Onde Δq = e é a carga do elétron.

Tamanho: px
Começar a partir da página:

Download "Onde Δq = e é a carga do elétron."

Transcrição

1 TEORIA FÍSICA 4 Professor: Igor Ken CAPÍTULO 3 TENSÃO E POTÊNCIA ELÉTRICA energia potencial elétrica que esse mesmo elétron possui no ponto A, E A. 1. INTRODUÇÃO No capítulo anterior, estudamos a corrente elétrica. Vimos que para se estabelecer uma corrente elétrica em um condutor, deve-se fornecer uma tensão elétrica, função realizada pelo dispositivo denominado gerador elétrico. Neste capítulo, vamos estudar a tensão elétrica, que chamaremos muitas vezes de diferença de potencial (ddp). Para isso, definiremos uma grandeza escalar chamada potencial elétrico. A partir daí, estaremos em maior contato com o nosso cotidiano, quando virmos potência elétrica e energia elétrica. Entenderemos o consumo dos aparelhos eletrodomésticos e por que utilizamos a unidade quilowatt-hora para a medida da energia elétrica. Terminamos o capítulo falando sobre valores nominais dos aparelhos elétricos. 2. TENSÃO ELÉTRICA No capítulo anterior, vimos que em um condutor metálico, isolado eletricamente do meio, os elétrons livres possuem um movimento desordenado e caótico devido à agitação térmica. Figura 2: O gerador fornece energia elétrica aos elétrons livres, estabelecendo-se uma corrente elétrica no condutor metálico. Os elétrons perdem energia potencial elétrica quando se movimentam do ponto B para o ponto A (E A < E B ). A energia potencial elétrica está relacionada à carga elétrica e ao campo elétrico, no interior do condutor. Muitas vezes, nos interessa uma grandeza que esteja relacionada somente ao campo elétrico no interior do condutor, representando de forma mais generalizada as características do campo elétrico. Essa grandeza é denominada potencial elétrico. O potencial elétrico, representado por V, é uma grandeza escalar característica de cada ponto do condutor e definido como a razão entre a energia potencial elétrica e a carga elétrica. Para os pontos A e B do condutor acima, temos: V A = E A Δq e V B = E B Δq Figura 1: O condutor metálico da figura está isolado eletricamente. Sem o fornecimento de uma tensão elétrica, os portadores de carga possuem um movimento caótico e desordenado devido à agitação térmica. Para que se estabeleça uma corrente elétrica (movimentação ordenada dos elétrons), devemos conectar as extremidades desse condutor aos terminais de uma pilha (gerador elétrico). Esse gerador elétrico possui a função de fornecer energia elétrica aos portadores de carga e, consequentemente, estabelecer uma corrente elétrica. O responsável por essa movimentação ordenada dos portadores de carga é o campo elétrico, que será estudado em Eletrostática. Quando ligamos as extremidades do condutor a um gerador, estabelece-se um campo elétrico no interior do condutor e, em cada ponto, há uma energia potencial elétrica diferente associada aos portadores de carga. Um elétron, de carga Δq = e (negativo da carga elementar), que percorre o condutor (ilustrado na Figura 2) do ponto B até o ponto A, colide com os cátions do retículo cristalino do metal perdendo energia potencial elétrica em forma de energia térmica, fenômeno conhecido como Efeito Joule, que será estudado no próximo capítulo. Portanto, a energia potencial elétrica que um elétron possui no ponto B, E B, é maior que a Onde Δq = e é a carga do elétron. Sendo E A < E B e a carga do elétron Δq = e negativa, concluímos que V A > V B. Portanto, os pontos A e B do condutor possuem potenciais elétricos diferentes e com isso podemos definir a grandeza diferença de potencial elétrico (ddp), representada por U, como: U = V A V B Como os portadores de carga elétrica se movem entre pontos de diferentes potenciais elétricos no interior do condutor, concluímos que a causa da corrente elétrica é a diferença de potencial elétrico (ddp), também chamada de tensão elétrica. Assim, podemos dizer que a função do gerador elétrico é estabelecer uma diferença de potencial elétrico nas extremidades do condutor, gerando uma corrente elétrica. Para o estudo da Eletrodinâmica, a ddp é mais importante que o potencial elétrico definido em cada ponto, pois o que gera a corrente elétrica é a ddp. A unidade de potencial elétrico e tensão elétrica (ddp) no Sistema Internacional de Unidades (SI) é o volt CASD Vestibulares FÍSICA 4 1

2 (símbolo: V). Como a unidade de energia no SI é o joule (J), temos: [V A ] = [E A ] 1J 1V = [Δq] 1C Observação: quando representamos equações dimensionais (para se calcular a relação entre as grandezas e as unidades), utilizamos colchetes. Na Figura 2, vimos que os elétrons se movem de B para A, ou seja, os elétrons se movem, no interior do condutor, de pontos de menor potencial para pontos de maior potencial. No entanto, sabemos que o sentido convencional da corrente elétrica é o oposto ao dos elétrons. Portanto, no interior do condutor, a corrente elétrica tem sentido dos pontos de maior potencial para pontos de menor potencial. Figura 3: No interior do condutor, o sentido da corrente elétrica é dos pontos de maior potencial para os pontos de menor potencial. Para entendermos melhor o conceito de potencial elétrico e de ddp, façamos uma analogia ao potencial gravitacional. Para isso, consideremos a figura a seguir, onde existem dois compartimentos contendo água, sendo o nível de água no compartimento A maior que no compartimento B. do compartimento A possuir água num nível de altura maior. Assim, quanto maior esse nível de água, maior o potencial gravitacional do compartimento e, consequentemente, maior a energia potencial gravitacional. Este exemplo é análogo ao que ocorre no condutor metálico ligado aos terminais de um gerador elétrico. O gerador estabelece diferentes potenciais elétricos nas extremidades do condutor (como se fossem os diferentes níveis de altura de água nos compartimentos), consequentemente, surge um fluxo de cargas elétricas no interior do condutor, ou seja, uma corrente elétrica no sentido do potencial maior para o potencial menor. Para encerrarmos este tópico, vejamos algumas características dos geradores elétricos que serão essenciais ao estudo inicial da Eletrodinâmica (o estudo detalhado de geradores elétricos será abordado em capítulos posteriores). O gerador elétrico possui dois terminais (ou polos): o polo positivo e o polo negativo. O polo positivo possui potencial elétrico maior que o polo negativo e a tensão elétrica que o gerador fornece ao circuito é a diferença entre os potenciais dos seus terminais. Podemos ver, na Figura 3, que o sentido da corrente elétrica é do polo positivo para o polo negativo, externamente ao gerador. Observação: Nos próximos capítulos, daremos início aos circuitos elétricos. Quando falarmos de parte externa do circuito, estaremos nos referindo à parte do circuito conectada ao gerador elétrico, sendo o gerador a parte interna. Assim, na parte externa do circuito da Figura 3, a corrente percorre no sentido do polo positivo para o polo negativo, enquanto que, internamente ao gerador, a corrente percorre no sentido do polo negativo para o positivo. A figura a seguir representa o símbolo utilizado para os geradores elétricos nos circuitos, em que o polo positivo é representado por um traço maior e o polo negativo, por um traço menor. Figura 5: Símbolo de gerador elétrico. Figura 4: Dois compartimentos contendo água em níveis diferentes de altura. Sendo a altura de água no compartimento A maior que em B, o potencial gravitacional em A também é maior que em B. Assim, o circuito da Figura 3, pode ser representado conforme a figura a seguir. Os dois compartimentos estão unidos por um tubo provido de torneira. No início, a torneira está fechada, portanto, a água está em equilíbrio (semelhante ao caso do condutor metálico desligado de um gerador elétrico). Quando abrirmos a torneira, o que acontecerá? Surgirá um fluxo de água do compartimento A para o compartimento B, até que os seus níveis de água se igualem. Dizemos que o potencial gravitacional de A, antes de abrir a torneira, é maior que o potencial gravitacional de B devido ao fato Figura 6: Externamente ao gerador, a corrente tem sentido do polo positivo para o polo negativo, ou seja, do potencial maior para o potencial menor. No circuito da Figura 6, o gerador fornece uma tensão elétrica U = V A V B, sendo o potencial do polo positivo 2 FÍSICA 4 CASD Vestibulares

3 V A e o potencial do polo negativo V B, com V A > V B. A corrente flui no sentido do polo positivo para o polo negativo, externamente ao gerador. Internamente ao gerador, a corrente flui do polo negativo ao polo positivo. 3. POTÊNCIA ELÉTRICA Neste tópico, estudaremos a energia elétrica e a potência elétrica desenvolvidas em um bipolo qualquer. Denomina-se bipolo elétrico todo dispositivo elétrico com dois terminais acessíveis, isto é, que podem ser ligados a um circuito elétrico. Quando um bipolo elétrico está presente em circuitos, ele fica sujeito a uma diferença de potencial U, conforme a figura a seguir: Figura 9: Em um intervalo de tempo Δt, a carga Δq atravessa o bipolo entrando pelo terminal A e saindo pelo terminal B. A energia potencial elétrica da carga é diferente nos terminais A e B e, portanto, a energia elétrica trocada com o resto do circuito é dada pela diferença entre as energias potenciais de A e de B: E el = E A E B Lembrando o tópico anterior que E A = Δq V A e E B = Δq V B, temos: E el = Δq V A Δq V B = Δq (V A V B ) E el = Δq U Figura 7: Bipolo elétrico submetido a uma ddp U. Em um circuito elétrico, um bipolo ou está consumindo energia ou está cedendo energia. Exemplos de bipolos são: resistores elétricos como lâmpadas, chuveiros e ferros de passar roupa; receptores elétricos como motores elétricos; e geradores elétricos como pilhas, baterias e dínamos. Estudaremos todos estes tipos de bipolo elétrico nos capítulos seguintes. Vamos considerar um bipolo elétrico no qual os seus terminais A e B são submetidos a uma ddp U, conforme a figura a seguir. O potencial elétrico do ponto A é maior que o potencial elétrico do ponto B e, portanto, a corrente elétrica i percorre o bipolo no sentido de A para B. Esta última equação traduz a energia elétrica consumida ou fornecida pelo bipolo elétrico. No entanto, não trabalharemos com esta equação, pois no estudo da Eletrodinâmica, é mais comum utilizarmos a corrente elétrica e não a carga elétrica. Assim, seria interessante encontrarmos uma relação que envolvesse a corrente elétrica ao invés da carga elétrica. Esta relação surge com o conceito de potência elétrica. A potência elétrica P é definida como a razão entre a energia elétrica E el e o intervalo de tempo Δt: P = E el Δt Levando-se em conta que E el = Δq U e lembrando-se da definição de corrente elétrica i = Δq Δt, temos: P = E el Δq U = Δt Δt P = Ui Figura 8: Bipolo elétrico submetido a uma ddp U e percorrido por uma corrente i. O potencial elétrico de A vale V A e o potencial elétrico de B vale V B, sendo a diferença de potencial entre os terminais U = V A V B. Consideremos que em um determinado intervalo de tempo Δt, a carga elétrica que atravessa uma seção reta do bipolo seja Δq. Como a corrente elétrica convencional é a movimentação de cargas positivas, consideremos a carga Δq como sendo positiva e, portanto, seu movimento é coincidente com o da corrente elétrica. A potência elétrica de um bipolo elétrico é dada pelo produto entre a intensidade da corrente elétrica que o atravessa pela tensão elétrica aplicada aos seus terminais: P = Ui No SI, unidade de medida de potência é o watt (símbolo: W). Portanto, temos: [P] = [U] [i] 1W = 1V 1A Uma vez que possuímos a potência elétrica, para calcularmos a energia elétrica de um determinado aparelho, utilizamos a relação: E el = P Δt CASD Vestibulares FÍSICA 4 3

4 Devemos nos atentar para as unidades. No SI, a unidade de medida de energia é o joule (símbolo: J); a unidade de medida de potência é o watt (símbolo: W); e a unidade de medida de tempo é o segundo (símbolo: s). Portanto, temos a seguinte relação: 1J = 1W 1s No entanto, se observarmos na conta de luz, não encontraremos a medida em joule e sim em outra unidade, o quilowatt-hora (símbolo: kwh). O quilowatt-hora é uma unidade prática comercial, em que medimos o tempo em hora (h) e a potência em quilowatt (kw). A relação entre quilowatt-hora e joule é dada por: máquina de secar louça, etc. Para se ter uma noção, podemos comparar os valores nominais de alguns dos aparelhos mais comuns: lâmpada incandescente 100W 220V; televisor 80W 220V; ferro de passar roupa 1000W 220V; e chuveiro 4400W 220V. Outro fator importante é o tempo de uso desses aparelhos, pois quanto maior o tempo de uso, maior o consumo de energia elétrica. Nível I 1. (UFSM 2008) EXERCÍCIOS PROPOSTOS { 1kW = 1000W = 103 W 1h = 3600s = 3, s 1kWh = 10 3 W 3, s 1kWh = 3, J 4. VALORES NOMINAIS Se observarmos os aparelhos elétricos, encontraremos dois valores especificados, denominados valores nominais. São a tensão nominal e a potência nominal (em geral encontramos outros valores tais como frequência). O primeiro representa a tensão elétrica de operação do aparelho, ou seja, a tensão elétrica da rede para a qual o aparelho foi fabricado; o segundo representa a potência elétrica que o aparelho consome se submetido à tensão nominal. Tomemos como exemplo uma lâmpada incandescente de uso comum no dia-a-dia cujos valores nominais são 100W 220V. A partir dessas especificações, concluímos que se a lâmpada estiver conectada a uma rede que fornece tensão elétrica de 220V, a potência dissipada será de 100W. Utilizando-se a relação vista no tópico anterior, podemos calcular a corrente elétrica: P = Ui i = P U = i = 0,45A O que acontecerá se conectarmos essa lâmpada a uma rede elétrica cuja tensão é diferente de 220V? Se a tensão for menor, a lâmpada dissipará menor potência, o que pode ser observado visualmente, pois seu brilho diminui. Se a tensão for maior, a lâmpada dissipará maior potência, ou seja, seu brilho será mais intenso e, neste caso, ela queimará mais rapidamente, pois sua vida útil será reduzida devido ao fato de aumentar a temperatura do filamento. Quando estudarmos resistores, veremos ainda, que no caso da tensão elétrica ser menor que a tensão nominal, a corrente também se torna menor e, no caso da tensão ser maior, a corrente também se torna maior. É importante observarmos a potência dos aparelhos elétricos, pois o consumo de energia elétrica está relacionado à potência. Os aparelhos de baixa potência são: lâmpada, televisor, liquidificador, computador, ferro de passar roupa, aspirador de pó, etc. Já os aparelhos de alta potência são: chuveiro elétrico, aquecedor central, torneira elétrica, máquina de secar roupa, Analise as afirmativas: I - A diferença de potencial está associada a um campo elétrico. II - Se um aparelho elétrico for ligado numa tomada de 220 V, cada partícula que constitui uma corrente elétrica, ao se deslocar de um polo a outro da tomada, recebe 220 J de energia do campo elétrico. III - A quantidade de energia recebida do campo elétrico pelas partículas que formam correntes elétricas, ao se deslocarem entre os polos da tomada, é independente do caminho seguido dentro do aparelho. Está(ão) CORRETA(S) a) apenas I. b) apenas II. c) apenas III. d) apenas I e II. e) apenas I e III. 2. Nos aparelhos elétricos, segundo regras expressas pela ABNT (Associação Brasileira de Normas Técnicas), faz-se necessária a indicação da potência e respectiva voltagem para que funcionem em condições normais. Um chuveiro traz a inscrição 220V/3300W 4400W. a) Determine a intensidade da corrente para a chave na posição verão. b) Determine a intensidade da corrente para a chave na posição inverno. c) Determine a energia elétrica consumida, em kwh, com 10h de funcionamento na posição inverno. a) A posição verão corresponde à menor potência, ou seja, 3300W. Portanto: P = Ui i = P U = i = 15A 4 FÍSICA 4 CASD Vestibulares

5 b) A posição inverno corresponde à maior potência, ou seja, 4400W. Portanto: P = Ui i = P U = c) A potência na posição inverno vale: i = 20A P = 4400W = 4, W = 4,4kW Sendo Δt = 10h, temos: E el = P Δt = 4,4 10 E el = 44kWh 3. Uma lâmpada possui especificações 100W 110V. a) Determine a intensidade da corrente elétrica que percorre a lâmpada, quando opera em condições normais. b) Sabendo-se que a lâmpada funciona durante 5h por dia, determine a energia elétrica consumida durante um mês (30 dias). 4. (UTFPR 2014) Num dia frio, certo chuveiro elétrico é ligado para dissipar uma potência de 7200 W. Se o tempo em que permanece ligado é de dez minutos, a energia elétrica que consome, em kwh, é de: a) 1,5. b) 1,8. c) 2,2. d) 3,0. e) 1,2. 5. (CFTMG 2013) Uma pessoa verificou que o ferro elétrico de W, por ficar muito tempo em funcionamento, causa gasto excessivo na sua conta de energia elétrica. Como medida de economia, ela estabeleceu que o consumo de energia desse aparelho deveria ser igual ao de um chuveiro de W ligado durante 15 minutos. Nessas condições, o tempo máximo de funcionamento do ferro deve ser, em minutos, igual a a) 22 b) 44 c) 66 d) (IFSP 2013) Ao entrar em uma loja de materiais de construção, um eletricista vê o seguinte anúncio: ECONOMIZE: Lâmpadas fluorescentes de 15 W têm a mesma luminosidade (iluminação) que lâmpadas incandescentes de 60 W de potência. De acordo com o anúncio, com o intuito de economizar energia elétrica, o eletricista troca uma lâmpada incandescente por uma fluorescente e conclui que, em 1 hora, a economia de energia elétrica, em kwh, será de: a) 0,015 b) 0,025 c) 0,030 d) 0,040 e) 0, (UNICAMP 2015) Por sua baixa eficiência energética, as lâmpadas incandescentes deixarão de ser comercializadas para uso doméstico comum no Brasil. Nessas lâmpadas, apenas 5% da energia elétrica consumida é convertida em luz visível, sendo o restante transformado em calor. Considerando uma lâmpada incandescente que consome 60 W de potência elétrica, qual a energia perdida em forma de calor em uma hora de operação? a) J. b) J. c) J. d) J. 8. (IFSP 2014) Dispositivos elétricos que aquecem, geralmente, consomem mais energia que outros equipamentos mais simples. Para definirmos o quanto de energia cada equipamento consome, devemos saber a sua potência nominal e quanto tempo ele fica ligado na rede elétrica. Essa energia é medida então em kwh. Observando a inscrição de três equipamentos, Guliver anota numa tabela os seguintes dados dos equipamentos: Equipamento A Equipamento B Equipamento C Corrente elétrica (A) Tensão nominal (V) Potência (W) Se os equipamentos ficarem ligados 2 h por dia durante 20 dias no mês, podemos concluir que a energia elétrica nominal consumida em kwh nesse período é de, aproximadamente, a) 600 b) 550 c) 426 d) 336 e) (UCS 2014) Projeta-se um futuro em que as roupas virão com circuitos eletrônicos embutidos para desempenhar funções como regulação de temperatura, celulares, sensores de presença, entre outros. Mas, como qualquer equipamento elétrico, uma necessidade fundamental é a alimentação de energia. Suponha um cientista que criou uma roupa elétrica para praticantes de luta. A bateria dessa roupa é ligada a um tecido repleto de transdutores piezoelétricos, que são dispositivos que, basicamente, convertem energia mecânica em energia elétrica. Supondo que a pancada aplica na roupa um trabalho de 0,5 joules, em 0,5 segundos, totalmente convertido em energia elétrica, e que a bateria é carregada com uma corrente elétrica de 4 ma, qual é a tensão elétrica gerada pela pancada no circuito formado pela roupa e pela bateria? a) 0,01 V b) 0,5 V c) 5,0 V CASD Vestibulares FÍSICA 4 5

6 d) 250 V e) V 10. (FATEC 2013) No anúncio promocional de um ferro de passar roupas a vapor, é explicado que, em funcionamento, o aparelho borrifa constantemente 20 g de vapor de água a cada minuto, o que torna mais fácil o ato de passar roupas. Além dessa explicação, o anúncio informa que a potência do aparelho é de W e que sua tensão de funcionamento é de 110 V. Jorge comprou um desses ferros e, para utilizá-lo, precisa comprar também uma extensão de fio que conecte o aparelho a uma única tomada de 110 V disponível no cômodo em que passa roupas. As cinco extensões que encontra à venda suportam as intensidades de correntes máximas de 5 A, 10 A, 15 A, 20 A e 25 A, e seus preços aumentam proporcionalmente às respectivas intensidades. Sendo assim, a opção que permite o funcionamento adequado de seu ferro de passar, em potência máxima, sem danificar a extensão de fio e que seja a de menor custo para Jorge, será a que suporta o máximo de a) 5 A b) 10 A c) 15 A d) 20 A e) 25 A 11. Uma lâmpada elétrica de potência 60W fica acesa 10h por dia. a) Determine a energia elétrica consumida durante um mês (30 dias). b) Determine o custo da energia elétrica consumida no item anterior, sabendo-se que 1kWh custa R$0,20. a) A lâmpada funciona 10h por dia durante 30 dias. Portanto Δt = = 300h. Calculando-se a energia elétrica em kwh, temos: P = 60W = 0,060kW { Δt = 300h E el = P Δt = 0, E el = 18kWh b) Para se calcular o custo da energia elétrica, basta uma simples regra de três: 1kWh R$0,20 18kWh custo custo = R$3, Um chuveiro elétrico possui valores nominais: 2500W 220V. a) Determine a energia elétrica consumida durante um banho de 30min. b) Determine o custo da energia elétrica consumida no referido banho, sabendo-se que 1kWh custa R$0, Numa residência, são usadas 5 lâmpadas de 60W durante 5h por dia, um chuveiro elétrico de 2000W durante 1h por dia e um ferro elétrico de 600W durante 0,5h por dia. Determine, em kwh, a energia elétrica consumida em 30 dias. 14. (ULBRA 2012) A termoterapia consiste na utilização do calor com fins terapêuticos. Esse procedimento é utilizado em diversos tratamentos provocando a dilatação nos vasos sanguíneos para promover melhor vascularização em algumas partes do corpo, tais como braços e pernas. Para esses tratamentos, um dos aparelhos utilizados é o Forno de Bier. Um instrumento desse tipo apresenta potência de 780 W. Para cada seção fisioterápica, é indicada sua utilização por um tempo máximo de 10 minutos. Sabendo que o kw.h custa R$ 0,40, se o Forno de Bier for associado a uma tensão de 220 V, para 200 seções de tempo máximo, custará o seguinte: a) R$ 624,00 b) R$ 104,40 c) R$ 94,40 d) R$ 62,40 e) R$ 10, (UFPB 2011) Boa parte dos aparelhos eletrônicos modernos conta com a praticidade do modo de espera denominado stand-by. Nesse modo, os aparelhos ficam prontos para serem usados e, embora desligados, continuam consumindo energia, sendo o stand-by responsável por um razoável aumento no consumo de energia elétrica. Para calcular o impacto na conta de energia elétrica, devido à permanência de cinco aparelhos ininterruptamente deixados no modo stand-by por 30 dias consecutivos, considere as seguintes informações: cada aparelho, operando no modo stand-by, consome 5J de energia por segundo; o preço da energia elétrica é de R$ 0,50 por kwh. A partir dessas informações, conclui-se que, no final de 30 dias, o custo com a energia consumida por esses cinco aparelhos, operando exclusivamente no modo stand-by, será de: a) R$ 17,00 b) R$ 15,00 c) R$ 13,00 d) R$ 11,00 e) R$ 9, (CPS 2010) Pequenos consumos podem parecer bobagem, mas quando somados se tornam grandes gastos. Para ajudarmos o nosso planeta e também economizarmos o nosso salário, devemos desligar os aparelhos e não os deixar no modo de espera, conhecido por stand by. Pensando nisso, considere a situação: um determinado DVD consome 20 W em stand by; admita que esse DVD permaneça, em média, 23 horas por dia em stand by; 1 kwh de energia equivale ao consumo de um aparelho de W de potência durante uma hora de uso (1 kwh = W 1 h); o preço de 1 kwh é R$ 0,40. 6 FÍSICA 4 CASD Vestibulares

7 Conclui-se que o consumo anual, em média, desse aparelho em stand by é, aproximadamente, de Adote: 1 ano = 365 dias a) R$ 7,00 b) R$ 19,00 c) R$ 38,00 d) R$ 67,00 e) R$ 95, (FATEC 2010) Durante uma aula de Física, o professor pede a seus alunos que calculem o gasto mensal de energia elétrica que a escola gasta com 25 lâmpadas fluorescentes de 40 W cada, instaladas em uma sala de aula. Para isso, o professor pede para os alunos considerarem um uso diário de 5 horas, durante 20 dias no mês. Se o preço do kwh custa R$ 0,40 em média, o valor encontrado, em reais, será de a) 100 b) 80 c) 60 d) 40 e) (UNICAMP 2015) Um desafio tecnológico atual é a produção de baterias biocompatíveis e biodegradáveis que possam ser usadas para alimentar dispositivos inteligentes com funções médicas. Um parâmetro importante de uma bateria biocompatível é sua capacidade específica (C), definida como a sua carga por unidade massa, geralmente dada em mah / g. O gráfico abaixo mostra de maneira simplificada a diferença de potencial de uma bateria à base de melanina em função de C. a) Para uma diferença de potencial de 0,4V, que corrente média a bateria de massa m 5,0g fornece, supondo que ela se descarregue completamente em um tempo t 4h? b) Suponha que uma bateria preparada com C 10mAh / g esteja fornecendo uma corrente constante total i 2mA a um dispositivo. Qual é a potência elétrica fornecida ao dispositivo nessa situação? Nível II 18. (FGV-RJ 2011) Visando economizar energia elétrica, uma família que, em 30 dias, consumia em média 240 kwh, substituiu doze lâmpadas de sua residência, dez de 60 W e duas de 100 W, por lâmpadas econômicas de 25 W. Na situação em que as lâmpadas ficam acesas 4 horas por dia, a troca resultou em uma economia de energia elétrica, aproximadamente, de a) 62% b) 37% c) 25% d) 15% e) 5% 19. (UFSM 2013) O dimensionamento de motores elétricos, junto com o desenvolvimento de compressores, é o principal problema da indústria de refrigeração. As geladeiras do tipo frost-free não acumulam gelo no seu interior, o que evita o isolamento térmico realizado pelas grossas camadas de gelo formadas pelas geladeiras comuns. A não formação de gelo diminui o consumo de energia. Assim, numa geladeira tipo frost-free ligada a uma ddp de 220V circula uma corrente de 0,5A. Se essa geladeira ficar ligada 5 minutos a cada hora, seu consumo diário de energia, em kwh, é de a) 0,22. b) 44. c) 220. d) 440. e) A figura ilustra os pontos destacados no gráfico que são relevantes para as resoluções dos dois itens. a) Dados: U = 0,4V; m = 5,0g; Δt = 4,0h Do gráfico, para U = 0,4V, temos C = 20mAh/g. Portanto, a carga é dada por: Q = m C = 5,0 20 = 100mAh. Para Δt = 4,0h, temos: i m = Q Δt = i m = 25mA CASD Vestibulares FÍSICA 4 7

8 b) Do gráfico, para C = 10mAh/g, temos U = 0,2V. Considerando-se a corrente i = 2,0mA, a potência é dada por: P = Ui = 0,2 2 P = 0,4mW 21. (UFJF 2010) O gráfico mostra a potência elétrica, em kw, consumida na residência de um morador da cidade de Juiz de Fora, ao longo do dia. A residência é alimentada com uma voltagem de 120 V. Essa residência tem um disjuntor que desarma, se a corrente elétrica ultrapassar um certo valor, para evitar danos na instalação elétrica. Por outro lado, esse disjuntor é dimensionado para suportar uma corrente utilizada na operação de todos os aparelhos da residência, que somam uma potência total de 7,20 kw. a) Qual é o valor máximo de corrente que o disjuntor pode suportar? b) Qual é a energia em kwh consumida ao longo de um dia nessa residência? c) Qual é o preço a pagar por um mês de consumo, se o 1kWh custa R$ 0,50? 22. (UEL 2013) As lâmpadas de LED (Light Emissor Diode) estão substituindo progressivamente as lâmpadas fluorescentes e representam um avanço tecnológico nas formas de conversão de energia elétrica em luz. A tabela, a seguir, compara as características dessas lâmpadas. Características Fluorescente LED Potência média (W) 9 8 Tempo médio de duração (horas) Tensão nominal (Volts) Fluxo luminoso (lm) Com relação à eficácia luminosa, que representa a relação entre o fluxo luminoso e a potência do dispositivo, Lumen por Watt (lm/w), considere as afirmativas a seguir. Assinale a alternativa correta. a) Somente as afirmativas I e II são corretas. b) Somente as afirmativas I e IV são corretas. c) Somente as afirmativas III e IV são corretas. d) Somente as afirmativas I, II e III são corretas. e) Somente as afirmativas II, III e IV são corretas. 23. (UFSM 2013) A favor da sustentabilidade do planeta, os aparelhos que funcionam com eletricidade estão recebendo sucessivos aperfeiçoamentos. O exemplo mais comum são as lâmpadas eletrônicas que, utilizando menor potência, iluminam tão bem quanto as lâmpadas de filamento. Então, analise as afirmativas: I. A corrente elétrica que circula nas lâmpadas incandescentes é menor do que a que circula nas lâmpadas eletrônicas. II. Substituindo uma lâmpada incandescente por uma eletrônica, esta fica com a mesma ddp que aquela. III. A energia dissipada na lâmpada incandescente é menor do que na lâmpada eletrônica. Está(ão) correta(s) a) apenas I e II. b) apenas II. c) apenas I e III. d) apenas III. e) I, II e III. 24. (UERJ 2010) O circuito elétrico de refrigeração de um carro é alimentado por uma bateria ideal cuja força eletromotriz é igual a 12 volts. Admita que, pela seção reta de um condutor diretamente conectado a essa bateria, passam no mesmo sentido, durante 2 segundos, 1, elétrons. Determine, em watts, a potência elétrica consumida pelo circuito durante esse tempo. Considere o módulo da carga do elétron igual 1, C. 25. (ENEM 2010) A energia elétrica consumida nas residências é medida, em quilowatt-hora, por meio de um relógio medidor de consumo. Nesse relógio, da direita para esquerda, tem-se o ponteiro da unidade, da dezena, da centena e do milhar. Se um ponteiro estiver entre dois números, considera-se o último número ultrapassado pelo ponteiro. Suponha que as medidas indicadas nos esquemas seguintes tenham sido feitas em uma cidade em que o preço do quilowatt-hora fosse de R$ 0,20. I. A troca da lâmpada fluorescente pela de LED ocasionará economia de 80% de energia. II. A eficácia luminosa da lâmpada de LED é de 56,25 lm/w. III. A razão entre as correntes elétricas que passam pela lâmpada fluorescente e pela lâmpada de LED, nessa ordem, é de 2,25. IV. O consumo de energia elétrica de uma lâmpada de LED durante o seu tempo médio de duração é de 200 kwh. 8 FÍSICA 4 CASD Vestibulares

9 anterior. Em cada segundo, passa pelo chuveiro, uma massa equivalente a m = 50g. Assim, considerando Δt = 1,0s e P = 4400W, temos: E el = P Δt = E el = 4400J Portanto, o calor transferido vale Q = E el = 4400J. A elevação da temperatura ΔT pode ser calculada através da equação do calor sensível Q = mcδt, onde c = 4,0J/g. Portanto, temos: ΔT = Q mc = 4400 ΔT = Um aquecedor elétrico de imersão, ligado a uma tomada de 110V, eleva de 20 a 100 a temperatura de 660g de água, num intervalo de tempo de 4,0min. Supondo que a água aproveite toda a energia térmica produzida, determine: O valor a ser pago pelo consumo de energia elétrica registrado seria de a) R$ 41,80. b) R$ c) R$ d) R$ 43,80. e) R$ 44,00. a) a potência do aquecedor; b) a corrente elétrica no aquecedor. Dados: calor específico da água 1,0cal = 4,2J. c = 1,0cal/g ; 28. Os gráficos a seguir representam a tensão U e a intensidade da corrente elétrica i em um aquecedor, em função do tempo t. Nível III 26. Por um chuveiro elétrico circula uma corrente de 20A, quando ele é ligado a uma tensão de 220V. Determine: a) a potência elétrica recebida pelo chuveiro; b) a energia elétrica consumida pelo chuveiro em 15 minutos de funcionamento, expressa em kwh; c) a elevação da temperatura da água ao passar pelo chuveiro com vazão igual a 50 gramas por segundo, supondo que ela absorva toda a energia dissipada. Considere o calor específico da água igual a 4,0J/g. a) A potência elétrica é dada por: P = Ui = P = 4400W = 4,4kW b) A energia elétrica consumida pelo chuveiro é dada por E el = P Δt, onde P = 4,4kW e Δt = 15min = 1 4 h. Portanto: E el = P Δt = 4,4 1 4 E el = 1,1kWh Calcule o consumo de energia elétrica, em kwh, nos 20 minutos de funcionamento. 29. (UFPR 2014) Normalmente as pessoas estão acostumadas a comprar lâmpadas considerando apenas a sua potência, em watts, pensando que quanto maior a potência, maior será a iluminação. Contudo, a potência diz apenas qual é o consumo de energia por unidade de tempo. Para ter uma ideia de qual lâmpada é capaz de iluminar melhor o ambiente, deve-se utilizar o conceito de fluxo luminoso, que é medido em lúmens (lm). Quanto mais lúmens, mais iluminado será o ambiente. Outro conceito importante é a eficiência de uma lâmpada, que é dada pela razão entre o fluxo luminoso e a sua potência, e permite avaliar o consumo de energia necessário para produzir determinada iluminação. A tabela a seguir compara características de diferentes lâmpadas residenciais. A vida útil é o tempo médio, em horas, que uma lâmpada funciona antes de queimar. c) A energia elétrica consumida pelo chuveiro é integralmente transformada em calor. Devemos tomar o cuidado de se considerar neste item a energia expressa em joules e não em kwh como no item CASD Vestibulares FÍSICA 4 9

10 ano, energia equivalente àquela de Itaipu. b) O percentual médio com que a usina operou em 1998 em relação à sua potência instalada de MW. Com bases nestas informações, responda os seguintes itens: a) Se quisermos substituir 8 lâmpadas fluorescentes por lâmpadas de LED, mantendo a mesma iluminação, calcule a diferença no consumo de energia durante um período de horas de funcionamento. Expresse o resultado em joules. b) Calcule a diferença no custo da energia consumida, em R$, ao se utilizar uma lâmpada fluorescente e uma lâmpada de LED após horas de funcionamento. Considere que o custo de 1 kwh de energia elétrica é igual a R$ 0,40. Inclua também nesse cálculo o custo de substituição das lâmpadas, tendo como base a vida útil das lâmpadas. c) Com base nos dados da tabela acima, calcule quantas vezes uma lâmpada de LED é mais eficiente que uma lâmpada incandescente. 30. (ENEM Cancelado 2009) Uma estudante que ingressou na universidade e, pela primeira vez, está morando longe da sua família, recebe a sua primeira conta de luz: a) A energia útil do painel fotovoltaico vale E U = 87600GWh e representa 20% da energia total (energia solar). Portanto, a energia total é dada por: 87600GWh 20% E T 100% E T = GWh Considerando-se um intervalo de tempo Δt = 1ano = 8760h, a potência total é dada por: P T = E T Δt = = 50GW A área pode ser calculada através da relação da intensidade: I = P A A = P T I = A = 2, m 2 b) A potência média ao longo de um ano foi: P M = E U Δt = = 10GW A potência instalada vale P inst = 14000MW = 14GW. Portanto, o percentual médio foi de: % = 71,4% 14 Se essa estudante comprar um secador de cabelos que consome 1000 W de potência e considerando que ela e suas 3 amigas utilizem esse aparelho por 15 minutos cada uma durante 20 dias no mês, o acréscimo em reais na sua conta mensal será de a) R$ 10,00. b) R$ 12,50. c) R$ 13,00. d) R$ 13,50. e) R$ 14, (ITA 2009) Em 1998, a hidrelétrica de Itaipu forneceu aproximadamente GWh de energia elétrica. Imagine então um painel fotovoltaico gigante que possa converter em energia elétrica, com rendimento de 20%, a energia solar incidente na superfície da Terra, aqui considerada com valor médio diurno (24 h) aproximado de 170 W/m 2. Calcule: a) A área horizontal (em km 2 ) ocupada pelos coletores solares para que o painel possa gerar, durante um 32. (UFMS 2007) A energia solar é uma das fontes alternativas de energia utilizadas pelo homem. A intensidade média anual da radiação solar na cidade de Campo Grande - MS é igual a 700 W/m 2 considerando 6 horas de irradiação por dia. Um equipamento de captação de energia solar, para aquecer a água destinada ao consumo doméstico, possui rendimento igual a 60%, isto é, 60% da potência da radiação solar disponível é transformada em potência útil pelo equipamento. Considere uma residência que possui um desses equipamentos instalado, cuja área de captação de irradiação solar é de 4 m 2, e que toda a potência útil é consumida. Se o custo da energia elétrica no local é de R$ 0,60 por kwh, a economia média anual (365 dias) em reais, nessa residência, será a) maior que R$ 2.124,00. b) igual a R$ 551,88. c) igual a R$ 367,92. d) menor que R$ 367,92. e) igual R$ 1.980, (UFPR 2006) Em uma construção, é utilizado um 10 FÍSICA 4 CASD Vestibulares

11 motor de corrente contínua para elevar baldes contendo argamassa, conforme a figura a seguir. O motor funciona sob uma tensão de 20 V e o seu rendimento é de 70%. Supondo-se que um balde de argamassa possua 28 kg e que esteja sendo elevado à velocidade constante de 0,5 m/s, considerando-se a aceleração da gravidade igual a 10 m/s 2, o módulo da intensidade de corrente elétrica no motor é: a) 14 A b) 7,0 A c) 10 A d) 4,9 A e) 0,7 A Resposta c A potência mecânica (útil) desenvolvida para elevar o balde é dada por P U = F v, onde F = mg = 280N é a força de tração do cabo e v = 0,5m/s é a velocidade constante com que o balde é elevado. Portanto: P U = 280 0,5 P U = 140W Como o rendimento do motor elétrico é 70%, a potência elétrica total é dada por: 140W 70% P T 100% P T = 200W Sendo a tensão elétrica U = 20V, a corrente é dada por: P T = Ui i = P T U = 200 i = 10A (ENEM Cancelado 2009) Os motores elétricos são dispositivos com diversas aplicações, dentre elas, destacam-se aquelas que proporcionam conforto e praticidade para as pessoas. É inegável a preferência pelo uso de elevadores quando o objetivo é o transporte de pessoas pelos andares de prédios elevados. Nesse caso, um dimensionamento preciso da potência dos motores utilizados nos elevadores é muito importante e deve levar em consideração fatores como economia de energia e segurança. Considere que um elevador de 800 kg, quando lotado com oito pessoas ou 600 kg, precisa ser projetado. Para tanto, alguns parâmetros deverão ser dimensionados. O motor será ligado à rede elétrica que fornece 220 volts de tensão. O elevador deve subir 10 andares, em torno de 30 metros, a uma velocidade constante de 4 metros por segundo. Para fazer uma estimativa simples de potência necessária e da corrente que deve ser fornecida ao motor do elevador para ele operar com lotação máxima, considere que a tensão seja contínua, que a aceleração da gravidade vale 10 m/s 2 e que o atrito pode ser desprezado. Nesse caso, para um elevador lotado, a potência média de saída do motor do elevador e a corrente elétrica máxima que passa no motor serão respectivamente de a) 24 kw e 109 A. b) 32 kw e 145 A. c) 56 kw e 255 A. d) 180 kw e 818 A. e) 240 kw e 1090 A. 35. (UFF 2007) Nas instalações elétricas residenciais urbanas, na cidade de Niterói, os eletrodomésticos são ligados a tomadas com 110 V de tensão. Uma notável exceção é o aparelho de ar condicionado, de alta potência, que é preferencialmente ligado a tomadas de 220 V de tensão. Considere 2 aparelhos de ar condicionado, de igual potência nominal, projetados para operar: um, em 110 V e o outro, em 220 V. Assinale a opção que melhor justifica a escolha do aparelho projetado para operar em 220 V. a) Como a corrente é, neste caso, menor, o choque elétrico provocado por algum acidente ou imprudência será também menos perigoso. b) Como a corrente é, neste caso, menor, a dissipação por efeito Joule na fiação é também menor, resultando em economia no consumo de energia elétrica. c) Como a corrente é, neste caso, maior, o aparelho de ar condicionado refrigerará melhor o ambiente. d) Como a corrente é, neste caso, maior, a dissipação por efeito Joule na fiação será menor, resultando em economia no consumo de energia elétrica. e) A corrente é igual nos 2 casos, mas a potência real do aparelho de ar condicionado, que é o produto da tensão pela corrente, é maior quando a tensão é maior. GABARITO 1. e a) 0,9A b) 15kWh 4. e 5. c 6. e 7. c 8. d 9. d 10. c a) 1,25kWh b) R$0, kWh 14. e 15. e 16. d 17. d 18. c 19. a a) 60A b) 24kWh c) R$360, e 23. b 24. 9,6W 25. e a) 924W b) 8,4A 28. 0,5kWh 29. a) 4, J b) R$66,00 c) 7,5 30. b a c 35. b CASD Vestibulares FÍSICA 4 11

Energia Elétrica e Conta de Luz

Energia Elétrica e Conta de Luz Energia Elétrica e Conta de Luz 1. (Unifesp 2013) Observe a charge. Em uma única tomada de tensão nominal de 110V, estão ligados, por meio de um adaptador, dois abajures (com lâmpadas incandescentes com

Leia mais

FÍSICA SETOR B. 3. (Pucrj 2013) O gráfico abaixo apresenta a medida da variação de potencial em função da corrente que passa em um circuito elétrico.

FÍSICA SETOR B. 3. (Pucrj 2013) O gráfico abaixo apresenta a medida da variação de potencial em função da corrente que passa em um circuito elétrico. FÍSICA SETOR B Assuntos abordados: Corrente elétrica 1ª Lei de Ohm Potência elétrica Energia elétrica LEMBRETE: Estudar os capítulos 8, 9, 10 e 11 da apostila, além de refazer e revisar TODOS os exercícios

Leia mais

Conclui-se que o consumo anual, em média, desse aparelho em stand by é, aproximadamente, de

Conclui-se que o consumo anual, em média, desse aparelho em stand by é, aproximadamente, de 1. (G1 - cps 2010) Pequenos consumos podem parecer bobagem, mas quando somados se tornam grandes gastos. Para ajudarmos o nosso planeta e também economizarmos o nosso salário, devemos desligar os aparelhos

Leia mais

Energia Elétrica. 1. (G1 - ifsp 2013) Ao entrar em uma loja de materiais de construção, um eletricista vê o seguinte anúncio:

Energia Elétrica. 1. (G1 - ifsp 2013) Ao entrar em uma loja de materiais de construção, um eletricista vê o seguinte anúncio: Energia Elétrica 1. (G1 - ifsp 2013) Ao entrar em uma loja de materiais de construção, um eletricista vê o seguinte anúncio: ECONOMIZE: Lâmpadas fluorescentes de 15 W têm a mesma luminosidade (iluminação)

Leia mais

Potência e Energia Elétrica

Potência e Energia Elétrica Potência e Energia Elétrica 1. (G1 - ifsp 2013) Ao entrar em uma loja de materiais de construção, um eletricista vê o seguinte anúncio: ECONOMIZE: Lâmpadas fluorescentes de 15 W têm a mesma luminosidade

Leia mais

Prof.: Geraldo Barbosa Filho

Prof.: Geraldo Barbosa Filho AULA 07 GERADORES E RECEPTORES 5- CURVA CARACTERÍSTICA DO GERADOR 1- GERADOR ELÉTRICO Gerador é um elemento de circuito que transforma qualquer tipo de energia, exceto a elétrica, em energia elétrica.

Leia mais

DDP, Potência e Energia Elétrica Resolução: youtube.com/tenhoprovaamanha

DDP, Potência e Energia Elétrica Resolução: youtube.com/tenhoprovaamanha Questão 01 - (UECE) Uma bateria de 12 V de tensão e 60 A.h de carga alimenta um sistema de som, fornecendo a esse sistema uma potência de 60 W. Considere que a bateria, no início, está plenamente carregada

Leia mais

Resistores e Associação de Resistores

Resistores e Associação de Resistores Parte I Resistores e Associação de Resistores 1. (Ufmg 2012) Arthur monta um circuito com duas lâmpadas idênticas e conectadas à mesma bateria, como mostrado nesta figura: c) 8. d) 12. e) 15. 4. (Ufu 2011)

Leia mais

Exercícios Eletrodinâmica

Exercícios Eletrodinâmica Exercícios Eletrodinâmica 1-Uma lâmpada permanece acesa durante 5 minutos por efeito de uma corrente de 2 A, fornecida por uma bateria. Nesse intervalo de tempo, a carga total (em C) liberada pela bateria

Leia mais

ACESSO FÍSICA LISTA 2 (POTENCIA ELÉTRICA E CIRCUITOS)

ACESSO FÍSICA LISTA 2 (POTENCIA ELÉTRICA E CIRCUITOS) ACESSO FÍSICA LISTA 2 (POTENCIA ELÉTRICA E CIRCUITOS) 22. Considerando a tarifa aproximada de R$ 0,40 por kwh cobrada pela Copel em Curitiba, calcule o custo mensal (30 dias) dos banhos de uma família

Leia mais

Exercícios de Física Potência Elétrica

Exercícios de Física Potência Elétrica Questão 01 - Um estudante resolveu acampar durante as férias de verão. Em sua bagagem levou uma lâmpada com as especificações: 220 V - 60 W. No camping escolhido, a rede elétrica é de 110 V. Se o estudante

Leia mais

- O movimento ordenado de elétrons em condutores

- O movimento ordenado de elétrons em condutores MATÉRIA: Eletrotécnica MOURA LACERDA CORRENTE ELÉTRICA: - O movimento ordenado de elétrons em condutores Os aparelhos eletro-eletrônicos que se encontram nas residências precisam de energia elétrica para

Leia mais

Energia e potência em receptores elétricos

Energia e potência em receptores elétricos Energia e potência em receptores elétricos 1 17.1. Quando uma corrente elétrica atravessa um receptor, a energia elétrica consumida ou é totalmente transformada em calor (é o caso dos resistores), ou então

Leia mais

ACESSO FÍSICA LISTA 1 (LEIS DE OHM E CORRENTE ELÉTRICA)

ACESSO FÍSICA LISTA 1 (LEIS DE OHM E CORRENTE ELÉTRICA) ACESSO FÍSICA LISTA 1 (LEIS DE OHM E CORRENTE ELÉTRICA) 1. (Fuvest) O plutônio ( Pu) é usado para a produção direta de energia elétrica em veículos espaciais. Isso é realizado em um gerador que possui

Leia mais

CUIDADO PARA NÃO SER ENGANADO

CUIDADO PARA NÃO SER ENGANADO Ciências da Natureza e Suas Tecnologias Física Prof. Eduardo Cavalcanti nº10 CUIDADO PARA NÃO SER ENGANADO Alguns aparelhos consomem mais eletricidade que outros. Alguns, como a geladeira, embora permanentemente

Leia mais

Apostila de Revisão de Eletrodinâmica: 1ª Lei de Ohm, Potência e Energia Elétrica, Associação de Resistores e Circuito Elétrico

Apostila de Revisão de Eletrodinâmica: 1ª Lei de Ohm, Potência e Energia Elétrica, Associação de Resistores e Circuito Elétrico Apostila de Revisão de Eletrodinâmica: 1ª Lei de Ohm, Potência e Energia Elétrica, Associação de Resistores e Circuito Elétrico 1. (G1 - cftmg 2013) O meio que conduz melhor a eletricidade é a(o) a) ar,

Leia mais

Potência elétrica. 06/05/2011 profpeixinho.orgfree.com pag.1

Potência elétrica. 06/05/2011 profpeixinho.orgfree.com pag.1 1. (Unicamp) Um aluno necessita de um resistor que, ligado a uma tomada de 220 V, gere 2200 W de potência térmica. Ele constrói o resistor usando fio de constante N. 30 com área de seção transversal de

Leia mais

como andam os estudos? FFF (Foco, Força e Fé) esse é seu ano. #LQVP

como andam os estudos? FFF (Foco, Força e Fé) esse é seu ano. #LQVP Olá FERA, como andam os estudos? FFF (Foco, Força e Fé) esse é seu ano. #LQVP Neste segundo material da parceria entre o Física Total e o Projeto Medicina teremos 12 novos itens de acordo com a matriz

Leia mais

LISTA FISICA 2 ROGERIO

LISTA FISICA 2 ROGERIO LISTA FISICA 2 ROGERIO 1 FUVEST - SP Um circuito elétrico residencial tem os aparelhos elétricos da tabela a seguir, onde aparecem suas potências médias. A ddp na rede é de 110 V. Calcule a intensidade

Leia mais

Equipe de Física FÍSICA

Equipe de Física FÍSICA Aluno (a): Série: 3ª Turma: TUTORIAL 10R Ensino Médio Equipe de Física Data: FÍSICA Corrente Elétrica Ao se estudarem situações onde as partículas eletricamente carregadas deixam de estar em equilíbrio

Leia mais

Eletrodinâmica. Circuito Elétrico

Eletrodinâmica. Circuito Elétrico Eletrodinâmica Circuito Elétrico Para entendermos o funcionamento dos aparelhos elétricos, é necessário investigar as cargas elétricas em movimento ordenado, que percorrem os circuitos elétricos. Eletrodinâmica

Leia mais

Prova Oficial de Física - GABARITO 1 Trimestre/2014 Data: 23/04/2014

Prova Oficial de Física - GABARITO 1 Trimestre/2014 Data: 23/04/2014 Prova Oficial de Física - GABARITO 1 Trimestre/2014 Data: 23/04/2014 CONTEÚDO Corrente Elétrica, Tensão Elétrica, Resistores, 1º Lei de Ohm, 2º Lei de Ohm, Circuitos em Série e Paralelo, Potência Elétrica

Leia mais

CONTEÚDOS: Req. 2-A figura a seguir ilustra uma onda mecânica que se propaga numa velocidade 3,0m/s. Qual o valor do comprimento de onda?

CONTEÚDOS: Req. 2-A figura a seguir ilustra uma onda mecânica que se propaga numa velocidade 3,0m/s. Qual o valor do comprimento de onda? Exercícios para recuperação final 2 ano Acesso CONTEÚDOS: Óptica (reflexão refração lentes) Estudo das ondas Fenômenos ondulatórios Eletrodinâmica Leis de Ohm Associação de resistores Geradores e Receptores

Leia mais

Atividade Complementar Plano de Estudo

Atividade Complementar Plano de Estudo 1. (Uerj 2014) Um sistema é constituído por uma pequena esfera metálica e pela água contida em um reservatório. Na tabela, estão apresentados dados das partes do sistema, antes de a esfera ser inteiramente

Leia mais

Exercícios Eletrodinâmica

Exercícios Eletrodinâmica Exercícios Eletrodinâmica 01-Um gerador elétrico tem potência total 0,6 kw, quando percorrido por uma corrente de intensidade igual a 50 A. Qual a sua força eletromotriz. a) 30.000 V b) 100 V c) 120 V

Leia mais

A ELETRICIDADE NO LAR

A ELETRICIDADE NO LAR Como a eletricidade chega ao lar Nós chegamos nos lares na forma de corrente alternada através de fios estendidos do poste até a casa. Dois destes fios são conhecidos como FASES e um deles é o NEUTRO.

Leia mais

Valores eternos. MATÉRIA. PROFESSOR(A) Hermann ---- ---- 1. Para a associação da figura, a resistência equivalente entre os terminais A e B é igual a:

Valores eternos. MATÉRIA. PROFESSOR(A) Hermann ---- ---- 1. Para a associação da figura, a resistência equivalente entre os terminais A e B é igual a: Valores eternos. TD Recuperação ALUNO(A) MATÉRIA Física III PROFESSOR(A) Hermann ANO SEMESTRE DATA 3º 1º Julho/2013 TOTAL DE ESCORES ESCORES OBTIDOS ---- ---- 1. Para a associação da figura, a resistência

Leia mais

LISTA de ELETRODINÂMICA PROFESSOR ANDRÉ

LISTA de ELETRODINÂMICA PROFESSOR ANDRÉ LISTA de ELETRODINÂMICA PROFESSOR ANDRÉ 1. (Fuvest 014) Dois fios metálicos, F 1 e F, cilíndricos, do mesmo material de resistividade ρ, de seções transversais de áreas, respectivamente, A 1 e A = A 1,

Leia mais

41 Me deixa passar, senão eu esquento!

41 Me deixa passar, senão eu esquento! A U A UL LA Me deixa passar, senão eu esquento! A nossa história do banho interrompido - ou do fusível queimado - continuou alguns dias depois, quando o ambiente familiar estava mais amigável. - Ô, pai,

Leia mais

Nesse caso, a potência máxima, em watts, que cada conjunto pode fornecer é igual a: a) 50 b) 75 c) 150 d) 750

Nesse caso, a potência máxima, em watts, que cada conjunto pode fornecer é igual a: a) 50 b) 75 c) 150 d) 750 1. O setor agropecuário, nos últimos anos, vem passando por grandes transformações. tualmente, as propriedades rurais são dotadas de um bom nível de conforto, o que anteriormente era privilégio somente

Leia mais

CIÊNCIAS 9º Ano do Ensino Fundamental. Professora: Ana Paula Souto. Se precisar use as equações: i = ΔQ Δt ; E = PΔt.

CIÊNCIAS 9º Ano do Ensino Fundamental. Professora: Ana Paula Souto. Se precisar use as equações: i = ΔQ Δt ; E = PΔt. CIÊNCIAS º Ano do Ensino Fundamental Professora: Ana Paula Souto Nome: n o : Turma: Exercícios Estudo da eletricidade (PARTE ) Se precisar use as equações: i = ΔQ Δt ; E = PΔt V = Ri ; P = Vi ) Observe

Leia mais

COMPETÊNCIAS E HABILIDADES

COMPETÊNCIAS E HABILIDADES COMPETÊNCIAS E HABILIDADES CADERNO 11 PROF.: Célio Normando CA 6 - Apropriar-se de conhecimentos da Física para, em situações problema, interpretar, avaliar ou planejar intervenções científico-tecnológicas.

Leia mais

Receptores elétricos

Receptores elétricos Receptores elétricos 1 Fig.20.1 20.1. A Fig. 20.1 mostra um receptor elétrico ligado a dois pontos A e B de um circuito entre os quais existe uma d.d.p. de 12 V. A corrente que o percorre é de 2,0 A. A

Leia mais

RESISTORES. 1.Resistencia elétrica e Resistores

RESISTORES. 1.Resistencia elétrica e Resistores RESISTORES 1.Resistencia elétrica e Resistores Vimos que, quando se estabelece uma ddp entre os terminais de um condutor,o mesmo é percorrido por uma corrente elétrica. Agora pense bem, o que acontece

Leia mais

2. Observe as figuras a seguir sobre a formação das brisas marítima e terrestre.

2. Observe as figuras a seguir sobre a formação das brisas marítima e terrestre. Simulado Modelo ENEM 3ª Séries 1. Segundo a lenda, Ícaro, desobedecendo às instruções que recebera, voou a grandes alturas, tendo o Sol derretido a cera que ao seu corpo colava as asas, assim provocando

Leia mais

Corrente elétrica corrente elétrica.

Corrente elétrica corrente elétrica. Corrente elétrica Vimos que os elétrons se deslocam com facilidade em corpos condutores. O deslocamento dessas cargas elétricas é chamado de corrente elétrica. A corrente elétrica é responsável pelo funcionamento

Leia mais

Aulas 19 a 23. 1. (Fuvest 2012)

Aulas 19 a 23. 1. (Fuvest 2012) 1. (Fuvest 01) A figura acima representa, de forma esquemática, a instalação elétrica de uma residência, com circuitos de tomadas de uso geral e circuito específico para um chuveiro elétrico. Nessa residência,

Leia mais

E X E R C Í C I O S. i(a) 7,5 10 elétrons

E X E R C Í C I O S. i(a) 7,5 10 elétrons E X E R C Í C I O S 1. O gráfico da figura abaixo representa a intensidade de corrente que percorre um condutor em função do tempo. Determine a carga elétrica que atravessa uma secção transversal do condutor

Leia mais

ELETRODINÂMICA. const. L A. n. e Unidade no SI: Ampére (A)

ELETRODINÂMICA. const. L A. n. e Unidade no SI: Ampére (A) ELETRODINÂMICA - CORRENTE ELÉTRICA É o movimento ordenado de cargas elétricas de um condutor. Condutor Metálico: movimento ordenado dos elétrons livres. Condutor Líquido ou Gasoso: movimento ordenado dos

Leia mais

-----> V = 73,3V. Portanto: V2 = 73,3V e V1 = 146,6V, com isso somente L1 brilhará acima do normal e provavelmente queimará.

-----> V = 73,3V. Portanto: V2 = 73,3V e V1 = 146,6V, com isso somente L1 brilhará acima do normal e provavelmente queimará. TC 3 UECE 01 FASE POF.: Célio Normando Conteúdo: Lâmpadas Incandescentes 1. A lâmpada incandescente é um dispositivo elétrico que transforma energia elétrica em energia luminosa e energia térmica. Uma

Leia mais

Circuitos Elétricos 1º parte. Introdução Geradores elétricos Chaves e fusíveis Aprofundando Equação do gerador Potência e rendimento

Circuitos Elétricos 1º parte. Introdução Geradores elétricos Chaves e fusíveis Aprofundando Equação do gerador Potência e rendimento Circuitos Elétricos 1º parte Introdução Geradores elétricos Chaves e fusíveis Aprofundando Equação do gerador Potência e rendimento Introdução Um circuito elétrico é constituido de interconexão de vários

Leia mais

Energia Elétrica. P = E t (1) Para determinarmos a energia, realizamos uma simples transposição de termos na expressão acima, onde obtemos :

Energia Elétrica. P = E t (1) Para determinarmos a energia, realizamos uma simples transposição de termos na expressão acima, onde obtemos : Energia Elétrica Objetivo - Estudar a energia e suas transformações, particularizar para o caso da energia elétrica; aprender a medir a energia consumida e calcular o seu custo. Informação Técnica - Energia

Leia mais

g= 10 m.s c = 3,0 10 8 m.s -1 h = 6,63 10-34 J.s σ = 5,7 10-8 W.m -2 K -4

g= 10 m.s c = 3,0 10 8 m.s -1 h = 6,63 10-34 J.s σ = 5,7 10-8 W.m -2 K -4 TESTE DE FÍSICO - QUÍMICA 10 º Ano Componente de Física A Duração do Teste: 90 minutos Relações entre unidades de energia W = F r 1 TEP = 4,18 10 10 J Energia P= t 1 kw.h = 3,6 10 6 J Q = mc θ P = U i

Leia mais

Prof. Marcos Antonio

Prof. Marcos Antonio Prof. Marcos Antonio 1- DEFINIÇÃO É o ramo da eletricidade que estuda as cargas elétricas em movimento bem como seus efeitos. 2- CORRENTE ELÉTRICA E SEUS EFEITOS É o movimento ordenado de partículas portadoras

Leia mais

a Energia em casa Da usina até sua casa

a Energia em casa Da usina até sua casa a Energia em casa Da usina até sua casa Para ser usada nas cidades, a energia gerada numa hidrelétrica passa por uma série de transformações A eletricidade é transmitida de uma usina até os centros de

Leia mais

Exercícios: Potência

Exercícios: Potência Exercícios: Potência Cursinho da ETEC Prof. Fernando Buglia 1. (Fuvest) A energia que um atleta gasta pode ser determinada pelo volume de oxigênio por ele consumido na respiração. Abaixo está apresentado

Leia mais

Manual de Consumo Consciente de Energia. Veja se você está aproveitando a energia com todo o conforto e segurança que ela traz.

Manual de Consumo Consciente de Energia. Veja se você está aproveitando a energia com todo o conforto e segurança que ela traz. Manual de Consumo Consciente de Energia. Veja se você está aproveitando a energia com todo o conforto e segurança que ela traz. Quando você utiliza energia de forma eficiente, todo mundo sai ganhando.

Leia mais

Aquecedores são aparelhos que consomem muita energia elétrica. Por isso, evite deixar o seu sempre ligado.

Aquecedores são aparelhos que consomem muita energia elétrica. Por isso, evite deixar o seu sempre ligado. Aquecedor central Aquecedores são aparelhos que consomem muita energia elétrica. Por isso, evite deixar o seu sempre ligado. Planeje seu uso e habitue-se a ligá-lo apenas o tempo necessário para que você

Leia mais

Deu curto! Como o nosso assunto é a eletricidade, poderíamos

Deu curto! Como o nosso assunto é a eletricidade, poderíamos A U A UL LA Deu curto! Como o nosso assunto é a eletricidade, poderíamos dizer que a história do banho interrompido serviu para melhorar a ligação entre o pai e o filho. Ernesto, percebendo que aquele

Leia mais

Exercícios de Física sobre Geradores com Gabarito

Exercícios de Física sobre Geradores com Gabarito Exercícios de Física sobre Geradores com Gabarito 1) (PASUSP-2009) Dínamos de bicicleta, que são geradores de pequeno porte, e usinas hidrelétricas funcionam com base no processo de indução eletromagnética,

Leia mais

Atividade extra. Fascículo 5 Física Unidade 11. Exercício 1 Adaptado de UFES. Exercício 2 Adaptado de UFGO - 1986

Atividade extra. Fascículo 5 Física Unidade 11. Exercício 1 Adaptado de UFES. Exercício 2 Adaptado de UFGO - 1986 Atividade extra Fascículo 5 Física Unidade 11 Exercício 1 Adaptado de UFES Num dia bastante seco, uma jovem de cabelos longos, percebe que depois de penteá-los o pente utilizado atrai pedaços de papel.

Leia mais

a) 2880 C b) 3000 C c) 4200 C d) 5000 C e) 6000 C

a) 2880 C b) 3000 C c) 4200 C d) 5000 C e) 6000 C Aula n ọ 12 01. Quando se estabele uma diferença de potencial entre dois pontos do corpo humano, flui através dele uma corrente elétrica entre os pontos citados. A sensação de choque e suas consequências

Leia mais

FÍSICA 4 Professor: Igor Ken CAPÍTULO 6 GERADORES E RECEPTORES ELÉTRICOS

FÍSICA 4 Professor: Igor Ken CAPÍTULO 6 GERADORES E RECEPTORES ELÉTRICOS FÍSICA 4 Professor: Igor Ken CAPÍTULO 6 GERADORES E RECEPTORES ELÉTRICOS TEORIA 1. INTRODUÇÃO Neste capítulo, vamos estudar os geradores e receptores elétricos. Aqui começa o nosso estudo dos circuitos

Leia mais

Potência elétrica e consumo de energia

Potência elétrica e consumo de energia Potência elétrica e consumo de energia Um aparelho, submetido a uma diferença de potencial, tensão, percorrido por uma corrente elétrica desenvolve uma potência elétrica dada pelo produto entre a tensão

Leia mais

Potência Elétrica. Prof. Alex Siqueira

Potência Elétrica. Prof. Alex Siqueira Potência Elétrica { Prof. Alex Siqueira Imagem: Lâmpada incandescente / Ming888 / Creative Commons Attribution-Share Alike 3.0 Unported. FÍSICA UP 2 Ano do Ensino Médio INTRODUÇÃO No nosso cotidiano são

Leia mais

9. Realize as operações seguintes e expresse as respostas em notação científica. (a) 2 10 4 6 10 5 (b) 3,2 10 3 7 10 6 30 0002 0,04 2 (d) 5003 100 2

9. Realize as operações seguintes e expresse as respostas em notação científica. (a) 2 10 4 6 10 5 (b) 3,2 10 3 7 10 6 30 0002 0,04 2 (d) 5003 100 2 INSTITUTO FEDERAL DE SÃO PAULO IFSP Câmpus São José dos Campos Eletricidade I Lista de Exercícios Conceitos básicos Prof. Fabiano Rodrigo Borges 2 o semestre de 2015 Lista de exercícios 1. Converta os

Leia mais

Geração e Aproveitamento de Energia Elétrica Capítulo 07 (pág. 115) Acendimento de uma lâmpada

Geração e Aproveitamento de Energia Elétrica Capítulo 07 (pág. 115) Acendimento de uma lâmpada Geração e Aproveitamento de Energia Elétrica Capítulo 07 (pág. 115) - Uma corrente elétrica não pode ser vista, mas seus efeitos podem ser percebidos; Acendimento de uma lâmpada Diferença de potencial

Leia mais

Eletricidade. Levanta, acende a luz. Toma um banho quente. Prepara seu lanche com auxílio da torradeira elétrica.

Eletricidade. Levanta, acende a luz. Toma um banho quente. Prepara seu lanche com auxílio da torradeira elétrica. Eletricidade e automação A UU L AL A O operário desperta com o toque do rádiorelógio. Levanta, acende a luz. Toma um banho quente. Prepara seu lanche com auxílio da torradeira elétrica. Um problema Sai

Leia mais

PROVA UPE 2012 TRADICIONAL(RESOLVIDA)

PROVA UPE 2012 TRADICIONAL(RESOLVIDA) PROVA UPE 2012 TRADICIONAL(RESOLVIDA) 33 - Sete bilhões de habitantes, aproximadamente, é a população da Terra hoje. Assim considere a Terra uma esfera carregada positivamente, em que cada habitante seja

Leia mais

Lista 2 - FCC UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE FÍSICA

Lista 2 - FCC UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE FÍSICA UNIESIDADE DO ESTADO DE SANTA CATAINA CENTO DE CIÊNCIAS TECNOLÓGICAS DEPATAMENTO DE FÍSICA Lista - FCC 1. Um eletrômetro é um instrumento usado para medir carga estática: uma carga desconhecida é colocada

Leia mais

FÍSICA 9ºano 3º Trimestre / 2013 BATERIA DE EXERCÍCIOS

FÍSICA 9ºano 3º Trimestre / 2013 BATERIA DE EXERCÍCIOS FÍSICA 9ºano 3º Trimestre / 2013 BATERIA DE EXERCÍCIOS TRABALHO E ENERGIA 1. Uma empilhadeira elétrica transporta do chão até uma prateleira, a uma altura de 6 m do chão, um pacote de 60 kg. O gráfico

Leia mais

a) 4V/R. b) 2V/R. c) V/R. d) V/2R. e) V/4R.

a) 4V/R. b) 2V/R. c) V/R. d) V/2R. e) V/4R. 1- (Unitau 1995) No circuito mostrado a seguir, a corrente fornecida pela bateria e a corrente que circula através do resistor de 6,0Ω São, respectivamente: 4- (Vunesp 1991) Alguns automóveis modernos

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA EXERCÍCIOS NOTAS DE AULA I Goiânia - 014 1. Um capacitor de placas paralelas possui placas circulares de raio 8, cm e separação

Leia mais

k k R microfarad F F 1 1 10 nanofarad nf F 1 1 10 picofarad pf F coulomb volt C V 9.10 Nm capacitância ou capacidade eletrostática do condutor.

k k R microfarad F F 1 1 10 nanofarad nf F 1 1 10 picofarad pf F coulomb volt C V 9.10 Nm capacitância ou capacidade eletrostática do condutor. CONDUTOR EM EUILÍBRIO ELETROSTÁTICO Um condutor, eletrizado ou não, encontrase em equilíbrio eletrostático, quando nele não ocorre movimento ordenado de cargas elétricas em relação a um referencial fixo

Leia mais

FÍSICA 4 Professor: Igor Ken CAPÍTULO 5 ASSOCIAÇÃO DE RESISTORES

FÍSICA 4 Professor: Igor Ken CAPÍTULO 5 ASSOCIAÇÃO DE RESISTORES TEORIA 1. INTRODUÇÃO FÍSICA 4 Professor: Igor Ken CAPÍTULO 5 ASSOCIAÇÃO DE RESISTORES pela associação é igual à energia dissipada pelo resistor equivalente R S. Portanto, podemos escrever: U = U 1 + U

Leia mais

Geradores. a) Complete a tabela abaixo com os valores da corrente I. V(V) R( ) I(A) 1,14 7,55 0,15 1,10 4,40 1,05 2,62 0,40 0,96 1,60 0,85 0,94 0,90

Geradores. a) Complete a tabela abaixo com os valores da corrente I. V(V) R( ) I(A) 1,14 7,55 0,15 1,10 4,40 1,05 2,62 0,40 0,96 1,60 0,85 0,94 0,90 Geradores 1. (Espcex (Aman) 2013) A pilha de uma lanterna possui uma força eletromotriz de 1,5 V e resistência interna de 0,05 Ω. O valor da tensão elétrica nos polos dessa pilha quando ela fornece uma

Leia mais

Energia elétrica: como usar e economizar

Energia elétrica: como usar e economizar endividado.com.br Energia elétrica: como usar e economizar Como fazer uso eficiente de Energia Quanto maior o desperdício de energia, maior é o preço que você e o meio ambiente pagam por ela. Ao usar a

Leia mais

SOLUÇÃO: RESPOSTA (D) 17.

SOLUÇÃO: RESPOSTA (D) 17. 16. O Ceará é hoje um dos principais destinos turísticos do país e uma das suas atrações é o Beach Park, um parque temático de águas. O toboágua, um dos maiores da América Latina, é uma das atrações preferidas

Leia mais

ev IA e) zero I eva b) I. e. v. A Ie va

ev IA e) zero I eva b) I. e. v. A Ie va ELETRODINÂMICA: CAPÍTULOS 1 E 2 01. Uma das grandezas que representa o fluxo de elétrons que atravessa um condutor é a intensidade da corrente elétrica, representada pela letra i. Tratase de uma grandeza:

Leia mais

Professor João Luiz Cesarino Ferreira

Professor João Luiz Cesarino Ferreira Exercícios 1º Lei de Ohm e Potência elétrica 1º) 2º) 3º) Um fio com uma resistência de 6,0Ω é esticado de tal forma que seu comprimento se torna três vezes maior que o original. Determine a resistência

Leia mais

Ele deu... a luz. Era noite e chovia torrencialmente. Roberto,

Ele deu... a luz. Era noite e chovia torrencialmente. Roberto, A UU L AL A Ele deu... a luz Era noite e chovia torrencialmente. Roberto, prevenido, deu a sua ordem preferida: - Desliga a televisão que é perigoso, está trovejando! Mal ele acabou a frase, surgiu um

Leia mais

Atividade 1. Dispositivo que transforma alguma modalidade de energia em energia potencial elétrica.

Atividade 1. Dispositivo que transforma alguma modalidade de energia em energia potencial elétrica. Atividade 1 1) PROBLEMATIZAÇÃO: Se observarmos uma lanterna, um rádio ou alguns tipos de brinquedos, perceberemos que estes aparelhos só funcionam enquanto estão sendo alimentados por uma fonte de energia

Leia mais

REVISÃO ENEM. Prof. Heveraldo

REVISÃO ENEM. Prof. Heveraldo REVISÃO ENEM Prof. Heveraldo Fenômenos Elétricos e Magnéticos Carga elétrica e corrente elétrica. Lei de Coulomb. Campo elétrico e potencial elétrico. Linhas de campo. Superfícies equipotenciais. Poder

Leia mais

FÍSICA 1ª SÉRIE. 10 m s. g 10 m s e

FÍSICA 1ª SÉRIE. 10 m s. g 10 m s e FÍSICA 1ª SÉRIE 21. (G1 - ifsul 2015) A figura abaixo ilustra (fora de escala) o trecho de um brinquedo de parques de diversão, que consiste em uma caixa onde duas pessoas entram e o conjunto desloca-se

Leia mais

IME - 2003 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

IME - 2003 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR IME - 2003 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Física Questão 01 Um pequeno refrigerador para estocar vacinas está inicialmente desconectado da rede elétrica e o ar em seu interior encontra-se

Leia mais

PRÁTICAS PARA A DISCIPLINA LABORATÓRIO DE INSTALAÇÕES ELÉTRICAS

PRÁTICAS PARA A DISCIPLINA LABORATÓRIO DE INSTALAÇÕES ELÉTRICAS PRÁTICAS PARA A DISCIPLINA LABORATÓRIO DE INSTALAÇÕES ELÉTRICAS APOSTILA DO PROFESSOR 2 APOSTILA DO PROFESSOR PRÁTICA N 1 - Dispositivos de comando de iluminação. LABORATÓRIO DE INSTALAÇÕES ELÉTRICAS APOSTILA

Leia mais

CENTRO EDUCACIONAL CHARLES DARWIN

CENTRO EDUCACIONAL CHARLES DARWIN FÍSICA 1 Estude nas apostilas: Física Térmica e Termodinâmica Curiosidade: a unidade de temperatura no SI (Sistema Internacional de Unidades) é o Kelvin. Na tabela seguinte, alguns valores importantes

Leia mais

8. (Fatec) Duas lâmpadas L e L são ligadas em série a uma fonte de 220V.

8. (Fatec) Duas lâmpadas L e L são ligadas em série a uma fonte de 220V. TEXTO PARA A PRÓXIMA QUESTÃO (Uff) O Brasil abriga algumas das maiores e mais belas cavernas conhecidas em todo o mundo. Mais de duas mil dessas formações geológicas já foram cadastradas pela Sociedade

Leia mais

ATENÇÃO ESTE CADERNO CONTÉM 10 (DEZ) QUESTÕES E RESPECTIVOS ESPAÇOS PARA RESPOSTAS. DURAÇÃO DA PROVA: 3 (TRÊS) HORAS

ATENÇÃO ESTE CADERNO CONTÉM 10 (DEZ) QUESTÕES E RESPECTIVOS ESPAÇOS PARA RESPOSTAS. DURAÇÃO DA PROVA: 3 (TRÊS) HORAS ATENÇÃO ESTE CADERNO CONTÉM 10 (DEZ) QUESTÕES E RESPECTIVOS ESPAÇOS PARA RESPOSTAS. DURAÇÃO DA PROVA: 3 (TRÊS) HORAS A correção de cada questão será restrita somente ao que estiver registrado no espaço

Leia mais

APOSTILA DE ELETRICIDADE BÁSICA

APOSTILA DE ELETRICIDADE BÁSICA MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SÃO PAULO CAMPUS DE PRESIDENTE EPITÁCIO APOSTILA DE ELETRICIDADE BÁSICA Prof. Andryos da Silva Lemes Esta apostila é destinada

Leia mais

As leituras no voltímetro V e no amperímetro A, ambos ideais, são, respectivamente,

As leituras no voltímetro V e no amperímetro A, ambos ideais, são, respectivamente, 1. (Espcex (Aman) 015) Em um circuito elétrico, representado no desenho abaixo, o valor da força eletromotriz (fem) do gerador ideal é E 1,5 V, e os valores das resistências dos resistores ôhmicos são

Leia mais

Centro Educacional ETIP

Centro Educacional ETIP Centro Educacional ETIP Revisão de Conteúdo 1 Trimestre/2014 Data: Professor: Leandro Nota: Valor : [0,0 3,0] Nome do(a) aluno(a): Nº Turma: INSTRUÇÕES Preencha corretamente o cabeçalho a caneta. Essa

Leia mais

Capítulo 04. Geradores Elétricos. 1. Definição. 2. Força Eletromotriz (fem) de um Gerador. 3. Resistência interna do gerador

Capítulo 04. Geradores Elétricos. 1. Definição. 2. Força Eletromotriz (fem) de um Gerador. 3. Resistência interna do gerador 1. Definição Denominamos gerador elétrico todo dispositivo capaz de transformar energia não elétrica em energia elétrica. 2. Força Eletromotriz (fem) de um Gerador Para os geradores usuais, a potência

Leia mais

CAPACIDADE ELÉTRICA. Unidade de capacitância

CAPACIDADE ELÉTRICA. Unidade de capacitância CAPACIDADE ELÉTRICA Como vimos, a energia elétrica pode ser armazenada e isso se faz através do armazenamento de cargas elétricas. Essas cargas podem ser armazenadas em objetos condutores. A capacidade

Leia mais

Colégio Paulo VI Aluno (a): Nº.: 3º Série do Ensino Médio Turma: Turno: Vespertino Lista 03 LISTA Nº 04

Colégio Paulo VI Aluno (a): Nº.: 3º Série do Ensino Médio Turma: Turno: Vespertino Lista 03 LISTA Nº 04 Colégio Paulo VI Aluno (a): Nº.: 3º Série do Ensino Médio Turma: Turno: Vespertino Lista 03 Disciplina: Física Professor (a): Murilo Gomes Data: / / 2014 Eletrodinâmica LISTA Nº 04 1. Resistores 01. Um

Leia mais

Geradores elétricos GERADOR. Energia dissipada. Símbolo de um gerador

Geradores elétricos GERADOR. Energia dissipada. Símbolo de um gerador Geradores elétricos Geradores elétricos são dispositivos que convertem um tipo de energia qualquer em energia elétrica. Eles têm como função básica aumentar a energia potencial das cargas que os atravessam

Leia mais

UM RESISTOR ELÉTRICO

UM RESISTOR ELÉTRICO 1 1) PROBLEMATIZAÇÃO Como é bom tomar um banho quente num dia frio de inverno; secar os cabelos com o secador; ir até a cozinha fazer torradas bem quentinhas na torradeira para acompanhar aquele café que

Leia mais

(www.inpe.br/webelat/homepage/menu/el.atm/perguntas.e.respostas.php. Acesso em: 30.10.2012.)

(www.inpe.br/webelat/homepage/menu/el.atm/perguntas.e.respostas.php. Acesso em: 30.10.2012.) 1. (G1 - ifsp 2013) Raios são descargas elétricas de grande intensidade que conectam as nuvens de tempestade na atmosfera e o solo. A intensidade típica de um raio é de 30 mil amperes, cerca de mil vezes

Leia mais

Fio de resistência desprezível Bateria ideal. Amperímetro ideal. Voltímetro ideal. Lâmpada

Fio de resistência desprezível Bateria ideal. Amperímetro ideal. Voltímetro ideal. Lâmpada 1 Na figura mostrada abaixo têm-se duas baterias comuns de automóvel, B 1 e B 2, com forças eletromotrizes 12 V e 6 V, respectivamente, associadas em série. A lâmpada L conectada aos terminais da associação

Leia mais

Curso de Física. Aula 1: Fenômenos Elétricos e Magnéticos. Prof. Rawlinson Medeiros Ibiapina. Fenômenos elétricos e magnéticos

Curso de Física. Aula 1: Fenômenos Elétricos e Magnéticos. Prof. Rawlinson Medeiros Ibiapina. Fenômenos elétricos e magnéticos Curso de Física Aula 1: Fenômenos Elétricos e Magnéticos Prof. Rawlinson Medeiros Ibiapina Sumário 1. O Poder das Pontas; 2. Blindagem eletrostática; 3. Capacitores e suas aplicações; 4. Resistores; 5.

Leia mais

Ligando o condutor ao gerador, há uma ddp nos terminais do condutor e o movimento dos elétrons é ordenado; temos aí uma corrente elétrica.

Ligando o condutor ao gerador, há uma ddp nos terminais do condutor e o movimento dos elétrons é ordenado; temos aí uma corrente elétrica. ELETRODINÂMICA A CORRENTE ELÉTRICA Considere um aparelho como o da Figura 1, cuja função é manter entre seus terminais A e B uma diferença de potencial elétrico (ddp): V A - V B. Esse aparelho é chamado

Leia mais

ND - 5.1 6-1 CÁLCULO DA CARGA INSTALADA E DA DEMANDA

ND - 5.1 6-1 CÁLCULO DA CARGA INSTALADA E DA DEMANDA ND - 5.1 6-1 CÁLCULO DA CARGA INSTALADA E DA DEMANDA 1. DETERMINAÇÃO DA CARGA INSTALADA a) Para definição do tipo de fornecimento, o consumidor deve determinar a carga instalada, somando-se a potência

Leia mais

www.soumaisenem.com.br

www.soumaisenem.com.br 1. (Enem 2011) Uma das modalidades presentes nas olimpíadas é o salto com vara. As etapas de um dos saltos de um atleta estão representadas na figura: Desprezando-se as forças dissipativas (resistência

Leia mais

CA 6 - Apropriar-se de conhecimentos da Física para, em situações problema, interpretar, avaliar ou planejar intervenções científico-tecnológicas.

CA 6 - Apropriar-se de conhecimentos da Física para, em situações problema, interpretar, avaliar ou planejar intervenções científico-tecnológicas. COMPETÊNCIAS E HABILIDADES CADERNO 9 PROF.: Célio Normando CA 6 - Apropriar-se de conhecimentos da Física para, em situações problema, interpretar, avaliar ou planejar intervenções científico-tecnológicas.

Leia mais

Ciências da Natureza I Ensino Médio Oficina Energia e suas transformações Material do monitor

Ciências da Natureza I Ensino Médio Oficina Energia e suas transformações Material do monitor Caro monitor Este material foi produzido com o objetivo de auxiliá-lo nos trabalhos com o material didático impresso Energia e suas transformações e com a web aula Energia, meio ambiente e desenvolvimento.

Leia mais

TABELA 10 - POTÊNCIAS MÉDIAS DE APARELHOS ELETRODOMÉSTICOS E DE AQUECIMENTO

TABELA 10 - POTÊNCIAS MÉDIAS DE APARELHOS ELETRODOMÉSTICOS E DE AQUECIMENTO ND-5.1 7-8 TABELA 10 - POTÊNCIAS MÉDIAS DE APARELHOS ELETRODOMÉSTICOS E DE AQUECIMENTO Aparelhos de Aquecimento e Eletrodomésticos Tipo Potência Tipo Potência ( W ) ( W ) Aquecedor de Água até 80 L 1.500

Leia mais

A Lei de Ohm estabelece uma relação entre as grandezas elétricas: tensão ( V ), corrente ( I ) e resistência ( R ) em um circuito.

A Lei de Ohm estabelece uma relação entre as grandezas elétricas: tensão ( V ), corrente ( I ) e resistência ( R ) em um circuito. Página 1 de 25 1ª Lei de Ohm Embora os conhecimentos sobre eletricidade tenham sido ampliados, a Lei de Ohm continua sendo uma lei básica da eletricidade e eletrônica, por isso conhecê-la é fundamental

Leia mais

Grupo: Ederson Luis Posselt Geovane Griesang Joel Reni Herdina Jonatas Tovar Shuler Ricardo Cassiano Fagundes

Grupo: Ederson Luis Posselt Geovane Griesang Joel Reni Herdina Jonatas Tovar Shuler Ricardo Cassiano Fagundes Curso: Ciências da computação Disciplina: Física aplicada a computação Professor: Benhur Borges Rodrigues Relatório experimental 03: Efeitos da corrente elétrica sobre um fio material; Carga e descarga

Leia mais

q = (Unidade: 1 C = 1A) t I m

q = (Unidade: 1 C = 1A) t I m 1 Corrente Elétrica Como visto no modulo anterior, os materiais condutores, devido as suas características físicas, formam elétrons livres quando de suas ligações atômicas. Contudo essas partículas que

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Professor: Renato Medeiros EXERCÍCIOS NOTA DE AULA III Goiânia - 014 1 E X E R C Í C I O S 1. Uma corrente de 5,0 A percorre

Leia mais