Engrenagens são elementos de máquinas que transmitem o movimento por meio de sucessivos engates de dentes, onde os dentes atuam como pequenas

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Engrenagens são elementos de máquinas que transmitem o movimento por meio de sucessivos engates de dentes, onde os dentes atuam como pequenas"

Transcrição

1 Engrenagens

2 Engrenagens são elementos de máquinas que transmitem o movimento por meio de sucessivos engates de dentes, onde os dentes atuam como pequenas alavancas.

3 Classificação das Engrenagens As engrenagens podem ser classificadas de acordo com a posição relativa dos eixos de revolução. Esses eixos podem estar: Paralelos; Intersecionados; Nem paralelo nem intersecionados.

4 Engrenagens para conexão de eixos paralelos:engrenagens de dentes retos

5 Engrenagens para conexão de eixos paralelos:engrenagens de dentes retos

6 Engrenagens para conexão de eixos paralelos:engrenagem helicoidal paralela

7 Engrenagens para conexão de eixos paralelos:engrenagem helicoidal dupla

8 Engrenagens para conexão de eixos paralelos:pinhão e cremalheira de entes retos evolventes

9 Engrenagens para conexão de eixos Engrenagem cilíndrica com dentes em V

10 Engrenagens para conexão de eixos intersecionados: Engrenagem cônica de dente reto

11 Engrenagens para conexão de eixos intersecionados: Engrenagem cônica espiral

12 Eixos nem paralelos ou intersecionados: Engrenagens helicoidais cruzadas

13 Par coroa e sem-fim

14 Lei Fundamental da Ação do Dente da Engrenagem O perfil do dente 1 aciona o perfil 2 pelo ponto de atuação de contato instantâneo K. N 1 N 2 são as normais dos dois perfis. N 1 é o pé da perpendicular de O 1 a N 1 N 2. N 2 é o pé da perpendicular de O 2 a N 1 N 2. OP OP

15 Geração da Curva Evolvente Fazendo a linha MN girar no sentido anti-horário da circunferência de um círculo sem deslizar, quando a linha alcança a posição M N, a tangente original A alcança a posição K, traçando a curva evolvente AK durante o movimento. A medida que o movimento continua, o ponto A irá traçar a curva evolvente AKC.

16 Quanto menor for o diâmetro primitivo, mais acentuada será a evolvente. Quanto maior for o diâmetro primitivo, menos acentuada será a evolvente, até que, em uma engrenagem de diâmetro primitivo infinito (cremalheira) a evolvente será uma reta. Neste caso, o perfil do dente será trapezoidal, tendo como inclinação apenas o ângulo de pressão.

17 Imagine a cremalheira como sendo uma ferramenta de corte que trabalha em plaina vertical, e que a cada golpe se desloca juntamente com a engrenagem a ser usinada (sempre mantendo a mesma distância do diâmetro primitivo). É por meio desse processo contínuo que é gerada, passo a passo, a evolvente. O ângulo de inclinação do perfil (ângulo de pressão) sempre é indicado nas ferramentas e deve ser o mesmo para o par de engrenagens que trabalham juntas.

18 Propriedades da Curva Evolvente A distância BK é igual ao arco AB, pois a linha MN rola sobre o círculo sem escorregar. Para qualquer instante, o centro instantâneo do movimento da linha é o ponto tangente com o círculo. NOTE: não foi definido o termo centro instantâneo anteriormente. O centro instantâneo é definido de duas formas: Quando dois corpos possuem um movimento relativo plano, o centro instantâneo é um ponto sobre um dos corpos em que o outro gira no instante considerado; Quando dois corpos possuem movimento relativo plano, o centro instantâneo é o ponto em que os corpos estão relativamente parados no instante considerado. A normal em qualquer ponto de uma evolvente é a tangente à circunferência base, Devido a propriedade (2) da curva evolvente, o movimento do ponto que está traçando a evolvente é perpendicular a linha em qualquer instante, e assim a curva traçada também será perpendicular à linha em qualquer instante. Não há curva evolvente junto ao círculo base.

19 Terminologia de Engrenagens de Dentes Retos

20 a) Superfície primitiva: a superfície de um cilindro (cone, etc.) imaginário, girante que o dente de engrenagem pode ser substituído. b) Circunferência primitiva: uma seção da superfície primitiva. c) Circunferência de cabeça: um círculo que recobre o topo dos dentes. d) Circunferência de pé: círculo que passa pela base dos dentes. e) Altura de cabeça: distância radial entre a circunferência primitiva e a circunferência de cabeça. f) Profundidade ou altura de pé: distância radial entre a circunferência primitiva e a circunferência de pé.

21 g) Vão ou folga: diferença entre a altura de pé de uma engrenagem e a altura da cabeça da outra. h) Face do dente: parte da superfície do dente que se encontra fora da superfície primitiva. i) Flanco do dente: parte da superfície do dente que se encontra dentro da superfície primitiva. j) Espessura do dente: espessura do dente medida na circunferência primitiva. É o comprimento de um arco e não co comprimento de uma linha reta. k) Espaço do dente: distância entre dentes medida na circunferência primitiva.

22 l) Passo frontal (p): comprimento de um dente e um espaço medido na circunferência primitiva (veja a figura).

23 m) Diametral pitch (P): é o número de dentes dividido pelo diâmetro primitivo. (A norma brasileira ABNT TB 81, indica o módulo frontal como sendo o quociente do diâmetro primitivo pelo número de dentes, expresso em milímetros: D m ). N p D N P N p. P D Sendo: p o passo frontal; P o diametral picth ; N o úmero de dentes e D o diâmetro primitivo.

24 n) Módulo frontal (m): inverso do diametral picth, diâmetro primitivo dividido pelo número de dentes.

25 o) Filete ou Arredondamento: pequeno raio que conecta o perfil do dente com a circunferência de pé. p) Pinhão: a menor engrenagem de qualquer para. A engrenagem maior é chamada apenas de engrenagem ou coroa. q) Relação de velocidade: relação dada pelo número de revoluções da engrenagem motora pelo número de revoluções da engrenagem movida, em uma unidade de tempo. r) Ponto primitivo: o ponto que tangencia as circunferências primitivas de um para de engrenagens (veja o ponto P da figura).

26 s) Tangente comum: a linha tangente da circunferência primitiva no ponto primitivo. t) Linha de ação: linha normal ao par de dentes no seu ponto de contato. u) Trajetória de contato: trajetória traçada pelo ponto de contato de um para de dentes. v) Ângulo de pressão α: ângulo entre a normal comum no ponto de contato dos dentes e a tangente comum à circunferência primitiva. É também o ângulo entre a linha de ação e a tangente comum. w) Circunferência base: circunferência imaginária usada na engrenagem evolvente para gerar a evolvente que forma o perfil dos dentes.

27 Alguns Dados Lista padrão do sistema de dentes para engrenagens de dentes retos (Shigley e Uicker, 2003). Sistema de Dente Ângulo de Pressão Altura de Cabeça Profundidade Profundidade Total 20 1 P ou 1 m 1, 25 P Profundidade Total 22,5 1 P ou 1 m 1, 25 P Profundidade Total 25 1 P ou 1 m 1, 25 P Ponta do Dente 20 0,8 ou 0,8 m P 1 P ou 1 m ou 1,25 m ou 1,25 m ou 1,25 m

28 Alguns Dados Lista dos valores mais usados para o diametral pitch : Pitch Expresso Pitch Fino 2 2,25 2, NOTE: que ao invés de usar a circunferência primitiva teórica como um índice do tamanho do dente, a circunferência base pode ser usada. O resultado é chamado de base primitiva, e está relacionada com a circunferência base pela equação: P p cos b

29 Condição para o Correto Engrenamento A figura a seguir mostra o engrenamento de duas engrenagens com contato nos pontos K 1 e K 2. P Pb P P b1 b2 p cos cos b P1 p cos cos P2 cos cos P P2

Professor Claudemir Claudino Alves

Professor Claudemir Claudino Alves Curso Superior de Tecnologia em - Refrigeração, Ventilação e Ar condicionado Disciplina: ELEMENTOS DE MÁQUINAS Professor Me. Claudemir Claudino Alves Professor Claudemir Claudino Alves 2 Definição É um

Leia mais

Instituto Federal de Educação Ciência e Tecnologia. Prof.: Carlos

Instituto Federal de Educação Ciência e Tecnologia. Prof.: Carlos Instituto Federal de Educação Ciência e Tecnologia Campos de Presidente Epitácio LIDIANE FERREIRA Trabalho apresentado na disciplina de Elementos de Maquinas do Curso de Automação Industrial 3º módulo

Leia mais

Metrologia Professor: Leonardo Leódido

Metrologia Professor: Leonardo Leódido Metrologia Professor: Leonardo Leódido Sumário Definição Conceitos Básicos Classificação de Forma de Orientação de Posição Definição Tolerância pode ser definida como um intervalo limite no qual as imperfeições

Leia mais

Engrenagens VI. O supervisor da área de controle de qualidade. Conceituação

Engrenagens VI. O supervisor da área de controle de qualidade. Conceituação A UU L AL A Engrenagens VI O supervisor da área de controle de qualidade e projetos de uma empresa observou que algumas peças, fabricadas no setor de usinagem, apresentavam problemas. Isso significava

Leia mais

v = velocidade média, m/s; a = aceleração média do corpo, m/s 2 ;

v = velocidade média, m/s; a = aceleração média do corpo, m/s 2 ; 1. Cinemática Universidade Estadual do Norte Fluminense Darcy Ribeiro Centro de Ciências e Tecnologias Agropecuárias - Laboratório de Engenharia Agrícola EAG 0304 Mecânica Aplicada Prof. Ricardo Ferreira

Leia mais

Fresando engrenagens cônicas com dentes retos

Fresando engrenagens cônicas com dentes retos A U A UL LA Fresando engrenagens cônicas com dentes retos Na aula passada, você aprendeu a fresar engrenagens cilíndricas com dentes helicoidais, utilizando a grade de engrenagens. Nesta aula você vai

Leia mais

- de dentes helicoidais (ECDH);

- de dentes helicoidais (ECDH); Mecanismos Engrenagens As engrenagens são rodas com dentes. Esses dentes se acoplam de forma a permitir a transmissão de movimento de uma engrenagem para outra. Elas podem ser de vários tipos: Engrenagens

Leia mais

18/06/2013. Professora: Sandra Tieppo UNIOESTE Cascavel

18/06/2013. Professora: Sandra Tieppo UNIOESTE Cascavel 18/06/01 Professora: Sandra Tieppo UNIOESTE Cascavel 1 Superfícies geradas por uma geratriz (g) que passa por um ponto dado V (vértice) e percorre os pontos de uma linha dada d (diretriz), V d. Se a diretriz

Leia mais

Para cada partícula num pequeno intervalo de tempo t a percorre um arco s i dado por. s i = v i t

Para cada partícula num pequeno intervalo de tempo t a percorre um arco s i dado por. s i = v i t Capítulo 1 Cinemática dos corpos rígidos O movimento de rotação apresenta algumas peculiaridades que precisam ser entendidas. Tem equações horárias, que descrevem o movimento, semelhantes ao movimento

Leia mais

MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Equações de retas e planos

MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Equações de retas e planos MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Equações de retas e planos 1 Seja um número real. Considere, num referencial o.n., a reta e o plano definidos, respetivamente, por e Sabe-se

Leia mais

PRÁTICA DE OFICINA AULA 04-2015-1 3.3 Filetar (abrir roscas no torno) ABERTURA DE ROSCAS parte 2 3.3.1 Introdução

PRÁTICA DE OFICINA AULA 04-2015-1 3.3 Filetar (abrir roscas no torno) ABERTURA DE ROSCAS parte 2 3.3.1 Introdução 1 PRÁTICA DE OFICINA AULA 04-2015-1 3.3 Filetar (abrir roscas no torno) ABERTURA DE ROSCAS parte 2 3.3.1 Introdução (a) (b) Fig. 3.7 Roscas com ferramenta de filetar (a) externa (b) interna. Para filetar

Leia mais

Assim, você acaba de ver como essa peça (came) é importante. Por isso, nesta aula, você vai conhecê-la melhor.

Assim, você acaba de ver como essa peça (came) é importante. Por isso, nesta aula, você vai conhecê-la melhor. A UU L AL A Came Uma moça viajava tranqüila de moto mas, na subida, percebeu que seu veículo perdia força. O mecânico de motos, após abrir o motor e examinar as peças, verificou que as cames do comando

Leia mais

Engrenagens I. Um pasteleiro fazia massa de pastel numa. Engrenagens

Engrenagens I. Um pasteleiro fazia massa de pastel numa. Engrenagens A U A UL LA Engrenagens I Introdução Um pasteleiro fazia massa de pastel numa máquina manual, quando ela quebrou. Sem perder tempo, o pasteleiro levou a máquina a uma oficina. O dono da oficina examinou

Leia mais

CINEMÁTICA DO PONTO MATERIAL

CINEMÁTICA DO PONTO MATERIAL 1.0 Conceitos CINEMÁTICA DO PONTO MATERIAL Cinemática é a parte da Mecânica que descreve os movimentos. Ponto material é um corpo móvel cujas dimensões não interferem no estudo em questão. Trajetória é

Leia mais

ENGRENAGENS. Prof. Alexandre Augusto Pescador Sardá

ENGRENAGENS. Prof. Alexandre Augusto Pescador Sardá ENGRENAGENS Prof. Alexandre Augusto Pescador Sardá INTRODUÇÃO Engrenagens são utilizadas para transmitir movimento de um eixo rotativo para outro ou de um eixo rotativo para outro que translada (rotação

Leia mais

Engrenagens IV. Para grandes problemas, grandes soluções. Cálculo para engrenagem cônica

Engrenagens IV. Para grandes problemas, grandes soluções. Cálculo para engrenagem cônica A UU L AL A Engrenagens IV Para grandes problemas, grandes soluções. Por exemplo: qual a saída para o setor de projeto e construção de uma empresa em que o setor de usinagem necessita fazer a manutenção

Leia mais

DESENHO TÉCNICO ( AULA 03)

DESENHO TÉCNICO ( AULA 03) Sólidos Geométricos DESENHO TÉCNICO ( AULA 03) Você já sabe que todos os pontos de uma figura plana localizam-se no mesmo plano. Quando uma figura geométrica tem pontos situados em diferentes planos, temos

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA

UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA TEXTO: CÍRCULO TRIGONOMÉTRICO AUTORES: Mayara Brito (estagiária da BOM) André Brito (estagiário da BOM) ORIENTADOR:

Leia mais

Novo Espaço Matemática A 11.º ano Proposta de Teste Intermédio [Novembro 2015]

Novo Espaço Matemática A 11.º ano Proposta de Teste Intermédio [Novembro 2015] Proposta de Teste Intermédio [Novembro 05] Nome: Ano / Turma: N.º: Data: - - Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado. Para cada resposta, identifica

Leia mais

3. (Uerj 98) a) Calcule o comprimento da corda AB, do círculo original, em função de R e m.

3. (Uerj 98) a) Calcule o comprimento da corda AB, do círculo original, em função de R e m. 1. (Unicamp 91) Uma esfera de raio 1 é apoiada no plano xy de modo que seu pólo sul toque a origem desse plano. Tomando a reta que liga o pólo norte dessa esfera a qualquer outro ponto da esfera, chamamos

Leia mais

A unidade de freqüência é chamada hertz e simbolizada por Hz: 1 Hz = 1 / s.

A unidade de freqüência é chamada hertz e simbolizada por Hz: 1 Hz = 1 / s. Movimento Circular Uniforme Um movimento circular uniforme (MCU) pode ser associado, com boa aproximação, ao movimento de um planeta ao redor do Sol, num referencial fixo no Sol, ou ao movimento da Lua

Leia mais

CIRCUNFERÊNCIA. Centro Diâmetro Secante Corda Tangente Ponto de tangência Normal Raio Distância do ponto P à circunferência. O AB s CD t T s AB 2

CIRCUNFERÊNCIA. Centro Diâmetro Secante Corda Tangente Ponto de tangência Normal Raio Distância do ponto P à circunferência. O AB s CD t T s AB 2 CIRCUNFERÊNCIA ELEMENTOS DA CIRCUNFERÊNCIA N t T C A B D X s p Centro Diâmetro Secante Corda Tangente Ponto de tangência Normal Raio Distância do ponto P à circunferência O AB s CD t T s AB 2 PX / Algumas

Leia mais

Desenho Técnico e Geometria Descritiva Construções Geométricas. Construções Geométricas

Desenho Técnico e Geometria Descritiva Construções Geométricas. Construções Geométricas Desenho Técnico e Geometria Descritiva Prof. Luiz Antonio do Nascimento Engenharia Ambiental 2º Semestre Bissetriz - é a reta que divide um ângulo qualquer em dois ângulos iguais, partindo do vértice deste

Leia mais

Caro (a) Aluno (a): Este texto apresenta uma revisão sobre movimento circular uniforme MCU. Bom estudo e Boa Sorte!

Caro (a) Aluno (a): Este texto apresenta uma revisão sobre movimento circular uniforme MCU. Bom estudo e Boa Sorte! TEXTO DE EVISÃO 15 Movimento Circular Caro (a) Aluno (a): Este texto apresenta uma revisão sobre movimento circular uniforme MCU. om estudo e oa Sorte! 1 - Movimento Circular: Descrição do Movimento Circular

Leia mais

PROJETO DE ENGRENAGENS CÔNICAS E SEM-FIM. Prof. Alexandre Augusto Pescador Sardá

PROJETO DE ENGRENAGENS CÔNICAS E SEM-FIM. Prof. Alexandre Augusto Pescador Sardá PROJETO DE ENGRENAGENS CÔNICAS E SEM-FIM Prof. Alexandre Augusto Pescador Sardá ENGRENAGENS CIÍNDRICAS Engrenagens cônicas de dentes retos; Engrenagens cônicas espirais; Engrenagens cônicas zerol; Engrenagens

Leia mais

Professor Alexandre Assis. 1. O hexágono regular ABCDEF é base da pirâmide VABCDEF, conforme a figura.

Professor Alexandre Assis. 1. O hexágono regular ABCDEF é base da pirâmide VABCDEF, conforme a figura. 1. O hexágono regular ABCDEF é base da pirâmide VABCDEF, conforme a figura. A aresta VA é perpendicular ao plano da base e tem a mesma medida do segmento AD. O seguimento AB mede 6 cm. Determine o volume

Leia mais

Projeto Rumo ao ITA Exercícios estilo IME

Projeto Rumo ao ITA Exercícios estilo IME PROGRAMA IME ESPECIAL 1991 GEOMETRIA ESPACIAL PROF PAULO ROBERTO 01 (IME-64) Um cone circular reto, de raio da base igual a R e altura h, está circunscrito a 1 1 uma esfera de raio r Provar que = rh r

Leia mais

Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 3 Professor Marco Costa

Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 3 Professor Marco Costa 1 1. (Fgv 97) Uma empresa produz apenas dois produtos A e B, cujas quantidades anuais (em toneladas) são respectivamente x e y. Sabe-se que x e y satisfazem a relação: x + y + 2x + 2y - 23 = 0 a) esboçar

Leia mais

1.1 UFPR 2014. Rumo Curso Pré Vestibular Assistencial - RCPVA Disciplina: Matemática Professor: Vinícius Nicolau 04 de Novembro de 2014

1.1 UFPR 2014. Rumo Curso Pré Vestibular Assistencial - RCPVA Disciplina: Matemática Professor: Vinícius Nicolau 04 de Novembro de 2014 Sumário 1 Questões de Vestibular 1 1.1 UFPR 2014.................................... 1 1.1.1 Questão 1................................. 1 1.1.2 Questão 2................................. 2 1.1.3 Questão

Leia mais

20 TANGÊNCIA E CONCORDÂNCIA 20.1 PROPRIEDADES DE TANGÊNCIA

20 TANGÊNCIA E CONCORDÂNCIA 20.1 PROPRIEDADES DE TANGÊNCIA 144 20 TNGÊNI E ONORDÂNI 20.1 PROPRIEDDES DE TNGÊNI Definições: 1) tangente a uma curva é uma reta que tem um só ponto em comum com esta curva. 2) Duas curvas são tangentes num ponto dado T, quando as

Leia mais

Projeto Rumo ao ITA Exercícios estilo IME

Projeto Rumo ao ITA Exercícios estilo IME EXERÍIOS DE GEOMETRI PLN REVISÃO 1991 PROF PULO ROERTO 01 (IME-64) Uma corda corta o diâmetro de um círculo segundo um ângulo de 45º Demonstrar que a soma do quadrado dos segmentos aditivos m e n, com

Leia mais

Matemática Fascículo 07 Manoel Benedito Rodrigues

Matemática Fascículo 07 Manoel Benedito Rodrigues Matemática Fascículo 07 Manoel Benedito Rodrigues Índice Geometria Resumo Teórico...1 Exercícios...4 Dicas...5 Resoluções...7 Geometria Resumo Teórico 1. O volume de um prisma eodeumcilindro (retos ou

Leia mais

Professor Dacar Lista de Revisão - Trigonometria

Professor Dacar Lista de Revisão - Trigonometria 1. Obtenha a medida, em graus, de um arco AB de comprimento 3 metros, sabendo que ele está contido em uma circunferência de diâmetro igual a 24 metros. 45 2. (UFPR) Em uma circunferência de 12 dm de comprimento,

Leia mais

Construções Geométricas Usuais

Construções Geométricas Usuais Construções Geométricas Usuais Rectas. Ângulos. Circunferência e círculo. Tangentes a circunferências. Polígonos. Rectas Duas rectas dizem-se perpendiculares quando dividem o espaço em quatro partes iguais,

Leia mais

Assunto: Estudo do ponto

Assunto: Estudo do ponto Assunto: Estudo do ponto 1) Sabendo que P(m+1;-3m-4) pertence ao 3º quadrante, determine os possíveis valores de m. resp: -4/3

Leia mais

6.2. Volumes. Nesta seção aprenderemos a usar a integração para encontrar o volume de um sólido. APLICAÇÕES DE INTEGRAÇÃO

6.2. Volumes. Nesta seção aprenderemos a usar a integração para encontrar o volume de um sólido. APLICAÇÕES DE INTEGRAÇÃO APLICAÇÕES DE INTEGRAÇÃO 6.2 Volumes Nesta seção aprenderemos a usar a integração para encontrar o volume de um sólido. SÓLIDOS IRREGULARES Começamos interceptando S com um plano e obtemos uma região plana

Leia mais

MESTRADO INTEGRADO EM ENGENHARIA MECÂNICA ÓRGÃOS DE MÁQUINAS II

MESTRADO INTEGRADO EM ENGENHARIA MECÂNICA ÓRGÃOS DE MÁQUINAS II ASPETOS GERAIS SOBRE ENGRENAGENS MESTRADO INTEGRADO EM ENGENHARIA MECÂNICA ÓRGÃOS DE MÁQUINAS II Elaborado por Paulo Flores e José Gomes - 2015 Departamento de Engenharia Mecânica Campus de Azurém 4804-533

Leia mais

Resumo com exercícios resolvidos do assunto:

Resumo com exercícios resolvidos do assunto: www.engenhariafacil.weebly.com (0)- CONSIDERAÇÕES INICIAIS: r = xi + yj Resumo com exercícios resolvidos do assunto: Rotação de Corpos Rígidos (0.1) r = cos θ i + sin θ j -->vetor na direção do raio da

Leia mais

FÍSICA (Eletromagnetismo) CAMPOS ELÉTRICOS

FÍSICA (Eletromagnetismo) CAMPOS ELÉTRICOS FÍSICA (Eletromagnetismo) CAMPOS ELÉTRICOS 1 O CONCEITO DE CAMPO Suponhamos que se fixe, num determinado ponto, uma partícula com carga positiva, q1, e a seguir coloquemos em suas proximidades uma segunda

Leia mais

1 Exercícios de Aplicações da Integral

1 Exercícios de Aplicações da Integral Cálculo I (5/) IM UFRJ Lista 6: Aplicações de Integral Prof. Milton Lopes e Prof. Marco Cabral Versão 9.5.5 Eercícios de Aplicações da Integral. Eercícios de Fiação Fi.: Esboce o gráco e calcule a área

Leia mais

ESCOLA BÁSICA INTEGRADA DE MANIQUE DO INTENDENTE Ano Letivo / Nome ; Ano/Turma ; N.º

ESCOLA BÁSICA INTEGRADA DE MANIQUE DO INTENDENTE Ano Letivo / Nome ; Ano/Turma ; N.º EDUCAÇÃO VISUAL ESCOLA BÁSICA INTEGRADA DE MANIQUE DO INTENDENTE Ano Letivo / APONTAMENTOS DE GEOMETRIA Nome ; Ano/Turma ; N.º 1 - O PONTO - ao colocares o bico do teu lápis no papel obténs um ponto. O

Leia mais

TORNEIRO MECÂNICO OPERAÇÃO

TORNEIRO MECÂNICO OPERAÇÃO DEFINIÇÃO: TORNEIRO MECÂNICO OPERAÇÃO ABRIR ROSCA MÚLTIPLA (EXTERNA E INTERNA) É abrir rosca na superfície externa ou interna do material, através de um sistema de divisões de avanço da ferramenta, que

Leia mais

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE Professor: João Carmo INTRODUÇÃO O traçado de linhas retas PERPENDICULARES, PARALELAS e OBLÍQUAS é feito com o auxílio de esquadros,

Leia mais

1o) constância da inclinação do eixo de rotação da Terra. 2o) movimento de translação da Terra ao redor do Sol.

1o) constância da inclinação do eixo de rotação da Terra. 2o) movimento de translação da Terra ao redor do Sol. Estações do Ano Aluno: Ricardo Augusto Viana de Lacerda Curso de Especialização em Astronomia (2009)-USP_leste Texto adaptado da Oficina de Astronomia do Prof. Dr. João Batista Garcia Canalle. a) A lâmpada

Leia mais

DESENHO TÉCNICO I. Prof. Peterson Jaeger. APOSTILA Versão 2013

DESENHO TÉCNICO I. Prof. Peterson Jaeger. APOSTILA Versão 2013 APOSTILA Versão 2013 Prof. Peterson Jaeger 1. Folhas 2. Régua paralela e esquadros 3. Distinção de traços 4. Uso do compasso 5. Construções geométricas básicas 6. Tangentes e concordantes 7. Caligrafia

Leia mais

30's Volume 8 Matemática

30's Volume 8 Matemática 30's Volume 8 Matemática www.cursomentor.com 18 de dezembro de 2013 Q1. Simplique a expressão: Q2. Resolva a expressão: Q3. Calcule o inverso da expressão: ( 3 2 ) 3 16 10 4 8 10 5 10 3 64 10 5 10 6 0,

Leia mais

Aula 01 Introdução à Geometria Espacial Geometria Espacial

Aula 01 Introdução à Geometria Espacial Geometria Espacial Aula 01 Introdução à 1) Introdução à Geometria Plana Axioma São verdades matemáticas aceitas sem a necessidade de demonstração. 1 1.1) Axioma da Existência Existem infinitos pontos em uma reta (e fora

Leia mais

. B(x 2, y 2 ). A(x 1, y 1 )

. B(x 2, y 2 ). A(x 1, y 1 ) Estudo da Reta no R 2 Condição de alinhamento de três pontos: Sabemos que por dois pontos distintos passa uma única reta, ou seja, dados A(x 1, y 1 ) e B(x 2, y 2 ), eles estão sempre alinhados. y. B(x

Leia mais

Geometria Espacial. Revisão geral

Geometria Espacial. Revisão geral Geometria Espacial Revisão geral Considere o poliedro cujos vértices são os pontos médios das arestas de um cubo. O número de faces triangulares e o número de faces quadradas desse poliedro são, respectivamente:

Leia mais

SOMBRAS II. Sumário: Manual de Geometria Descritiva - António Galrinho Sombras II - 1

SOMBRAS II. Sumário: Manual de Geometria Descritiva - António Galrinho Sombras II - 1 14 SOMBRAS II Neste capítulo mostra-se como se determinam sombras próprias e projetadas de sólidos sobre os planos de projeção, nomeadamente de pirâmides, prismas, cones e cilindros. Sumário: 2. Sombras

Leia mais

Exercícios: Espelhos planos. 1-(PUC-CAMPINAS-SP) Um pincel de raios paralelos quando refletido por um espelho plano: a) conserva-se paralelo

Exercícios: Espelhos planos. 1-(PUC-CAMPINAS-SP) Um pincel de raios paralelos quando refletido por um espelho plano: a) conserva-se paralelo Exercícios: Espelhos planos. 1-(PUC-CAMPINAS-SP) Um pincel de raios paralelos quando refletido por um espelho plano: a) conserva-se paralelo d) converge b) diverge e) nenhuma das anteriores c) é difundido

Leia mais

NOTAÇÕES. : distância do ponto P à reta r : segmento de extremidades nos pontos A e B

NOTAÇÕES. : distância do ponto P à reta r : segmento de extremidades nos pontos A e B R C i z Rez) Imz) det A tr A : conjunto dos números reais : conjunto dos números complexos : unidade imaginária: i = 1 : módulo do número z C : parte real do número z C : parte imaginária do número z C

Leia mais

Exercícios de 11.º ano nos Testes Intermédios TRIGONOMETRIA

Exercícios de 11.º ano nos Testes Intermédios TRIGONOMETRIA Escola Secundária de Francisco Franco Exercícios de 11.º ano nos Testes Intermédios TRIGONOMETRIA 1. Na figura está representado o círculo trigonométrico e um triângulo [OPR]. O ponto P desloca-se ao longo

Leia mais

Construções Geométricas

Construções Geométricas Desenho Técnico e CAD Técnico Prof. Luiz Antonio do Nascimento Engenharia Ambiental 2º Semestre Ângulo - é a região plana limitada por duas semirretas de mesma origem. Classificação dos ângulos: Tipos

Leia mais

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano Escola Secundária/ da Sé-Lamego Ficha de Trabalho de Matemática no Lectivo 00/0 Geometria - Revisões º no Nome: Nº: Turma: região do espaço definida, num referencial ortonormado, por + + = é: [] a circunferência

Leia mais

FÍSICA - 1 o ANO MÓDULO 27 TRABALHO, POTÊNCIA E ENERGIA REVISÃO

FÍSICA - 1 o ANO MÓDULO 27 TRABALHO, POTÊNCIA E ENERGIA REVISÃO FÍSICA - 1 o ANO MÓDULO 27 TRABALHO, POTÊNCIA E ENERGIA REVISÃO Fixação 1) O bloco da figura, de peso P = 50N, é arrastado ao longo do plano horizontal pela força F de intensidade F = 100N. A força de

Leia mais

RELAÇÕES TRIGONOMÉTRICAS

RELAÇÕES TRIGONOMÉTRICAS REAÇÕES TRIGONOMÉTRICAS As relações trigonométricas, são estudadas no triângulo retângulo que você já viu é um triângulo que tem um ângulo reto e seus lados indicados por hipotenusa e dois catetos. No

Leia mais

SEM DESENHO TÉCNICO MECÂNICO I

SEM DESENHO TÉCNICO MECÂNICO I SEM 0564 - DESENHO TÉCNICO MECÂNICO I Notas de Aulas v.2016 Aula 11 Componentes de transmissão e união II: engrenagens, pinos, cavilhas. Prof. Assoc. Carlos Alberto Fortulan Departamento de Engenharia

Leia mais

5. Derivada. Definição: Se uma função f é definida em um intervalo aberto contendo x 0, então a derivada de f

5. Derivada. Definição: Se uma função f é definida em um intervalo aberto contendo x 0, então a derivada de f 5 Derivada O conceito de derivada está intimamente relacionado à taa de variação instantânea de uma função, o qual está presente no cotidiano das pessoas, através, por eemplo, da determinação da taa de

Leia mais

Lista de Exercícios (Profº Ito) Componentes da Resultante

Lista de Exercícios (Profº Ito) Componentes da Resultante 1. Um balão de ar quente está sujeito às forças representadas na figura a seguir. Qual é a intensidade, a direção e o sentido da resultante dessas forças? c) qual o valor do módulo das tensões nas cordas

Leia mais

Movimento uniformemente variado. Capítulo 4 (MUV)

Movimento uniformemente variado. Capítulo 4 (MUV) Movimento uniformemente variado Capítulo 4 (MUV) Movimento uniformemente variado MUV aceleração escalar (α) é constante e não nula. O quociente α = v t é constante e não nulo. Função horária da velocidade

Leia mais

Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.

Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A. Teste Intermédio de Matemática A Versão 1 Teste Intermédio Matemática A Versão 1 Duração do Teste: 90 minutos 7.01.011 11.º Ano de Escolaridade Decreto-Lei n.º 74/004, de 6 de Março Na sua folha de respostas,

Leia mais

para x = 111 e y = 112 é: a) 215 b) 223 c) 1 d) 1 e) 214 Resolução Assim, para x = 111 e y = 112 teremos x + y = 223.

para x = 111 e y = 112 é: a) 215 b) 223 c) 1 d) 1 e) 214 Resolução Assim, para x = 111 e y = 112 teremos x + y = 223. MATEMÁTICA d Um mapa está numa escala :0 000 000, o que significa que uma distância de uma unidade, no mapa, corresponde a uma distância real de 0 000 000 de unidades. Se no mapa a distância entre duas

Leia mais

MATEMÁTICA B UNIVERSIDADE FEDERAL DE MINAS GERAIS. 2 a Etapa SÓ ABRA QUANDO AUTORIZADO. FAÇA LETRA LEGÍVEL. Duração desta prova: TRÊS HORAS.

MATEMÁTICA B UNIVERSIDADE FEDERAL DE MINAS GERAIS. 2 a Etapa SÓ ABRA QUANDO AUTORIZADO. FAÇA LETRA LEGÍVEL. Duração desta prova: TRÊS HORAS. 2 a Etapa MATEMÁTICA B SÓ ABRA QUANDO AUTORIZADO. UNIVERSIDADE FEDERAL DE MINAS GERAIS Leia atentamente o CARTAZ sobre ELIMINAÇÃO AUTOMÁTICA, afixado na parede da sala, à sua frente, e as instruções que

Leia mais

Precisão do fuso de esferas

Precisão do fuso de esferas Precisão do ângulo de avanço A precisão do fuso de esferas no ângulo de avanço é controlado de acordo com os padrões JIS (JIS B 1192-1997). As classes de precisão C0 a C5 são defi nidas na linearidade

Leia mais

PROVA PARA OS ALUNOS DE 2º ANO DO ENSINO MÉDIO. 4 cm

PROVA PARA OS ALUNOS DE 2º ANO DO ENSINO MÉDIO. 4 cm PROVA PARA OS ALUNOS DE º ANO DO ENSINO MÉDIO 1ª Questão: Um cálice com a forma de um cone contém V cm de uma bebida. Uma cereja de forma esférica com diâmetro de cm é colocada dentro do cálice. Supondo

Leia mais

EXERCÍCIOS DE REVISÃO MATEMÁTICA II GEOMETRIA ANALÍTICA PLANA (Ponto, reta e circunferência)

EXERCÍCIOS DE REVISÃO MATEMÁTICA II GEOMETRIA ANALÍTICA PLANA (Ponto, reta e circunferência) EXERCÍCIOS DE REVISÃO MATEMÁTICA II GEOMETRIA ANALÍTICA PLANA (Ponto, reta e circunferência) ************************************************************************************* 1) (U.F.PA) Se a distância

Leia mais

BILHETE DE IDENTIDADE N.º EMITIDO EM (LOCALIDADE) Não escreva o seu nome em ASSINATURA DO ESTUDANTE. Data / / MINISTÉRIO DA EDUCAÇÃO EXAME NACIONAL

BILHETE DE IDENTIDADE N.º EMITIDO EM (LOCALIDADE) Não escreva o seu nome em ASSINATURA DO ESTUDANTE. Data / / MINISTÉRIO DA EDUCAÇÃO EXAME NACIONAL EXAME NACIONAL DE MATEMÁTICA 2005 9.º ANO DE ESCOLARIDADE / 3.º CICLO DO ENSINO BÁSICO A preencher pelo estudante NOME COMPLETO BILHETE DE IDENTIDADE N.º EMITIDO EM (LOCALIDADE) Não escreva o seu nome

Leia mais

3. TRANSMISSÃO DE POTÊNCIA

3. TRANSMISSÃO DE POTÊNCIA 8 3. TRANSMISSÃO DE POTÊNCIA Os mecanismos de transmissão estão presentes em várias partes das máquinas e implementos agrícolas, transferindo potência e movimento, podendo atuar também como elemento de

Leia mais

Sejam VÛ, V½, VÝ os volumes dos sólidos gerados pela rotação do triângulo em torno dos lados A, B e C, respectivamente.

Sejam VÛ, V½, VÝ os volumes dos sólidos gerados pela rotação do triângulo em torno dos lados A, B e C, respectivamente. 1. (Ufpe 96) O trapézio 0ABC da figura a seguir gira completamente em torno do eixo 0x. Calcule o inteiro mais próximo do volume do sólido obtido. 2. (Fuvest 91) Considere um triângulo retângulo com hipotenusa

Leia mais

Ficha de Trabalho nº11

Ficha de Trabalho nº11 Ano lectivo 011/01 Matemática A 11º Ano / Curso de Ciências e Tecnologias Tema: Geometria Ficha de Trabalho nº11 Geometria no Espaço 1. Observa a figura onde está representado um cone recto cuja base pertence

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 7

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 7 Potencial Elétrico Quando estudamos campo elétrico nas aulas passadas, vimos que ele pode ser definido em termos da força elétrica que uma carga q exerce sobre uma carga de prova q 0. Essa força é, pela

Leia mais

Geometria Diferencial de Curvas Espaciais

Geometria Diferencial de Curvas Espaciais Geometria Diferencial de Curvas Espaciais 1 Aceleração tangencial e centrípeta Fernando Deeke Sasse Departamento de Matemática CCT UDESC Mostremos que a aceleração de uma partícula viajando ao longo de

Leia mais

Escalas ESCALAS COTAGEM

Escalas ESCALAS COTAGEM Escalas Antes de representar objectos, modelos, peças, etc. Deve-se estudar o seu tamanho real. Tamanho real é a grandeza que as coisas têm na realidade. Existem coisas que podem ser representadas no papel

Leia mais

Exercícios sobre ENGRENAGENS. Prof. Luciano Soares Pedroso

Exercícios sobre ENGRENAGENS. Prof. Luciano Soares Pedroso 1. (Unicamp) Considere as três engrenagens acopladas simbolizadas na figura a seguir. A engrenagem A tem 50 dentes e gira no sentido horário, indicado na figura, com velocidade angular de 100 rpm (rotação

Leia mais

Licença de uso exclusiva para Petrobrás S.A. Licença de uso exclusiva para Petrobrás S.A.

Licença de uso exclusiva para Petrobrás S.A. Licença de uso exclusiva para Petrobrás S.A. ABNT-Associação Brasileira de Normas Técnicas Sede: Rio de Janeiro Av. Treze de Maio, 13-28º andar CEP 20003-900 - Caixa Postal 1680 Rio de Janeiro - RJ Tel.: PABX (021) 210-3122 Fax: (021) 240-8249/532-2143

Leia mais

ROLAMENTO, TORQUE E MOMENTUM ANGULAR Física Geral I (1108030) - Capítulo 08

ROLAMENTO, TORQUE E MOMENTUM ANGULAR Física Geral I (1108030) - Capítulo 08 ROLAMENTO, TORQUE E MOMENTUM ANGULAR Física Geral I (1108030) - Capítulo 08 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 21 Sumário Rolamento Rolamento como rotação e translação combinados e como uma

Leia mais

DESENHO TÉCNICO MECÂNICO

DESENHO TÉCNICO MECÂNICO DESENHO TÉCNICO MECÂNICO Unidade 3 Roscas e Elementos de Máquinas Professor: Leonardo Mendes da Silva 1. Engrenagens: Engrenagens são rodas com dentes padronizados que servem para transmitir movimento

Leia mais

Matemática. A probabilidade pedida é p =

Matemática. A probabilidade pedida é p = a) Uma urna contém 5 bolinhas numeradas de a 5. Uma bolinha é sorteada, tem observado seu número, e é recolocada na urna. Em seguida, uma segunda bolinha é sorteada e tem observado seu número. Qual a probabilidade

Leia mais

Gabarito - Colégio Naval 2016/2017 Matemática Prova Amarela

Gabarito - Colégio Naval 2016/2017 Matemática Prova Amarela Gabarito - Colégio Naval 016/017 PROFESSORES: Carlos Eduardo (Cadu) André Felipe Bruno Pedra Jean Pierre QUESTÃO 1 Considere uma circunferência de centro O e raio r. Prolonga-se o diâmetro AB de um comprimento

Leia mais

Cinemática e Dinâmica de Engrenagens 1. Aspetos Gerais sobre Engrenagens

Cinemática e Dinâmica de Engrenagens 1. Aspetos Gerais sobre Engrenagens Cinemática e Dinâmica de Engrenagens 1. Aspetos Gerais sobre Engrenagens Paulo Flores José Gomes Universidade do Minho Escola de Engenharia Guimarães 2014 ÍNDICE 1. Aspetos Gerais sobre Engrenagens...

Leia mais

CARTOGRAFIA LINHA DE APOIO

CARTOGRAFIA LINHA DE APOIO COMEÇO DE CONVERSA PROF. Wagner Atallah CARTOGRAFIA LINHA DE APOIO Chegar a um lugar desconhecido utilizando um mapa requer uma série de conhecimentos que só são adquiridos num processo de alfabetização

Leia mais

Cevianas: Baricentro, Circuncentro, Incentro e Mediana.

Cevianas: Baricentro, Circuncentro, Incentro e Mediana. Cevianas: Baricentro, Circuncentro, Incentro e Mediana. 1. (Ita 014) Em um triângulo isósceles ABC, cuja área mede 48cm, a razão entre as medidas da altura AP e da base BC é igual a. Das afirmações abaixo:

Leia mais

é necessário percorrer pelas seguintes etapas: , sendo ACV e BCA ângulos suplementares; , por ser um ângulo inscrito e portanto ser igual a

é necessário percorrer pelas seguintes etapas: , sendo ACV e BCA ângulos suplementares; , por ser um ângulo inscrito e portanto ser igual a Escola Secundária com º CEB de Lousada PM Assunto: Soluções da Mega-ficha de Preparação para o Eame Nacional I _ No cálculo de AV B é necessário percorrer pelas seguintes etapas: AB A- Determinar A C B

Leia mais

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA 2ª SÉRIE DO ENSINO MÉDIO PROF. ILYDIO PEREIRA DE SÁ

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA 2ª SÉRIE DO ENSINO MÉDIO PROF. ILYDIO PEREIRA DE SÁ INSTITUTO E PLIÇÃO FERNNO RORIGUES SILVEIR 2ª SÉRIE O ENSINO MÉIO PROF. ILYIO PEREIR E SÁ Geometria Espacial: Elementos iniciais de Geometria Espacial Introdução: Geometria espacial (euclidiana) funciona

Leia mais

-----------------------------------------------------------------------------------------------------------

----------------------------------------------------------------------------------------------------------- CINEMÁTICA DO MOVIMENTO CIRCULAR www.nilsong.com.br I) RESUMO DE FÓRMULS DO MOVIMENTO CIRCULAR ( circular uniforme e uniformente variado) -----------------------------------------------------------------------------------------------

Leia mais

UNESP DESENHO TÉCNICO: Fundamentos Teóricos e Introdução ao CAD. Parte 6/5: Prof. Víctor O. Gamarra Rosado

UNESP DESENHO TÉCNICO: Fundamentos Teóricos e Introdução ao CAD. Parte 6/5: Prof. Víctor O. Gamarra Rosado UNESP UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE ENGENHARIA CAMPUS DE GUARATINGUETÁ DESENHO TÉCNICO: Fundamentos Teóricos e Introdução ao CAD Parte 6/5: 14. Perspectivas Prof. Víctor O. Gamarra Rosado

Leia mais

TRIGONOMETRIA CICLO TRIGONOMÉTRICO

TRIGONOMETRIA CICLO TRIGONOMÉTRICO TRIGONOMETRIA CICLO TRIGONOMÉTRICO Arcos de circunferência A e B dividem a circunferência em duas partes. Cada uma dessas partes é um arco de circunferência (ou apenas arco). A e B são denominados extremidades

Leia mais

06-11-2015. Sumário. Da Terra à Lua. Movimentos no espaço 02/11/2015

06-11-2015. Sumário. Da Terra à Lua. Movimentos no espaço 02/11/2015 Sumário UNIDADE TEMÁTICA 1 Movimentos na Terra e no Espaço. Correção do 1º Teste de Avaliação. Movimentos no espaço. Os satélites geoestacionários. - O Movimentos de satélites. - Características e aplicações

Leia mais

Solução Comentada Prova de Matemática

Solução Comentada Prova de Matemática 18. Se x e y são números inteiros maiores do que 1, tais que x é um divisor de 0 e y é um divisor de 35, então o menor valor possível para y x é: A) B) C) D) E) 4 35 4 7 5 5 7 35 Questão 18, alternativa

Leia mais

é um círculo A tampa A face é um retângulo

é um círculo A tampa A face é um retângulo No cotidiano, estamos cercados de objetos que têm diferentes formas. Por exemplo, uma caixa de papelão: suas faces são retângulos, e a caixa é um paralelepípedo. Outro exemplo: uma lata de óleo tem a forma

Leia mais

NOTAÇÕES : conjunto dos números naturais : conjunto dos números reais + : conjunto dos números reais não-negativos

NOTAÇÕES : conjunto dos números naturais : conjunto dos números reais + : conjunto dos números reais não-negativos MATEMÁTICA NOTAÇÕES : conjunto dos números naturais : conjunto dos números reais + : conjunto dos números reais não-negativos i: unidade imaginária; i = P(A): conjunto de todos os subconjuntos do conjunto

Leia mais

Características das Figuras Geométricas Espaciais

Características das Figuras Geométricas Espaciais Características das Figuras Geométricas Espaciais Introdução A Geometria espacial (euclidiana) funciona como uma ampliação da Geometria plana e trata dos métodos apropriados para o estudo de objetos espaciais,

Leia mais

2 - A rosca em que o filete de perfil tem forma triangular, denomina-se rosca: a) ( ) redonda; b) ( ) quadrada; c) (x) triangular.

2 - A rosca em que o filete de perfil tem forma triangular, denomina-se rosca: a) ( ) redonda; b) ( ) quadrada; c) (x) triangular. Lista de exercícios 1 - PARAFUSOS Marque com um X a resposta correta. 1 - Uma característica do parafuso é que todos eles apresentam: a) ( ) pinos; b) (x) roscas; c) ( ) arruelas. 2 - A rosca em que o

Leia mais

Trigonometria. Relação fundamental. O ciclo trigonométrico. Pré. b c. B Sabemos que a 2 = b 2 + c 2, dividindo os dois membros por a 2 : a b c 2 2 2

Trigonometria. Relação fundamental. O ciclo trigonométrico. Pré. b c. B Sabemos que a 2 = b 2 + c 2, dividindo os dois membros por a 2 : a b c 2 2 2 Trigonometria Relação fundamental C b a A c B Sabemos que a = b + c, dividindo os dois membros por a : a b c = + a a a sen + cos = Temos também que: b c senα= e cosα= a a Como b tgα= c, concluímos que:

Leia mais

45 Fresando ranhuras retas - II

45 Fresando ranhuras retas - II A U A UL LA Fresando ranhuras retas - II Na aula passada você aprendeu como fresar ranhuras retas por reprodução do perfil da fresa. Nesta aula você vai aprender como fresar ranhuras em T, trapezoidal

Leia mais

Exercícios de Mecânica - Área 3

Exercícios de Mecânica - Área 3 1) O bloco de peso 10lb tem uma velocidade inicial de 12 pés/s sobre um plano liso. Uma força F = (3,5t) lb onde t é dado em segundos, age sobre o bloco durante 3s. Determine a velocidade final do bloco

Leia mais

Descobrindo medidas desconhecidas (I)

Descobrindo medidas desconhecidas (I) Descobrindo medidas desconhecidas (I) V ocê é torneiro em uma empresa mecânica. Na rotina de seu trabalho, você recebe ordens de serviço acompanhadas dos desenhos das peças que você tem de tornear. Vamos

Leia mais

Prof. Neckel FÍSICA 1 PROVA 1 TEMA 2 PARTE 1 PROF. NECKEL POSIÇÃO. Sistema de Coordenadas Nome do sistema Unidade do sistema 22/02/2016.

Prof. Neckel FÍSICA 1 PROVA 1 TEMA 2 PARTE 1 PROF. NECKEL POSIÇÃO. Sistema de Coordenadas Nome do sistema Unidade do sistema 22/02/2016. FÍSICA 1 PROVA 1 TEMA 2 PARTE 1 PROF. NECKEL Cinemática 1D POSIÇÃO Sistema de Coordenadas Nome do sistema Unidade do sistema Reta numérica real com origem Crescimento para direita, decrescimento para esquerda

Leia mais

II - Teorema da bissetriz

II - Teorema da bissetriz I - Teorema linear de Tales Se três ou mais paralelas são cortadas por duas transversais, então os segmentos determinados numa transversal têm medidas que são diretamente proporcionais às dos segmentos

Leia mais