UNIVERSIDADE FEDERAL DO RIO DE JANEIRO DEPARTAMENTO DE ENGENHARIA MECÂNICA DEM/POLITÉCNICA/UFRJ

Tamanho: px
Começar a partir da página:

Download "UNIVERSIDADE FEDERAL DO RIO DE JANEIRO DEPARTAMENTO DE ENGENHARIA MECÂNICA DEM/POLITÉCNICA/UFRJ"

Transcrição

1 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO DEPARTAMENTO DE ENGENHARIA MECÂNICA DEM/POLITÉCNICA/UFRJ SELEÇÃO DE UMA BOMBA CENTRÍFUGA PARA RECIRCULAÇÃO DE ÁGUA OLEOSA EM UMA PLATAFORMA FPSO Paulo Henrique Rodrigues do Amaral Projeto de Graduação apresentado ao Curso de Engenharia Mecânica da Escola Politécnica, Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do título de Engenheiro. Orientador: Prof, Reinaldo de Falco RIO DE JANEIRO, RJ BRASIL AGOSTO DE 2014

2 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO DEPARTAMENTO DE ENGENHARIA MECÂNICA DEM/POLITÉCNICA/UFRJ SELEÇÃO DE UMA BOMBA CENTRÍFUGA PARA RECIRCULAÇÃO DE ÁGUA OLEOSA EM UMA PLATAFORMA FPSO Paulo Henrique Rodrigues do Amaral PROJETO FINAL SUBMETIDO AO CORPO DOCENTE DO DEPARTAMENTO DE ENGENHARIA MECÂNICA DA ESCOLA POLITÉCNICA DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE ENGENHEIRO MECÂNICO. Aprovado por: Prof. Reinaldo de Falco (orientador) Prof. Fernando Alves Rochinha; DSc Prof. Fernando Augusto Noronha Castro Pinto; Dr.Ing. RIO DE JANEIRO, RJ - BRASIL AGOSTO DE 2014 ii

3 Amaral, Paulo Henrique Rodrigues do Seleção de uma Bomba Centrífuga para Recirculação de Água Oleosa em uma Plataforma FPSO/ Paulo Henrique Rodrigues do Amaral Rio de Janeiro: UFRJ / Escola Politécnica, VIII,53p.:il.; 29,7 cm Orientador: Prof. Reinaldo de Falco Projeto de Graduação UFRJ / Escola Politécnica / Curso de Engenharia Mecânica, Referências Bibliográficas: p Seleção de bomba. 2. Bomba centrífuga. 3. Sistema hidráulico. 4. Escoamento em tubulações. I. De Falco, Reinaldo. II.Universidade Federal do Rio de Janeiro, Escola Politécnica, Curso de Engenharia Mecânica. III. Seleção de uma Bomba Centrífuga para Recirculação de Água Oleosa em uma Plataforma FPSO iii

4 Dedico a minha família, meu porto seguro, minha força. iv

5 AGRADECIMENTOS A Deus, por me proteger durante toda a vida e me presentear com tantas oportunidades. A Maria Claudia Rodrigues do Amaral, minha mãe, minha inspiração, por orar por mim em todos os momentos e me apoiar em todas as decisões. A Jose Franco Machado do Amaral, meu pai, por me manter motivado, me ensinar o que é disciplina e me ajudar em todos os momentos. A Ana Cristina Rodrigues do Amaral e Marcela Rodrigues do Amaral, minhas irmãs, minhas amigas, por serem meus exemplos de competência e perseverança. mim. A meus avós, meus exemplos de vida, por todo carinho e orações destinados a Aos meus amigos, em especial Theo Back, que estiveram comigo durante o curso, por sempre acreditarem na minha capacidade. v

6 Resumo do Projeto de Graduação apresentado à Escola Politécnica / UFRJ como parte dos requisitos necessários para a obtenção do grau de Engenheiro Mecânico. Seleção de uma Bomba Centrífuga para Recirculação de Água Oleosa em uma Plataforma FPSO. Paulo Henrique Rodrigues do Amaral Agosto/2014 Orientador: Prof. Reinaldo de Falco Curso: Engenharia Mecânica A matriz energética mundial é extremamente dependente do petróleo, o que incentiva a sua busca mesmo nos lugares mais complicados. As reservas brasileiras, por exemplo, estão majoritariamente em solo submarino, fazendo com que a tecnologia necessária para sua exploração seja altíssima. As plataformas FPSO (Floating Production Storage and Offloading) são, atualmente, o meio mais eficaz de se produzir petróleo offshore, pois têm alta capacidade de armazenamento e dispõem de diversas unidades de processamento do óleo bruto, como filtração, separação e tratamento. A necessidade de transportar o petróleo e outros fluidos entre essas unidades implica no uso de bombas apropriadas, cuja seleção só pode ser feita por um engenheiro capacitado. Este trabalho detalha o processo de seleção de uma bomba para a recirculação de água oleosa em uma plataforma FPSO. Palavras-chave: Bomba, Petróleo, FPSO, Recirculação. vi

7 Sumário 1. Introdução Objetivo História do Petróleo no Brasil Explorações Pioneiras por Particulares ( ) Explorações Pioneiras pelo Estado ( ) Busca de Petróleo para Redução da Dependência das Importações ( ) Exploração de Petróleo para a Obtenção da Autossuficiência na Produção ( ) Era do Pré-sal (2006 em diante) Conceitos Teóricos Propriedades dos Fluidos Massa Específica Peso Específico Viscosidade Absoluta Pressão de Vapor Escoamento de Fluidos em tubulações Tipos de Escoamento Número de Reynolds Teorema de Bernoulli Perda de Carga Bombas Tipos de Bombas Curva Carga (H) x Vazão (Q) Curva Potência Absorvida ( ) x Vazão (Q) Curva Eficiência (η) x Vazão (Q) Cavitação NPSH requerido Sistema Hidráulico Altura Manométrica de Sucção Altura Manométrica de Descarga Altura Manométrica Total Curva Característica do Sistema NPSH disponível vii

8 5. Descrição e Análise do Sistema Hidráulico Condições do Fluido Linhas de Sucção e Descarga Altura Manométrica de Descarga Altura Estática de Descarga Pressão manométrica no reservatório de descarga Peso específico Perda de Carga na Linha e Acessórios da Descarga Altura Manométrica de Sucção Altura Estática de Sucção Pressão Manométrica no Reservatório de Sucção Peso específico Perda de Carga na Linha e Acessórios da Sucção Altura manométrica do Sistema Curva Característica do Sistema: Cálculo do NPSH disponível Seleção da Bomba Critérios Ponto de Operação Ocorrência de Cavitação Conclusão Referências Bibliográficas viii

9 1. Introdução O petróleo, hidrocarboneto não renovável, corresponde a mais de 30% da matriz energética mundial. Por esse motivo, as companhias petrolíferas estão constantemente à procura de novos poços que garantam a oferta futura do óleo. O panorama de exploração de petróleo no Brasil é ainda mais complexo, pois a maior parte das reservas já descobertas localiza-se em solo submarino. A Petrobras, em 2006, descobriu gigantescos reservatórios de petróleo e gás natural nas Bacias de Santos, Campos e Espírito Santo. Por essas reservas estarem localizadas abaixo da camada de sal, foram denominadas reservas pré sal. Figura 1.1[7] Dada a complexidade de se explorar um campo tão profundo, a tecnologia aplicada no processo é de ponta e vem sendo aperfeiçoada constantemente pela Petrobras. 1

10 Atualmente uma FPSO (Floating Production Storage and Offloading) é o tipo de plataforma mais adequado para realizar a produção de petróleo nas bacias do pré sal. Sua vantagem é a elevada capacidade de armazenamento de produção, uma vez que a distância entre continente e bacia impossibilita a construção de oleodutos para o transporte do óleo. Figura 1.2 [7] Nessas plataformas, o óleo passa por diversos processos como filtração, separação e tratamento, até chegar à composição desejada. Para garantir seu deslocamento entre as unidades processadoras, o óleo deve ser bombeado e, para isso, faz-se necessário um sistema de bombeamento eficiente. A seleção das bombas deve ser feita de modo a atender a demanda do sistema, reduzir os custos de implementação e manutenção e aumentar a confiabilidade do processo. Essa tarefa, portanto, deve ser realizada por um engenheiro mecânico. 2

11 2. Objetivo O objetivo deste trabalho é efetuar o processo de seleção de bomba de uma plataforma FPSO, utilizando dados reais de operação dessas plataformas. 3. História do Petróleo no Brasil A procura por fontes de petróleo no Brasil iniciou-se em 1860, porém, contrariamente ao intenso processo de descoberta de campos de petróleo que acontecia no resto do mundo, mais de 70 anos passariam sem que se conseguisse descobrir jazidas em solo nacional. A primeira descoberta de acumulação de petróleo aconteceu apenas em 1939, no recôncavo Baiano. Foram descobertos outros campos em terra por mais três décadas, mas nenhum deles tinha volume capaz de diminuir a dependência das importações. Somente em , com a revelação dos primeiros campos de petróleo da Bacia de Campos, a possibilidade de produzir petróleo visando a autossuficiência nacional na produção começou a se tornar mais factível. [7] Para melhor entender a História, o cenário acima pode ser dividido em cinco fases históricas, caracterizadas por eventos importantes e desafios enfrentados pelos exploradores Explorações Pioneiras por Particulares ( ) Nessa primeira fase, pequenos exploradores conseguiam concessões do Governo do Império do Brasil e iniciavam a busca por jazidas de petróleo, carvão e outros minerais. O principal objetivo era a fabricação de óleos para iluminação, dado que o óleo comumente utilizado na época vinha da pesca de baleias e não estava conseguindo 3

12 suprir a crescente demanda mundial. As primeiras concessões foram outorgadas para exploração na Bahia e, posteriormente, São Paulo, Maranhão e outras províncias nordestinas. [7] Uma característica fundamental desse período é que o Estado não teve nenhum envolvimento com a procura por campos de petróleo. Por ser executada exclusivamente por pequenos particulares com pouco capital para investir, os equipamentos utilizados e as técnicas empregadas não eram apropriados. Não houve nenhuma descoberta importante nessa fase Explorações Pioneiras pelo Estado ( ) Após o fim da Primeira Guerra Mundial, em 1919, o Governo brasileiro começou a perceber o risco que corria ao depender totalmente da importação do petróleo como combustível. No resto do mundo a indústria do petróleo já estava se desenvolvendo há 60 anos e, no Brasil, ainda nem se tinha comprovado a existência do mineral. Por esse motivo, o Governo decidiu participar diretamente das atividades de exploração através do Serviço Geológico e Mineralógico do Brasil (SGMB), de 1919 a 1933, e do Departamento Nacional de Produção Mineral (DNPM), a partir de Esses dois órgãos realizaram perfurações de poços em vários estados, mas, apesar de a maior capacidade de investimento e dos equipamentos utilizados serem mais apropriados que os da primeira fase, não foram encontradas jazidas relevantes. [7] O contexto de crescimento da dependência do petróleo e ausência total de produção nacional incentivou o presidente Getúlio Vargas, em 1938, a realizar ampla intervenção no setor, ao transformar as atividades petrolíferas em serviços de utilidade pública e instituir o Conselho Nacional do Petróleo (CNP), para dirigir a política do 4

13 petróleo no país. Um ano depois, os órgãos governamentais responsáveis pela exploração descobriram a primeira acumulação de petróleo do país, na localidade de Lobato, Bahia Busca de Petróleo para Redução da Dependência das Importações ( ) O CNP prosseguiu nos levantamentos geológicos e fisiológicos, concentrando as perfurações nas áreas mais promissoras, que incluíam bacias sedimentares do Recôncavo Baiano, Alagoas, Sergipe e alguns outros estados. Dessa vez a exploração estava dotada de maior conhecimento, melhor planejamento técnico e equipamentos adequados. O Brasil estava, nas palavras de Moura e Carneiro (1976), em busca do tempo perdido. [7] Nesta fase, em 1953, foi criada a Petróleo Brasileiro S.A., a Petrobras, com a missão de reduzir a dependência brasileira das importações de petróleo. Apesar de terem sido descobertos importantes campos de petróleo em alguns estados do nordeste, foi constatado, na década de 1960, que o volume de descobertas em terra não estavam sendo suficientes para reduzir a dependência do óleo importado. Foi tomada a decisão de direcionar as explorações para o mar, iniciando perfuração de poços no litoral do Nordeste em 1968, e na Bacia de Campos, em As primeiras descobertas de campos submarinos no Nordeste, em , não foram animadoras pois não eram suficientes para reverter o panorama de crescente dependência. A bacia de Campos, por outro lado, mudaria essa tendência, dando início a uma nova fase. [7] 5

14 Figura 3.1 Getúlio Vargas nas primeiras extrações de Petróleo da Petrobrás 3.4. Exploração de Petróleo para a Obtenção da Autossuficiência na Produção ( ) A primeira descoberta de petróleo na região da Bacia de Campos foi em 1974, com o Campo de Garoupa. De 1974 a 1976 houve um ciclo de descobertas relevantes, como os Campos de Pargo, Badejo, Namorado e Enchova. Nos anos e décadas subsequentes, as novas descobertas garantiram o crescimento das reservas brasileiras e tornaram factível obtenção da meta de fundação da Petrobras, a autossuficiência em produção de petróleo. O Brasil pôde, gradativamente, diminuir a dependência das importações ao longo dos anos. Finalmente, em 2006, a produção passou a cobrir toda a demanda nacional de petróleo, alcançado-se a autossuficiência. Importante lembrar que essa autossuficiência é apenas em produção, pois o país ainda não tem capacidade de refino necessária para atender à demanda nacional dos derivados de petróleo. Dessa forma, o Brasil produz extrai o petróleo dos campos, mas parte dele tem que ser exportado, refinado no exterior e importado de volta. [7] 6

15 Tabela 3.1 [7] 3.5. Era do Pré-sal (2006 em diante) Essa última, e atual, fase iniciou-se em 2006 com as descobertas, na Bacia de Santos, de reservas gigantes de petróleo na camada geológica do Pré-sal. As prospecções haviam sido iniciadas em 2001 e a perfuração dos primeiros poços em Apenas com a descoberta dos três primeiros campos do pré-sal (Tupi, Iara e Parque das Baleias), as reservas brasileiras comprovadas, que eram de 14 bilhões de barris, aumentaram para 33 bilhões de barris. Além destas, existem reservas possíveis e prováveis de 50 a 100 bilhões de barris. [7] As descobertas são tão relevantes que mudam completamente as perspectivas de produção e exportação de petróleo nacional. Estima-se que, em 2020, a produção proveniente do Pré-sal seja responsável por 47% da produção total da Petrobras em solo nacional. 7

16 4. Conceitos Teóricos trabalho. Serão apresentados os conceitos teóricos fundamentais para a compreensão do 4.1 Propriedades dos Fluidos Serão apresentados os conceitos referentes às propriedades de maior utilização neste trabalho e no estudo de bombas, assim como suas unidades e símbolos Massa Específica É a quantidade de massa de uma substância que ocupa uma unidade de volume. Utiliza-se como símbolo a letra grega ρ e Kg/m³ como unidade. [1] Peso Específico É a força, por unidade de volume, exercida em um corpo de massa específica ρ submetido a uma aceleração gravitacional g. Utiliza-se como símbolo a letra grega γ e N/m³ como unidade. Sua fórmula, portanto, é: = (4.1) Viscosidade Absoluta A viscosidade foi definida por Newton como a resitência oposta pelas camadas líquidas ao escoamento recíproco. Em outras palavras, é a propriedade do fluido que mede sua resistência ao escoamento ou cisalhamento. Utiliza-se como símbolo a letra grega µ e a unidade cp (centipoise), onde: 8

17 1 =10 / Pressão de Vapor Para uma dada temperatura abaixo da crítica, é a pressão na qual a fase líquida e o vapor coexistem. [1] A figura abaixo ilustra esse ponto: Figura 4.1 Pressão de Vapor Utiliza-se como símbolo e a unidade Pa (Pascal) Escoamento de Fluidos em tubulações Será apresentado o embasamento teórico por trás das principais equações matemáticas utilizadas para modelar o estudo do escoamento em tubulações. 9

18 Tipos de Escoamento O escoamento pode ser: a) Permanente ou transitório b) Uniforme ou não-uniforme c) Incompressível ou compressível d) Laminar ou turbulento Neste trabalho, o escoamento estudado será considerado permanente, uniforme e incompressível. O escoamento laminar é aquele em que todos os filetes líquidos são paralelos entre si e as velocidades em cada ponto são constantes em grandeza e direção. O escoamento turbulento é aquele em que as partículas movem-se em todas as direções com velocidades variáveis em direção e grandeza Número de Reynolds É um número adimensional criado por Osborne Reynolds que permite distinguir um escoamento laminar de um turbulento. Sua fórmula é: = (4.2) Onde é a massa específica do fluido, V é a velocidade do escoamento, D é o diâmetro interno da tubulação e é a viscosidade absoluta do fluido. Se o número de Reynolds for menor que 2.000, o regime do escoamento é considerado laminar e se for maior que 4.000, é considerado turbulento. A faixa entre e é geralmente considerada turbulenta, porém para valores baixos de V ou altos de, pode ser considerado laminar. [1] 10

19 Figura 4.2 Perfil de velocidades transversais no escoamento laminar [1] Figura 4.3 Perfil de velocidades transversais no escoamento turbulento [1] Teorema de Bernoulli O teorema de Bernoulli é a origem da expressão usada para calcular a altura manométrica de um sistema de bombeamento. Utilizando-se o seguinte conjunto específico de premissas, simplifica-se a equação de conservação de energia em um volume de controle e chega-se na fórmula. Premissas: a) Escoamento em regime permanente; b) O sistema não troca trabalho; c) Sistema sem atrito; d) Fluido incompressível. 11

20 Fórmula, sendo 1 e 2 os pontos de entrada e saída do sistema, respectivamente: + + = + + = (4.3) Todos os termos apresentam dimensão de comprimento e, nesse trabalho, a unidade utilizada será o metro. [1] Para levar em consideração um líquido real, é necessário adicionar um componente à formula que represente as perdas de energia devido ao atrito, viscosidade do fluido e o turbilhonamento presente no escoamento em tubulações. Esse componente é o h e representa as perdas de energia (perdas de carga) entre os pontos 1 e 2 por unidade de peso, ou seja, também tem dimensão de comprimento. [1] + + = + + +h (4.4) Perda de Carga A perda de carga do sistema pode ser dividida em dois tipos: perda de carga normal e perda de carga localizada. Dessa forma: h =h +h (4.5) Há diferenças no cálculo dessas perdas quando trata-se de escoamentos laminares ou turbulentos. Neste trabalho, o escoamento estudado é turbulento e, por isso, serão apenas apresentadas as expressões para o cálculo de perdas de carga em regimes turbulentos Perda de Carga Normal 12

21 A perda de carga normal acontece nos trechos retos da tubulação. Dada a dificuldade do desenvolvimento de uma fórmula puramente teórica, devido às particularidades do regime turbulento, foram desenvolvidas expressões teóricoexperimentais. A utilizada neste trabalho será a fórmula de Darcy-Weisbach: h = (4.6) Onde f é o coeficiente de atrito, L é o comprimento total dos trechos retos da tubulação, V é a velocidade do escoamento, D é o diâmetro interno da tubulação e g é a aceleração da gravidade. [1] Coeficiente de Atrito O coeficiente de atrito f é um número adimensional que representa a intensidade do atrito entre o fluido e a parede interna da tubulação. É função do número de Reynolds e da rugosidade relativa da tubulação, que será explicada adiante, ambos números adimensionais. Em posse desses dois valores, utiliza-se o Ábaco de Moody para descobrir o valor de f : 13

22 Figura Ábaco de Moody [1] 14

23 Rugosidade Relativa A rugosidade relativa da parede interna do tubo é um número adimensional que depende do diâmetro interno da tubulação e da rugosidade do material do qual a tubulação é feita. Sua fórmula é: = (4.7) A rugosidade absoluta de cada tipo de tubulação é fornecida pelo fabricante e apresentada na tabela abaixo. A tubulação que compõe as linhas de sucção e descarga do sistema estudado neste trabalho é feita de aço duplex. Tabela 4.1 Rugosidade dos materiais 15

24 Perda de Carga Localizada As perdas de carga localizadas são causadas por acidentes nas linhas de sucção e descarga, tais como válvulas e curvas. Existem dois modos principais de se calculá-las: O método indireto e o método direto. O método indireto trabalha com comprimentos equivalentes, ou seja, calcula qual seria o comprimento reto de tubulação necessário para causar a mesma perda de carga proveniente do acidente em estudo. O método direto, utilizado neste trabalho, é expresso pela seguinte fórmula: h = ² +h (4.8) Onde K é um coeficiente adimensional obtido experimentalmente para cada tipo de acidente e h é a perda de carga causada pelos equipamentos instalados na tubulação. A seguir serão apresentados os valores da K para os acidentes mais comuns em tubulações. Caso os acidentes presentes numa determinada linha sejam especiais ou haja presença de equipamentos, é comum que os fabricantes informem os valores de K correspondentes. 16

25 Entradas A figura 4.5 mostra os valores de K para diferentes geometrias de entrada. Figura 4.5 Valores de K para geometrias de entrada [3] Saídas A figura 4.6 mostra os valores de K para diferentes geometrias de saída. Figura 4.6 Valores de K para geometrias de saída [2] Reduções e Ampliações A figura 4.7 indica os valores de K para reduções e ampliações. 17

26 Figura 4.7 Valores de K para redução e Ampliação [4] Válvulas de retenção e flangeadas tubulação. A figura 4.8 indica os valores de K para os diferentes valores de diâmetro da Figura 4.8 Valores de K para válvulas de retenção e flangeadas [4] 18

27 Válvulas gaveta e flangeadas A figura 4.9 mostra os valores de K para válvulas de retenção e flangeadas. Neste trabalho serão utilizados os valores indicados pela referência [2] Figura 4.9 Valores de K para válvulas de retenção e flangeadas T s flangeados A figura 4.10 mostra os valores de K para T s flangeados. Figura 4.10 Valores de K para T s flangeados [4] 19

28 Joelhos 90 flangeados A figura 4.11 mostra os valores de K para joelhos 90 flangeados. Neste trabalho serão utilizados os valores indicados pela referência [5]. Figura 4.11 Valores de K para joelhos 90º flangeados 4.3 Bombas Esta seção apresentará os principais tipos de bomba existentes e, exclusivamente para bombas centrífugas, as principais variáveis e indicadores de operação Tipos de Bombas As bombas são definidas como máquinas hidráulicas que fornecem energia ao fluido com o objetivo de transportá-lo de um ponto a outro. Existe uma série de tipos de 20

29 bomba, sendo os principais mostrados a seguir. Apenas as bombas centrífugas serão estudadas neste trabalho. Figura 4.12 Tipos de Bombas [1] A principal característica das bombas centrífugas é que a energia é cedida ao fluido primeiramente como energia cinética e posteriormente convertida em energia de pressão. Dependendo da forma do impelidor, a energia cinética pode ter origem puramente centrífuga ou de arrasto. A conversão em energia de pressão é realizada fazendo com que o fluido que sai do impelidor passe em um conduto de área crescente. Figura 4.13 Impelidor, difusor e Carcaça [1] 21

30 4.3.2 Curva Carga (H) x Vazão (Q) A quantidade de energia por unidade de peso que uma bomba fornece um fluido é chamada carga ou head (H) da bomba. Essa grandeza varia com a velocidade de rotação do eixo e o diâmetro do impelidor. No caso de líquidos reais, essa carga sofre perdas devido ao atrito e a turbulência, que aumentam proporcionalmente a velocidade do escoamento. É comum, portanto, a representação da curva de carga da bomba em função da vazão para um determinado diâmetro de impelidor e rotação do eixo. A figura 4.14 contem uma curva genérica Carga x Vazão para diferentes valores de diâmetro do impelidor (Dn). Figura 4.14 Curva H x Q Curva Potência Absorvida ( ) x Vazão (Q) A potência absorvida é a quantidade de energia que a bomba demanda do acionador para aplicar determinado head ao fluido. Dado que essa potência é proporcional à vazão, é comum representá-la num gráfico em função da vazão do escoamento. 22

31 A mensuração correta da potencia demandada pela bomba é fundamental para a seleção de um acionador apropriado. Essa grandeza é calculada, em KW, pela seguinte fórmula: =, (4.9) Onde o termo η representa a eficiência da bomba, que será explicado o item seguinte deste trabalho. A Figura 4.15 contém uma curva genérica Potência Absorvida x Vazão. Figura 4.15 Curva Potabs x Q Curva Eficiência (η) x Vazão (Q) A eficiência de uma bomba é calculada dividindo-se a potência entregue ao fluido pela potência recebida do acionador. A turbulência do escoamento, o atrito existente entre as partes mecânicas móveis e fixas da bomba e a viscosidade do fluido são os principais responsáveis para a eficiência das bombas reais ser inferior a 100%. A Figura 4.16 contém uma curva genérica Eficiência x Vazão. 23

32 Figura 4.16 Curva η x Q Cavitação Caso a pressão absoluta de um fluido atinja, em qualquer ponto de um sistema de bombeamento, valor igual ou inferior à pressão de vapor ló líquido, na temperatura de bombeamento, parte deste líquido se vaporizará. Com a continuação do escoamento, o fluido pode entrar novamente em uma região com a pressão maior que sua pressão de vapor, o que acarretará o colapso das bolhas. Entretanto, como o volume específico do líquido é inferior ao do vapor, o colapso das bolhas implicará na existência de um vazio, causando o aparecimento de uma onda de choque. A pior situação ocorre quando essa onda de choque é formada próxima da superfície metálica, pois pode ocasionar erosão do material, alem de vibrações e ruídos. [1] A Figura 4.17 exemplifica a dinâmica da formação da onda de choque. 24

33 Figura 4.17 Dinâmica de formação da onda de choque [1] O ponto de menor pressão, portanto com a maior probabilidade de ocorrer cavitação, é a entrada do impelidor. Isso pois as perdas de carga na linha e no flange de sucção já ocorreram e a bomba ainda não adicionou nenhuma carga ao escoamento. [1] Para que a cavitação seja evitada, utiliza-se uma equação matemática que envolve o conceito de NPSH disponível e NPSH requerido, que serão explicados adiante. A margem de segurança escolhida fica a critério do engenheiro e nesse trabalho será utilizada a margem de 2,0m de coluna de líquido. A fórmula para se evitar a cavitação, portanto, fica: +2,0 í (4.10) NPSH requerido O termo NPSH é proveniente da nomenclatura inglesa constituindo as iniciais de Net Positive Suction Head. É a grandeza que indica o mínimo de energia que um escoamento deve conter para evitar a vaporização do fluido ao entrar na bomba. Esse valor aumenta com a velocidade do escoamento, pois quanto maior a velocidade, maior são as perdas de carga no flange de sucção. 25

34 A Figura 4.18 contém uma curva genérica NPSHr x Vazão. Figura 4.18 Curva NPSHr x Q 4.4 Sistema Hidráulico Conhecer as características do sistema é parte fundamental do processo de seleção da bomba apropriada. Através das grandezas detalhadas a seguir, é possível descrever o comportamento desejado para o sistema hidráulico e, a partir daí, selecionar a bomba mais apropriada Altura Manométrica de Sucção É a grandeza que mede a quantidade total de energia presente no fluido ao passar pelo flange de sucção da bomba. Sua fórmula deriva da expressão de Bernouilli para líquidos reais e pode ser representada da seguinte maneira: = + h (4.11) Onde h, como explicado na seção 3.2.4, é a perda de carga total entre o reservatório de sucção até a bomba. 26

35 4.4.2 Altura Manométrica de Descarga É a grandeza que mede a quantidade total de energia presente no fluido chegar no reservatório de descarga. Sua fórmula deriva da expressão de Bernouilli para líquidos reais e pode ser representada da seguinte maneira: = + +h (4.12) Onde h, como explicado na seção 3.2.4, é a perda de carga total entre o flange de descarga da bomba e o reservatório de descarga Altura Manométrica Total A altura manométrica total representa a quantidade de energia que a bomba deve prover ao fluido, para que este consiga atingir o reservatório de descarga. Essa grandeza é, portanto, o delta de energia entre o fluido na entrada do reservatório de descarga e na entrada do flange de sucção. Sua fórmula pode ser expressa em função das alturas manométricas de descarga e sucção: = (4.13) Ou, em forma decomposta: = + +h +h (4.14) 27

36 4.4.4 Curva Característica do Sistema A altura manométrica total depende das perdas de carga do sistema que, por sua vez, variam de acordo com a vazão do escoamento. É possível, portanto, construir uma curva H x Q do sistema, denominada de Curva Característica do Sistema. A Figura 4.19 contém uma curva genérica H x Q de um sistema. Figura 4.19 Curva do Sistema NPSH disponível Representa a energia que um fluido possui, ao chegar no flange de sucção da bomba, além da energia de pressão correspondente à pressão de vapor. É justamente o indicador que deve ser comparado ao NPSH requerido para que seja evitada a cavitação. A expressão para o cálculo do NPSH disponível é exibida abaixo. = + (4.15) 28

37 5. Descrição e Análise do Sistema Hidráulico A água oleosa deve ser bombeada do desidratador para o separador gravitacional, para que o fluido sofra um novo processo de separação, com o objetivo de aumentar sua pureza. Além disso, o fluido recirculado ajuda a diminuir a concentração de óleo do fluido que está chegando no separador. Figura 5.1 Esboço do sistema hidráulico estudado Apesar de a Figura 5.1 apresentar duas bombas, o estudo será feito para apenas uma, dado que a segunda é uma bomba reserva e só será acionada em caso de falha da primeira. As informações fundamentais que um engenheiro precisa para selecionar a bomba correta para determinada aplicação são vazão de projeto, altura manométrica do sistema, natureza e condições do fluido bombeado. A análise desse capítulo será, portanto, focada em determinar a altura manométrica do sistema e o NPSH disponível. 5.1 Condições do Fluido 29

38 O Fluido a ser bombeado é água oleosa. Importante ressaltar que a recirculação não afeta significativamente as características do fluido, portanto será considerado que suas condições ficam inalteradas durante todo o processo e os cálculos serão feitos apenas para esse fluido nessas condições. Tabela Linhas de Sucção e Descarga Por se tratar de uma recirculação, a vazão de projeto (Q) é baixa. Além disso, os diâmetros das linhas de sucção e descarga (D) são iguais. Os valores são: Tabela Altura Manométrica de Descarga fórmula 4.12: Como vimos na seção 4.4.2, a altura manométrica de descarga é descrita pela = + +h Altura Estática de Descarga Tomando-se a bomba como referencial e admitindo-se que o fluido é despejado por cima no separador gravitacional, a altura estática de descarga é a altura entre bomba 30

39 e o final da linha de descarga. A figura 4.1 indica as alturas entre os pontos de interesse e o chão, portanto, por diferença: =45,0 33,2=11, Pressão manométrica no reservatório de descarga Será considerado pior caso, ou seja, a maior pressão possível. Dessa forma: =2.037,7 ( ) Peso específico Sabendo que: =9,81 / ² O peso específico pode ser calculado utilizando-se a fórmula (4.1): = =1.144,6 9,81=11.228,5 / ³ Perda de Carga na Linha e Acessórios da Descarga Conforme visto na seção 4.2.5, vamos separar a perda de carga em duas componentes utilizando a fórmula (4.5): h =h +h Perda de Carga Normal A perda de carga normal é calculada segundo a fórmula (4.6), a fórmula de Darcy-Weisbach: 31

40 h = 2 O comprimento total da linha de descarga (L) é 113,0 m. A velocidade (V) é obtida a partir da vazão do escoamento (Q) e a área transversal da linha de descarga, que depende de seu diâmetro (D). O cálculo, portanto, fica: = 4 =2,06 / ² O fator de atrito f deve ser retirado do ábaco de Moody, mas para isso é necessário saber o número de Reynolds (Re) do escoamento e a rugosidade relativa da parede interna da tubulação (ε /D). Número de Reynolds: É um número adimensional utilizado para o cálculo do regime de um escoamento, descrito pela fórmula (4.2) : = Como todos os parâmetros são conhecidos: =7,03 10 Rugosidade relativa: A tubulação é aço duplex com revestimento interno PVC que possui rugosidade absoluta (ε ) de 0,005 mm. Dividindo-se pelo diâmetro, temos a rugosidade relativa: ε D = 4,

41 Utilizando esses valores de Reynolds e rugosidade relativa, o fator f é: =0,011 Finalmente, a perda de carga normal fica: 2,06 h =0, ,1016 9,81 h =2, Perda de Carga Localizada As perdas de carga localizadas podem ser calculadas pelo método direto ou o de comprimento equivalente, ambos com a mesma precisão. Nesta análise, o método utilizado será o direto, portanto utilizaremos a fórmula 4.8: h = ² +h Nesse método, cada tipo de acidente tem um K determinado experimentalmente e tabelado. Os acidentes presentes na linha de descarga são: Tabela 5.3 O coeficiente K da fórmula 4.8 é o somatório do produto de cada K pelo número de vezes que o acidente se repete na linha. Temos, então: = + + =0, ,

42 =11,84 Como a velocidade (V) do escoamento já foi calculada anteriormente e a aceleração da gravidade (g) é conhecida, falta apenas calcular a perda de carga, em metros, que os equipamentos instalados proporcionam ao sistema. Para isso, basta dividir a perda de carga em kpa por. Temos: Tabela 5.4 h =0,45+0,45+6,23=7,12 A perda de carga localizada fica: h = 11,84 2,06² 2 9,81 +7,12 h =9,68 Agora, tendo todos os termos necessários, podemos calcular a perda de carga total da linha de descarga e a altura manométrica de descarga: h =2,64+9,68=12,31 =11, , ,5 +12,31 =205,58 34

43 5.4 Altura Manométrica de Sucção fórmula 4.11: Como vimos na seção 4.4.1, altura manométrica de descarga é descrita pela = + h Altura Estática de Sucção Tomando-se a bomba como referencial, é o somatório do comprimento vertical entre a bomba e o reservatório e a altura do fluido dentro desse reservatório. A altura do fluido é de 4,6m. Dessa forma, utilizando a figura 5.1, temos: =38,8+4,6 33,2=10, Pressão Manométrica no Reservatório de Sucção Será considerado pior caso, ou seja, a menor pressão possível. Dessa forma: =118,7 ( ) Peso específico Conforme calculado no item 5.3.3: =11.228,5 / ³ 35

44 5.4.4 Perda de Carga na Linha e Acessórios da Sucção Vamos utilizar o mesmo método da linha de descarga, separando em perda de carga normal e localizada: h =h +h Perda de Carga Normal Segundo a fórmula 4.6: h = 2 O comprimento total da linha de sucção (L) é 23,9 m e a velocidade do escoamento (V), que já foi calculada anteriormente, é 2,06 m/s. Como as variáveis, V, D e são as mesmas da linha de descarga, o número de Reynolds (Re) do escoamento é o mesmo. A tubulação também é a mesma, implicando em igual rugosidade relativa da parede interna da descarga. Com isso, o valor de f fica inalterado: =0,011 Finalmente, a perda de carga normal fica: 2,06 h =0,011 23,9 2 0,1016 9,81 h =0,56 36

45 Perda de Carga Localizada fórmula 4.8: As perdas de carga localizadas serão calculadas pelo método direto, segundo a h = ² 2 +h tabela abaixo: Os acidentes, o número de ocorrências e seus valores K estão explicitados na Tabela 5.5 O coeficiente K da fórmula 4.8 é o somatório do produto de cada K pelo número de vezes que o acidente se repete na linha. Temos, então: = =0,25 9+0,14 3+0,5 1+4,17 1 =7,34 Na linha de Sucção não há equipamentos, portanto: h =0 A perda de carga localizada fica: 37

46 h = 7,34 2,06² 2 9,81 +0 h =1,58 Agora, tendo todos os termos necessários, podemos calcular a perda de carga total da linha de sucção e a altura manométrica de sucção: h =0,56+1,58=2,14 =10,2+ 118, ,5 2,14 =18, Altura manométrica do Sistema A partir das alturas manométricas de sucção e descarga, podemos calcular a altura manométrica do sistema utilizando a fórmula Dessa forma: = = 205,58 18,58 = 187, Curva Característica do Sistema: A curva característica é um gráfico que relaciona a altura manométrica do sistema com a vazão. Para construí-la, devemos escolher seis valores diferentes de vazão e, para cada um, repetir todo o processo dos itens 5.3, 5.4 e 5.5 de modo a encontrar h, h, e H. 38

47 As vazões escolhidas e suas respectivas alturas manométricas estão apresentadas na tabela a seguir: Tabela 5.6 O gráfico fica: Figura 5.2 Curva do Sistema 5.7 Cálculo do NPSH disponível Temos: O cálculo do NPSH disponível é feito utilizando a fórmula 4.15 da seção

48 = + + Onde: Tabela 5.7 Podemos, então, construir uma tabela relacionando os valores de vazão com o NPSH disponível correspondente: Tabela 5.8 O gráfico fica: Figura 5.3 Curva NPSH disponível x Q 40

49 6. Seleção da Bomba Nem sempre é possível selecionar a bomba ideal para determinada aplicação por motivos financeiros, logísticos, dentre outros. A bomba selecionada, portanto, deve obedecer aos critérios mínimos e ter o máximo de características desejáveis ao projeto. 6.1 Critérios Para a seleção da bomba foi utilizado o critério API 610 [8] que define faixas de vazão em torno da vazão de melhor eficiência da bomba (BEP Best Eficiency Point) A primeira faixa, definida pelo fabricante, é a faixa permitida de operação. Ela define os limites máximo e mínimo para a vazão que a bomba pode operar. O segundo intervalo, chamado de faixa preferível, vai da 70% a 120% do BEP e o terceiro, conhecido como faixa ideal, vai de 80% a 110% do BEP. O fabricante forneceu as curvas características já corrigidas para o fluido de operação e para diferentes diâmetros de impelidor da bomba ideal nestas condições de operação. A figura 6.1 ilustra a faixa estável e o BEP. É desejável que o ponto de operação da bomba esteja na faixa 1 e o mais próximo possível do BEP. respeitada. É impressindível a não ocorrência de cavitação, ou seja, a equação 4.10 deve ser +2,0 í 41

50 Figura 6.1 Curvas da Bomba Selecionada 6.2 Ponto de Operação O ponto de operação, como definido anteriormente, é o ponto de intercessão entre a curva característica da bomba e a curva característica do sistema.. Para que a 42

51 bomba seja de fato apropriada, essa interceptação deve ocorrer no ponto cuja abscissa é a vazão de projeto. Figura 6.2 Ponto de Operação O ponto de operação, portanto, está adequado ao sistema, uma vez que as curvas se interceptam na vazão de 60 m³/h. Comparando-se a figura 6.2 com a figura 6.1, nota-se que o ponto de operação está dentro da faixa ideal e, portanto, atende ao critério API 610 [8]. 6.3 Ocorrência de Cavitação Comparando os NPSHs disponível e requerido, temos: 43

52 Figura 6.3 Gráfico de Cavitação A curva de NPSH disponível é sempre superior à curva de NPSH requerido + 2m, portanto não há ocorrência de cavitação. 44

53 7. Conclusão Através da análise desenvolvida nesse capítulo, é possível afirmar que a bomba proposta pelo fabricante atende aos requisitos do sistema e dos critérios utilizados. Apesar de não estar situado no BEP, o que seria preferível, o ponto de operação da bomba está dentro da faixa ideal do critério API 610 [8]. Além disso, o NPSH disponível é superior ao NPSH requerido acrescido da margem de segurança no ponto de operação, ou seja, não há possibilidade de cavitação. Conclui-se, então, que a bomba proposta é perfeitamente apropriada para essa aplicação, não sendo necessária qualquer mudança no sistema ou no diâmetro do impelidor. 45

54 Referências Bibliográficas [1] DE MATTOS, EDSON E., DE FALCO, REINALDO, Bombas Industriais, 2ª Ed, Rio de Janeiro, Interciência [2] CRANE COMPANY, Flow of Fluids Through Valves, Fittings and Pipe, Chicago Illinois, Ninth Printing, [3] KARASSIK, I. J. e CARTER, R., Centrifugal Pumps, McGraw-Hill Company. [4] SIMPSON, L. L. e WEIRICK, M. R., Desining plant piping, Chemical Engineering, [5] HYDRAULIC INTITUTE, Pipe Friction Manual, 3ª Ed, Nova York, [6] MILLER, D. S., Internal Flow, British Hydromechanics Research Association, Cranfield, [7] DE MORAIS, JOSÉ M., Petróleo em Águas Profundas,Brasília, PETROBRAS Ipea e Finatec [8] API 610, Centrifugal Pumps for Petroleum, Petrochemical and Natural Gas Industries, 11ª Ed,

Variação na Curva do Sistema

Variação na Curva do Sistema Variação na Curva do Sistema Envelhecimento da Tubulação Variação dos níveis de Sucção e Recalque ou variação de Hg MOTIVAÇÕES: Universidade Federal de Juiz de Fora - UFJF Associação de Bombas Inexistência

Leia mais

Bombas & Instalações de Bombeamento

Bombas & Instalações de Bombeamento 1. Definições 2. Grandezas envolvidas no cálculo das bombas 3. Cálculos da altura manométrica e potência de acionamento das bombas 4. Curvas 5. Cavitação 6. Arranjo de bombas Definições : as máquinas hidráulicas

Leia mais

AULA A 1 INTRODUÇÃ INTR O ODUÇÃ E PERDA D A DE CARGA Profa Pr. C e C cília cília de de Castr o Castr o Bolina.

AULA A 1 INTRODUÇÃ INTR O ODUÇÃ E PERDA D A DE CARGA Profa Pr. C e C cília cília de de Castr o Castr o Bolina. AULA 1 INTRODUÇÃO E PERDA DE CARGA Profa. Cecília de Castro Bolina. Introdução Hidráulica É uma palavra que vem do grego e é a união de hydra = água, e aulos = condução/tubo é, portanto, uma parte da física

Leia mais

Fenômenos de Transporte I Lista de Exercícios Conservação de Massa e Energia

Fenômenos de Transporte I Lista de Exercícios Conservação de Massa e Energia Fenômenos de Transporte I Lista de Exercícios Conservação de Massa e Energia Exercícios Teóricos Formulário: Equação de Conservação: Acúmulo = Entrada - Saída + Geração - Perdas Vazão Volumétrica: Q v.

Leia mais

6. Conceito e dimensionamento do tronco em uma residência

6. Conceito e dimensionamento do tronco em uma residência AULA 7 6. Conceito e dimensionamento do tronco em uma residência Vamos pegar como primeiro exemplo uma residência térrea abastecida por um único reservatório superior. Esse reservatório vai atender um

Leia mais

Hidráulica Geral (ESA024A)

Hidráulica Geral (ESA024A) Departamento de Engenharia Sanitária e Ambiental Hidráulica Geral (ESA04A) º semestre 011 Terças de 10 às 1 h Quintas de 08 às 10h Análise dos Sistemas de Recalque Objetivos -Analisar as condições de funcionamento

Leia mais

O Petróleo no Mundo RESERVAS PRODUÇÃO CONSUMO

O Petróleo no Mundo RESERVAS PRODUÇÃO CONSUMO O Petróleo ORIGEM DO PETRÓLEO O petróleo é uma substância oleosa, inflamável, menos densa que a água, com cheiro característico e de cor variando entre o negro e o castanho escuro. Embora objeto de muitas

Leia mais

1.3.1 Princípios Gerais.

1.3.1 Princípios Gerais. 1.3 HIDRODINÂMICA UNIVERSIDADE FEDERAL DE GOIÁS ESCOLA DE AGRONOMIA E ENGENHARIA DE ALIMENTOS SETOR DE ENGENHARIA RURAL 1.3.1 Princípios Gerais. Prof. Adão Wagner Pêgo Evangelista 1 - NOÇÕES DE HIDRÁULICA

Leia mais

RESPOSTA: C. a) só a I. b) só a II. c) só a III. d) mais de uma. e) N.d.a. RESPOSTA: C

RESPOSTA: C. a) só a I. b) só a II. c) só a III. d) mais de uma. e) N.d.a. RESPOSTA: C 1. (ITA - 1969) Usando L para comprimento, T para tempo e M para massa, as dimensões de energia e quantidade de movimento linear correspondem a: Energia Quantidade de Movimento a) M L T -1... M 2 L T -2

Leia mais

Objetivos da segunda aula da unidade 6. Introduzir a classificação da perda de carga em uma instalação hidráulica.

Objetivos da segunda aula da unidade 6. Introduzir a classificação da perda de carga em uma instalação hidráulica. 370 Unidade 6 - Cálculo de Perda de Carga Objetivos da segunda aula da unidade 6 Introduzir a classificação da perda de carga em uma instalação hidráulica. Caracterizar as condições para ocorrer à perda

Leia mais

Fenômenos de Transporte

Fenômenos de Transporte Objetivos Fenômenos de Transporte II - Conceitos Fundamentais Caracterizar o campo de velocidade. Descrever os diversos tipos de escoamento e as diferentes formas de representá-los graficamente. Prof.

Leia mais

Sexta aula de mecânica dos fluidos para engenharia química (ME5330) 23/03/2010

Sexta aula de mecânica dos fluidos para engenharia química (ME5330) 23/03/2010 Sexta aula de mecânica dos fluidos para engenharia química (ME5330) 23/03/2010 PLANEJAMENTO DA SEXTA AULA Ver quem fez Ver quem acertou Tirar as dúvidas Determinação da CCI pelo inversor de frequência

Leia mais

Mecânica dos Fluidos. Aula 11 Equação da Continuidade para Regime Permanente. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos. Aula 11 Equação da Continuidade para Regime Permanente. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Aula 11 Equação da Continuidade para Regime Permanente Tópicos Abordados Nesta Aula Equação da Continuidade para Regime Permanente. Regime Permanente Para que um escoamento seja permanente, é necessário

Leia mais

SISTEMAS HIDRÁULICOS E PNEUMÁTICOS.

SISTEMAS HIDRÁULICOS E PNEUMÁTICOS. SISTEMAS HIDRÁULICOS E PNEUMÁTICOS. FUNDAMENTOS DE HIDROSTÁTICA Hidrostática é o ramo da Física que estuda a força exercida por e sobre líquidos em repouso. Este nome faz referência ao primeiro fluido

Leia mais

Mecânica Geral. Aula 04 Carregamento, Vínculo e Momento de uma força

Mecânica Geral. Aula 04 Carregamento, Vínculo e Momento de uma força Aula 04 Carregamento, Vínculo e Momento de uma força 1 - INTRODUÇÃO A Mecânica é uma ciência física aplicada que trata dos estudos das forças e dos movimentos. A Mecânica descreve e prediz as condições

Leia mais

1) Determine o peso de um reservatório de óleo que possui uma massa de 825 kg.

1) Determine o peso de um reservatório de óleo que possui uma massa de 825 kg. PONTÍFICIA UNIVERSIDADE CATÓLICA DE GOIÁS PRÓ-REITORIA DE GRADUAÇÃO ESCOLA DE ENGENHARIA Disciplina: Fenômenos de Transporte Professor: M. Sc. Felipe Corrêa Veloso dos Santos Lista de exercício pré-avaliação

Leia mais

LISTA DE EXERCÍCIOS FENÔMENOS DE TRANSPORTE - ESTÁTICA DOS FLUIDOS -

LISTA DE EXERCÍCIOS FENÔMENOS DE TRANSPORTE - ESTÁTICA DOS FLUIDOS - LISTA DE EXERCÍCIOS FENÔMENOS DE TRANSPORTE - ESTÁTICA DOS FLUIDOS - 1) Um reservatório de água possui formato cilíndrico com altura de 20m e diâmetro de 5m. Qual a pressão efetiva no fundo do reservatório

Leia mais

Termodinâmica Aplicada I Lista de exercícios 1ª Lei para Volume de Controle

Termodinâmica Aplicada I Lista de exercícios 1ª Lei para Volume de Controle Termodinâmica Aplicada I Lista de exercícios 1ª Lei para Volume de Controle 1. Água evapora no interior do tubo de uma caldeira que opera a 100 kpa. A velocidade do escoamento de líquido saturado que alimenta

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE UTILIZAÇÃO DE UM SENSOR BASEADO EM TUBO DE PITOT PARA MEDIR ESCOAMENTOS

Leia mais

Vazão O movimento de um fluido, termo que define liquido e gases em uma tubulação, duto ou canal, é denominado fluxo.

Vazão O movimento de um fluido, termo que define liquido e gases em uma tubulação, duto ou canal, é denominado fluxo. Medição de Vazão Vazão O movimento de um fluido, termo que define liquido e gases em uma tubulação, duto ou canal, é denominado fluxo. Vazão Volumétrica é a quantidade de volume de um fluido que escoa

Leia mais

Com relação aos projetos de instalações hidrossanitárias, julgue o item a seguir.

Com relação aos projetos de instalações hidrossanitárias, julgue o item a seguir. 57.(CREA-RJ/CONSULPLAN/0) Uma bomba centrífuga de 0HP, vazão de 40L/s e 30m de altura manométrica está funcionando com 750rpm. Ao ser alterada, a velocidade para 450 rpm, a nova vazão será de: A) 35,5L/s

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE MEDIDOR DE VAZÃO POR MEIO DE UM TUBO DE PITOT por Alexandre José Baumgaertner

Leia mais

MEDIDAS DE VAZÃO ATRAVÉS DE VERTEDORES

MEDIDAS DE VAZÃO ATRAVÉS DE VERTEDORES MEDIDAS DE VAZÃO ATRAVÉS DE VERTEDORES 1. OBJETIVO Familiarização com o uso de vertedores como medidores de vazão. Medir a vazão de canais com vertedores de soleira delgada triangulares e retangulares,

Leia mais

Definição Operações Unitárias Tipos de Op.Unitárias: Mecânicas Transferência Calor Transferência de Massa Principais Aplicações na Indústria

Definição Operações Unitárias Tipos de Op.Unitárias: Mecânicas Transferência Calor Transferência de Massa Principais Aplicações na Indústria Aula 4 Conceituação das Principais Operaçoes unitárias da Ind.Química Definição Operações Unitárias Tipos de Op.Unitárias: Mecânicas Transferência Calor Transferência de Massa Principais Aplicações na

Leia mais

Turbina eólica: conceitos

Turbina eólica: conceitos Turbina eólica: conceitos Introdução A turbina eólica, ou aerogerador, é uma máquina eólica que absorve parte da potência cinética do vento através de um rotor aerodinâmico, convertendo em potência mecânica

Leia mais

LISTA DE EXERCÍCIOS - PRA FENÔMENOS DE TRANSPORTE

LISTA DE EXERCÍCIOS - PRA FENÔMENOS DE TRANSPORTE LISTA DE EXERCÍCIOS - PRA FENÔMENOS DE TRANSPORTE A - Viscosidade 1. (Exercício 1.1, pág. 11, Brunetti) A viscosidade cinemática ν de um óleo é de 0,028 m 2 /s e o seu peso específico relativo r é de 0,85.

Leia mais

Exercício 71: Exercício 72: Resposta Respostas Exercício 73:

Exercício 71: Exercício 72: Resposta Respostas Exercício 73: Exercício 71: Água a 20ºC está sendo descarregada na atmosfera a partir das duas saídas a 30º (medidas em relação a horizontal) na vazão total de 1,5 m 3 /min. Cada um dos bocais de descarga possui um

Leia mais

FACULDADE DE ENGENHARIA DE SÃO PAULO - FESP LABORATÓRIO DE FENÔMENOS DE TRANSPORTE - BT1 CENTRO TECNOLÓGICO DE HIDRÁULICA - CTH

FACULDADE DE ENGENHARIA DE SÃO PAULO - FESP LABORATÓRIO DE FENÔMENOS DE TRANSPORTE - BT1 CENTRO TECNOLÓGICO DE HIDRÁULICA - CTH FACULDADE DE ENGENHARIA DE SÃO PAULO - FESP LABORATÓRIO DE FENÔMENOS DE TRANSPORTE - BT CENTRO TECNOLÓGICO DE HIDRÁULICA - CTH APOSTILA DO EXPERIMENTO - MEDIDOR VENTURI Esta apostila contém o roteiro da

Leia mais

DETERMINAÇÃO DA PERDA DE CARGA EM TUBO DE PVC E COMPARAÇÃO NAS EQUAÇÕES EMPÍRICAS

DETERMINAÇÃO DA PERDA DE CARGA EM TUBO DE PVC E COMPARAÇÃO NAS EQUAÇÕES EMPÍRICAS DETERMINAÇÃO DA PERDA DE CARGA EM TUBO DE PVC E COMPARAÇÃO NAS EQUAÇÕES EMPÍRICAS CAVALCANTI, R.A. 1 ; CRUZ, O.C. 2 ; BARRETO A.C. 2 1 Graduando do Curso Superior de Tecnologia em Irrigação e Drenagem,

Leia mais

A forma geral de uma equação de estado é: p = f ( T,

A forma geral de uma equação de estado é: p = f ( T, Aula: 01 Temática: O Gás Ideal Em nossa primeira aula, estudaremos o estado mais simples da matéria, o gás, que é capaz de encher qualquer recipiente que o contenha. Iniciaremos por uma descrição idealizada

Leia mais

Suponha que a velocidade de propagação v de uma onda sonora dependa somente da pressão P e da massa específica do meio µ, de acordo com a expressão:

Suponha que a velocidade de propagação v de uma onda sonora dependa somente da pressão P e da massa específica do meio µ, de acordo com a expressão: PROVA DE FÍSICA DO VESTIBULAR 96/97 DO INSTITUTO MILITAR DE ENGENHARIA (03/12/96) 1 a Questão: Valor : 1,0 Suponha que a velocidade de propagação v de uma onda sonora dependa somente da pressão P e da

Leia mais

ESTUDO DE UM MOVIMENTO 519EE TEORIA

ESTUDO DE UM MOVIMENTO 519EE TEORIA 1 TEORIA 1. INTRODUÇÃO Observe a seguinte sequência de fotos: Figura 1: Exemplos de vários tipos de movimento. O que tem a ver as situações do dia a dia ilustradas na figura 1 acima com os conceitos da

Leia mais

UNIVERSIDADE FEDERAL DE GOIÁS ESCOLA DE AGRONOMIA E ENGENHARIA DE ALIMENTOS SETOR DE ENGENHARIA RURAL. Prof. Adão Wagner Pêgo Evangelista

UNIVERSIDADE FEDERAL DE GOIÁS ESCOLA DE AGRONOMIA E ENGENHARIA DE ALIMENTOS SETOR DE ENGENHARIA RURAL. Prof. Adão Wagner Pêgo Evangelista UNIVERSIDADE FEDERAL DE GOIÁS ESCOLA DE AGRONOMIA E ENGENHARIA DE ALIMENTOS SETOR DE ENGENHARIA RURAL CARNEIRO HIDRÁULICO Prof. Adão Wagner Pêgo Evangelista I - INTRODUÇÃO O carneiro hidráulico, também

Leia mais

MÁQUINAS HIDRÁULICAS AULA 15 TURBINAS A VAPOR PROF.: KAIO DUTRA

MÁQUINAS HIDRÁULICAS AULA 15 TURBINAS A VAPOR PROF.: KAIO DUTRA MÁQUINAS HIDRÁULICAS AULA 15 TURBINAS A VAPOR PROF.: KAIO DUTRA Usinas Termoelétricas As turbinas a vapor são máquinas que utilizam a elevada energia cinética da massa de vapor expandido em trabalho de

Leia mais

r o d e s e m p r e. r o d e c o m a v o l v o.

r o d e s e m p r e. r o d e c o m a v o l v o. r o d e s e m p r e. r o d e c o m a v o l v o. EDIÇÃO 2004 REVISADA 14 O DIFERENCIAL É O QUE FAZ A DIFERENÇA! olá! nesta edição, vamos conhecer um pouco mais sobre o diferencial do seu volvo! manutenção

Leia mais

MUNICÍPIO DE ITÁPOLIS SP

MUNICÍPIO DE ITÁPOLIS SP MUNICÍPIO DE ITÁPOLIS SP PLANO MUNICIPAL DE SANEAMENTO BÁSICO (Medições de Vazões) AGOSTO/2012 3 ÍNDICE 1. INTRODUÇÃO... 05 2. ATIVIDADES REALIZADAS... 13 2.1. Medições de vazão nos poços do sistema de

Leia mais

GOLPE DE ARÍETE TRANSIENTE HIDRÁULICO

GOLPE DE ARÍETE TRANSIENTE HIDRÁULICO UNIVERSIDADE FEDERAL DO CEARÁ DEPARTAMENTO DE ENGENHARIA AGRÍCOLA HIDRÁULICA APLICADA AD 0195 Prof.: Raimundo Nonato Távora Costa GOLPE DE ARÍETE TRANSIENTE HIDRÁULICO 01. INTRODUÇÃO: Sempre que uma coluna

Leia mais

1.2. Grandezas Fundamentais e Sistemas de Unidades

1.2. Grandezas Fundamentais e Sistemas de Unidades CAPÍTULO 1 Grandezas, Unidades e Dimensões 1.1. Medidas Uma grandeza física é uma propriedade de um corpo, ou particularidade de um fenómeno, susceptível de ser medida, i.e. à qual se pode atribuir um

Leia mais

Título da Pesquisa: Palavras-chave: Campus: Tipo Bolsa Financiador Bolsista (as): Professor Orientador: Área de Conhecimento: Resumo

Título da Pesquisa:  Palavras-chave: Campus: Tipo Bolsa Financiador Bolsista (as): Professor Orientador: Área de Conhecimento: Resumo Título da Pesquisa: Estudo Sobre energia solar e suas aplicações á inclusão social da população de baixa renda e ao programa Luz Para Todos. Palavras-chave: Energia solar, Aquecedor solar, Painel fotovoltaico

Leia mais

2 O Mercado de Gás Natural

2 O Mercado de Gás Natural 2 O Mercado de Gás Natural 2.1 Reservas e Oferta de Gás Natural Em 2004, as reservas provadas de gás natural ficaram em torno de 326,1 bilhões m³, um aumento de 32,9% em relação a 2003, e serão expandidas,

Leia mais

Unidade 13 Introdução à Dinâmica Impulsiva. Introdução Quantidade de Movimento Impulso Teorema do Impulso

Unidade 13 Introdução à Dinâmica Impulsiva. Introdução Quantidade de Movimento Impulso Teorema do Impulso Unidade 13 Introdução à Dinâmica Impulsiva Introdução Quantidade de Movimento Impulso Teorema do Impulso Introdução Em um acidente automobilístico, nem sempre é fácil descobrir quem foi o culpado. Por

Leia mais

Laboratório de Física I. Experiência 3 Determinação do coeficiente de viscosidade de líquidos. 26 de janeiro de 2016

Laboratório de Física I. Experiência 3 Determinação do coeficiente de viscosidade de líquidos. 26 de janeiro de 2016 4310256 Laboratório de Física I Experiência 3 Determinação do coeficiente de viscosidade de líquidos 1 o semestre de 2016 26 de janeiro de 2016 3. Determinação do coeficiente de viscosidade de líquidos

Leia mais

EME610 - Sistemas Hidropneumáticos Hidráulica 2

EME610 - Sistemas Hidropneumáticos Hidráulica 2 UNIFEI EME610 - Sistemas Hidropneumáticos Hidráulica 2 Elevador/Macaco hidráulico (Hydraulic Jack) Aula 02 Prof. José Hamilton Chaves Gorgulho Júnior Elevador/Macaco hidráulico (Hydraulic Jack) Elevador/Macaco

Leia mais

SÍNTESE PROJETO PEDAGÓGICO

SÍNTESE PROJETO PEDAGÓGICO Curso: ENGENHARIA DE PETRÓLEO SÍNTESE PROJETO PEDAGÓGICO Missão O Curso de Engenharia de Petróleo da Universidade Estácio de Sá tem por missão formar profissionais com sólida formação técnica nas áreas

Leia mais

FSP FACULDADE SUDOESTE PAULISTA. Curso: Engenharia Civil. Prof.ª Amansleone da S. Temóteo APONTAMENTO DA AULA

FSP FACULDADE SUDOESTE PAULISTA. Curso: Engenharia Civil. Prof.ª Amansleone da S. Temóteo APONTAMENTO DA AULA FSP FACULDADE SUDOESTE PAULISTA Curso: Engenharia Civil Prof.ª Amansleone da S. Temóteo APONTAMENTO DA AULA INTRODUÇÃO À TOPOGRAFIA APLICADA CONSIDERAÇÕES Historicamente há relatos de que as práticas topográficas

Leia mais

COTAÇÕES. 2... 8 pontos. 1.3... 16 pontos. 52 pontos. 48 pontos. 16 pontos Subtotal... 84 pontos. TOTAL... 200 pontos

COTAÇÕES. 2... 8 pontos. 1.3... 16 pontos. 52 pontos. 48 pontos. 16 pontos Subtotal... 84 pontos. TOTAL... 200 pontos Teste Intermédio Física e Química A Critérios de Classificação 12.02.2014 11.º Ano de Escolaridade COTAÇÕES GRUPO I 1.... 8 pontos 2.... 16 pontos 3.... 12 pontos 4.... 8 pontos 5.... 8 pontos 52 pontos

Leia mais

Mecânica dos Fluidos Aplicado MFA - AULA 07 Arrasto e Sustentação

Mecânica dos Fluidos Aplicado MFA - AULA 07 Arrasto e Sustentação Mecânica dos Fluidos Aplicado MFA - AULA 07 Arrasto e Sustentação Nessa seção iremos observar a interferência de objetos durante o escoamento, causando o que conhecemos por arrasto e porque a sustentação

Leia mais

Carneiro Hidráulico de PVC - Comercial

Carneiro Hidráulico de PVC - Comercial Carneiro Hidráulico de PVC - Comercial Centro Federal de Ensino Tecnológico de Uberaba Av. Edilson Lamartine Mendes, 300 B. São Benedito Cep. : 38045-000 Uberaba MG www.cefetuberaba.edu.br Uberaba - 2004

Leia mais

Sistema de Abastecimento de Água 1 CAPÍTULO 5 REDE DE DISTRIBUIÇÃO DE ÁGUA

Sistema de Abastecimento de Água 1 CAPÍTULO 5 REDE DE DISTRIBUIÇÃO DE ÁGUA Sistema de Abastecimento de Água 1 CAPÍTUO 5 REDE DE DISTRIBUIÇÃO DE ÁGUA Sistema de Abastecimento de Água 2 1. Considerações Gerais A rede de distribuição de água é constituída por um conjunto de condutos

Leia mais

v = velocidade média, m/s; a = aceleração média do corpo, m/s 2 ;

v = velocidade média, m/s; a = aceleração média do corpo, m/s 2 ; 1. Cinemática Universidade Estadual do Norte Fluminense Darcy Ribeiro Centro de Ciências e Tecnologias Agropecuárias - Laboratório de Engenharia Agrícola EAG 0304 Mecânica Aplicada Prof. Ricardo Ferreira

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA TM-364 MÁQUINAS TÉRMICAS I. Máquinas Térmicas I

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA TM-364 MÁQUINAS TÉRMICAS I. Máquinas Térmicas I Eu tenho três filhos e nenhum dinheiro... Porque eu não posso ter nenhum filho e três dinheiros? - Homer J. Simpson UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA

Leia mais

1 = Pontuação: Os itens A e B valem três pontos cada; o item C vale quatro pontos.

1 = Pontuação: Os itens A e B valem três pontos cada; o item C vale quatro pontos. Física 0. Duas pessoas pegam simultaneamente escadas rolantes, paralelas, de mesmo comprimento l, em uma loja, sendo que uma delas desce e a outra sobe. escada que desce tem velocidade V = m/s e a que

Leia mais

Plantas de Classificação de Áreas 25/03/2012 140

Plantas de Classificação de Áreas 25/03/2012 140 Plantas de Classificação de Áreas 25/03/2012 140 Normas para elaboração de plantas de classificação de áreas 25/03/2012 141 Legenda para plantas de classificação de áreas 25/03/2012 142 Etapas para elaboração

Leia mais

Programa da cadeira Física I Cursos: Matemática, Engenharia Informática, Engenharia de Telecomunicações e Redes

Programa da cadeira Física I Cursos: Matemática, Engenharia Informática, Engenharia de Telecomunicações e Redes Programa da cadeira Física I Cursos: Matemática, Engenharia Informática, Engenharia de Telecomunicações e Redes Ano lectivo 2005-2006, 1º semestre Docentes: Prof. Dr. Mikhail Benilov (aulas teóricas, regência

Leia mais

Mecânica Geral. Aula 05 - Equilíbrio e Reação de Apoio

Mecânica Geral. Aula 05 - Equilíbrio e Reação de Apoio Aula 05 - Equilíbrio e Reação de Apoio 1 - Equilíbrio de um Ponto Material (Revisão) Condição de equilíbrio de um Ponto Material Y F 0 F X 0 e F 0 Exemplo 01 - Determine a tensão nos cabos AB e AD para

Leia mais

Equações Constitutivas para Fluidos Newtonianos - Eqs. de Navier- Stokes (cont.):

Equações Constitutivas para Fluidos Newtonianos - Eqs. de Navier- Stokes (cont.): Da Eq. 13: UNIVERSIDADE DE SÃO PAULO Equações Constitutivas para Fluidos Newtonianos - Eqs. de Navier- Stokes (cont.): Para fluido Newtoniano, a tensão viscosa é proporcional à taxa de deformação angular);

Leia mais

Exercícios de Física Análise Dimensional

Exercícios de Física Análise Dimensional Exercícios de Física Análise Dimensional 1. A unidade de uma grandeza física pode ser escrita 2 kg m como. Considerando que essa unidade foi escrita 3 s A em termos das unidades fundamentais do SI, assinale

Leia mais

Qual é o estoque mínimo que irá garantir o nível de serviço ao cliente desejado pela empresa?

Qual é o estoque mínimo que irá garantir o nível de serviço ao cliente desejado pela empresa? O estoque de segurança remete a erros de previsão de demanda; Falta de confiança nas entregas devido a atrasos no ressuprimento de materiais; Rendimento da produção abaixo do esperado. Qual é o estoque

Leia mais

ANÁLISE MECÂNICA DO MOVIMENTO HUMANO. Conceitos Pressão é definida como a força (F) distribuída ao longo de uma determinada área (A). p = F/A N/cm².

ANÁLISE MECÂNICA DO MOVIMENTO HUMANO. Conceitos Pressão é definida como a força (F) distribuída ao longo de uma determinada área (A). p = F/A N/cm². Análise Mecânica do Movimento Humano ANÁLISE MECÂNICA DO MOVIMENTO HUMANO Cinemática Cinética Linear Angular Linear Angular Hamill e Knutzen (2008) Inércia resistência à ação ou à mudança, sendo adimensional.

Leia mais

Curso de Manejo de Águas Pluviais Capitulo 6- Vazão excedente Engenheiro Plínio Tomaz pliniotomaz@uol.com.br 5de agosto de 2010

Curso de Manejo de Águas Pluviais Capitulo 6- Vazão excedente Engenheiro Plínio Tomaz pliniotomaz@uol.com.br 5de agosto de 2010 Capítulo 6- Vazão excedente 6.1 Introdução As enchentes causam um grande problema em áreas urbanas conforme se pode ver na Figura (6.1). As obras de boca de lobo e galerias são chamadas de obras de microdrenagem.

Leia mais

Apostila de Física 31 Hidrostática

Apostila de Física 31 Hidrostática Apostila de Física 31 Hidrostática 1.0 Definições 1.1 Conceito de Pressão Pressão Relação entre a intensidade da força que atua perpendicularmente e a área que ela se distribui. Uma força exerce maior

Leia mais

Objetivos da sétima aula da unidade 5: Simular a experiência do medidor de vazão tipo tubo de Venturi

Objetivos da sétima aula da unidade 5: Simular a experiência do medidor de vazão tipo tubo de Venturi 319 Curso Básico de Mecânica dos Fluidos Objetivos da sétima aula da unidade 5: Simular a experiência do medidor de vazão tipo tubo de Venturi Propor a experiência do medidor tipo - tubo de Venturi 5.13.

Leia mais

PROJETO DE MICRO-RESERVAÇÃO BUSCANDO REGULARIDADE NAS CONDIÇÕES DE ABASTECIMENTO DE ÁGUA Aplicação no Loteamento Morel em Blumenau/SC.

PROJETO DE MICRO-RESERVAÇÃO BUSCANDO REGULARIDADE NAS CONDIÇÕES DE ABASTECIMENTO DE ÁGUA Aplicação no Loteamento Morel em Blumenau/SC. PROJETO DE MICRO-RESERVAÇÃO BUSCANDO REGULARIDADE NAS CONDIÇÕES DE ABASTECIMENTO DE ÁGUA Aplicação no Loteamento Morel em Blumenau/SC. Autores: Artur Uliano Pós-graduado em Engenharia Ambiental, FURB Universidade

Leia mais

Equação de Bernoulli. Vamos considerar um fluido com densidade ρ constante, em escoamento estacionário em uma tubulação sem derivações (Fig.18).

Equação de Bernoulli. Vamos considerar um fluido com densidade ρ constante, em escoamento estacionário em uma tubulação sem derivações (Fig.18). Equação de ernoulli Vamos considerar um fluido com densidade ρ constante, em escoamento estacionário em uma tubulação sem derivações (Fig.8). Sejam duas porções de fluido, ambas com volume V e massa ρv,

Leia mais

I-121 INFLUÊNCIA DAS VARIAÇÕES DE VAZÃO NA EFICIÊNCIA HIDRÁULICA DE FLOCULADORES CHICANADOS

I-121 INFLUÊNCIA DAS VARIAÇÕES DE VAZÃO NA EFICIÊNCIA HIDRÁULICA DE FLOCULADORES CHICANADOS I-11 INFLUÊNCIA DAS VARIAÇÕES DE VAZÃO NA EFICIÊNCIA HIDRÁULICA DE FLOCULADORES CHICANADOS Danieli Soares de Oliveira Graduanda em Engenharia Civil pela Universidade Federal do Espírito Santo (UFES). Ellen

Leia mais

Projetos CUSTOS. Prof. Anderson Valadares

Projetos CUSTOS. Prof. Anderson Valadares Projetos CUSTOS Prof. Anderson Valadares Gerenciamento de custo O gerenciamento de custos visa essencialmente assegurar aos patrocinadores que o projeto será concluído dentro do orçamento aprovado. Gerenciamento

Leia mais

física caderno de prova instruções informações gerais 13/12/2009 boa prova! 2ª fase exame discursivo

física caderno de prova instruções informações gerais 13/12/2009 boa prova! 2ª fase exame discursivo 2ª fase exame discursivo 13/12/2009 física caderno de prova Este caderno, com dezesseis páginas numeradas sequencialmente, contém dez questões de Física. Não abra o caderno antes de receber autorização.

Leia mais

CONHECIMENTOS ESPECÍFICOS TÉCNICO DE LABORATÓRIO MECÂNICA

CONHECIMENTOS ESPECÍFICOS TÉCNICO DE LABORATÓRIO MECÂNICA CONHECIMENTOS ESPECÍFICOS TÉCNICO DE LABORATÓRIO MECÂNICA 26. Considere o desenho abaixo: Dentre as vista apresentadas a seguir, qual representa corretamente a elevação (vista frontal)? a) b) c) d) e)

Leia mais

Estaca Escavada Circular

Estaca Escavada Circular Estaca Escavada Circular 1 Definição e Recomendações da Norma NBR 6122 / 96 A Norma NBR 6122 / 96 define estaca escavada como o tipo de fundação profunda executada por escavação mecânica, com uso ou não

Leia mais

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO DEPARTAMENTO DE ENGENHARIA MECÂNICA DEM/POLITÉCNICA/UFRJ

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO DEPARTAMENTO DE ENGENHARIA MECÂNICA DEM/POLITÉCNICA/UFRJ UNIVERSIDADE FEDERAL DO RIO DE JANEIRO DEPARTAMENTO DE ENGENHARIA MECÂNICA DEM/POLITÉCNICA/UFRJ CÁLCULOS PARA SELEÇÃO DE UMA BOMBA CENTRÍFUGA EM UMA UNIDADE DE PROCESSAMENTO DE ÓLEO DE UMA PLATAFORMA PRODUTORA

Leia mais

CAPÍTULO 4. 4 - O Método Simplex Pesquisa Operacional

CAPÍTULO 4. 4 - O Método Simplex Pesquisa Operacional CAPÍTULO 4 O MÉTODO SIMPLEX 4 O Método Simplex caminha pelos vértices da região viável até encontrar uma solução que não possua soluções vizinhas melhores que ela. Esta é a solução ótima. A solução ótima

Leia mais

Elaboração e Análise de Projetos

Elaboração e Análise de Projetos Elaboração e Análise de Projetos Análise de Mercado Professor: Roberto César ANÁLISE DE MERCADO Além de ser o ponto de partida de qualquer projeto, é um dos aspectos mais importantes para a confecção deste.

Leia mais

Pressão INSTRUMENTAÇÃO E CONTROLE. Unidades usuais de pressão. Conversão de Unidades de Pressão. Tipos de pressão. Quanto a referência utilizada

Pressão INSTRUMENTAÇÃO E CONTROLE. Unidades usuais de pressão. Conversão de Unidades de Pressão. Tipos de pressão. Quanto a referência utilizada Pressão É a razão entre a força exercida sobre uma superfície e a área desta superfície. INSTRUMENTAÇÃO E CONTROLE Medidores de pressão Unidades SI P: pressão em N/m 2 = Pa = Pascal F: força normal (ortogonal)

Leia mais

Técnicas de Monitoramento e Controle de Processos Corrosivos

Técnicas de Monitoramento e Controle de Processos Corrosivos Técnicas de Monitoramento e Controle de Processos Corrosivos METODOLOGIA DE MONITORAMENTO DA Seleção dos pontos de monitoramento (localização dos provadores) Histórico de agressividade do fluido; Histórico

Leia mais

PLANEJAMENTO DAS OBRAS DE DRAGAGEM

PLANEJAMENTO DAS OBRAS DE DRAGAGEM PLANEJAMENTO DAS OBRAS DE DRAGAGEM Objetivo Geral do Planejamento das Obras 1) Considerando que os serviços de dragagem, normalmente, exigem não só elevados custos em sua execução, mas ainda, uma técnica

Leia mais

MODELAGEM MATEMÁTICA DE UM SISTEMA DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA EM MÉDIA TENSÃO 1. Gabriel Attuati 2, Paulo Sausen 3.

MODELAGEM MATEMÁTICA DE UM SISTEMA DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA EM MÉDIA TENSÃO 1. Gabriel Attuati 2, Paulo Sausen 3. MODELAGEM MATEMÁTICA DE UM SISTEMA DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA EM MÉDIA TENSÃO 1 Gabriel Attuati 2, Paulo Sausen 3. 1 Parte integrante do Projeto de pesquisa Análise, Modelagem e Desenvolvimento

Leia mais

Capítulo VI. Teoremas de Circuitos Elétricos

Capítulo VI. Teoremas de Circuitos Elétricos apítulo VI Teoremas de ircuitos Elétricos 6.1 Introdução No presente texto serão abordados alguns teoremas de circuitos elétricos empregados freqüentemente em análises de circuitos. Esses teoremas têm

Leia mais

AULA PRÁTICA 10 BOMBA de PISTÂO ACIONADA POR RODA D`ÁGUA

AULA PRÁTICA 10 BOMBA de PISTÂO ACIONADA POR RODA D`ÁGUA 1!" AULA PRÁTICA 10 BOMBA de PISTÂO ACIONADA POR RODA D`ÁGUA Este conjunto é formado por uma máquina motriz (roda) que aciona uma bomba alternativa (de pistão). É de muita utilidade em sítios, fazendas

Leia mais

6 CONCEPÇÃO BÁSICA DO SISTEMA DE APOIO À DECISÃO

6 CONCEPÇÃO BÁSICA DO SISTEMA DE APOIO À DECISÃO 78 6 CONCEPÇÃO BÁSICA DO SISTEMA DE APOIO À DECISÃO Neste capítulo serão apresentados: o sistema proposto, o procedimento de solução para utilização do sistema e a interface gráfica, onde é ilustrada a

Leia mais

3 CLASSIFICAÇÃO DOS SISTEMAS. 3.1 Sistema Direto

3 CLASSIFICAÇÃO DOS SISTEMAS. 3.1 Sistema Direto 3 CLASSIFICAÇÃO DOS SISTEMAS 3.1 Sistema Direto No sistema direto, as peças de utilização do edifício estão ligadas diretamente aos elementos que constituem o abastecimento, ou seja, a instalação é a própria

Leia mais

Introdução ao Projeto de Aeronaves. Aula 9 Análise Aerodinâmica da Asa

Introdução ao Projeto de Aeronaves. Aula 9 Análise Aerodinâmica da Asa Introdução ao Projeto de Aeronaves Aula 9 Análise Aerodinâmica da Asa Tópicos Abordados Asas de Envergadura Finita. Forma Geométrica e Localização da Asa na Fuselagem. Alongamento e Relação de Afilamento.

Leia mais

Parte 05 - Técnicas de programação (mapas de Veitch-Karnaugh)

Parte 05 - Técnicas de programação (mapas de Veitch-Karnaugh) Parte 05 - Técnicas de programação (mapas de Veitch-Karnaugh) Mapas de Veitch-Karnaugh Montar circuitos lógicos a partir de tabela verdade, embora seja tarefa fácil, geral um circuito extremamente grande.

Leia mais

TECNOLOGIA HIDRÁULICA. Fagner Ferraz

TECNOLOGIA HIDRÁULICA. Fagner Ferraz TECNOLOGIA HIDRÁULICA Fagner Ferraz Potência x Eficiência 2 Cavitação 3 Causas da cavitação Tecnologia Hidráulica Filtro da linha de sucção saturado Linha de sucção muito longa Muitas curvas na linha de

Leia mais

&RQFHLWRV%iVLFRV5HODFLRQDGRVD3HWUyOHR

&RQFHLWRV%iVLFRV5HODFLRQDGRVD3HWUyOHR 15 &RQFHLWRV%iVLFRV5HODFLRQDGRVD3HWUyOHR Neste capítulo serão abordados tópicos relacionados com o petróleo como definições e classificações. 'HILQLo}HVGH3HWUyOHR Segundo Thomas (2001), a nomenclatura

Leia mais

25% PLANO DIRETOR DE COMBATE ÀS PERDAS DE ÁGUA NOS MUNICÍPIOS INTRODUÇÃO PERDAS DE ÁGUA PERDAS DE ÁGUA PERDAS DE ÁGUA PERDAS DE ÁGUA

25% PLANO DIRETOR DE COMBATE ÀS PERDAS DE ÁGUA NOS MUNICÍPIOS INTRODUÇÃO PERDAS DE ÁGUA PERDAS DE ÁGUA PERDAS DE ÁGUA PERDAS DE ÁGUA INTRODUÇÃO PLANO DIRETOR DE COMBATE ÀS PERDAS DE ÁGUA NOS MUNICÍPIOS PERDAS DE ÁGUA PERDAS DE ÁGUA Volume de entrada no setor Consumo autorizado Perda de água Consumo autorizado faturado Consumo autorizado

Leia mais

Ganha o Brasil, ganha o Ceará, ganham todos os cearenses!

Ganha o Brasil, ganha o Ceará, ganham todos os cearenses! Ganha o Brasil, ganha o Ceará, ganham todos os cearenses! O P A Refinaria Premium do Ceará é um compromisso firmado há alguns anos pelo Governo Federal com o Ceará. Chegou a hora de exigirmos que a Refinaria

Leia mais

3º Ano do Ensino Médio. Aula nº09 Prof. Paulo Henrique

3º Ano do Ensino Médio. Aula nº09 Prof. Paulo Henrique Nome: Ano: º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº09 Prof. Paulo Henrique Assunto: Funções do Segundo Grau 1. Conceitos básicos Definição: É uma função que segue a lei: onde, Tipos

Leia mais

Reabilitação e Reforço de Estruturas

Reabilitação e Reforço de Estruturas Mestrado em Engenharia Civil 2011 / 2012 Reabilitação e Reforço de Estruturas Aula 06: Métodos de inspecção e diagnóstico. 6.1. Ensaios in situ. Eduardo S. Júlio 2011/2012 1/31 1/9 AVALIAÇÃO IN SITU DA

Leia mais

Representação de rugosidade

Representação de rugosidade Representação de rugosidade A UU L AL A Existem vários tipos de superfície de peças. Qual o melhor meio para identificar rapidamente cada um desses tipos e o estado das superfícies? Essa questão foi resolvida

Leia mais

Introdução ao Projeto de Aeronaves. Aula 17 Diagrama v-n de Manobra, Vôo em Curva e Envelope de Vôo

Introdução ao Projeto de Aeronaves. Aula 17 Diagrama v-n de Manobra, Vôo em Curva e Envelope de Vôo Introdução ao Projeto de Aeronaves Aula 17 Diagrama v-n de Manobra, Vôo em Curva e Envelope de Vôo Tópicos Abordados Diagrama v-n de Manobra. Desempenho em Curva. Envelope de Vôo e Teto Absoluto Teórico.

Leia mais

Unidade 10 Análise combinatória. Introdução Princípio Fundamental da contagem Fatorial

Unidade 10 Análise combinatória. Introdução Princípio Fundamental da contagem Fatorial Unidade 10 Análise combinatória Introdução Princípio Fundamental da contagem Fatorial Introdução A escolha do presente que você deseja ganhar em seu aniversário, a decisão de uma grande empresa quando

Leia mais

Manutenção total aplicada em ferramentarias

Manutenção total aplicada em ferramentarias Manutenção total aplicada em ferramentarias Por: Sérgio Borcato Roberto Mariotti A medição da eficiência dos equipamentos de manufatura vem se tornando essencial para a resolução de problemas e para melhoria

Leia mais

PREPARO DE GRÃOS DE SOJA PARA EXTRAÇÃO

PREPARO DE GRÃOS DE SOJA PARA EXTRAÇÃO PREPARO DE GRÃOS DE SOJA PARA EXTRAÇÃO Eng. Luiz Carlos Masiero L.C.Masiero Engenharia Industrial Jaú, SP Resumo: Se apresentam neste trabalho as considerações básicas do processo de preparação de grãos

Leia mais

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 14

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 14 Ondas 5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Introdução: elementos básicos sobre ondas De maneira geral, uma onda é qualquer sinal que se transmite de um ponto a outro

Leia mais

Capítulo 3. Introdução ao Movimento dos Fluidos

Capítulo 3. Introdução ao Movimento dos Fluidos 3 Capítulo 3 Introdução ao Movimento dos Fluidos 3.1 Descrição do Movimento dos Fluidos 3.1.1 D escrição Lagrangeana e E uleriana do Movimento dos Fluidos O método de Lagrange descreve o movimento de cada

Leia mais

ROLAMENTO, TORQUE E MOMENTUM ANGULAR Física Geral I (1108030) - Capítulo 08

ROLAMENTO, TORQUE E MOMENTUM ANGULAR Física Geral I (1108030) - Capítulo 08 ROLAMENTO, TORQUE E MOMENTUM ANGULAR Física Geral I (1108030) - Capítulo 08 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 21 Sumário Rolamento Rolamento como rotação e translação combinados e como uma

Leia mais

Ferramentas para a Qualidade

Ferramentas para a Qualidade Diagrama de processo: seu objetivo é a listagem de todas as fases do processo de forma simples e de rápida visualização e entendimento. Quando há decisões envolvidas pode-se representar o diagrama de processo

Leia mais

Escola SENAI Alfried Krupp CFP 568

Escola SENAI Alfried Krupp CFP 568 Escola SENAI Alfried Krupp CFP 568 Programa de Redução de Consumo de Recursos Naturais - Água Sumário 1. Objetivo: Descrição completa do objeto a ser executado --------------------------------- 3 2. Meta

Leia mais

INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SÃO MATEUS

INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SÃO MATEUS INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SÃO MATEUS CRYSTIARA PAULA SANTOS DA SILVA, 2º MIV GABRIEL MILANEZ DUARTE, 2º MIV MATEUS DEPRÁ FRANÇA, 2º MIV CARNEIRO HIDRÁULICO ÁREA DE CONHECIMENTO: CIÊNCIAS

Leia mais

O corte de metais é uma operação mecânica que consiste em se obter seções com dimensões determinadas.

O corte de metais é uma operação mecânica que consiste em se obter seções com dimensões determinadas. 1 PRÁTICA DE OFICINA AULA 02 2015-1 - SERRA MECÂNICA - Introdução O corte de metais é uma operação mecânica que consiste em se obter seções com dimensões determinadas. A serra alternativa horizontal ou

Leia mais