Instituto de Ciências Matemáticas e de Computação ICMC-USP

Tamanho: px
Começar a partir da página:

Download "Instituto de Ciências Matemáticas e de Computação ICMC-USP"

Transcrição

1 Instituto de Ciências Matemáticas e de Computação ICMC-USP Monitoramento de população de aves por meio de segmentação de imagens aéreas: uma abordagem por algoritmos de detecção de comunidades, superpixels e MRF VIII Workshop de Teses e Dissertações Universidade Federal Uberlândia Novembro

2 Apresentação Por que contar aves é importante? Objetivos Metodologia Super Pixels Redes Complexas: Algoritmos de detecção de comunidades MRF Resultados

3 Pantanal Area: 250km2 Altitude: 100 m!!! Inundado boa parte do tempo Fronteira com a Bolivia (chaco) and Paraguai Patrimônio Natural da Humanidade (UNESCO)

4

5 Introdução Monitoramento Biológico Qualidade ambiental pode ser aferida por meio de monitoramento de espécies de animais Monitoramento de pássaros Distúrbios no meio ambiente Mudanças climáticas Pantanal Garça: cabeça-seca Precisamos contar indivíduos durante a estação de acasalamento

6 Introdução Monitorar (contar indivíduos) de colônia de pássaros Cabeças-secas (Mycteria americana) Por que utilizar imagens aéreas? Menor intrusão no habitat natural Mais rápido Pessoal em solo reduzido Usar drones ou VANTs (Veículos Aéreos Não Tripulados) para a aquisição de imagens

7 VANT - Tiriba

8 Introduction É assim que as imagens se parecem!

9 Objetivos Criar uma abordagem para segmentar imagens de alta dimensão, de forma precisa e com rapidez Superpixels and redes complexas Contar pássaros que normalmente repousam sobre os ninhos Abordagem por textura MRF (Markov Random Fields)

10 Abordagem Pré segmentação com Super Pixels e Redes Complexas Segmentação de textura com MRF: contagem do número de indivíduos

11 Pré Segmentação

12 Segmentação de imagens de alta dimensão com abordagem em grafos Problema de escalabilidade O problema se torna impraticável, à medida que no nro de pixels aumenta. Cada pixel é um nó! Superpixels Reduz a cardinalidade do grafo Um super pixel é um conjunto de pixels com contorno bem preciso

13 SuperPixels a) Condição inicial b) Após algumas iterações c) Super Pixel final: contornos bem ajustados aos objetos.

14 Superpixels Estratégia baseada em k-means Os pixels do contorno sao re-arranjados pela minimização da função de custo: (1) Ii Intensidade média do superpixel i th x,y coordenada do pixel testado Cix,Ciy Localização do superperpixel ith λ1 and λ 2 parâmetros: similaridade entre pixels e convexidade.

15 Geração do Grafo Conexões obedecem a uma função peso: (3) (2) Imagens Nível de Cinza Imagens coloridas Cki, Ckj canal k do modelo de cor RGB ou CIELAB

16 Geração do Grafo Conexões estão restritas a um determinado raior R Raio R = 5

17 Detecção de Comunidades em Redes Complexas Muitas redes apresentam estrutura de comunidades Grupos cujos nós são mais densamente conectados entre si do que do resto da rede Problema fundamental: como definir a melhor divisão (normalmente o número e tamanho são desconhecidos) Modularidade

18 Modularidade c Q= ( e ii a ) 2 i i= c = nro comunidades = 3

19 Segmentação de imagens de alta resolução Aplicação dos algoritmos de detecção de comunidades: Fast Greedy (FG) [Newman 2004] e Label Propagation (LP) [Raghavan et al. 2007]. Biblioteca Igraph [Csardi and Nepusz 2006]. Dividem os vértices em comunidades (regiões). Aplicação em grafos de superpixels. Reduz custo FG: mais apropriado para a segmentação modularidade LP: não garante melhor resultado seleção aleatória dos rótulos. Imagem super-segmentada.

20 Algoritmo Fast Grid Ideal para segmentação de imagens Inicialmente, cada nó é uma comunidade

21 Algoritmo de Segmentação

22 Identificação e contagem de cabeças-secas Markov Random Fields Um bom modelo para discriminar texturas. Como discriminar um pássaro branco do seu reflexo também branco na superfície d'água? É um conceito relacionado a probabilidade e estatística.

23 Campos de Markov: modelo É um campo aleatório em que a probabilidade de uma variável aleatória assumir um certo valor (dado o conjunto de todas as variáveis do campo) é a probabilidade da mesma variável receber um valor dado apenas um conjunto de variáveis de um certo sistema de vizinhança Imagem É o dado observado O pixel é a variável aleatória Vizinhança 4- ou 8-conectado.

24 MarkovianRandom Random Markovian Field Field EM/MPM :: Overview Segmented Image... Input Image ( 1, 21) L ( L, 2L) ( 3, 23) Pre-defined number Randomly created class map (label field) of classes Perform a new classification MPM Algorithm L Estimation of classes parameters Update parameters EM Algorithm

25 Na prática: quais os melhores valores para os diversos parâmetros? Tamanho inicial do superpixel Melhores valores para λ e λ 1 2 Como o tamanho do superpixel influencia no desempenho e qualidade da segmentação? Mudanças pequenas produzem segmentações bastante distintas Criação do Grafo Raio R Limiar T: devemos conectar os vértices (criar arestas)? Uma nova métrica para avaliação quantitativa da qualidade de segmentação: Berkeley image database. 300 imagens, raio: 1 to 5, limiar: 0.5 to 40 (0.5 increment) 400 segmentações para cada imagem segmentações no total!

26 Tamanho do Superpixel

27 Superpixel Size

28 Segmentação de imagens de alta resolução Métrica de avaliação quantitativa da qualidade da segmentação: I(S,S ) 1 I(S, S ) = 1, se S = S I(S,S ) = I(S,S) I(S,S ) I(S,S ) & I(S,S ) I(S,S ) I(S,S ) I(S,S ) Exemplo: min(r,r ) = 2 max(mlc)=[80,10] Similaridade = 90%

29 Segmentação de imagens de alta resolução Novo método de seleção da imagem de referência Comparação da imagem segmentada automaticamente com imagem segmentada manualmente. Diferentes segmentações manuais Imagem de referência: aquela que, na média, mais se assemelha às demais. Processo: Calculam-se as intersecções entre todas segmentações manuais (matriz M). Somam-se as interseções de cada linha. Escolhe-se a segmentação com maior soma. n = qtde imagens manuais

30 Segmentação de imagens de alta resolução Novo método de seleção da imagem de referência

31 Avaliação do Raio

32 Avalição do Limiar

33 Resultados Aquisição das imagens: outubro de 2013 Resolução: (10cm/pixel). Altitude de voo: 250 mts aproximadamente Resolução espacial: 5184x3456

34 Resultados Pré-segmentação Superpixels + fast greedy. Parâmetros (SP size:10, 1: 1, 2: 0.09, t=3, R=5, iterações: 6, modelo de cor CIELAB ).

35 Resultados MRF Segmentation Parâmetros: Vários experimentos T: 3, k:8, iterações:200, classes: 5, pixels s s 80, Parêmetros iniciais: por limiarização Otsu e Simulated Annealing ( 0:0, I: 0.05, max: 2.4)

36 Resultados Como se compara à contagem Humana? Ninhos visitados por especialistas. Contagem In loco : 341 Contagem automática: 325 Fatos: Processo In loco:» Conduzido por biólogos (observação direta) em dias distintos.» É uma estimativa. Contagem automática:» Incluem pásssaros em vôo e pássaros sobrepostos no mesmo ninho (foi aplicada uma heurística que leva em conta a área ocupada por uma ave, dados o tamanho da ave e resolução da imagem em cm/pixel)

37 Resultados Segmentação automática X Segmentação manual por observação direta 20 imagens. Coeficiente de Pearson: 0.98

38 Conclusões Algoritmos de detecção de comunidades e superpixel é uma boa abordagem de segmentação: precisão e rapidez Contribuições Funções de peso baseada no modelo de cor CIELAB Limiarização adaptativa para a criação do grafo Definição dos melhores parâmetros Segmentação por MRF Adequada para a segmentação dos pássaros em ninhais. Correlação com a segmentação humana

39 Obrigado!

Aula 6 - Segmentação de Imagens Parte 2. Prof. Adilson Gonzaga

Aula 6 - Segmentação de Imagens Parte 2. Prof. Adilson Gonzaga Aula 6 - Segmentação de Imagens Parte 2 Prof. Adilson Gonzaga 1 Motivação Extração do Objeto Dificuldades Super segmentação over-segmentation 1) Segmentação por Limiarização (Thresholding Global): Efeitos

Leia mais

Aula 5 - Classificação

Aula 5 - Classificação AULA 5 - Aula 5-1. por Pixel é o processo de extração de informação em imagens para reconhecer padrões e objetos homogêneos. Os Classificadores "pixel a pixel" utilizam apenas a informação espectral isoladamente

Leia mais

UFGD FCA PROF. OMAR DANIEL BLOCO 6 CLASSIFICAÇÃO DE IMAGENS

UFGD FCA PROF. OMAR DANIEL BLOCO 6 CLASSIFICAÇÃO DE IMAGENS UFGD FCA PROF. OMAR DANIEL BLOCO 6 CLASSIFICAÇÃO DE IMAGENS Obter uma imagem temática a partir de métodos de classificação de imagens multi- espectrais 1. CLASSIFICAÇÃO POR PIXEL é o processo de extração

Leia mais

Marco Aurélio Gonçalves da Silva Orientador: Anselmo Antunes Montenegro

Marco Aurélio Gonçalves da Silva Orientador: Anselmo Antunes Montenegro Marco Aurélio Gonçalves da Silva Orientador: Anselmo Antunes Montenegro Universidade Federal Fluminense 31/10/2012 Pixel art é uma forma de arte digital na qual os detalhes da imagem são representados

Leia mais

Chow&Kaneko buscam as modas da imagem para separar os objetos. Admite que os tons na vizinhança de cada moda são do mesmo objeto.

Chow&Kaneko buscam as modas da imagem para separar os objetos. Admite que os tons na vizinhança de cada moda são do mesmo objeto. Respostas Estudo Dirigido do Capítulo 12 Image Segmentation" 1 Com suas palavras explique quais os problemas que podem ocorrer em uma segmentação global baseada em níveis de cinza da imagem. Que técnicas

Leia mais

Processamento de Imagem. Prof. MSc. André Yoshimi Kusumoto andrekusumoto.unip@gmail.com

Processamento de Imagem. Prof. MSc. André Yoshimi Kusumoto andrekusumoto.unip@gmail.com Processamento de Imagem Prof. MSc. André Yoshimi Kusumoto andrekusumoto.unip@gmail.com Visão Computacional Não existe um consenso entre os autores sobre o correto escopo do processamento de imagens, a

Leia mais

Detecção de mudanças em imagens oriundas de sensoriamento remoto, usando conjuntos fuzzy.

Detecção de mudanças em imagens oriundas de sensoriamento remoto, usando conjuntos fuzzy. Detecção de mudanças em imagens oriundas de sensoriamento remoto, usando conjuntos fuzzy. Marcelo Musci Baseado no artigo: Change detection assessment using fuzzy sets and remotely sensed data: an application

Leia mais

Universidade Federal de Alagoas Instituto de Matemática. Imagem. Prof. Thales Vieira

Universidade Federal de Alagoas Instituto de Matemática. Imagem. Prof. Thales Vieira Universidade Federal de Alagoas Instituto de Matemática Imagem Prof. Thales Vieira 2014 O que é uma imagem digital? Imagem no universo físico Imagem no universo matemático Representação de uma imagem Codificação

Leia mais

CLASSIFICAÇÃO DE IMAGENS

CLASSIFICAÇÃO DE IMAGENS CLASSIFICAÇÃO DE IMAGENS SIG Profa.. Dra. Maria Isabel Castreghini de Freitas ifreitas@rc.unesp.br Profa. Dra. Andréia Medinilha Pancher medinilha@linkway.com.br O que é classificação? É o processo de

Leia mais

Introdução do Processamento de Imagens. Julio C. S. Jacques Junior juliojj@gmail.com

Introdução do Processamento de Imagens. Julio C. S. Jacques Junior juliojj@gmail.com Introdução do Processamento de Imagens Julio C. S. Jacques Junior juliojj@gmail.com Porque processar uma imagem digitalmente? Melhoria de informação visual para interpretação humana Processamento automático

Leia mais

Uma Versão Intervalar do Método de Segmentação de Imagens Utilizando o K-means

Uma Versão Intervalar do Método de Segmentação de Imagens Utilizando o K-means TEMA Tend. Mat. Apl. Comput., 6, No. 2 (2005), 315-324. c Uma Publicação da Sociedade Brasileira de Matemática Aplicada e Computacional. Uma Versão Intervalar do Método de Segmentação de Imagens Utilizando

Leia mais

Processamento Digital de Imagens

Processamento Digital de Imagens Processamento Digital de Imagens Israel Andrade Esquef a Márcio Portes de Albuquerque b Marcelo Portes de Albuquerque b a Universidade Estadual do Norte Fluminense - UENF b Centro Brasileiro de Pesquisas

Leia mais

Universidade Federal de Goiás Instituto de Informática Processamento Digital de Imagens

Universidade Federal de Goiás Instituto de Informática Processamento Digital de Imagens Universidade Federal de Goiás Instituto de Informática Processamento Digital de Imagens Prof Fabrízzio Alphonsus A M N Soares 2012 Capítulo 2 Fundamentos da Imagem Digital Definição de Imagem: Uma imagem

Leia mais

Comparação entre as Técnicas de Agrupamento K-Means e Fuzzy C-Means para Segmentação de Imagens Coloridas

Comparação entre as Técnicas de Agrupamento K-Means e Fuzzy C-Means para Segmentação de Imagens Coloridas Comparação entre as Técnicas de Agrupamento K-Means e Fuzzy C-Means para Segmentação de Imagens Coloridas Vinicius Ruela Pereira Borges 1 1 Faculdade de Computação - Universidade Federal de Uberlândia

Leia mais

APLICAÇÃO DAS TÉCNICAS DE PROCESSAMENTO DIGITAL DE IMAGENS NA CARACTERIZAÇÃO QUANTITATIVA DE MATERIAIS COMPÓSITOS

APLICAÇÃO DAS TÉCNICAS DE PROCESSAMENTO DIGITAL DE IMAGENS NA CARACTERIZAÇÃO QUANTITATIVA DE MATERIAIS COMPÓSITOS APLICAÇÃO DAS TÉCNICAS DE PROCESSAMENTO DIGITAL DE IMAGENS NA CARACTERIZAÇÃO QUANTITATIVA DE MATERIAIS COMPÓSITOS Fernando de Azevedo Silva Jean-Jacques Ammann Ana Maria Martinez Nazar Universidade Estadual

Leia mais

Simulação Gráfica. Morfologia Matemática. Julio C. S. Jacques Junior

Simulação Gráfica. Morfologia Matemática. Julio C. S. Jacques Junior Simulação Gráfica Morfologia Matemática Julio C. S. Jacques Junior Morfologia Palavra denota uma área da biologia que trata com a forma e a estrutura de animais e plantas. No contexto de Morfologia Matemática:

Leia mais

VANT O Uso na Agricultura de Precisão

VANT O Uso na Agricultura de Precisão VANT O Uso na Agricultura de Precisão Conceituação De acordo com acircular de Informações Aeronáuticas AIC N21/10, do Departamento de Controle do Espaço Aéreo (DECEA), define que: É um veículo aéreo projetado

Leia mais

Introdução ao Processamento de Imagens

Introdução ao Processamento de Imagens Introdução ao PID Processamento de Imagens Digitais Introdução ao Processamento de Imagens Glaucius Décio Duarte Instituto Federal Sul-rio-grandense Engenharia Elétrica 2013 1 de 7 1. Introdução ao Processamento

Leia mais

Projeto VANT/DNPM Desafios e Novas Fronteiras para uso do VANT em atividades de fiscalização mineral

Projeto VANT/DNPM Desafios e Novas Fronteiras para uso do VANT em atividades de fiscalização mineral Projeto VANT/DNPM Desafios e Novas Fronteiras para uso do VANT em atividades de fiscalização mineral Cristina P. Bicho Coordenadora Projeto VANT/DNPM Departamento Nacional de Produção Mineral São Paulo,

Leia mais

Redes Neurais. Mapas Auto-Organizáveis. 1. O Mapa Auto-Organizável (SOM) Prof. Paulo Martins Engel. Formação auto-organizada de mapas sensoriais

Redes Neurais. Mapas Auto-Organizáveis. 1. O Mapa Auto-Organizável (SOM) Prof. Paulo Martins Engel. Formação auto-organizada de mapas sensoriais . O Mapa Auto-Organizável (SOM) Redes Neurais Mapas Auto-Organizáveis Sistema auto-organizável inspirado no córtex cerebral. Nos mapas tonotópicos do córtex, p. ex., neurônios vizinhos respondem a freqüências

Leia mais

Algoritmos Randomizados: Introdução

Algoritmos Randomizados: Introdução Algoritmos Randomizados: Introdução Celina Figueiredo Guilherme Fonseca Manoel Lemos Vinícius Sá 26º Colóquio Brasileiro de Matemática IMPA Rio de Janeiro Brasil 2007 Resumo Definições Monte Carlo Variáveis

Leia mais

Universidade Federal do Rio de Janeiro - IM/DCC & NCE

Universidade Federal do Rio de Janeiro - IM/DCC & NCE Universidade Federal do Rio de Janeiro - IM/DCC & NCE Processamento de Imagens Tratamento da Imagem - Filtros Antonio G. Thomé thome@nce.ufrj.br Sala AEP/033 Sumário 2 Conceito de de Filtragem Filtros

Leia mais

Estudo da aplicabilidade das técnicas de morfologia matemática e redes neurais aplicadas ao problema de segmentação de placas de carros

Estudo da aplicabilidade das técnicas de morfologia matemática e redes neurais aplicadas ao problema de segmentação de placas de carros Alessandra Bussador e Miguel D. Matrakas 63 Estudo da aplicabilidade das técnicas de morfologia matemática e redes neurais aplicadas ao problema de segmentação de placas de carros Alessandra Bussador (Mestre)

Leia mais

INTELIGÊNCIA ARTIFICIAL Data Mining (DM): um pouco de prática. (1) Data Mining Conceitos apresentados por

INTELIGÊNCIA ARTIFICIAL Data Mining (DM): um pouco de prática. (1) Data Mining Conceitos apresentados por INTELIGÊNCIA ARTIFICIAL Data Mining (DM): um pouco de prática (1) Data Mining Conceitos apresentados por 1 2 (2) ANÁLISE DE AGRUPAMENTOS Conceitos apresentados por. 3 LEMBRE-SE que PROBLEMA em IA Uma busca

Leia mais

Teoria : Estruturas de Dados. Estrutura Vetorial. Quais tipos de dados são representados por estruturas vetoriais? Mapa temático:

Teoria : Estruturas de Dados. Estrutura Vetorial. Quais tipos de dados são representados por estruturas vetoriais? Mapa temático: Universidade do Estado de Santa Catarina UDESC Centro de ciências Humanas e da Educação FAED Mestrado em Planejamento Territorial e Desenvolvimento Socio- Ambiental - MPPT Disciplina: Geoprocessamento

Leia mais

PROF. DR. JACQUES FACON

PROF. DR. JACQUES FACON PUCPR- Pontifícia Universidade Católica Do Paraná PPGIA- Programa de Pós-Graduação Em Informática Aplicada PROF. DR. JACQUES FACON LIMIARIZAÇÃO DUPLA DE ISTVÁN CSEKE PROJETO DE UMA RÁPIDA SEGMENTAÇÃO PARA

Leia mais

EXPERIÊNCIAS EM FOTOGRAMETRIA COM VANT Terça-feira, 1 de Abril de 2014 08:48

EXPERIÊNCIAS EM FOTOGRAMETRIA COM VANT Terça-feira, 1 de Abril de 2014 08:48 EXPERIÊNCIAS EM FOTOGRAMETRIA COM VANT Terça-feira, 1 de Abril de 2014 08:48 1 comentário Eng. Manoel Silva Neto Departamento de Fotogrametria Mapeamento com VANT é amplamente aceito como um novo método

Leia mais

VANT e fotogrammetria

VANT e fotogrammetria VANT e fotogrammetria Um piscar sobre a tecnologia Emanuele Traversari UFPE - 5 de Julho 2013 1 O que é um VANT O VANT é uma sigla para Veículo Aéreo Não Tripulado: é uma aeronave genérica, criada para

Leia mais

A limiarização é uma das abordagens mais importantes de segmentação de imagens. A limiarização é um caso específico de segmentação.

A limiarização é uma das abordagens mais importantes de segmentação de imagens. A limiarização é um caso específico de segmentação. Limiarização A limiarização é uma das abordagens mais importantes de segmentação de imagens. A limiarização é um caso específico de segmentação. O princípio da limiarização consiste em separar as regiões

Leia mais

Inteligência de Enxame: PSO

Inteligência de Enxame: PSO ! A otimização por enxame de partículas: «É baseada em uma estratégia inspirada no voo dos pássaros e movimento de cardumes de peixes; «Permite a otimização global de um função objetivo A função objetivo

Leia mais

RUÍDOS EM IMAGENS FILTRAGEM DE RUÍDOS. o Flutuações aleatórias ou imprecisões em dados de entrada, precisão numérica, arredondamentos etc...

RUÍDOS EM IMAGENS FILTRAGEM DE RUÍDOS. o Flutuações aleatórias ou imprecisões em dados de entrada, precisão numérica, arredondamentos etc... RUÍDOS EM IMAGENS FILTRAGEM DE RUÍDOS RUÍDOS EM IMAGENS Em Visão Computacional, ruído se refere a qualquer entidade em imagens, dados ou resultados intermediários, que não são interessantes para os propósitos

Leia mais

Vetor Quantização e Aglomeramento (Clustering)

Vetor Quantização e Aglomeramento (Clustering) (Clustering) Introdução Aglomeramento de K-partes Desafios do Aglomeramento Aglomeramento Hierárquico Aglomeramento divisivo (top-down) Aglomeramento inclusivo (bottom-up) Aplicações para o reconhecimento

Leia mais

Tratamento da Imagem Transformações (cont.)

Tratamento da Imagem Transformações (cont.) Universidade Federal do Rio de Janeiro - IM/DCC & NCE Tratamento da Imagem Transformações (cont.) Antonio G. Thomé thome@nce.ufrj.br Sala AEP/133 Tratamento de Imagens - Sumário Detalhado Objetivos Alguns

Leia mais

Avaliação de Algoritmos de Modelos de Distribuição de Espécies para Predição de Risco. Líliam César de Castro Medeiros

Avaliação de Algoritmos de Modelos de Distribuição de Espécies para Predição de Risco. Líliam César de Castro Medeiros Avaliação de Algoritmos de Modelos de Distribuição de Espécies para Predição de Risco de Eclosão de Mosquitos Aedes spp. Líliam César de Castro Medeiros CCST Objetivo: Avaliar o desempenho de algoritmos

Leia mais

Manual Processamento de Imagem. João L. Vilaça

Manual Processamento de Imagem. João L. Vilaça Manual Processamento de Imagem João L. Vilaça Versão 1.0 31/1/2014 Índice 1. Sistema de eixo e movimentos possíveis do Drone... 3 2. Imagem... 3 3. Espaços de cor... 4 4.1 RGB... 5 4.2HSV... 5 4.3 GRAY...

Leia mais

Costa, B.L. 1 ; Faria, R.A.M²; Marins, L.S.³. ²Universidade do Estado do Rio de Janeiro / Faculdade de Formação de Professores - rfariageo@hotmail.

Costa, B.L. 1 ; Faria, R.A.M²; Marins, L.S.³. ²Universidade do Estado do Rio de Janeiro / Faculdade de Formação de Professores - rfariageo@hotmail. GERAÇÃO DE MAPA DE USO E COBERTURA DE SOLO UTILIZANDO IMAGENS DE SATÉLITE LANDSAT 8 PARA O SUPORTE AO PLANEJAMENTO MUNICIPAL DO MUNICÍPIO DE NITERÓI RJ. Costa, B.L. 1 ; Faria, R.A.M²; Marins, L.S.³ 1 Universidade

Leia mais

Fundamentos de Processamento de Imagens SCC0251/5830 Processamento de Imagens

Fundamentos de Processamento de Imagens SCC0251/5830 Processamento de Imagens Fundamentos de Processamento de Imagens SCC0251/5830 Processamento de Imagens Prof. Moacir Ponti Jr. www.icmc.usp.br/~moacir Instituto de Ciências Matemáticas e de Computação USP 2012/1 Moacir Ponti Jr.

Leia mais

MODELAGEM DIGITAL DE SUPERFÍCIES

MODELAGEM DIGITAL DE SUPERFÍCIES MODELAGEM DIGITAL DE SUPERFÍCIES Prof. Luciene Delazari Grupo de Pesquisa em Cartografia e SIG da UFPR SIG 2012 Introdução Os modelo digitais de superficie (Digital Surface Model - DSM) são fundamentais

Leia mais

CAP 254 CAP 254. Otimização Combinatória. Professor: Dr. L.A.N. Lorena. Assunto: Metaheurísticas Antonio Augusto Chaves

CAP 254 CAP 254. Otimização Combinatória. Professor: Dr. L.A.N. Lorena. Assunto: Metaheurísticas Antonio Augusto Chaves CAP 254 CAP 254 Otimização Combinatória Professor: Dr. L.A.N. Lorena Assunto: Metaheurísticas Antonio Augusto Chaves Conteúdo C01 Simulated Annealing (20/11/07). C02 Busca Tabu (22/11/07). C03 Colônia

Leia mais

Estudo comparativo de métodos de segmentação de imagens digitais de aves

Estudo comparativo de métodos de segmentação de imagens digitais de aves Estudo comparativo de métodos de segmentação de imagens digitais de aves Felipe de Sousa NOBRE; Paulo César Miranda MACHADO Escola de Engenharia Elétrica e de Computação - UFG felipesnobre@gmail.com, pcesar@eee.ufg.br

Leia mais

GABRIEL FILLIPE CENTINI CAMPOS RECONHECIMENTO DE MARMOREIO DE CARNE BASEADO EM SEGMENTAÇÃO DE IMAGENS

GABRIEL FILLIPE CENTINI CAMPOS RECONHECIMENTO DE MARMOREIO DE CARNE BASEADO EM SEGMENTAÇÃO DE IMAGENS GABRIEL FILLIPE CENTINI CAMPOS RECONHECIMENTO DE MARMOREIO DE CARNE BASEADO EM SEGMENTAÇÃO DE IMAGENS LONDRINA PR 2014 GABRIEL FILLIPE CENTINI CAMPOS RECONHECIMENTO DE MARMOREIO DE CARNE BASEADO EM SEGMENTAÇÃO

Leia mais

Aplicação de Técnicas de Processamento e Análise de Imagem na Análise Automática da Quantidade e do Tamanho do Grão em Imagens Metalográficas

Aplicação de Técnicas de Processamento e Análise de Imagem na Análise Automática da Quantidade e do Tamanho do Grão em Imagens Metalográficas Aplicação de Técnicas de Processamento e Análise de Imagem na Análise Automática da Quantidade e do Tamanho do Grão em Imagens Metalográficas Tarique da S. Cavalcante, P. P. Rebouças Filho, Victor Hugo

Leia mais

Trabalho 2 Fundamentos de computação Gráfica

Trabalho 2 Fundamentos de computação Gráfica Trabalho 2 Fundamentos de computação Gráfica Processamento de Imagens Aluno: Renato Deris Prado Tópicos: 1- Programa em QT e C++ 2- Efeitos de processamento de imagens 1- Programa em QT e C++ Para o trabalho

Leia mais

CAP 254 CAP 254. Otimização Combinatória. Professor: Dr. L.A.N. Lorena. Assunto: Metaheurísticas Antonio Augusto Chaves

CAP 254 CAP 254. Otimização Combinatória. Professor: Dr. L.A.N. Lorena. Assunto: Metaheurísticas Antonio Augusto Chaves CAP 254 CAP 254 Otimização Combinatória Professor: Dr. L.A.N. Lorena Assunto: Metaheurísticas Antonio Augusto Chaves Conteúdo C01 Simulated Annealing (20/11/07). C02 Busca Tabu (22/11/07). C03 Colônia

Leia mais

2. O que é Redundância de código ou informação? Como a compressão Huffman utiliza isso? Você conhece algum formato de imagem que a utiliza?(1.

2. O que é Redundância de código ou informação? Como a compressão Huffman utiliza isso? Você conhece algum formato de imagem que a utiliza?(1. Respostas do Estudo Dirigido Cap. 26 - Reducing the information:... ou Image Compression 1. Para que serve comprimir as imagens? Que aspectos estão sendo considerados quando se fala de: Compression Rate,

Leia mais

SUMÁRIO. Introdução... 3

SUMÁRIO. Introdução... 3 SUMÁRIO Introdução..................................... 3 1 Consultas por Similaridade e Espaços métricos............. 5 1.1 Consultas por abrangência e consultas aos k-vizinhos mais próximos... 5 1.2

Leia mais

Computação BioInspirada

Computação BioInspirada Computação BioInspirada Os Engenheiros da Natureza Fabrício Olivetti de França The reasonable man adapts himself to the world; the unreasonable one persists in trying to adapt the world to himself. Therefore

Leia mais

Detecção e Rastreamento de Objetos coloridos em vídeo utilizando o OpenCV

Detecção e Rastreamento de Objetos coloridos em vídeo utilizando o OpenCV Detecção e Rastreamento de Objetos coloridos em vídeo utilizando o OpenCV Bruno Alberto Soares OLIVEIRA 1,3 ; Servílio Souza de ASSIS 1,3,4 ; Izadora Aparecida RAMOS 1,3,4 ; Marlon MARCON 2,3 1 Estudante

Leia mais

Fundamentos de Imagens Digitais. Aquisição e Digitalização de Imagens. Aquisição e Digitalização de Imagens. Aquisição e Digitalização de Imagens

Fundamentos de Imagens Digitais. Aquisição e Digitalização de Imagens. Aquisição e Digitalização de Imagens. Aquisição e Digitalização de Imagens Fundamentos de Imagens Digitais Aquisição e Serão apresentadas as principais características de uma imagem digital: imagem do ponto de vista matemático processo de aquisição e digitalização de uma imagem

Leia mais

Universidade Federal Rural de Pernambuco Departamento de Estatística e Informática

Universidade Federal Rural de Pernambuco Departamento de Estatística e Informática Universidade Federal Rural de Pernambuco Departamento de Estatística e Informática Redes Complexas e Aplicações na Informática Prof. Dr. Catão Temístocles de Freitas Barbosa Redes Complexas Rede = conjunto

Leia mais

3 Estado da arte em classificação de imagens de alta resolução

3 Estado da arte em classificação de imagens de alta resolução 37 3 Estado da arte em classificação de imagens de alta resolução Com a recente disponibilidade de imagens de alta resolução produzidas por sensores orbitais como IKONOS e QUICKBIRD se tornou-se possível

Leia mais

Sistemas Inteligentes Lista de Exercícios sobre Busca

Sistemas Inteligentes Lista de Exercícios sobre Busca Sistemas Inteligentes Lista de Exercícios sobre Busca 1) A* - Problema do metrô de Paris Suponha que queremos construir um sistema para auxiliar um usuário do metrô de Paris a saber o trajeto mais rápido

Leia mais

Processamento e Análise de Imagens (MC940) Análise de Imagens (MO445)

Processamento e Análise de Imagens (MC940) Análise de Imagens (MO445) Processamento e Análise de Imagens (MC940) Análise de Imagens (MO445) Prof. Hélio Pedrini Instituto de Computação UNICAMP 2º Semestre de 2015 Roteiro 1 Morfologia Matemática Fundamentos Matemáticos Operadores

Leia mais

Classificação da imagem (ou reconhecimento de padrões): objectivos Métodos de reconhecimento de padrões

Classificação da imagem (ou reconhecimento de padrões): objectivos Métodos de reconhecimento de padrões Classificação de imagens Autor: Gil Gonçalves Disciplinas: Detecção Remota/Detecção Remota Aplicada Cursos: MEG/MTIG Ano Lectivo: 11/12 Sumário Classificação da imagem (ou reconhecimento de padrões): objectivos

Leia mais

Processamento de histogramas

Processamento de histogramas REALCE DE IMAGENS BASEADO EM HISTOGRAMAS Processamento de histogramas O que é um histograma? É uma das ferramentas mais simples e úteis para o PDI; É uma função que mostra a frequência com que cada nível

Leia mais

2.1.2 Definição Matemática de Imagem

2.1.2 Definição Matemática de Imagem Capítulo 2 Fundamentação Teórica Este capítulo descreve os fundamentos e as etapas do processamento digital de imagens. 2.1 Fundamentos para Processamento Digital de Imagens Esta seção apresenta as propriedades

Leia mais

Figura 01: Aplicações do Filtro Espacial Passa-Baixa.

Figura 01: Aplicações do Filtro Espacial Passa-Baixa. 791 IMPLEMENTAÇÃO DE TÉCNICAS DE PRÉ-PROCESSAMENTO E PROCESSAMENTO DE IMAGENS PARA RADIOGRAFIAS CARPAIS Rafael Lima Alves 1 ; Michele Fúlvia Angelo 2 Bolsista PROBIC, Graduando em Engenharia de Computação,

Leia mais

PROCESSAMENTO DIGITAL DE IMAGENS

PROCESSAMENTO DIGITAL DE IMAGENS PROCESSAMENTO DIGITAL DE IMAGENS Msc. Daniele Carvalho Oliveira Doutoranda em Ciência da Computação - UFU Mestre em Ciência da Computação UFU Bacharel em Ciência da Computação - UFJF FILTRAGEM ESPACIAL

Leia mais

PROCESSO DE RECONHECIMENTO NÃO SUPERVISIONADO DE ÁREAS DE ESTACIONAMENTO

PROCESSO DE RECONHECIMENTO NÃO SUPERVISIONADO DE ÁREAS DE ESTACIONAMENTO UNIVERSIDADE PRESBITERIANA MACKENZIE MESTRADO EM ENGENHARIA ELÉTRICA Antonio Henrique Mexas PROCESSO DE RECONHECIMENTO NÃO SUPERVISIONADO DE ÁREAS DE ESTACIONAMENTO SÃO PAULO 2014 UNIVERSIDADE PRESBITERIANA

Leia mais

Clusterização em Redes Sociais Através do Simulated Annealing Não Monotônico

Clusterização em Redes Sociais Através do Simulated Annealing Não Monotônico Clusterização em Redes Sociais Através do Simulated Annealing Não Monotônico Humberto César Brandão de Oliveira humberto@bcc.unifal-mg.edu.br Laboratório de Pesquisa e Desenvolvimento (LP&D) Universidade

Leia mais

Resultados Experimentais

Resultados Experimentais Capítulo 6 Resultados Experimentais Este capítulo é dedicado às avaliações experimentais do sistema CBIR. Os experimentos aqui realizados têm três objetivos principais: comparar os nossos resultados com

Leia mais

Resolução do Problema de Roteamento de Veículos com Frota Heterogênea via GRASP e Busca Tabu.

Resolução do Problema de Roteamento de Veículos com Frota Heterogênea via GRASP e Busca Tabu. Resolução do Problema de Roteamento de Veículos com Frota Heterogênea via GRASP e Busca Tabu. Camila Leles de Rezende, Denis P. Pinheiro, Rodrigo G. Ribeiro camilalelesproj@yahoo.com.br, denisppinheiro@yahoo.com.br,

Leia mais

UNIVERSIDADE CATÓLICA DOM BOSCO CURSO DE BACHARELADO EM ENGENHARIA DE COMPUTAÇÃO

UNIVERSIDADE CATÓLICA DOM BOSCO CURSO DE BACHARELADO EM ENGENHARIA DE COMPUTAÇÃO UNIVERSIDADE CATÓLICA DOM BOSCO CURSO DE BACHARELADO EM ENGENHARIA DE COMPUTAÇÃO Segmentação por Superpixel para Análise de Larvas Necrofágicas Glaucia Raquel Assis de Oliveira Campo Grande MS 2015 Glaucia

Leia mais

Prof. Júlio Cesar Nievola Data Mining PPGIa PUCPR

Prof. Júlio Cesar Nievola Data Mining PPGIa PUCPR Encontrar grupos de objetos tal que objetos em um grupo são similares (ou relacionados) uns aos outros e diferentes de (ou não relacionados) a objetos em outros grupos Compreensão Agrupa documentos relacionados

Leia mais

UFGD FCA PROF. OMAR DANIEL BLOCO 4 PROCESSAMENTO DE IMAGENS

UFGD FCA PROF. OMAR DANIEL BLOCO 4 PROCESSAMENTO DE IMAGENS UFGD FCA PROF. OMAR DANIEL BLOCO 4 PROCESSAMENTO DE IMAGENS Executar as principais técnicas utilizadas em processamento de imagens, como contraste, leitura de pixels, transformação IHS, operações aritméticas

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Aprendizagem de Máquina Alessandro L. Koerich Algoritmo k Means Mestrado/Doutorado em Informática (PPGIa) Pontifícia Universidade Católica do Paraná (PUCPR) 2 Problema do Agrupamento Seja x = (x 1, x 2,,

Leia mais

Reconhecimento de cultivares e plantas daninhas por imagem

Reconhecimento de cultivares e plantas daninhas por imagem PR UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Ministério da Educação Universidade Tecnológica Federal do Paraná Pró-Reitoria de Pesquisa e Pós-Graduação Relatório Final de Atividades Reconhecimento de

Leia mais

Reconhecimento Automático de Placas de Veículos

Reconhecimento Automático de Placas de Veículos Reconhecimento Automático de Placas de Veículos Vinicius Bergoli Trentini, Lucas Antonio Toledo Godoy, Aparecido Nilceu Marana Universidade Estadual Paulista - UNESP (Campus de Bauru) Faculdade de Ciências

Leia mais

MORFOLOGIA MATEMÁTICA. Adair Santa Catarina Curso de Ciência da Computação Unioeste Campus de Cascavel PR

MORFOLOGIA MATEMÁTICA. Adair Santa Catarina Curso de Ciência da Computação Unioeste Campus de Cascavel PR MORFOLOGIA MATEMÁTICA Adair Santa Catarina Curso de Ciência da Computação Unioeste Campus de Cascavel PR Outubro/2015 Morfologia Matemática Morfologia na Biologia Estudo da estrutura dos animais e plantas;

Leia mais

Sistemas de Informação Geográfica (SIG) para Agricultura de Precisão

Sistemas de Informação Geográfica (SIG) para Agricultura de Precisão 01 Sistemas de Informação Geográfica (SIG) para Agricultura de Precisão Rodrigo G. Trevisan¹; José P. Molin² ¹ Eng. Agrônomo, Mestrando em Engenharia de Sistemas Agrícolas (ESALQ-USP); ² Prof. Dr. Associado

Leia mais

RECONHECIMENTO DE PLACAS DE AUTOMÓVEIS ATRAVÉS DE CÂMERAS IP

RECONHECIMENTO DE PLACAS DE AUTOMÓVEIS ATRAVÉS DE CÂMERAS IP RECONHECIMENTO DE PLACAS DE AUTOMÓVEIS ATRAVÉS DE CÂMERAS IP Caio Augusto de Queiroz Souza caioaugusto@msn.com Éric Fleming Bonilha eric@digifort.com.br Gilson Torres Dias gilson@maempec.com.br Luciano

Leia mais

Normalização Espacial de Imagens Frontais de Face

Normalização Espacial de Imagens Frontais de Face Normalização Espacial de Imagens Frontais de Face Vagner do Amaral 1 e Carlos Eduardo Thomaz 2 Relatório Técnico: 2008/01 1 Coordenadoria Geral de Informática Centro Universitário da FEI São Bernardo do

Leia mais

Processamento de Imagem. Prof. Herondino

Processamento de Imagem. Prof. Herondino Processamento de Imagem Prof. Herondino Sensoriamento Remoto Para o Canada Centre for Remote Sensing - CCRS (2010), o sensoriamento remoto é a ciência (e em certa medida, a arte) de aquisição de informações

Leia mais

Complexidade de Algoritmos. Edson Prestes

Complexidade de Algoritmos. Edson Prestes Edson Prestes Caminhos de custo mínimo em grafo orientado Este problema consiste em determinar um caminho de custo mínimo a partir de um vértice fonte a cada vértice do grafo. Considere um grafo orientado

Leia mais

SEGMENTAÇÃO DE IMAGENS EM PLACAS AUTOMOTIVAS

SEGMENTAÇÃO DE IMAGENS EM PLACAS AUTOMOTIVAS SEGMENTAÇÃO DE IMAGENS EM PLACAS AUTOMOTIVAS André Zuconelli 1 ; Manassés Ribeiro 2 1. Aluno do Curso Técnico em Informática, turma 2010, Instituto Federal Catarinense, Câmpus Videira, andre_zuconelli@hotmail.com

Leia mais

Determinação de data de plantio da cultura da soja no estado do Paraná por meio de composições decendiais de NDVI

Determinação de data de plantio da cultura da soja no estado do Paraná por meio de composições decendiais de NDVI Determinação de data de plantio da cultura da soja no estado do Paraná por meio de composições decendiais de NDVI Gleyce K. Dantas Araújo 1, Jansle Viera Rocha 2 1 Tecª Construção Civil, Mestranda Faculdade

Leia mais

Redes de Sensores Sem Fio

Redes de Sensores Sem Fio Disciplina 2º.semestre/2004 aula2 Redes de Sensores Sem Fio Antônio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br Depto. Ciência da Computação UFMG Linnyer Beatrys Ruiz linnyer@dcc.ufmg.br Depto. Engenharia

Leia mais

Transformada de Hough. Cleber Pivetta Gustavo Mantovani Felipe Zottis

Transformada de Hough. Cleber Pivetta Gustavo Mantovani Felipe Zottis Transformada de Hough Cleber Pivetta Gustavo Mantovani Felipe Zottis A Transformada de Hough foi desenvolvida por Paul Hough em 1962 e patenteada pela IBM. Originalmente, foi elaborada para detectar características

Leia mais

Campos Aleatórios de Markov uma abordagem para caracterização e extração de contornos de telhados

Campos Aleatórios de Markov uma abordagem para caracterização e extração de contornos de telhados Anais do CNMAC v.2 ISSN 1984-820X Campos Aleatórios de Markov uma abordagem para caracterização e extração de contornos de telhados Edinéia Aparecida dos Santos Galvanin Depto de Matemática, UNEMAT, 78390-000,

Leia mais

Codificação/Compressão de Vídeo. Tópico: Vídeo (Codificação + Compressão)

Codificação/Compressão de Vídeo. Tópico: Vídeo (Codificação + Compressão) Tópico: Vídeo (Codificação + Compressão) Um vídeo pode ser considerado como uma seqüência de imagens estáticas (quadros). Cada um desses quadros pode ser codificado usando as mesmas técnicas empregadas

Leia mais

MundoGEOXperience - Maratona de Ideias Geográficas 07/05/2014

MundoGEOXperience - Maratona de Ideias Geográficas 07/05/2014 MundoGEOXperience - Maratona de Ideias Geográficas 07/05/2014 ANÁLISE DE TÉCNICAS PARA DETECÇÃO DE MUDANÇA UTILIZANDO IMAGENS DO SENSORIAMENTO REMOTO DESLIZAMENTOS EM NOVA FRIBURGO/RJ EM 2011 Trabalho

Leia mais

Classificação de Imagens

Classificação de Imagens Universidade do Estado de Santa Catarina Departamento de Engenharia Civil Classificação de Imagens Profa. Adriana Goulart dos Santos Extração de Informação da Imagem A partir de uma visualização das imagens,

Leia mais

Processamento de Imagem Morfológica (Morfologia Matemática) Tsang Ing Ren UFPE - Universidade Federal de Pernambuco CIn - Centro de Informática

Processamento de Imagem Morfológica (Morfologia Matemática) Tsang Ing Ren UFPE - Universidade Federal de Pernambuco CIn - Centro de Informática Processamento de Imagem Morfológica (Morfologia Matemática) Tsang Ing Ren UFPE - Universidade Federal de Pernambuco CIn - Centro de Informática 1 Tópicos Introdução Conceitos básicos da teoria dos conjuntos

Leia mais

Reconhecimento de marcas de carros utilizando Inteligência Artificial. André Bonna Claudio Marcelo Basckeira Felipe Villela Lourenço Richard Keller

Reconhecimento de marcas de carros utilizando Inteligência Artificial. André Bonna Claudio Marcelo Basckeira Felipe Villela Lourenço Richard Keller Reconhecimento de marcas de carros utilizando Inteligência Artificial André Bonna Claudio Marcelo Basckeira Felipe Villela Lourenço Richard Keller Motivação Análise estatística das marcas de carros em

Leia mais

Inteligência Computacional Aplicada a Engenharia de Software

Inteligência Computacional Aplicada a Engenharia de Software Inteligência Computacional Aplicada a Engenharia de Software Estudo de caso III Prof. Ricardo de Sousa Britto rbritto@ufpi.edu.br Introdução Em alguns ambientes industriais, pode ser necessário priorizar

Leia mais

IDENTIFICAÇÃO DE MARCADORES DE PAVIMENTAÇÃO NA ORIENTAÇÃO DE CEGOS

IDENTIFICAÇÃO DE MARCADORES DE PAVIMENTAÇÃO NA ORIENTAÇÃO DE CEGOS IDENTIFICAÇÃO DE MARCADORES DE PAVIMENTAÇÃO NA ORIENTAÇÃO DE CEGOS André Zuconelli¹, Manassés Ribeiro² Instituto Federal de Educação, Ciência e Tecnologia Catarinense - Campus Videira Rodovia SC, Km 5

Leia mais

Cálculo de volume de objetos utilizando câmeras RGB-D

Cálculo de volume de objetos utilizando câmeras RGB-D Cálculo de volume de objetos utilizando câmeras RGB-D Servílio Souza de ASSIS 1,3,4 ; Izadora Aparecida RAMOS 1,3,4 ; Bruno Alberto Soares OLIVEIRA 1,3 ; Marlon MARCON 2,3 1 Estudante de Engenharia de

Leia mais

Geomática Aplicada à Engenharia Civil. 1 Fotogrametria

Geomática Aplicada à Engenharia Civil. 1 Fotogrametria Geomática Aplicada à Engenharia Civil 1 Fotogrametria Conceitos 2 Segundo Wolf (1983), a Fotogrametria pode ser definida como sendo a arte, a ciência e a tecnologia de se obter informações confiáveis de

Leia mais

ANÁLISE EXPLORATÓRIA DA MÉTRICA DA SUPERFÍCIE TOPOGRÁFICA PARA PREVISÃO DO NÍVEL FREÁTICO

ANÁLISE EXPLORATÓRIA DA MÉTRICA DA SUPERFÍCIE TOPOGRÁFICA PARA PREVISÃO DO NÍVEL FREÁTICO 10.º Seminário sobre Águas Subterrâneas ANÁLISE EXPLORATÓRIA DA MÉTRICA DA SUPERFÍCIE TOPOGRÁFICA PARA PREVISÃO DO NÍVEL FREÁTICO APLICAÇÃO A UM SISTEMA CÁRSICO E ROCHAS FRACTURADAS - Filipa SOUSA1, António

Leia mais

Técnicas de Segmentação de Imagens Aéreas para Contagem de População de Aves

Técnicas de Segmentação de Imagens Aéreas para Contagem de População de Aves SERVIÇO DE POS-GRADUAÇAO DO ICMC-USP Data de Depósito: 18 de Fevereiro de 2003 Assinatura : ^/AWlÚlxVc. 16)7){aí Técnicas de Segmentação de Imagens Aéreas para Contagem de População de Aves André Guilherme

Leia mais

Monitoramento de plantios de eucalipto utilizando técnicas de sensoriamento remoto aplicadas em imagens obtidas por VANT

Monitoramento de plantios de eucalipto utilizando técnicas de sensoriamento remoto aplicadas em imagens obtidas por VANT Monitoramento de plantios de eucalipto utilizando técnicas de sensoriamento remoto aplicadas em imagens obtidas por VANT Guilherme Rodrigues de Pontes 1 Thiago Ubiratan de Freitas 2 1 International Paper

Leia mais

Reconhecimento de Objectos

Reconhecimento de Objectos Dado um conjunto de características, relativas a uma região (objecto), pretende-se atribuir uma classe essa região, seleccionada de um conjunto de classes cujas características são conhecidas O conjunto

Leia mais

Watershed? divisor de águas? limites das bacias hidrográficas? what is it?

Watershed? divisor de águas? limites das bacias hidrográficas? what is it? Watershed? divisor de águas? limites das bacias hidrográficas? what is it? O termo watershed / divisor de águas Considera a área de terreno para em que toda a água de chuva é drenada na mesma direção.

Leia mais

KDD. Fases limpeza etc. Datamining OBJETIVOS PRIMÁRIOS. Conceitos o que é?

KDD. Fases limpeza etc. Datamining OBJETIVOS PRIMÁRIOS. Conceitos o que é? KDD Conceitos o que é? Fases limpeza etc Datamining OBJETIVOS PRIMÁRIOS TAREFAS PRIMÁRIAS Classificação Regressão Clusterização OBJETIVOS PRIMÁRIOS NA PRÁTICA SÃO DESCRIÇÃO E PREDIÇÃO Descrição Wizrule

Leia mais

Indexação e Recuperação de Imagens por Conteúdo. Cleigiane Lemos Josivan Reis Wendeson Oliveira

Indexação e Recuperação de Imagens por Conteúdo. Cleigiane Lemos Josivan Reis Wendeson Oliveira Indexação e Recuperação de Imagens por Conteúdo Cleigiane Lemos Josivan Reis Wendeson Oliveira 1 Content-based Image Retrieval (CBIR) 2 Roteiro Introdução Arquitetura Extração de Características Indexação

Leia mais

REPRESENTAÇÃO DA IMAGEM DIGITAL

REPRESENTAÇÃO DA IMAGEM DIGITAL REPRESENTAÇÃO DA IMAGEM DIGITAL Representação da imagem Uma imagem é uma função de intensidade luminosa bidimensional f(x,y) que combina uma fonte de iluminação e a reflexão ou absorção de energia a partir

Leia mais

Extensão do WEKA para Métodos de Agrupamento com Restrição de Contigüidade

Extensão do WEKA para Métodos de Agrupamento com Restrição de Contigüidade Extensão do WEKA para Métodos de Agrupamento com Restrição de Contigüidade Carlos Eduardo R. de Mello, Geraldo Zimbrão da Silva, Jano M. de Souza Programa de Engenharia de Sistemas e Computação Universidade

Leia mais

Um Método Projetivo para Cálculo de Dimensões de Caixas em Tempo Real

Um Método Projetivo para Cálculo de Dimensões de Caixas em Tempo Real Um Método Projetivo para Cálculo de Dimensões de Caixas em Tempo Real Leandro A. F. Fernandes 1, Manuel M. Oliveira (Orientador) 1 1 Instituto de Informática Universidade Federal do Rio Grande do Sul (UFRGS)

Leia mais

Disciplina: Topografia I

Disciplina: Topografia I Curso de Graduação em Engenharia Civil Prof. Guilherme Dantas Fevereiro/2014 Disciplina: Topografia I Indrodução atopografia definição Definição: a palavra "Topografia" deriva das palavras gregas "topos"

Leia mais