobre a média de uma dada população. A média de uma amostra

Leia mais

Capítulo 5 Cálculo Diferencial em IR n 5.1 Definição de função de várias variáveis: campos vetoriais e campos escalares.

Capítulo 5 Cálculo Diferencial em IR n 5.1 Definição de função de várias variáveis: campos vetoriais e campos escalares. 5. Defiição de fução de várias variáveis: campos vetoriais e. Uma fução f : D f IR IR m é uma fução de variáveis reais. Se m = f é desigada campo escalar, ode f(,, ) IR. Temos assim f : D f IR IR (,, )

Leia mais

13 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL

13 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL 3 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL Como vto em amotragem o prmero bmetre, etem fatore que fazem com que a obervação de toda uma população em uma pequa eja mpratcável, muta veze em vrtude

Leia mais

ANÁLISE DE REGRESSÃO E CORRELAÇÃO

ANÁLISE DE REGRESSÃO E CORRELAÇÃO ANÁLISE DE REGRESSÃO E CORRELAÇÃO Quado se cosderam oservações de ou mas varáves surge um poto ovo: O estudo das relações porvetura estetes etre as varáves. A aálse de regressão e correlação compreedem

Leia mais

MATEMÁTICA II. 01. Uma função f, de R em R, tal. , então podemos afirmar que a, b e c são números reais, tais. que. D) c =

MATEMÁTICA II. 01. Uma função f, de R em R, tal. , então podemos afirmar que a, b e c são números reais, tais. que. D) c = MATEMÁTCA 0. Uma fução f, de R em R, tal que f(x 5) f(x), f( x) f(x),f( ). Seja 9 a f( ), b f( ) e c f() f( 7), etão podemos afirmar que a, b e c são úmeros reais, tais que A) a b c B) b a c C) c a b ab

Leia mais

Monitoramento ou Inventário Florestal Contínuo

Monitoramento ou Inventário Florestal Contínuo C:\Documets ad Settgs\DISCO_F\MEUS-DOCS\LIVRO_EF_44\ef44_PDF\CAP XIV_IFCOTIUO.doc 6 Motorameto ou Ivetáro Florestal Cotíuo Agosto Lopes de Souza. ITRODUÇÃO Parcelas permaetes de vetáro florestal cotíuo

Leia mais

onde d, u, v são inteiros não nulos, com u v, mdc(u, v) = 1 e u e v de paridades distintas.

onde d, u, v são inteiros não nulos, com u v, mdc(u, v) = 1 e u e v de paridades distintas. !"$# &%$" ')( * +-,$. /-0 3$4 5 6$7 8:9)$;$< =8:< > Deomiaremos equação diofatia (em homeagem ao matemático grego Diofato de Aleadria) uma equação em úmeros iteiros. Nosso objetivo será estudar dois tipos

Leia mais

Apêndice. Uso de Tabelas Financeiras

Apêndice. Uso de Tabelas Financeiras Apêdce C Uso de Tabelas Faceras 1. INTRODUÇÃO...2 2. SIMBOLOGIA ADOTADA E DIAGRAMA PADRÃO...2 3. RELAÇÃO ENTRE PV E FV...2 3.1. DADO PV ACHAR FV: FATOR (FV/PV)...3 3.1.1. EXEMPLOS NUMÉRICOS...5 3.2. DADO

Leia mais

{ } Matemática Prof.: Joaquim Rodrigues 1 NÚMEROS COMPLEXOS. Questão 06 Para que valor de x o número complexo + 8i é imaginário puro?

{ } Matemática Prof.: Joaquim Rodrigues 1 NÚMEROS COMPLEXOS. Questão 06 Para que valor de x o número complexo + 8i é imaginário puro? Matemátca Prof.: Joaqum Rodrgues NÚMEROS COMPLEXOS INTRODUÇÃO Questão 0 Resolver as equações: a x = 0 + S = {, } + 6 S = {, } x + S = { +, } 6x + 0 S = { +, } b x = 0 c x = 0 d x = 0 e x x + = 0 f x 8x

Leia mais

M = C( 1 + i.n ) J = C.i.n. J = C((1+i) n -1) MATEMÁTICA FINANCEIRA. M = C(1 + i) n BANCO DO BRASIL. Prof Pacher

M = C( 1 + i.n ) J = C.i.n. J = C((1+i) n -1) MATEMÁTICA FINANCEIRA. M = C(1 + i) n BANCO DO BRASIL. Prof Pacher MATEMÁTICA 1 JUROS SIMPLES J = C.. M C J J = M - C M = C( 1 +. ) Teste exemplo. ados com valores para facltar a memorzação. Aplcado-se R$ 100,00 a juros smples, à taxa omal de 10% ao ao, o motate em reas

Leia mais

SUMÁRIO GOVERNO DO ESTADO DO CEARÁ. Cid Ferreira Gomes Governador. 1. Introdução... 2. Domingos Gomes de Aguiar Filho Vice Governador

SUMÁRIO GOVERNO DO ESTADO DO CEARÁ. Cid Ferreira Gomes Governador. 1. Introdução... 2. Domingos Gomes de Aguiar Filho Vice Governador INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ - IPECE GOVERNO DO ESTADO DO CEARÁ Cd Ferrera Gomes Goverador Domgos Gomes de Aguar Flho Vce Goverador SECRETARIA DO PLANEJAMENTO E GES- TÃO (SEPLAG)

Leia mais

Revisão de Estatística X = X n

Revisão de Estatística X = X n Revsão de Estatístca MÉDIA É medda de tedêca cetral mas comumete usada ara descrever resumdamete uma dstrbução de freqüêca. MÉDIA ARIMÉTICA SIMPLES São utlzados os valores do cojuto com esos guas. + +...

Leia mais

Capítulo 1 PORCENTAGEM

Capítulo 1 PORCENTAGEM Professor Joselas Satos da Slva Matemátca Facera Capítulo PORCETAGEM. PORCETAGEM A porcetagem ada mas é do que uma otação ( % ) usada para represetar uma parte de cem partes. Isto é, 20% lê-se 20 por ceto,

Leia mais

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( k) ( k ) ( ) ( ) Questões tipo exame

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( k) ( k ) ( ) ( ) Questões tipo exame Questões tpo eame Pá O poto U tem coordeadas (6, 6, 6) e o poto S pertece ao eo Oz, pelo que as suas coordeadas são (,, 6) Um vetor dretor da reta US é, por eemplo, US Determemos as suas coordeadas: US

Leia mais

APLICAÇÕES DE MÉTODOS DE ENERGIA A PROBLEMAS DE INSTABILIDADE DE ESTRUTURAS

APLICAÇÕES DE MÉTODOS DE ENERGIA A PROBLEMAS DE INSTABILIDADE DE ESTRUTURAS PONTIFÍCI UNIVERSIDDE CTÓLIC DO RIO DE JNEIRO DEPRTMENTO DE ENGENHRI CIVIL PLICÇÕES DE MÉTODOS DE ENERGI PROBLEMS DE INSTBILIDDE DE ESTRUTURS Julaa Bragh Ramalho Raul Rosas e Slva lua de graduação do curso

Leia mais

Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira INEP Ministério da Educação MEC. Índice Geral de Cursos (IGC)

Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira INEP Ministério da Educação MEC. Índice Geral de Cursos (IGC) Isttuto Nacoal de Estudos e Pesqusas Educacoas Aíso exera INEP stéro da Educação EC Ídce Geral de Cursos (IGC) O Ídce Geral de Cursos (IGC) é ua éda poderada dos cocetos dos cursos de graduação e pós-graduação

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 6 Prof. Luz Alexadre Peterell CAPÍTULO - Estatístca Descrtva Podemos dvdr a Estatístca em duas áreas: estatístca dutva (ferêca estatístca) e estatístca descrtva. Estatístca Idutva: (Iferêca Estatístca)

Leia mais

INTERPRETANDO ALGUNS CONCEITOS DE PROBABILIDADE ESTATÍSTICA VIA ÁLGEBRA LINEAR

INTERPRETANDO ALGUNS CONCEITOS DE PROBABILIDADE ESTATÍSTICA VIA ÁLGEBRA LINEAR INTERPRETANDO ALGUNS CONCEITOS DE PROBABILIDADE ESTATÍSTICA VIA ÁLGEBRA LINEAR Hetor Achlles Dutra da Rosa - hetorachlles@yahoo.com.br Cetro Federal de Educação Tecológca Celso Suckow da Foseca CEFET/RJ

Leia mais

A função só está definida se 0, ou seja, quando x. está no intervalo [ π ;5[. Assim, B C = [ π ;5[. Desse modo, temos

A função só está definida se 0, ou seja, quando x. está no intervalo [ π ;5[. Assim, B C = [ π ;5[. Desse modo, temos OS MELHORES GABARITOS DA INTERNET: wwwelitecampiascombr (9) - O ELITE RESOLVE ITA - MATEMÁTIA MATEMÁTIA VEJA AS NOTAÇÕES ADOTADAS AO FINAL DA PROVA QUESTÃO osidere as afirmações abaio relativas a cojutos

Leia mais

MEDIDAS E INCERTEZAS

MEDIDAS E INCERTEZAS 9//0 MEDIDAS E INCERTEZAS O Que é Medição? É um processo empírico que objetiva a desigação de úmeros a propriedades de objetos ou a evetos do mudo real de forma a descrevêlos quatitativamete. Outra forma

Leia mais

12.2.2 CVT: Coeficiente de Variação de Thorndike...45 12.2.3 CVQ: Coeficiente Quartílico de Variação...45 13 MEDIDAS DE ASSIMETRIA...46 13.

12.2.2 CVT: Coeficiente de Variação de Thorndike...45 12.2.3 CVQ: Coeficiente Quartílico de Variação...45 13 MEDIDAS DE ASSIMETRIA...46 13. SUMARIO 2 MÉTODO ESTATÍSTICO...3 2. A ESTATÍSTICA...3 2.2 FASES DO MÉTODO ESTATÍSTICO...4 3 FERRAMENTAS DE CÁLCULO PARA O ESTUDO DA ESTATÍSTICA...5 3. FRAÇÃO...5 3.. Adção e subtração...5 3..2 Multplcação

Leia mais

Econometria: 3 - Regressão Múltipla

Econometria: 3 - Regressão Múltipla Ecoometra: 3 - Regressão Múltpla Prof. Marcelo C. Mederos mcm@eco.puc-ro.br Prof. Marco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo de regressão

Leia mais

Capítulo 2. Aproximações de Funções

Capítulo 2. Aproximações de Funções EQE-358 MÉTODOS NUMÉRICOS EM ENGENHARIA QUÍMICA PROFS. EVARISTO E ARGIMIRO Capítulo Aproações de Fuções Há bascaete dos tpos de probleas de aproações: ) ecotrar ua fução as sples, coo u polôo, para aproar

Leia mais

Exercícios de Revisão: Análise Complexa 1- Números Complexos

Exercícios de Revisão: Análise Complexa 1- Números Complexos Exercícios de Revisão: Análise Complexa - Números Complexos Exercícios Propostos Globais I... Soluções dos Exercícios Propostos Globais I... Introdução... 4 Definições e propriedades elementares... 4.

Leia mais

GABARITO PROVA AMARELA

GABARITO PROVA AMARELA GABARITO PROVA AMARELA 1 MATEMÁTICA 01 A 11 A 0 E 1 C 03 Anulada 13 Anulada 04 A 14 B 05 B 15 C 06 D 16 A 07 D 17 E 08 A 18 C 09 E 19 C 10 C 0 C GABARITO COMENTADO PROVA AMARELA 01. Utilizando que (-1)

Leia mais

5n 3. 1 nsen(n + 327) e)

5n 3. 1 nsen(n + 327) e) Exercícios 1 Mostre, utilizado a defiição, que as seguites sucessões são limitadas: 2 4 50 a) b) 3 +16 1 5 3 2 c) 1 4( 1) 8 5 d) 100 5 3 2 + 2( 1) 1 4( 1) 8 1 se( + 327) e) f) 5 3 2 4 4 2 2 Mostre, utilizado

Leia mais

CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES

CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES Itrodução Em dversos camos da Egehara é comum a ecessdade da determação de raízes de equações ão leares. Em algus casos artculares, como o caso de olômo, que

Leia mais

Estatística Básica - Continuação

Estatística Básica - Continuação Professora Adraa Borsso http://www.cp.utfpr.edu.br/borsso adraaborsso@utfpr.edu.br COEME - Grupo de Matemátca Meddas de Varabldade ou Dspersão Estatístca Básca - Cotuação As meddas de tedêca cetral, descrtas

Leia mais

Relações e Funções Aproximadas: Uma Abordagem Baseada na Teoria de Conjuntos Aproximados

Relações e Funções Aproximadas: Uma Abordagem Baseada na Teoria de Conjuntos Aproximados Relações e Fuções promadas: Uma bordagem Baseada a Teora de Cojutos promados Joaqum Qutero Uchôa & Mara do Carmo Ncolett Uversdade Federal de ão Carlos (UFCar) Departameto de Computação (DC) C. P. 676

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares Sstemas - ALGA - / Sstemas de equações lneares Uma equação lnear nas ncógntas ou varáves x ; x ; :::; x n é uma expressão da forma: a x + a x + ::: + a n x n = b onde a ; a ; :::; a n ; b são constantes

Leia mais