CONTROLE ESTATÍSTICO DA QUALIDADE

Tamanho: px
Começar a partir da página:

Download "CONTROLE ESTATÍSTICO DA QUALIDADE"

Transcrição

1 CONTROLE ESTATÍSTICO DA QUALIDADE Prof., PhD OBJETIVO DO CEP A idéia principal do Controle Estatístico de Processo (CEP) é que melhores processos de produção, ou seja, com menos variabilidade, propiciam níveis melhores de qualidade nos resultados finais da produção. Melhores processos implicam em menos custos. A redução do custo através do CEP se dá principalmente por duas razões: 1) Inspeção por amostragem 2) Redução do rejeito 2 HISTÓRICO METODOLOGIA Fase de concepção Identificação da problemática Planejamento dos experimentos Walter Shewhart começou a colocar em prática nas fábricas dos Estados Unidos alguns conceitos básicos de Estatística e de Metodologia Científica na década de Ele foi o pioneiro da área de Controle Estatístico de Processo (CEP). Fase de Experimentação Fase de Análise Experimentação Análise dos resultados Fase de Correção Ação corretiva 3 4

2 CONTROLE VS INSPEÇÃO LINHA DE PRODUÇÃO, INSPEÇÃO E MONITORAMENTO Objetivo Ação CONTROLE NÃO É INSPEÇÃO Identificação das grandes causas por trás das irregularidades da produção Correção das irregularidades da produção Eliminação de peças de baixa qualidade que não devem ser colocadas no mercado Identificação de refugos Inspeção Inicial Sublinha Inspeção fora da linha Monitoramento Passa Descarta Retrabalha Sublinha Monitoramento Inspeção fora da linha Passa Descarta Retrabalha Inspeção Final Passa Descarta Retrabalha Nível Gerencial Operacional 5 6 TIPOS DE CAUSAS DE IRREGULARIDADES Especial Exemplos de causas especiais são: trovoada e relâmpago, vento de uma janela deixada aberta, funcionário intoxicado, treinamento onde faltou um ensinamento importante, uma substância estranha na matéria prima, um atraso na chegada dos funcionários porque o ônibus quebrou,... Estrutural Repetitiva, tem um padrão bem definido. Comum Exemplos de causas comuns são: uma fábrica no sertão do Ceará sem ar condicionado, matéria-prima de baixa qualidade mas de baixo preço, gerente de produção sem nenhum estudo na área de produção, maquinaria velha, a combinação errada de ingredientes num processo químico,... TIPOS DE CAUSAS DE IRREGULARIDADES Comum Especial Estrutural Frequência Sempre Irregular Regularidades Previsível? Média; Desvio padrão Irregular Dados individuais Nro Causas Muitas Uma ou poucas Uma ou poucas Solução Melhorar todo o processo Identificar ou eliminar as causas Gerenciar correlações 7 8

3 FUNDAMENTOS DO CONTROLE ESTATÍSTICO DE PROCESSOS 40 Valores de uma variável X Freqüência X Histograma da variável X PROCESSO ISENTO DE CAUSAS ESPECIAIS CAUSA ESPECIAL Causa especial altera a média do processo 11 12

4 CAUSA ESPECIAL Causa especial altera a média e aumenta a variabilidade do processo Freqüência X (ml) X Número das observações Amostra LCI LCS Meda Alvo

5 X (ml) Número das observações Amostra LCI LCS Média Alvo

6 QUESTÃO? MEDIDAS DESCRITIVAS Em alguns setores da Engenharia Mecânica é comum a visão de que a variabilidade inerente ao processo de produção foi superada com a utilização da robótica. Portanto não exite mais uma necessidade de monitoramento do processo. O QUE VOCÊS ACHAM DISSO? Quando um gerente de produção mede e analisa uma característica da linha de produção ele tem em mente a melhoria do processo. Por outro lado, um estatístico verá esse mesmo processo como algo mais abstrato. Ele verá se os números gerados são centrados e simétricos, se existem ou não dados discrepantes ou então de existe uma relação entre as variáveis. Um modo de descrever essas características é através das medidas descritivas: Média, Mediana, 1 Quartil, 3 Quartil, Desvio-Padrão MÉTODOS GRÁFICOS GRÁFICO DE BARRAS Os gráficos nos permitem representar as informações da tabela de forma visual. Os gráficos mais comuns são: Gráfico de Barras Variáveis discretas com poucas modalidades As barras são separadas umas das outras As barras têm a mesma largura Diagrama de barras Frequencia Frequencia Relativa Frequencia Relativa Acumulada Gráfico de linhas Frequencia Relativa Acumulada Frequencia Exemplo 1: Frequencia e Frequencia Relativa Frequencia Relativa 30.0% 25.0% 20.0% 15.0% 10.0% 5.0% % Fornece para quantos concorrentes Fornece para quantos concorrentes 23 24

7 100.0% 90.0% GRÁFICO MISTO Exemplo 1: Frequencia Relativa Acumulada BOX PLOT * Ponto fora da curva Q3+1.5(Q3-Q1) 80.0% 70.0% 60.0% 50.0% 40.0% 30.0% 20.0% 10.0% Frequencia Relativa Frequencia Relativa Acumulada Q3 Mediana Q1 0.0% Fornece para quantos concorrentes Q1-1.5(Q3-Q1) * * BOX PLOT VALORES AGRUPADOS 1. Determinar quantas classes: (Regra de Sturges) Número de observações estatísticas 27 28

8 VALORES AGRUPADOS 2. Calcular a amplitude das classes 3. Determinar as classes VALORES AGRUPADOS (Maior valor - menor valor da série estatística) Classes de amplitudes iguais AMOSTRAGEM TESTE DE COLISÃO Inspeção de 100% dos itens produzidos é dispendiosa e pode ocasionar atrasos na produção. A seleção de amostras de tamanho muito menor que a população enxuga os custos e paradoxalmente acaba representando melhor as características da população

9 AMOSTRAGEM INFERÊNCIA ESTATÍSTICA Imagine o operador que tem a responsabilidade de verificar o nível de preenchimento de um lote de garrafas de cerveja. O lote tem unidades. Depois de inspecionar apenas 100 garrafas, é muito provável que o operador já não está mais pensando em níveis de preenchimento, mas sim no próximo jogo do seu time de futebol, na próxima oportunidade de tomar uma cerveja, ou na próxima namorada. É um conjunto de métodos (estimação, testes de hipóteses) que permitem tirar conclusões (inferir) sobre uma população a partir de uma informação parcial proveniente de uma amostra. Amostra No final, inspeção a 100% tem custos elevados e resultados péssimos. A seleção de amostras de tamanho muito menor que a população enxuga os custos e paradoxalmente acaba representando melhor as características da população. População Informações sobre população Inferência Estatística Informações sobre a amostra TAMANHO DA AMOSTRA? TAMANHO DA AMOSTRA? ME = Margem de erro >= Média da amostra - Média da população Média Amostral - ME Média Amostral + ME Média Amostral Intuitivamente: Quanto maior o tamanho da amostra, mais próxima ela estará da população, logo a margem de erro será menor. Intervalo de confiança QUAL A PROBABILIDADE DE QUE A MÉDIA POPULACIONAL ESTEJA DENTRO DO INTERVALO DE CONFIANÇA? 35 36

10 TAMANHO DA AMOSTRA? Nível de confiança (%) - A probabilidade de que a média da POPULAÇÃO esteja dentro do intervalo de confiança. ÁREAS SOBRE A CURVA PARA QUALQUER DISTRIBUIÇÃO NORMAL 99.72% 95,44% 68,26% Intuitivamente: Quanto maior o nível de confiança exigido, maior terá que ser a amostra para que atinja esse nível de confiança. µ 3σ µ 2σ µ σ µ µ + σ µ +2σ µ +3σ TABELA: TAMANHO DA AMOSTRA FERRAMENTAS DO CEP 39

11 GRÁFICO DE CONTROLE GRÁFICO DE CONTROLE Média Alvo LCS Média Alvo 3σ n LCI 0 Dia 1 Dia 2 Dia 3 Dia 4 Dia 5 0 Dia 1 Dia 2 Dia 3 Dia 4 Dia 5 Média Alvo Médias de pqns amostras Média Alvo Médias de pqns amostras LCS LCI LCS LCI Limite de Controle Superior - LCS Limite de Controle Inferior - LCI ÁREAS SOBRE A CURVA PARA QUALQUER DISTRIBUIÇÃO NORMAL 99.72% 95,44% 68,26% Em termos estatísticos, os dois limites de controle definem um intervalo de confiança com nível de confiança de 99,73%. O número significa que um alarme falso pode ocorrer uma vez em 370 subgrupos. É o preço pago pela utilização de amostragem, mas pelo menos a possibilidade de um alarme falso é muito pequena. Se forem tiradas 16 amostras por dia numa fábrica, o alarme falso iria ocorrer apenas uma vez cada em 23 dias, µ 3σ µ 2σ µ σ µ µ + σ µ +2σ µ +3σ 43 44

12 CÁLCULO DO LCI E LCS PARA A MÉDIA Distância = σ R/d2 3 =3 = A n n 2 R LCS : X + A2 R LCI : X A2 R CÁLCULO DO LCI E LCS PARA A AMPLITUDE Controla a variabilidade do processo, possível identificação de causas especiais. LCI R = D 3 R LCS R = D 4 R COEFICIENTES DE SHEWHART EXEMPLO: RAÇÕES MI-AU Na linha de produção de ração animal da Empresa Mi-Au, sempre houve um problema no momento do enchimento do pacote de um quilo. A clientela reclamava muito sobre os pacotes com menos ração, e eventualmente a empresa perdia clientes. Em um determinado dia, caíram os pacotes de ração nas garras dos fiscais e encontraram vários pacotes com muito menos que um quilo de ração resultando em multas pesadas. O gerente então decidiu implantar um gráfico de controle no processo no ponto do enchimento dos pacotes. Para a coleta de dados, decidiu-se em utilizar amostras periódicas de hora em hora cada uma com 5 mensurações. n = tamanho da amostra Fonte: Gestão da Qualidade, Monteiro de Carvalho, M et al. Elsevier

13 Amostra EXEMPLO: RAÇÕES MI-AU Hora Média Amplitude Média das Médias X = Peso médio do saco de ração GRÁFICO DAS MÉDIAS Dispersão Média das Amplitudes R = Fonte: Gestão da Qualidade, Monteiro de Carvalho, M et al. Elsevier Hora Distância = CÁLCULO DO LCI E LCS σ R/d2 3 =3 = A n n 2 R COEFICIENTES DE SHEWHART LCS : X + A2 R LCI : X A2 R n = tamanho da amostra 51 52

14 CÁLCULO DO LCI E LCS LCS : X + A2 R = = = = LCI : X A2 R = = = = Peso médio do saco de ração GRÁFICO DE CONTROLE DA MÉDIA Dispersão Hora SITUAÇÕES PARA INVESTIGAÇÃO CONTROLE DAS AMPLITUDES Média das Amplitudes R = LCI R = D 3 R = = 0 LCS R = D 4 R = = =

15 COEFICIENTES DE SHEWHART GRÁFICO DAS AMPLITUDES Amplitudes Amplitude da amostragem n = tamanho da amostra Hora IDENTIFICAÇÃO E CORREÇÃO Nota-se que o subgrupo 15 tem média mais alta que o limite de controle, e, portanto, a média deste subgrupo é suficientemente longe da média do processo para justificar uma investigação e eventual eliminação de uma causa especial. O gerente fez exatamente isso e descobriu a presença de um operador substituto quase sem treinamento na função substituindo o operador veterano com médico marcado nesse horário. Houve então um treinamento rápido nos próximos dias para garantir o desempenho de todos os operadores nas tarefas mais importantes de toda a linha de produção. Quase sempre, os problemas na fábrica têm origem na gestão das operações. Se o operador foi ensinado numa maneira inadequada a culpa é da gerência e não do operador. EXERCÍCIO 1 O gerente da empresa West Allis está preocupado com a produção de um parafuso de metal que é usado por um dos maiores clientes da empresa. O diâmetro do parafuso é um ponto crítico. Ele foi projetado pra ter cm. Os dados das últimas amostragens estão na tabela abaixo, onde a amostra é de 4 observações. Verifique se o processo está sob controle. Observação Dia \ Amostra

16 EXERCÍCIO 2 A Watson Electric Company produz lâmpadas incandescentes. As seguintes intensidades luminosas (lumens) foram coletados para lâmpadas de 40W durante o CEP. Observação Amostra ESTUDO DE CORRELAÇÃO: REGRESSÃO LINEAR 1) Calcule os limites de controle LCS e LCI 2) Uma nova amostragem foi feita recentemente, com os seguintes dados: 570, 603, 623, 583. O processo ainda está sob controle? Existe alguma razão para se investigar esse processo? 61 TÉCNICAS PARA ENCONTAR O FATOR CAUSAL Fator Causal : Princípio: Existe uma correlação entre histórico e fatores ambientais; Técnicas Quantitativas: Técnicas de Correlação: Identificação da a relação matemática entre parâmetros da ação e demanda, a fim de se prever o futuro; Técnicas Qualitativas: Transformar, de forma estruturada, o conhecimento de especialistas; Questão: Dada a função, quais são os coeficientes a n que melhor relacionam o tempo de propaganda e o aumento de vendas? PREVISÃO INCREMENTAL: REGRESSÃO LINEAR Premissa: Existe um histórico Eduardo 44 Pécora Eduardo 45 Pécora

17 GRÁFICO DE DISPERSÃO AJUSTE DA CURVA LINEAR Método dos mínimos quadrados. x f(x) Dispersão f(x) x Objetivo: Encontrar os valores de n e m tal que a soma das distâncias (f(x i ) y) 2 entre os valores f(x) e y = mx + n seja a menor possível EXEMPLO EXEMPLO m =0.65 e n= 3.65 y = mx+ n m =0.95 e n= 5.45 y = mx+ n Dispersão Dispersão f(x) x f(x) x 67 68

18 PASSOS PARA O AJUSTE DA CURVA PASSOS PARA O AJUSTE DA CURVA Passo 1 - Coleta de dados Passo 2 - Cálculo da tabela Passo 3 - Cálculo das médias x = y = x k f(x) k k = Quantidade de dados na amostra, neste caso k = 5 Somas x xi f(xi) xi * f(xi) xi^ f(x) x f(x) x 2 Passo 4 - Cálculo de m xf(x) kx.y m = x2 kx 2 Passo 5 - Cálculo de n n = y mx Passo 6 - Modelo Linear indicado pelo M.M.Q.* f(x) =mx + n * Método dos Mínimos Quadrados Somas x xi f(xi) xi * f(xi) xi^ f(x) x f(x) x EXEMPLO NO EXCEL m =2.1 e n= -0.2 y = mx+ n Dispersão f(x) x 71 72

19 NO EXCEL NO EXCEL NO EXCEL ANÁLISE DO R Correlação Linear Positiva Correlação Linear Negativa Correlação Linear Inexistente 75 76

20 REGRESSÃO E CORRELAÇÃO REGRESSÃO LINEAR MÚLTIPLA EXEMPLO Correlação linear Qual a diferença entre Regressão e Correlação linear?! Taxista:! y " receita diária (R$);! d " distância percorrida (km);! t " tempo de trabalho (h);! Dados:! Qual é a relação entre receita do taxista, distância e tempo?! No Excel:! Função Regressão; A Regressão linear se preocupa essencialmente com a FORMA da relação entre as suas variáveis.! Assumindo a equação: A Correlação linear se com a intensidade dessa relação! 77 Eduardo 48 Pécora UTILIZANDO O EXCEL - ANÁLISE DE DADOS UTILIZANDO O EXCEL - ANÁLISE DE DADOS! Regressão Linear Múltipla:! Função de regressão:! Dados:! Necessidade de troca de variáveis;! Incluindo os dados:! Função:! Análise de Dados " Regressão Obs.: se o seu Excel não possuir a função Análise de Dados, acione esta através do menu : Ferramentas -> Suplementos. Eduardo 49 Pécora Eduardo 50 Pécora

21 UTILIZANDO O EXCEL - ANÁLISE DE DADOS ANÁLISE DO R! Resultados da Regressão:! Resultado da Regressão: Correlação Linear Positiva! R2 : qualidade da regressão;! Relação entre variâncias:! Das observações;! Da regressão;! Relação entre as distâncias:! Das observações à média;! Da regressão à média; Correlação Linear Negativa Correlação Linear Inexistente Eduardo 51 Pécora 82 CORRELAÇÃO E CAUSALIDADE CORRELAÇÃO E CAUSALIDADE - EXEMPLO! O método de regressão:! Indica a correlação entre fatores;! Não indica a relação de causa e efeito;! Mas não queríamos encontrar o fator causal?! A relação de causa e efeito é identificada pela lógica, através das questões:! Existe correlação entre as variáveis?! Se não, não existe causa e efeito;! As variáveis independentes da regressão sempre mudam antes da variável dependente?! Se não, a as variáveis independentes não estão causando as mudanças na variável dependente;! Tem lógica a relação de causa e efeito entre as variáveis?! Se não, pode ser uma correlação acidental e não efetivamente uma relação de causa e efeito;! Exemplo:! Relação das vendas de guarda-chuva com a umidade: Umidade Correlação? SIM! Chuva Causa e Efeito? SIM Vendas Conclusão: O fator causal é encontrado através da análise completa de regressão, desde a seleção das variáveis até a análise do modelo, e não simplesmente pela regressão! Eduardo 53 Pécora Eduardo 54 Pécora

Capítulo 9 Controle Estatístico de Processo e Ferramentas da Qualidade

Capítulo 9 Controle Estatístico de Processo e Ferramentas da Qualidade Capítulo 9 Controle Estatístico de Processo e Ferramentas da Qualidade Robert Wayne Samohyl 9.1 Introdução 9.1.1 Conceitos históricos 9.1.2 Conceitos básicos 9.2 Medidas descritivas e gráficos básicos

Leia mais

Decidir como medir cada característica. Definir as características de qualidade. Estabelecer padrões de qualidade

Decidir como medir cada característica. Definir as características de qualidade. Estabelecer padrões de qualidade Escola de Engenharia de Lorena - EEL Controle Estatístico de Processos CEP Prof. MSc. Fabrício Maciel Gomes Objetivo de um Processo Produzir um produto que satisfaça totalmente ao cliente. Conceito de

Leia mais

Análise Exploratória de Dados

Análise Exploratória de Dados Análise Exploratória de Dados Profª Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Programa de Pós-graduação em Saúde Coletiva email: alcione.miranda@gmail.com Introdução O primeiro passo

Leia mais

Controle estatístico de processo: algumas ferramentas estatísticas. Linda Lee Ho Depto Eng de Produção EPUSP 2009

Controle estatístico de processo: algumas ferramentas estatísticas. Linda Lee Ho Depto Eng de Produção EPUSP 2009 Controle estatístico de processo: algumas ferramentas estatísticas Linda Lee Ho Depto Eng de Produção EPUSP 2009 Controle estatístico de Processo (CEP) Verificar estabilidade processo Coleção de ferramentas

Leia mais

COMENTÁRIO AFRM/RS 2012 ESTATÍSTICA Prof. Sérgio Altenfelder

COMENTÁRIO AFRM/RS 2012 ESTATÍSTICA Prof. Sérgio Altenfelder Comentário Geral: Prova muito difícil, muito fora dos padrões das provas do TCE administração e Economia, praticamente só caiu teoria. Existem três questões (4, 45 e 47) que devem ser anuladas, por tratarem

Leia mais

UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo

UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo UNIVERSIDADE DE SÃO PAULO Faculdade de Arquitetura e Urbanismo DISTRIBUIÇÃO AMOSTRAL ESTIMAÇÃO AUT 516 Estatística Aplicada a Arquitetura e Urbanismo 2 DISTRIBUIÇÃO AMOSTRAL Na aula anterior analisamos

Leia mais

1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3.

1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3. 1 1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3. Modelo de Resultados Potenciais e Aleatorização (Cap. 2 e 3

Leia mais

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES Caros concurseiros, Como havia prometido, seguem comentários sobre a prova de estatística do ICMS RS. Em cada questão vou fazer breves comentários, bem como indicar eventual possibilidade de recurso. Não

Leia mais

CRITÉRIOS PARA A DETERMINAÇÃO DOS INTERVALOS DE CLASSE

CRITÉRIOS PARA A DETERMINAÇÃO DOS INTERVALOS DE CLASSE CRITÉRIOS PARA A DETERMINAÇÃO DOS INTERVALOS DE CLASSE Número de classes a considerar (k): a) Tabela de Truman L. Kelley n 5 10 25 50 100 200 500 1000 k 2 4 6 8 10 12 15 15 b) k=5 para n 25 e para n >25.

Leia mais

Teorema Central do Limite e Intervalo de Confiança

Teorema Central do Limite e Intervalo de Confiança Probabilidade e Estatística Teorema Central do Limite e Intervalo de Confiança Teorema Central do Limite Teorema Central do Limite Um variável aleatória pode ter uma distribuição qualquer (normal, uniforme,...),

Leia mais

Análise de Regressão. Tópicos Avançados em Avaliação de Desempenho. Cleber Moura Edson Samuel Jr

Análise de Regressão. Tópicos Avançados em Avaliação de Desempenho. Cleber Moura Edson Samuel Jr Análise de Regressão Tópicos Avançados em Avaliação de Desempenho Cleber Moura Edson Samuel Jr Agenda Introdução Passos para Realização da Análise Modelos para Análise de Regressão Regressão Linear Simples

Leia mais

Trabalhando com Pequenas Amostras: Distribuição t de Student

Trabalhando com Pequenas Amostras: Distribuição t de Student Probabilidade e Estatística Trabalhando com Pequenas Amostras: Distribuição t de Student Pequenas amostras x Grandes amostras Nos exemplos tratados até agora: amostras grandes (n>30) qualquer tipo de distribuição

Leia mais

Apresentação... 19 Prefácio da primeira edição... 21 Prefácio da segunda edição... 27 Introdução... 33

Apresentação... 19 Prefácio da primeira edição... 21 Prefácio da segunda edição... 27 Introdução... 33 Sumário Apresentação... 19 Prefácio da primeira edição... 21 Prefácio da segunda edição... 27 Introdução... 33 Capítulo I CIÊNCIA, CONHECIMENTOS E PESQUISA CIENTÍFICA... 37 1. Conceito de ciência e tipos

Leia mais

Probabilidade. Renata Souza. Introdução. Tabelas Estatísticas. População, Amostra e Variáveis. Gráficos e Distribuição de Freqüências

Probabilidade. Renata Souza. Introdução. Tabelas Estatísticas. População, Amostra e Variáveis. Gráficos e Distribuição de Freqüências Probabilidade Introdução Tabelas Estatísticas População, Amostra e Variáveis Gráficos e Distribuição de Freqüências Renata Souza Conceitos Antigos de Estatística stica a) Simples contagem aritmética Ex.:

Leia mais

Introdução à Análise Química QUI 094 ERRO E TRATAMENTO DE DADOS ANALÍTICOS

Introdução à Análise Química QUI 094 ERRO E TRATAMENTO DE DADOS ANALÍTICOS Introdução a Analise Química - II sem/2012 Profa Ma Auxiliadora - 1 Introdução à Análise Química QUI 094 1 semestre 2012 Profa. Maria Auxiliadora Costa Matos ERRO E TRATAMENTO DE DADOS ANALÍTICOS Introdução

Leia mais

EXCEL 2013. Público Alvo: Arquitetos Engenheiros Civis Técnicos em Edificações Projetistas Estudantes das áreas de Arquitetura, Decoração e Engenharia

EXCEL 2013. Público Alvo: Arquitetos Engenheiros Civis Técnicos em Edificações Projetistas Estudantes das áreas de Arquitetura, Decoração e Engenharia EXCEL 2013 Este curso traz a vocês o que há de melhor na versão 2013 do Excel, apresentando seu ambiente de trabalho, formas de formatação de planilhas, utilização de fórmulas e funções e a criação e formatação

Leia mais

Estatística Aplicada. Gestão de TI. Evanivaldo Castro Silva Júnior

Estatística Aplicada. Gestão de TI. Evanivaldo Castro Silva Júnior Gestão de TI Evanivaldo Castro Silva Júnior Porque estudar Estatística em um curso de Gestão de TI? TI trabalha com dados Geralmente grandes bases de dados Com grande variabilidade Difícil manipulação,

Leia mais

Estatística e Probabilidade

Estatística e Probabilidade Correlação Estatística e Probabilidade Uma correlação é uma relação entre duas variáveis. Os dados podem ser representados por pares ordenados (x,y), onde x é a variável independente ou variável explanatória

Leia mais

Variabilidade do processo

Variabilidade do processo Variabilidade do processo Em todo processo é natural encontrar certa quantidade de variabilidade. Processo sob controle estatístico: variabilidade natural por causas aleatórias Processo fora de controle:

Leia mais

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA 4 a LISTA DE EXERCÍCIOS GBQ12 Professor: Ednaldo Carvalho Guimarães AMOSTRAGEM

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA 4 a LISTA DE EXERCÍCIOS GBQ12 Professor: Ednaldo Carvalho Guimarães AMOSTRAGEM 1 UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA 4 a LISTA DE EXERCÍCIOS GBQ12 Professor: Ednaldo Carvalho Guimarães AMOSTRAGEM 1) Um pesquisador está interessado em saber o tempo médio que

Leia mais

ESCOLA SECUNDÁRIA MANUEL DA FONSECA, SANTIAGO DO CACÉM GRUPO DISCIPLINAR: 500 Matemática Aplicada às Ciências Sociais

ESCOLA SECUNDÁRIA MANUEL DA FONSECA, SANTIAGO DO CACÉM GRUPO DISCIPLINAR: 500 Matemática Aplicada às Ciências Sociais ANO: 11º ANO LECTIVO : 008/009 p.1/7 CONTEÚDOS MODELOS MATEMÁTICOS COMPETÊNCIAS A DESENVOLVER - Compreender a importância dos modelos matemáticos na resolução de problemas de problemas concretos. Nº. AULAS

Leia mais

Gráfico de Controle por Variáveis

Gráfico de Controle por Variáveis Gráfico de Controle por Variáveis Roteiro 1. Construção de Gráficos de Controle de X e R 2. Análise de Desempenho dos Gráficos X e R 3. Alternativas para Monitoramento da Dispersão 4. Regras Suplementares

Leia mais

Análise descritiva de Dados. a) Média: (ou média aritmética) é representada por x e é dada soma das observações, divida pelo número de observações.

Análise descritiva de Dados. a) Média: (ou média aritmética) é representada por x e é dada soma das observações, divida pelo número de observações. Análise descritiva de Dados 4. Medidas resumos para variáveis quantitativas 4.1. Medidas de Posição: Considere uma amostra com n observações: x 1, x,..., x n. a) Média: (ou média aritmética) é representada

Leia mais

Estatística Aplicada ao Serviço Social

Estatística Aplicada ao Serviço Social Estatística Aplicada ao Serviço Social Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Introdução O que é Estatística? Coleção de métodos

Leia mais

Mestrado em Gestão Econômica do Meio Ambiente

Mestrado em Gestão Econômica do Meio Ambiente Mestrado em Gestão Econômica do Meio Ambiente Programa de Pós-graduação em Economia Sub-Programa Mestrado Profissional CEEMA/ECO/UnB Disciplina: ECO 333051 Métodos Estatísticos e Econométricos Instrutores:

Leia mais

Preparação para a Certificação de Engenheiro da Qualidade 1

Preparação para a Certificação de Engenheiro da Qualidade 1 Preparação para a Certificação de Engenheiro da Qualidade 1 OBJETIVOS DO CURSO Apresentar aos participantes os conteúdos do Corpo de Conhecimento necessários à certificação, possibilitando que aprimorem

Leia mais

ESTATÍSTICA. aula 1. Insper Ibmec São Paulo. Prof. Dr. Marco Antonio Leonel Caetano

ESTATÍSTICA. aula 1. Insper Ibmec São Paulo. Prof. Dr. Marco Antonio Leonel Caetano ESTATÍSTICA aula 1 Prof. Dr. Marco Antonio Leonel Caetano Insper Ibmec São Paulo ESTATÍSTICA COISAS DO ESTADO ESTATÍSTICA: - Apresentação e Análise de dados - Tomadas de Decisões baseadas em análises -

Leia mais

Tópicos em Inferência Estatística. Frases. Roteiro. 1. Introdução

Tópicos em Inferência Estatística. Frases. Roteiro. 1. Introdução Tópicos em Inferência Estatística Frases Torture os dados por um tempo suficiente, e eles contam tudo! fonte: mcrsoft@aimnet.com (Barry Fetter) Um homem com um relógio sabe a hora certa. Um homem com dois

Leia mais

Universidade Federal Fluminense

Universidade Federal Fluminense Universidade Federal Fluminense INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA ESTATÍSTICA V Lista 9: Intervalo de Confiança. 1. Um pesquisador está estudando a resistência de um determinado

Leia mais

AEP FISCAL CURSO DE ESTATÍSTICA

AEP FISCAL CURSO DE ESTATÍSTICA AEP FISCAL CURSO DE ESTATÍSTICA Auditor Fiscal da Receita Federal do Brasil, Analista Tributário da Receita Federal do Brasil e Auditor Fiscal do Trabalho. Prof. Weber Campos webercampos@gmail.com AUDITOR-FISCAL

Leia mais

AULAS 13, 14 E 15 Correlação e Regressão

AULAS 13, 14 E 15 Correlação e Regressão 1 AULAS 13, 14 E 15 Correlação e Regressão Ernesto F. L. Amaral 23, 28 e 30 de setembro de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de

Leia mais

Variáveis Aleatórias Discretas e Distribuições de Probabilidade

Variáveis Aleatórias Discretas e Distribuições de Probabilidade Variáveis Aleatórias Discretas e Distribuições de Probabilidade Objetivos do aprendizado a.determinar probabilidades a partir de funções de probabilidade b.determinar probabilidades a partir de funções

Leia mais

MÓDULO 1. I - Estatística Básica

MÓDULO 1. I - Estatística Básica MÓDULO 1 I - 1 - Conceito de Estatística Estatística Técnicas destinadas ao estudo quantitativo de fenômenos coletivos e empíricamente observáveis. Unidade Estatística nome dado a cada observação de um

Leia mais

7Testes de hipótese. Prof. Dr. Paulo Picchetti M.Sc. Erick Y. Mizuno. H 0 : 2,5 peças / hora

7Testes de hipótese. Prof. Dr. Paulo Picchetti M.Sc. Erick Y. Mizuno. H 0 : 2,5 peças / hora 7Testes de hipótese Prof. Dr. Paulo Picchetti M.Sc. Erick Y. Mizuno COMENTÁRIOS INICIAIS Uma hipótese estatística é uma afirmativa a respeito de um parâmetro de uma distribuição de probabilidade. Por exemplo,

Leia mais

Prof. Msc. Fernando Oliveira Boechat

Prof. Msc. Fernando Oliveira Boechat Prof. Msc. Fernando Oliveira Boechat Prof. Fernando Oliveira Boechat 1 Controle de Processos: Objetivos Gerar as informações necessárias ao desenvolvimento dos novos produtos; Fornecer os subsídios necessários

Leia mais

MEDIDAS DE DISPERSÃO

MEDIDAS DE DISPERSÃO MEDIDAS DE DISPERSÃO 1) (PETROBRAS) A variância da lista (1; 1; 2; 4) é igual a: a) 0,5 b) 0,75 c) 1 d) 1,25 e) 1,5 2) (AFPS ESAF) Dada a seqüência de valores 4, 4, 2, 7 e 3 assinale a opção que dá o valor

Leia mais

Inferência Estatística

Inferência Estatística Universidade Federal Fluminense Instituto de Matemática e Estatística Inferência Estatística Ana Maria Lima de Farias Departamento de Estatística Conteúdo 1 Inferência estatística Conceitos básicos 1 1.1

Leia mais

Teorema do Limite Central e Intervalo de Confiança

Teorema do Limite Central e Intervalo de Confiança Probabilidade e Estatística Teorema do Limite Central e Intervalo de Confiança Teorema do Limite Central Teorema do Limite Central Um variável aleatória pode ter uma distribuição qualquer (normal, uniforme,...),

Leia mais

CURSO DE ENGENHARIA DE AVALIAÇÕES IMOBILIÁRIAS METODOLOGIAS CIENTÍFICAS - REGRESSÃO LINEAR MÓDULO BÁSICO E AVANÇADO - 20 horas cada Vagas Limitadas

CURSO DE ENGENHARIA DE AVALIAÇÕES IMOBILIÁRIAS METODOLOGIAS CIENTÍFICAS - REGRESSÃO LINEAR MÓDULO BÁSICO E AVANÇADO - 20 horas cada Vagas Limitadas CURSO DE ENGENHARIA DE AVALIAÇÕES IMOBILIÁRIAS METODOLOGIAS CIENTÍFICAS - REGRESSÃO LINEAR MÓDULO BÁSICO E AVANÇADO - 20 horas cada Vagas Limitadas MÓDULO BÁSICO DIAS HORÁRIO 13/02/2014 14:00 ÁS 18:00

Leia mais

ESTATÍSTICA APLICADA À GESTÃO Ficha de exercícios 1 Estatística Descritiva 2014/2015

ESTATÍSTICA APLICADA À GESTÃO Ficha de exercícios 1 Estatística Descritiva 2014/2015 Universidade da Beira Interior - Departamento de Matemática ESTATÍSTICA APLICADA À GESTÃO Ficha de exercícios 1 Estatística Descritiva 2014/2015 1. Numa revista foi publicada uma lista com as 100 empresas

Leia mais

Procedimentos de Análise Exploratória de Dados utilizando o Br.Office Calc Professor Marcelo Menezes Reis

Procedimentos de Análise Exploratória de Dados utilizando o Br.Office Calc Professor Marcelo Menezes Reis Procedimentos de Análise Exploratória de Dados utilizando o Br.Office Calc Professor Marcelo Menezes Reis Análise Exploratória de Dados utilizando o Calc ÍNDICE ANALÍTICO 1) Procedimentos para variáveis

Leia mais

SisDEA Home Windows Versão 1

SisDEA Home Windows Versão 1 ROTEIRO PARA CRIAÇÃO E ANÁLISE MODELO REGRESSÃO 1. COMO CRIAR UM MODELO NO SISDEA Ao iniciar o SisDEA Home, será apresentada a tela inicial de Bem Vindo ao SisDEA Windows. Selecione a opção Criar Novo

Leia mais

Módulo 2. Identificação dos requisitos dos sistemas de medição, critérios de aceitação e o elemento 7.6 da ISO/TS.

Módulo 2. Identificação dos requisitos dos sistemas de medição, critérios de aceitação e o elemento 7.6 da ISO/TS. Módulo 2 Identificação dos requisitos dos sistemas de medição, critérios de aceitação e o elemento 7.6 da ISO/TS. Conteúdos deste módulo Discriminação Decomposição da variação do sistema de medição Variação

Leia mais

Escola Secundária Gabriel Pereira Évora Matemática A 10º ano. Planificação da Unidade Geometria

Escola Secundária Gabriel Pereira Évora Matemática A 10º ano. Planificação da Unidade Geometria Escola Secundária Gabriel Pereira Évora Matemática A 10º ano Planificação da Unidade Geometria 1. Generalidades Objecto da estatística e breve nota histórica sobre a evolução desta ciência; utilidade na

Leia mais

ESCOLA SECUNDÁRIA/3 da RAINHA SANTA ISABEL 402643 ESTREMOZ PLANIFICAÇÃO ANUAL DA DISCIPLINA DE MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS (MACS) 10º ANO

ESCOLA SECUNDÁRIA/3 da RAINHA SANTA ISABEL 402643 ESTREMOZ PLANIFICAÇÃO ANUAL DA DISCIPLINA DE MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS (MACS) 10º ANO ESCOLA SECUNDÁRIA/3 da RAINHA SANTA ISABEL 402643 ESTREMOZ PLANIFICAÇÃO ANUAL DA DISCIPLINA DE MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS (MACS) 10º ANO ANO LETIVO DE 2015/2016 PROFESSORES: Inácio Véstia

Leia mais

Especialização em Engenharia Clínica

Especialização em Engenharia Clínica Especialização em Engenharia Clínica Introdução a Bioestatística Docente: > Marcelino M. de Andrade, Dr. Apresentação: Módulo 02 Teoria Elementar da Amostragem A teoria elementar da amostragem é um estudo

Leia mais

Matemática Aplicada às Ciências Sociais

Matemática Aplicada às Ciências Sociais DEPARTAMENTO DE MATEMÁTICA Matemática Aplicada às Ciências Sociais Ensino Regular Curso Geral de Ciências Sociais e Humanas 10º Ano Planificação 2014/2015 Índice Finalidades... 2 Objectivos e competências

Leia mais

Hipótese Estatística:

Hipótese Estatística: 1 PUCRS FAMAT DEPTº DE ESTATÍSTICA TESTE DE HIPÓTESE SÉRGIO KATO Trata-se de uma técnica para se fazer inferência estatística. Ou seja, a partir de um teste de hipóteses, realizado com os dados amostrais,

Leia mais

4 Gráficos de controle

4 Gráficos de controle 4 Gráficos de controle O gráfico de controle é uma ferramenta poderosa do Controle Estatístico de Processo (CEP) para examinar a variabilidade em dados orientados no tempo. O CEP é composto por um conjunto

Leia mais

INE 7001 - Procedimentos de Análise Bidimensional de variáveis QUANTITATIVAS utilizando o Microsoft Excel. Professor Marcelo Menezes Reis

INE 7001 - Procedimentos de Análise Bidimensional de variáveis QUANTITATIVAS utilizando o Microsoft Excel. Professor Marcelo Menezes Reis INE 7001 - Procedimentos de Análise Bidimensional de variáveis QUANTITATIVAS utilizando o Microsoft Excel. Professor Marcelo Menezes Reis O objetivo deste texto é apresentar os principais procedimentos

Leia mais

COMO AVALIAR O RISCO DE UM PROJETO ATRAVÉS DA METODOLOGIA DE MONTE CARLO

COMO AVALIAR O RISCO DE UM PROJETO ATRAVÉS DA METODOLOGIA DE MONTE CARLO COMO AVALIAR O RISCO DE UM PROJETO ATRAVÉS DA O que é risco? Quais são os tipos de riscos? Quais são os tipos de análises? Qual a principal função do Excel para gerar simulações aleatórias? O que é distribuição

Leia mais

Métodos Quantitativos. PROF. DR. Renato Vicente

Métodos Quantitativos. PROF. DR. Renato Vicente Métodos Quantitativos PROF. DR. Renato Vicente Método Estatístico Amostra População Estatística Descritiva Inferência Estatística Teoria de Probabilidades Aula 4A Inferência Estatística: Um pouco de História

Leia mais

PALAVRAS CHAVES: CEP, variabilidade, estabilidade, capabilidade e método

PALAVRAS CHAVES: CEP, variabilidade, estabilidade, capabilidade e método Definição de método para avaliação da qualidade do processo de dosagem de pastas utilizando o Controle Estatístico de Processo RESUMO Autoria: Rogério Royer, Gilberto Tavares dos Santos O Controle Estatístico

Leia mais

Introdução a Química Analítica. Professora Mirian Maya Sakuno

Introdução a Química Analítica. Professora Mirian Maya Sakuno Introdução a Química Analítica Professora Mirian Maya Sakuno Química Analítica ou Química Quantitativa QUÍMICA ANALÍTICA: É a parte da química que estuda os princípios teóricos e práticos das análises

Leia mais

Ferramentas da Qualidade. Professor: Fabrício Maciel Gomes fmgomes@usp.br

Ferramentas da Qualidade. Professor: Fabrício Maciel Gomes fmgomes@usp.br Ferramentas da Qualidade Professor: Fabrício Maciel Gomes fmgomes@usp.br ABORDAGENS DA QUALIDADE ABORDAGENS DA QUALIDADE Desde que a Qualidade se tornou um atributo do processo produtivo, ela vem sendo

Leia mais

Universidade da Beira Interior - Departamento de Matemática ESTATÍSTICA APLICADA À PSICOLOGIA I

Universidade da Beira Interior - Departamento de Matemática ESTATÍSTICA APLICADA À PSICOLOGIA I Ano lectivo: 2008/2009 Universidade da Beira Interior - Departamento de Matemática ESTATÍSTICA APLICADA À PSICOLOGIA I Ficha de exercícios 1 Validação de Pré-Requisitos: Estatística Descritiva Curso: Psicologia

Leia mais

Intervalos Estatísticos para uma Única Amostra

Intervalos Estatísticos para uma Única Amostra Roteiro Intervalos Estatísticos para uma Única Amostra 1. Introdução 2. Intervalo de Confiança para Média i. População normal com variância conhecida ii. População normal com variância desconhecida 3.

Leia mais

Olá pessoal! Sem mais delongas, vamos às questões.

Olá pessoal! Sem mais delongas, vamos às questões. Olá pessoal! Resolverei neste ponto a prova para AFRE/SC 2010 realizada pela FEPESE no último final de semana. Nosso curso teve um resultado muito positivo visto que das 15 questões, vimos 14 praticamente

Leia mais

IMES Catanduva. Probabilidades e Estatística. no Excel. Matemática. Bertolo, L.A.

IMES Catanduva. Probabilidades e Estatística. no Excel. Matemática. Bertolo, L.A. IMES Catanduva Probabilidades e Estatística Estatística no Excel Matemática Bertolo, L.A. Aplicada Versão BETA Maio 2010 Bertolo Estatística Aplicada no Excel Capítulo 3 Dados Bivariados São pares de valores

Leia mais

3. Características amostrais. Medidas de localização e dispersão

3. Características amostrais. Medidas de localização e dispersão Estatística Descritiva com Excel Complementos. 77 3. Características amostrais. Medidas de localização e dispersão 3.1- Introdução No módulo de Estatística foram apresentadas as medidas ou estatísticas

Leia mais

1. Registou-se o número de assoalhadas da população de 100 apartamentos vendidos num bairro residencial

1. Registou-se o número de assoalhadas da população de 100 apartamentos vendidos num bairro residencial Escola Superior de Tecnologia de Viseu Fundamentos de Estatística 2010/2011 Ficha nº 1 1. Registou-se o número de assoalhadas da população de 100 apartamentos vendidos num bairro residencial 0; 0; 0; 1;

Leia mais

Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti

Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Medidas de Posição Depois de se fazer a coleta e a representação dos dados de uma pesquisa, é comum analisarmos as tendências

Leia mais

ANÁLISE DA INSPEÇÃO DA LARGURA DOS TECIDOS DE POLIPROPILENO DA INDÚSTRIA TÊXTIL OESTE LTDA

ANÁLISE DA INSPEÇÃO DA LARGURA DOS TECIDOS DE POLIPROPILENO DA INDÚSTRIA TÊXTIL OESTE LTDA ANÁLISE DA INSPEÇÃO DA LARGURA DOS TECIDOS DE POLIPROPILENO DA INDÚSTRIA TÊXTIL OESTE LTDA ORIENTADORA: Dra. Maria Emília Camargo - UNISC - kamargo@zaz.com.br CO-ORIENTADORA: Dra. Suzana Leitão Russo -

Leia mais

GERENCIANDO INCERTEZAS NO PLANEJAMENTO LOGÍSTICO: O PAPEL DO ESTOQUE DE SEGURANÇA

GERENCIANDO INCERTEZAS NO PLANEJAMENTO LOGÍSTICO: O PAPEL DO ESTOQUE DE SEGURANÇA GERENCIANDO INCERTEZAS NO PLANEJAMENTO LOGÍSTICO: O PAPEL DO ESTOQUE DE SEGURANÇA Eduardo Saggioro Garcia Leonardo Salgado Lacerda Rodrigo Arozo Benício Erros de previsão de demanda, atrasos no ressuprimento

Leia mais

Universidade Federal de Alfenas Programa de Pós-graduação em Estatística Aplicada e Biometria Prova de Conhecimentos Específicos

Universidade Federal de Alfenas Programa de Pós-graduação em Estatística Aplicada e Biometria Prova de Conhecimentos Específicos Dados que podem ser necessários a algumas questões de Estatística: P (t > t α ) = α ν 0,05 0,025 15 1,753 2,131 16 1,746 2,120 28 1,791 2,048 30 1,697 2,042 (Valor: 1,4) Questão 1. Considere o seguinte

Leia mais

Teste de Hipótese para uma Amostra Única

Teste de Hipótese para uma Amostra Única Teste de Hipótese para uma Amostra Única OBJETIVOS DE APRENDIZAGEM Depois de um cuidadoso estudo deste capítulo, você deve ser capaz de: 1.Estruturar problemas de engenharia de tomada de decisão, como

Leia mais

O presente processo de seleção tem por objetivo preencher vaga e formar cadastro de docentes para ministrar as disciplinas/áreas abaixo:

O presente processo de seleção tem por objetivo preencher vaga e formar cadastro de docentes para ministrar as disciplinas/áreas abaixo: A Faculdade de Economia e Finanças Ibmec/RJ torna pública a abertura de processo seletivo para contratação de professores PJ para o curso de Pós Graduação Executiva - CBA. I Das vagas abertas para seleção

Leia mais

Guia do professor. Ministério da Ciência e Tecnologia. Ministério da Educação. Secretaria de Educação a Distância.

Guia do professor. Ministério da Ciência e Tecnologia. Ministério da Educação. Secretaria de Educação a Distância. números e funções Guia do professor Objetivos da unidade 1. Analisar representação gráfica de dados estatísticos; 2. Familiarizar o aluno com gráfico de Box Plot e análise estatística bivariada; 3. Utilizar

Leia mais

Revisão: Noções básicas de estatística aplicada a avaliações de imóveis

Revisão: Noções básicas de estatística aplicada a avaliações de imóveis Curso de Avaliações Prof. Carlos Aurélio Nadal cnadal@ufpr.br 1 AULA 03 Revisão: Noções básicas de estatística aplicada a avaliações de imóveis 2 OBSERVAÇÃO: é o valor obtido durante um processo de medição.

Leia mais

CURSO ON-LINE PROFESSOR GUILHERME NEVES 1

CURSO ON-LINE PROFESSOR GUILHERME NEVES 1 CURSO ON-LINE PROFESSOR GUILHERME NEVES 1 Olá pessoal! Resolverei neste ponto a prova de Matemática e Estatística para Técnico Administrativo para o BNDES 2008 organizado pela CESGRANRIO. Sem mais delongas,

Leia mais

Introdução à Inferência Estatística

Introdução à Inferência Estatística Introdução à Inferência Estatística 1. População: conjunto de indivíduos, ou itens, com pelo menos uma característica em comum. Também será denotada por população objetivo, que é sobre a qual desejamos

Leia mais

Aula ERROS E TRATAMENTOS DE DADOS

Aula ERROS E TRATAMENTOS DE DADOS ERROS E TRATAMENTOS DE DADOS METAS Apresentar os algarismos significativos e operações que os envolvem; apresentar os conceitos de precisão e exatidão; apresentar os tipos de erros experimentais; apresentar

Leia mais

Estatística: Conceitos e Organização de Dados. Introdução Conceitos Método Estatístico Dados Estatísticos Tabulação de Dados Gráficos

Estatística: Conceitos e Organização de Dados. Introdução Conceitos Método Estatístico Dados Estatísticos Tabulação de Dados Gráficos Estatística: Conceitos e Organização de Dados Introdução Conceitos Método Estatístico Dados Estatísticos Tabulação de Dados Gráficos Introdução O que é Estatística? É a parte da matemática aplicada que

Leia mais

AULAS 04 E 05 Estatísticas Descritivas

AULAS 04 E 05 Estatísticas Descritivas 1 AULAS 04 E 05 Estatísticas Descritivas Ernesto F. L. Amaral 19 e 28 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

DELEGAÇÃO DE TETE CAPACITAÇÃO INTERNA DO CORPO DOCENTE/ FEVEREIRO DE 2015

DELEGAÇÃO DE TETE CAPACITAÇÃO INTERNA DO CORPO DOCENTE/ FEVEREIRO DE 2015 DELEGAÇÃO DE TETE CAPACITAÇÃO INTERNA DO CORPO DOCENTE/ FEVEREIRO DE 2015 TEMA: IBM SPSS Statistics 20 FACILITADORES: dr. Alfeu Dias Martinho dr. Pércio António Chitata dr. Domingos Arcanjo António Nhampinga

Leia mais

Omatematico.com ESTATÍSTICA DESCRITIVA

Omatematico.com ESTATÍSTICA DESCRITIVA Omatematico.com ESTATÍSTICA DESCRITIVA 1. Classifique as variáveis abaixo: (a) Tempo para fazer um teste. (b) Número de alunos aprovados por turma. (c) Nível sócio-econômico (d) QI (Quociente de inteligência).

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA

ESCOLA SUPERIOR DE TECNOLOGIA Departamento Matemática Curso Engenharia do Ambiente º Semestre 1º Folha Nº4: Intervalos de confiança Probabilidades e Estatística 1.a) Determine o intervalo de confiança a 90% para a média de uma população

Leia mais

Lista de Exercícios 1 - Estatística Descritiva

Lista de Exercícios 1 - Estatística Descritiva 1. O arquivo satisfaçãocomuniversidade.xlsx contém informações de uma amostra de 400 alunos de uma universidade. Deseja-se construir um histograma para a variável desempenho acadêmico, com intervalos de

Leia mais

BROMBERGER, Dalton (UTFPR) daltonbbr@yahoo.com.br. KUMMER, Aulison André (UTFPR) aulisonk@yahoo.com.br. PONTES, Herus³ (UTFPR) herus@utfpr.edu.

BROMBERGER, Dalton (UTFPR) daltonbbr@yahoo.com.br. KUMMER, Aulison André (UTFPR) aulisonk@yahoo.com.br. PONTES, Herus³ (UTFPR) herus@utfpr.edu. APLICAÇÃO DAS TÉCNICAS DE PREVISÃO DE ESTOQUES NO CONTROLE E PLANEJAMENTO DA PRODUÇÃO DE MATÉRIA- PRIMA EM UMA INDÚSTRIA PRODUTORA DE FRANGOS DE CORTE: UM ESTUDO DE CASO BROMBERGER, Dalton (UTFPR) daltonbbr@yahoo.com.br

Leia mais

Previsão de demanda em uma empresa farmacêutica de manipulação

Previsão de demanda em uma empresa farmacêutica de manipulação Previsão de demanda em uma empresa farmacêutica de manipulação Ana Flávia Brito Rodrigues (Anafla94@hotmail.com / UEPA) Larissa Pinto Marques Queiroz (Larissa_qz@yahoo.com.br / UEPA) Luna Paranhos Ferreira

Leia mais

Estatística descritiva. Também designada Análise exploratória de dados ou Análise preliminar de dados

Estatística descritiva. Também designada Análise exploratória de dados ou Análise preliminar de dados Estatística descritiva Também designada Análise exploratória de dados ou Análise preliminar de dados 1 Estatística descritiva vs inferencial Estatística Descritiva: conjunto de métodos estatísticos que

Leia mais

A INTEGRAÇÃO ENTRE ESTATÍSTICA E METROLOGIA

A INTEGRAÇÃO ENTRE ESTATÍSTICA E METROLOGIA A INTEGRAÇÃO ENTRE ESTATÍSTICA E METROLOGIA João Cirilo da Silva Neto jcirilo@araxa.cefetmg.br. CEFET-MG-Centro Federal de Educação Tecnológica de Minas Gerais-Campus IV, Araxá Av. Ministro Olavo Drumonnd,

Leia mais

Aula 4 Conceitos Básicos de Estatística. Aula 4 Conceitos básicos de estatística

Aula 4 Conceitos Básicos de Estatística. Aula 4 Conceitos básicos de estatística Aula 4 Conceitos Básicos de Estatística Aula 4 Conceitos básicos de estatística A Estatística é a ciência de aprendizagem a partir de dados. Trata-se de uma disciplina estratégica, que coleta, analisa

Leia mais

EXERCÍCIOS 2006 APOSTILA DE EXERCÍCIOS ESTATÍSTICA

EXERCÍCIOS 2006 APOSTILA DE EXERCÍCIOS ESTATÍSTICA EXERCÍCIOS 2006 APOSTILA DE EXERCÍCIOS ESTATÍSTICA Professor: LUIZ ANTÔNIO 1 1º) Em um escritório de consultoria, há cinco contínuos que recebem os seguintes salários mensais: R$ 800,00; R$ 780,00; R$

Leia mais

MÓDULO 7 Ferramentas da Qualidade

MÓDULO 7 Ferramentas da Qualidade MÓDULO 7 Ferramentas da Qualidade Os modelos de Qualidade Total apresentam uma estrutura teórica bem consistente, pois: não há contradições entre as suas afirmações básicas; há uma estrutura bem definida

Leia mais

Áurea Sousa /Deptº. Matemática U.A. Áurea Sousa /Deptº. Matemática U.A.

Áurea Sousa /Deptº. Matemática U.A. Áurea Sousa /Deptº. Matemática U.A. Métodos Estatísticos Mestrado em Gestão (MBA) Objectivos O que é a estatística? Como pode a estatística ajudar? Compreender o método de análise estatística; Reconhecer problemas que podem ser resolvidos

Leia mais

LISTA DE MATEMÁTICA. Aluno(a): Nº. 1. Determinada editora pesquisou o número de páginas das revistas mais vendidas em uma cidade.

LISTA DE MATEMÁTICA. Aluno(a): Nº. 1. Determinada editora pesquisou o número de páginas das revistas mais vendidas em uma cidade. LISTA DE MATEMÁTICA Aluno(a): Nº. Professor: Rosivane Série: 2 ano Disciplina: Matematica Data da prova: Pré Universitário Uni-Anhanguera MEDIDAS DE DISPERSÃO 1. Determinada editora pesquisou o número

Leia mais

RESUMO DA AULA PRÁTICA DE EXCEL

RESUMO DA AULA PRÁTICA DE EXCEL PARA CONSTRUIR TABELAS: RESUMO DA AULA PRÁTICA DE EXCEL Vai em ; Em seguida irá abrir a janela: Na parte Selecione os dados ou somente a variável que deseja analisar, por exemplo: Em seguida marque a opção

Leia mais

BIOMETRIA:CURVA DE CRESCIMENTO

BIOMETRIA:CURVA DE CRESCIMENTO UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS EXATAS E NATURAIS FACULDADE DE ESTATÍSTICA BIOMETRIA:CURVA DE CRESCIMENTO TAYANI RAIANA DE SOUZA ROQUE Disciplina: Estatística Aplicada Professores: Héliton

Leia mais

Distribuição de Freqüências

Distribuição de Freqüências Distribuição de Freqüências Por constituir-se o tipo de tabela importante para a Estatística Descritiva, faremos um estudo completo da distribuição de freqüências. Uma distribuição de freqüências condensa

Leia mais

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA MECÂNICA CURSOS DE EXTENSÃO CURSOS DE ESPECIALIZAÇÃO MODALIDADE EXTENSÃO UNIVERSITÁRIA

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA MECÂNICA CURSOS DE EXTENSÃO CURSOS DE ESPECIALIZAÇÃO MODALIDADE EXTENSÃO UNIVERSITÁRIA CURSOS DE ESPECIALIZAÇÃO MODALIDADE EXTENSÃO UNIVERSITÁRIA FEM 1000 ENGENHARIA DA QUALIDADE OBJETIVOS: O curso de Especialização em Engenharia da Qualidade visa contribuir para a preparação de profissionais

Leia mais

Universidade Federal de Pernambuco Mestrado em Estatística

Universidade Federal de Pernambuco Mestrado em Estatística Universidade Federal de Pernambuco Mestrado em Estatística Lista 4 de Exercícios de Amostragem Prof. Cristiano Ferraz 1. Em relação ao plano amostral de Bernoulli: a) Explique como retirar uma amostra

Leia mais

Introdução à Estatística Inferencial Luiz Pasquali

Introdução à Estatística Inferencial Luiz Pasquali Capítulo 4 Introdução à Estatística Inferencial Luiz Pasquali Os temas deste capítulo são: Teste Estatístico Hipótese estatística Pressuposições no teste de hipótese Regras de decisão Erros tipo I e tipo

Leia mais

O CEP COMO FERRAMENTA DE MELHORIA DE QUALIDADE E PRODUTIVIDADE NAS ORGANIZAÇÕES.

O CEP COMO FERRAMENTA DE MELHORIA DE QUALIDADE E PRODUTIVIDADE NAS ORGANIZAÇÕES. O CEP COMO FERRAMENTA DE MELHORIA DE QUALIDADE E PRODUTIVIDADE NAS ORGANIZAÇÕES. Evandro de Paula Faria, Claudia Cristina de Andrade, Elvis Magno da Silva RESUMO O cenário competitivo exige melhoria contínua

Leia mais

FSP/USP. HEP5800 Bioestatística_2011 Denise Pimentel Bergamaschi

FSP/USP. HEP5800 Bioestatística_2011 Denise Pimentel Bergamaschi Aula 1 - Excel Assuntos que serão vistos no Excel 1- Cálculo de porcentagem simples e acumulada; construção de tabelas 2- Construção de gráficos 2.1 Diagrama de barras (uma variável) 2.2 Diagrama linear

Leia mais

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA 1 a LISTA DE EXERCÍCIOS Bioestatística Professor: Ednaldo Carvalho Guimarães

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA 1 a LISTA DE EXERCÍCIOS Bioestatística Professor: Ednaldo Carvalho Guimarães UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA a LISTA DE EXERCÍCIOS Bioestatística Professor: Ednaldo Carvalho Guimarães ) Um pesquisador obteve os seguintes valores de umidade (%) em casa

Leia mais

Elementos de Estatística (EST001-B)

Elementos de Estatística (EST001-B) Exercícios de Revisão nº 1 Análise de Dados Exercício 1: A pressão mínima de injeção (psi) em amostras de moldagem por injeção de milho de alta amilose foi determinada para oito amostras diferentes (pressões

Leia mais

Estatística II Aula 1. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística II Aula 1. Prof.: Patricia Maria Bortolon, D. Sc. Estatística II Aula 1 Prof.: Patricia Maria Bortolon, D. Sc. Por que estudar estatística? Abordagem crescentemente quantitativa na análise dos problemas; Quantidade crescente de dados Com que qualidade?

Leia mais

http://www.de.ufpb.br/~luiz/

http://www.de.ufpb.br/~luiz/ UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS Departamento de Estatística Luiz Medeiros http://www.de.ufpb.br/~luiz/ Vimos que é possível sintetizar os dados sob a forma de distribuições de frequências

Leia mais

METODOLOGIA. Preparado para: ASSOCIAÇÃO BRASILEIRA DE ALUMÍNIO - ABAL

METODOLOGIA. Preparado para: ASSOCIAÇÃO BRASILEIRA DE ALUMÍNIO - ABAL METODOLOGIA Preparado para: ASSOCIAÇÃO BRASILEIRA DE ALUMÍNIO - ABAL Março de 2010 Sumário 1. INTRODUÇÃO... 3 2. PESQUISA DE PREÇOS... 3 3. PRINCIPAIS CONCEITOS... 4 3.1. Especificação dos Insumos... 4

Leia mais