(Séries de Problemas) Paulo Vargas Moniz Universidade da Beira Interior Departamento de Fisica

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "(Séries de Problemas) Paulo Vargas Moniz Universidade da Beira Interior Departamento de Fisica"

Transcrição

1 . Mecânica Clássica (Séries de Problemas) Paulo Vargas Moniz Universidade da Beira Interior Departamento de Fisica 1

2 1 a Serie 1. Considera um bloco B de massa m deslizando sobre um plano inclinado PI o qual tem massa M. Não há atrito. O PI está sobre uma superficie plana, sobre a qual se pode mover. Escolhe variaveis dinamicas (generalizadas) e determina a energia cinética de B. 2. Mostra que no caso de constragimentos holonómicos se pode obter ṙ = r, onde d é uma variavel generalizada qualquer. d d 3. Usando o principio de D Alembert, encontra as equações do movimento para o sistema descrito na pergunta Para os exemplos seguintes indica o número de graus de liberdade dos respectivos sistemas a) Uma massa pontual livre b) Duas massas pontuais livres c) Duas massas pontuais ligadas por um fio recto (negligivel) d) Três massas pontuais, onde duas estão ligadas por um fio recto (negligivel) e) Três massas pontuais, onde cada uma está ligada por um fio recto (negligivel) a outras duas. 5. Para o caso de forças conservativas, obtem as equações de Euler- Lagrange baseando-te no principio de D Alembert 6. Obtem as equações de Euler-Lagrange através do principio variacional (principio de Hamilton) 7. Obtem a equação que relaciona as forças de constragimento generalizadas com multiplicadores de Lagrange no caso de um sistema mecânico com constragimentos holonómicos. 8. Mostra que se o Lagrangeano não depende explicitamente do tempo então a função Hamiltoneano é conservada e pode (em certos casos) corresponder à energia. 9. Considera o movimento de uma bola (massa pontual) lançada para cima a partir de um elevador (subindo ou descendo). Obtem o Lagrangeano que é associado ao ponto de vista de um observador no elevador. 2

3 10. Considera uma massa pontual (e.g., uma pequena esfera) deslizando sem atrito sobre uma esfera muito maior (e.g., uma bola de futebol). Determina as equações do movimento e apartir destas quando é que a massa pontual atinge o solo (plano horizontal) onde está a esfera grande assente. 11. Usando o calculo variacional determina num plano a curva que minimiza a distância entre dois pontos. Se fôr numa superficie curva que novo ingrediente terás que incluir? 12. Considera o movimento de um pendulo simples com um corpo de massa m, suspenso por um fio rigido e negligivel de comprimento l, oscilando em torno da posição de equilibrio. Determina a) As equações do movimento para o caso de variaveis x e y usando multiplicadores de Lagrange b) As equações do movimento com auxilio de uma coordenada generalizada, encontrando a forma analitica das soluções para pequenas variações 13. Considera um sistema descrito por um Lagrangeano que possui invariancia sob acção de transformações de translação. Mostra que existe e determina qual é a quantidade conservada associada. 14. Considera o caso do pendulo duplo. Determina o Lagrangeano do sistema para pequenas deslocações 3

4 2 a Serie 1. Determina as equações de Hamilton do movimento para um projectil de massa m. 2. Determina o Hamiltoneano no caso de um sistema de duas particulas de massas m 1 e m 2 interactuando através de uma força mutua central. 3. Considera o caso do pendulo duplo da pergunta 14 da 1a série. Determina o Hamiltoneano e equações do movimento quando as massas e fios dos pendulos são iguais. 4. Determina o Hamiltoneano e respectivas equações do movimento no caso de um oscilador harmonico simples 5. Considera uma particula com carga electrica e e massa m movendose numa zona do espaço sob acção de um campo electrico e tambem de um campo magnetico. Determina o Hamiltoneano correspondente. Se o campo magentico for uniforme, determina o Hamiltoneano num referencial com rotação uniforme tal que não haja termos lineares no campo magnetico. 6. Considera um fisico numa nave espacial sem janelas que se move no espaço inter-estelar. Como pode ele determinar se a nave está a ser acelerada por uma força misteriosa, usando principio de Hamilton? 7. Obtem as equações de Hamilton do movimento e mostra que a acção é invariante para variações infinitesimais associadas de q e p. 8. Considera um pendulo com um corpo de massa m, que tem uma extremidade fixa no centro de uma esfera e com comprimento do fio R. O pendulo pode oscilar em qualquer direcção. Determina o Hamiltoneano e as equações do movimento. 4

5 3 a Serie 1. Considera a transformação canonica F = qq. Determina o Hamiltoneano nestas coordenadas assim como as equações de Hamilton. 2. Considera o Hamiltoneano de um oscilador harmonico e emprega a transformação canonica F (q, Q) = 1 2 ωq2 cot 2πQ. Determina o Hamiltoneano resultante e as equações do movimento, tal como as suas soluções. 3. Considera a função geradora F 1 (q, Q) = 1 2 ωq2 cot 2πQ empregue para o caso do oscilador harmonico. Constroi F 3 (p, Q) = F 1 qp. Determina F 3 explicitamente assim como a relação entre q, p e Q, P. 4. Considera a função geradora F 1 (q, Q) = 1 2 ωq2 cot 2πQ empregue para o caso do oscilador harmonico. Determina o parentisis de Poisson de [q, p] Q,P. 5. Considera o Lagrangeano L = e ( γt 1 m 2 q2 1 2 kq2) onde γ, m, k são constantes. Qual é a equação do movimento? Há constantes do movimento? Como se descreve este movimento? Supõe que se faz uma transformação do tipo S = e γt/2 q. Qual é a forma do novo Lagrangeano? E a equação do movimento? Há constantes do movimento? Como se relacionam as duas soluções? 6. Considera as transformações Q = ln ( 1 + q 1/2 cos P ) e P = 2 ( 1 + q 1/2 cos P ) q 1/2 sin p. Mostrta que Q, P são coordenadas canonicas se q, p o forem. Mostra tambem que a função geradora de trasformação entre elas é F 3 = ( e Q 1) 2 tan p. 7. Resolve a equação de Hamilton-Jacobi, determina a função geradora S, no caso de uma particula que tem um Hamiltoneano H = 1 2 p2. Determina a transformação canonica q = q(β, α) e p = p(β, α), onde β, α são a coordenada e momento transformados, respectivamente. Se tomarmos tambem uma perturbação para o Hamiltonenao H = 1 2 q2, determina o novo Hamiltoneano e determina as equações do movimento assim como as suas soluções. 5

6 4 a Serie 1. Considera a velocidade angular de um corpo expressa em termos de angulos de Euler: θ, ψ, φ. Analisa se ω é uma função integravel ou não, i.e., se ω = d Λ(θ,ψ,φ). Qual é a interpretação fisica da tua analise? dt 2. Considera a suspensão de um objecto de uma altura de 50m e analisa a sua dinâmica do ponto de vista do referencial em rotação que é a Terra. 3. Considera agora a queda de um objecto de uma altura de 50m nas condições do probelama anterior. Analisa a sua dinâmica do ponto de vista do referencial em rotação que é a Terra. 4. Porque é que nos furações a direcção do vento roda? 5. Analisa o ponto de vista do referencial em rotação que é a Terra o movimento de um pendulo e extrai as conclusões decorrentes da experiencia de Foucault. 6. Calcula o momento de inercia do objecto formado por duas esferas homogeneas de massas M 1 e M 2, com raios a e b e ligadas entre si por uma linha rigida sem massa nos seus centros. 6

MATEMÁTICA 1ª QUESTÃO. O valor do número real que satisfaz a equação =5 é. A) ln5. B) 3 ln5. C) 3+ln5. D) ln5 3. E) ln5 2ª QUESTÃO

MATEMÁTICA 1ª QUESTÃO. O valor do número real que satisfaz a equação =5 é. A) ln5. B) 3 ln5. C) 3+ln5. D) ln5 3. E) ln5 2ª QUESTÃO MATEMÁTICA 1ª QUESTÃO O valor do número real que satisfaz a equação =5 é A) ln5 B) 3 ln5 C) 3+ln5 D) ln5 3 E) ln5 ª QUESTÃO O domínio da função real = 64 é o intervalo A) [,] B) [, C), D), E), 3ª QUESTÃO

Leia mais

ROLAMENTO, TORQUE E MOMENTUM ANGULAR Física Geral I (1108030) - Capítulo 08

ROLAMENTO, TORQUE E MOMENTUM ANGULAR Física Geral I (1108030) - Capítulo 08 ROLAMENTO, TORQUE E MOMENTUM ANGULAR Física Geral I (1108030) - Capítulo 08 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 21 Sumário Rolamento Rolamento como rotação e translação combinados e como uma

Leia mais

1) Cálculo do tempo de subida do objeto: V y. = V 0y. + γt s 0 = 4 10t s. t s. = 0,4s. 2) Cálculo do tempo total de vôo : t total.

1) Cálculo do tempo de subida do objeto: V y. = V 0y. + γt s 0 = 4 10t s. t s. = 0,4s. 2) Cálculo do tempo total de vôo : t total. 46 e FÍSICA No interior de um ônibus que trafega em uma estrada retilínea e horizontal, com velocidade constante de 90 km/h, um passageiro sentado lança verticalmente para cima um pequeno objeto com velocidade

Leia mais

Para cada partícula num pequeno intervalo de tempo t a percorre um arco s i dado por. s i = v i t

Para cada partícula num pequeno intervalo de tempo t a percorre um arco s i dado por. s i = v i t Capítulo 1 Cinemática dos corpos rígidos O movimento de rotação apresenta algumas peculiaridades que precisam ser entendidas. Tem equações horárias, que descrevem o movimento, semelhantes ao movimento

Leia mais

Capítulo TRABALHO E ENERGIA

Capítulo TRABALHO E ENERGIA Capítulo 6 TRABALHO E ENERGIA A B C DISCIPLINA DE FÍSICA CAPÍTULO 6 - TRABALHO E ENERGIA 6.1 Um bloco, com 20kg de massa, sobe uma rampa com 15º de inclinação e percorre 55,375 metros até parar. Os coeficientes

Leia mais

aplicada no outro bloco exceder o valor calculado na alínea 4.1? R: 16 N; 2 ms -2 ; 1 ms -2

aplicada no outro bloco exceder o valor calculado na alínea 4.1? R: 16 N; 2 ms -2 ; 1 ms -2 Engenharia Electrotécnica e de Computadores Exercícios de Física Ficha 6 Dinâmica do Ponto Material Capítulo 3 no lectivo 2010-2011 Conhecimentos e capacidades a adquirir pelo aluno plicação dos conceitos

Leia mais

Mecânica e Ondas. Docentes da disciplina: João Seixas e Mario J. Pinheiro MeMEC Departmento de Física e Instituto de Plasma e Fusão Nuclear,

Mecânica e Ondas. Docentes da disciplina: João Seixas e Mario J. Pinheiro MeMEC Departmento de Física e Instituto de Plasma e Fusão Nuclear, Mecânica e Ondas Série 5 Docentes da disciplina: João Seixas e Mario J. Pinheiro MeMEC Departmento de Física e Instituto de Plasma e Fusão Nuclear, Instituto Superior Técnico, Av. & 1049-001 Lisboa, Portugal

Leia mais

XXVII CPRA LISTA DE EXERCÍCIOS FÍSICA (CINEMÁTICA)

XXVII CPRA LISTA DE EXERCÍCIOS FÍSICA (CINEMÁTICA) XXVII CPRA LISTA DE EXERCÍCIOS FÍSICA (CINEMÁTICA) 1) Na Figura 1, uma esfera lisa pode ser lançada por três escorregadores polidos. Ordene os escorregadores de acordo com o trabalho que a força gravitacional

Leia mais

0.1 Trabalho e Energia Mecânica

0.1 Trabalho e Energia Mecânica 0.1 Trabalho e Energia Mecânica 1 0.1 Trabalho e Energia Mecânica 1. Uma partícula de massa m se move ao longo do eixo OX sob a ação de uma força total dada por F x = kx, onde k > 0. No instante inicial,

Leia mais

Exercício 1. Exercício 2.

Exercício 1. Exercício 2. Exercício 1. Em um barbeador elétrico, a lâmina se move para frente e para trás ao longo de uma distância de 2,0 mm em movimento harmônico simples, com frequência de 120 Hz. Encontre: (a) a amplitude,

Leia mais

Tópicos de Física Moderna Engenharia Informática

Tópicos de Física Moderna Engenharia Informática EXAME - ÉPOCA NORMAL 7 de Junho de 007 1. Indique, de entre as afirmações seguintes, as que são verdadeiras e as que são falsas. a) A grandeza T na expressão cinética mv T = é o período de oscilações.

Leia mais

Exercícios de Mecânica - Área 3

Exercícios de Mecânica - Área 3 1) O bloco de peso 10lb tem uma velocidade inicial de 12 pés/s sobre um plano liso. Uma força F = (3,5t) lb onde t é dado em segundos, age sobre o bloco durante 3s. Determine a velocidade final do bloco

Leia mais

v = velocidade média, m/s; a = aceleração média do corpo, m/s 2 ;

v = velocidade média, m/s; a = aceleração média do corpo, m/s 2 ; 1. Cinemática Universidade Estadual do Norte Fluminense Darcy Ribeiro Centro de Ciências e Tecnologias Agropecuárias - Laboratório de Engenharia Agrícola EAG 0304 Mecânica Aplicada Prof. Ricardo Ferreira

Leia mais

06-11-2015. Sumário. Da Terra à Lua. Movimentos no espaço 02/11/2015

06-11-2015. Sumário. Da Terra à Lua. Movimentos no espaço 02/11/2015 Sumário UNIDADE TEMÁTICA 1 Movimentos na Terra e no Espaço. Correção do 1º Teste de Avaliação. Movimentos no espaço. Os satélites geoestacionários. - O Movimentos de satélites. - Características e aplicações

Leia mais

Mecânica Lagrangeana

Mecânica Lagrangeana Mecânica agrangeana Apontamentos para a disciplina Introdução à Mecânica Clássica 00/0 Maria Inês Barbosa de Carvalho Aníbal Castilho Coimbra de Matos icenciatura em Engenharia Electrotécnica e de Computadores

Leia mais

Mecânica 2007/ ª Série. 1. Discuta o trabalho realizado por um lançador de baseball quando atira uma bola.

Mecânica 2007/ ª Série. 1. Discuta o trabalho realizado por um lançador de baseball quando atira uma bola. Mecânica 2007/2008 4ª Série Questões 1. Discuta o trabalho realizado por um lançador de baseball quando atira uma bola. 2. Estime o tempo que lhe demora a subir um lance de escadas. Calcule então a potência

Leia mais

Física I - Avaliação da Época Normal 2010/ de Janeiro de 2011 AXX35TVIUU1TILMIOIBU14FRYUUN61GEXR

Física I - Avaliação da Época Normal 2010/ de Janeiro de 2011 AXX35TVIUU1TILMIOIBU14FRYUUN61GEXR Física I - Avaliação da Época Normal 010/011-8 de Janeiro de 011 AXX35TVIUU1TILMIOIBU14FRYUUN61GEXR Nas duas partes que constituem esta avaliação, seleccione, para cada questão, a resposta que entender

Leia mais

Estática do Ponto Material e do Corpo Rígido

Estática do Ponto Material e do Corpo Rígido CAPÍTULO I Estática do Ponto Material e do Corpo Rígido SEMESTRE VERÃO 2004/2005 Maria Idália Gomes 1/7 Capitulo I Estática do Ponto Material e do Corpo Rígido Este capítulo tem por objectivo a familiarização

Leia mais

FÍSICA - 1 o ANO MÓDULO 27 TRABALHO, POTÊNCIA E ENERGIA REVISÃO

FÍSICA - 1 o ANO MÓDULO 27 TRABALHO, POTÊNCIA E ENERGIA REVISÃO FÍSICA - 1 o ANO MÓDULO 27 TRABALHO, POTÊNCIA E ENERGIA REVISÃO Fixação 1) O bloco da figura, de peso P = 50N, é arrastado ao longo do plano horizontal pela força F de intensidade F = 100N. A força de

Leia mais

Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Física II Professora: Subênia Medeiros

Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Física II Professora: Subênia Medeiros Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Física II Professora: Subênia Medeiros Movimento Periódico O movimento é um dos fenômenos mais fundamentais

Leia mais

Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar ÁREA INTERDEPARTAMENTAL DE FÍSICA

Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar ÁREA INTERDEPARTAMENTAL DE FÍSICA Engenharia Civil Exercícios de Física de Física Ficha 8 Corpo Rígido Capítulo 6 Ano lectivo 010-011 Conhecimentos e capacidades a adquirir pelo aluno Aplicação das leis fundamentais da dinâmica. Aplicação

Leia mais

Física. Valor: 5 pontos. B) Determine a distância x entre o ponto em que o bloco foi posicionado e a extremidade em que a reação é maior.

Física. Valor: 5 pontos. B) Determine a distância x entre o ponto em que o bloco foi posicionado e a extremidade em que a reação é maior. Física 0. Uma haste de comprimento L e massa m uniformemente distriuída repousa sore dois apoios localizados em suas extremidades. Um loco de massa m uniformemente distriuída encontra-se sore a arra em

Leia mais

CINEMÁTICA DO PONTO MATERIAL

CINEMÁTICA DO PONTO MATERIAL 1.0 Conceitos CINEMÁTICA DO PONTO MATERIAL Cinemática é a parte da Mecânica que descreve os movimentos. Ponto material é um corpo móvel cujas dimensões não interferem no estudo em questão. Trajetória é

Leia mais

LISTA DE EXERCÍCIOS - MOVIMENTO HARMÔNICO SIMPLES (MHS) (versão 2014/2)

LISTA DE EXERCÍCIOS - MOVIMENTO HARMÔNICO SIMPLES (MHS) (versão 2014/2) LISTA DE EXERCÍCIOS - MOVIMENTO HARMÔNICO SIMPLES (MHS) (versão 2014/2) A CINEMÁTICA NO MHS 1.1.- (HALLIDAY, 4ª EDIÇÃO, CAP. 14, 1E) Um objeto sujeito a um movimento harmônico simples leva 0,25 s para

Leia mais

Considerando a variação temporal do momento angular de um corpo rígido que gira ao redor de um eixo fixo, temos:

Considerando a variação temporal do momento angular de um corpo rígido que gira ao redor de um eixo fixo, temos: Segunda Lei de Newton para Rotações Considerando a variação temporal do momento angular de um corpo rígido que gira ao redor de um eixo fixo, temos: L t = I ω t e como L/ t = τ EXT e ω/ t = α, em que α

Leia mais

MOMENTO LINEAR - IMPULSO - COLISÕES

MOMENTO LINEAR - IMPULSO - COLISÕES ESQ - EXERCÍCIOS DE FISICA I 2 011 MOMENTO LINEAR - IMPULSO - COLISÕES EX - 01 ) Determinar a variação do momento linear de um caminhão entre um instante inicial nulo e o instante t = 5,0 s. O caminhão

Leia mais

Física I. Aula 05 Forças e Movimentos IV 2010/2011. Movimento Circular

Física I. Aula 05 Forças e Movimentos IV 2010/2011. Movimento Circular Física I 2010/2011 Aula 05 Forças e Movimentos IV Movimento Circular Sumário Movimento circular Movimento circular uniforme Movimento relativo a uma dimensão Movimento relativo a duas dimensões Física

Leia mais

Turbina eólica: conceitos

Turbina eólica: conceitos Turbina eólica: conceitos Introdução A turbina eólica, ou aerogerador, é uma máquina eólica que absorve parte da potência cinética do vento através de um rotor aerodinâmico, convertendo em potência mecânica

Leia mais

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO e 2 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 6//26 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES:. Prova

Leia mais

Escola Secundária Dom Manuel Martins

Escola Secundária Dom Manuel Martins Escola Secundária Dom Manuel Martins Setúbal 1ª Ficha Avaliação FÍSICA ANO LECTIVO 005 / 006 1º ANO N. º NOME: TURMA: CLASSIFICAÇÃO Um automóvel em movimento, descreve uma trajectória que se apresenta

Leia mais

Universidade Federal da Paraíba Centro Federal de Educação Tecnológica da Paraíba Mestrado em Novas Tecnologias da Informação e Cultura

Universidade Federal da Paraíba Centro Federal de Educação Tecnológica da Paraíba Mestrado em Novas Tecnologias da Informação e Cultura Universidade Federal da Paraíba Centro Federal de Educação Tecnológica da Paraíba Mestrado em Novas Tecnologias da Informação e Cultura P.P.G.E. Convênio CEFET-PB-2003 Teste conceitual referente à Dissertação

Leia mais

Lista de exercícios nº 3

Lista de exercícios nº 3 F107 Física (Biologia) Turma B Prof. Odilon D. D. Couto Jr. Lista de exercícios nº 3 FORÇAS, LEIS DE NEWTON e EQUILÍBRIO Exercício 1: Um corpo de 10 kg apoiado sobre uma mesa sem atrito está sujeito à

Leia mais

MOVIMENTO OSCILATÓRIO

MOVIMENTO OSCILATÓRIO MOVIMENTO OSCILATÓRIO 1.0 Noções da Teoria da Elasticidade A tensão é o quociente da força sobre a área aplicada (N/m²): As tensões normais são tensões cuja força é perpendicular à área. São as tensões

Leia mais

1. Movimento Harmônico Simples

1. Movimento Harmônico Simples Física Oscilações 1. Movimento Harmônico Simples Vamos analisar inicialmente a situação em que há um corpo de massa m, preso a uma mola de constante elástica K que realiza oscilações em torno de seu ponto

Leia mais

ESCOLA SECUNDÁRIA DE CASQUILHOS 3º Teste sumativo de FQA 14. Dez Versão 1

ESCOLA SECUNDÁRIA DE CASQUILHOS 3º Teste sumativo de FQA 14. Dez Versão 1 ESCOLA SECUNDÁRIA DE CASQUILHOS 3º Teste sumativo de FQA 14. Dez. 2015 Versão 1 11º Ano Turma A e B Duração da prova: 90 minutos. Este teste é constituído por 10 páginas e termina na palavra FIM Nome:

Leia mais

Mecânica da Partícula 2ª lista de exercícios

Mecânica da Partícula 2ª lista de exercícios Mecânica da Partícula 2ª lista de exercícios 1. Um satélite em órbita ao redor da Terra é atraído pelo nosso planeta e, como reação, atrai a Terra. A figura que representa corretamente esse par ação-reação

Leia mais

Movimento periódico é um movimento que um objecto repete com regularidade. O objecto regressa à posição inicial depois de um intervalo de tempo.

Movimento periódico é um movimento que um objecto repete com regularidade. O objecto regressa à posição inicial depois de um intervalo de tempo. Física 12.º Ano MOVIMENTOS OSCILATÓRIOS ADAPTADO DE SERWAY & JEWETT POR MARÍLIA PERES 2013 Movimento Periódico 2 Movimento periódico é um movimento que um objecto repete com regularidade. O objecto regressa

Leia mais

Theory Portugues BR (Brazil) Por favor, leia as instruções gerais contidas no envelope separado antes de iniciar este problema.

Theory Portugues BR (Brazil) Por favor, leia as instruções gerais contidas no envelope separado antes de iniciar este problema. Q1-1 Dois problemas de Mecânica (10 pontos) Por favor, leia as instruções gerais contidas no envelope separado antes de iniciar este problema. Parte A. O disco escondido (3.5 pontos) Considere um cilindro

Leia mais

Física 1. Rotação e Corpo Rígido Resumo P3

Física 1. Rotação e Corpo Rígido Resumo P3 Física 1 Rotação e Corpo Rígido Resumo P3 Fórmulas e Resumo Teórico Momento Angular - Considerando um corpo de massa m a um momento linear p, temos: L = r p = r mv Torque - Considerando uma força F em

Leia mais

Instituto de Física - UFF Profissional - 11 de Dezembro de 2009 Resolva 6 (seis) questões, com pelo menos uma questão de cada uma das

Instituto de Física - UFF Profissional - 11 de Dezembro de 2009 Resolva 6 (seis) questões, com pelo menos uma questão de cada uma das Exame de Ingresso na Pós-graduação Instituto de Física - UFF Profissional - 11 de Dezembro de 009 Resolva 6 (seis) questões, com pelo menos uma questão de cada uma das seções. A duração da prova é de 3

Leia mais

Energia potencial (para um campo de forças conservativo).

Energia potencial (para um campo de forças conservativo). UNIVERSIDDE DO PORTO Faculdade de Engenharia Departamento de Engenharia Civil Mecânica II Ficha 5 (V3.99) Dinâmica da Partícula Conceitos F = m a p = m v Princípio fundamental. Quantidade de movimento.

Leia mais

d) [1,0 pt.] Determine a velocidade v(t) do segundo corpo, depois do choque, em relação à origem O do sistema de coordenadas mostrado na figura.

d) [1,0 pt.] Determine a velocidade v(t) do segundo corpo, depois do choque, em relação à origem O do sistema de coordenadas mostrado na figura. 1) Uma barra delgada homogênea de comprimento L e massa M está inicialmente em repouso como mostra a figura. Preso a uma de suas extremidades há um objeto de massa m e dimensões desprezíveis. Um segundo

Leia mais

a) o módulo da aceleração do carrinho; (a c = 0,50 m/s) b) o módulo da aceleração do sistema constituído por A e B; (a = 4,0 m/s 2 )

a) o módulo da aceleração do carrinho; (a c = 0,50 m/s) b) o módulo da aceleração do sistema constituído por A e B; (a = 4,0 m/s 2 ) 1 - Dois blocos, A e B, ambos de massa m, estão ligados por um fio leve e flexível, que passa por uma polia de massa desprezível, que gira sem atrito. O bloco A está apoiado sobre um carrinho de massa

Leia mais

3. Considere as duas diferentes situações em que uma mala está suspensa por dois dinamómetros como representado na Fig.1.

3. Considere as duas diferentes situações em que uma mala está suspensa por dois dinamómetros como representado na Fig.1. 1 II. 2. Mecânica de Newton 1. Um partícula carregada com carga q quando colocada num campo eléctrico E fica sujeita a uma força F = q E. Considere o movimento de um electrão e um protão colocados num

Leia mais

1 Equações de Euler- Lagrange TÓPICOS FUNDAMENTAIS DE FÍSICA.

1 Equações de Euler- Lagrange TÓPICOS FUNDAMENTAIS DE FÍSICA. 1 Equações de Euler- Lagrange TÓPICOS FUNDAMENTAIS DE FÍSICA www.fisica-interessante.com 09/03/2017 1 Revisão de Física Leis de Newton Dinâmica angular Momento angular Torque www.fisica-interessante.com

Leia mais

Caro (a) Aluno (a): Este texto apresenta uma revisão sobre movimento circular uniforme MCU. Bom estudo e Boa Sorte!

Caro (a) Aluno (a): Este texto apresenta uma revisão sobre movimento circular uniforme MCU. Bom estudo e Boa Sorte! TEXTO DE EVISÃO 15 Movimento Circular Caro (a) Aluno (a): Este texto apresenta uma revisão sobre movimento circular uniforme MCU. om estudo e oa Sorte! 1 - Movimento Circular: Descrição do Movimento Circular

Leia mais

Problemas de Mecânica e Ondas 3

Problemas de Mecânica e Ondas 3 Problemas de Mecânica e Ondas 3 P 3.1. ( Exercícios de Física, A. Noronha, P. Brogueira, McGraw Hill, 1994) Considere uma esfera de densidade e raio r imersa num fluido de viscosidade e massa específica

Leia mais

1ª Aula do Cap. 08. Energia Potencial e Conservação de Energia

1ª Aula do Cap. 08. Energia Potencial e Conservação de Energia 1ª Aula do Cap. 8 Energia Potencial e Conservação de Energia Conteúdo: Energia Potencial U gravitacional e Energia Potencial elástica. Força gravitacional e Força elástica. Conservação da Energia Mecânica.

Leia mais

Problemas de Mecânica e Ondas 1

Problemas de Mecânica e Ondas 1 Problemas de Mecânica e Ondas 1 P 1.1 ( Introdução à Física J. Dias de Deus et al., Mc Graw Hill, 2000) Considere uma rã a a saltar. a) Qual será o ângulo de lançamento preferido da rã? Porquê? b) Se,

Leia mais

Novo Espaço Matemática A 11.º ano Proposta de Teste Intermédio [Novembro 2015]

Novo Espaço Matemática A 11.º ano Proposta de Teste Intermédio [Novembro 2015] Proposta de Teste Intermédio [Novembro 05] Nome: Ano / Turma: N.º: Data: - - Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado. Para cada resposta, identifica

Leia mais

LISTA 03. Trabalho, energia cinética e potencial, conservação da energia

LISTA 03. Trabalho, energia cinética e potencial, conservação da energia UNIVERSIDADE DE SÃO PAULO INSTITUTO DE FÍSICA FEP2195 - Física Geral e Experimental para Engenharia I LISTA 03 Trabalho, energia cinética e potencial, conservação da energia 1. Um saco de farinha de 5,

Leia mais

Física I -2010/2011. a c

Física I -2010/2011. a c Física I -2010/2011 9 a Série - Rotação Questões: Q1 -. Um pêndulo oscila desde a extremidade da trajectória, à esquerda (ponto 1), até à outra extremidade, à direita (ponto 5). Em cada um dos pontos indicados,

Leia mais

Programa da cadeira Física I Cursos: Matemática, Engenharia Informática, Engenharia de Telecomunicações e Redes

Programa da cadeira Física I Cursos: Matemática, Engenharia Informática, Engenharia de Telecomunicações e Redes Programa da cadeira Física I Cursos: Matemática, Engenharia Informática, Engenharia de Telecomunicações e Redes Ano lectivo 2005-2006, 1º semestre Docentes: Prof. Dr. Mikhail Benilov (aulas teóricas, regência

Leia mais

Segunda Prova de Física I, Turma MAA+MAI 8h-10h, 30 de novembro de 2011

Segunda Prova de Física I, Turma MAA+MAI 8h-10h, 30 de novembro de 2011 Segunda Prova de Física I, Turma MAA+MAI 8h-10h, 30 de novembro de 2011 A vista da prova será feita na 2 a feira 5/12/2011, na sala de aula no horário de 8h-8h30. Primeira Questão No sistema de coordenadas

Leia mais

Questões Conceituais

Questões Conceituais Questões em Aula Questões Conceituais QC.1) Determine os sinais positivo ou negativo da posição, da velocidade e da aceleração da partícula da Fig. Q1.7. QC.) O movimento de uma partícula é apresentado

Leia mais

Série IV - Momento Angular (Resoluções Sucintas)

Série IV - Momento Angular (Resoluções Sucintas) Mecânica e Ondas, 0 Semestre 006-007, LEIC Série IV - Momento Angular (Resoluções Sucintas) 1. O momento angular duma partícula em relação à origem é dado por: L = r p a) Uma vez que no movimento uniforme

Leia mais

11 Cinemática de partículas 605

11 Cinemática de partículas 605 SUMÁRIO 11 Cinemática de partículas 605 11.1 Introdução à dinâmica 606 Movimento retilíneo de partículas 607 11.2 Posição, velocidade e aceleração 607 11.3 Determinação do movimento de uma partícula 611

Leia mais

http://aprendendofisica.net/rede - @apfisica - http://www.cp2centro.net/

http://aprendendofisica.net/rede - @apfisica - http://www.cp2centro.net/ COLÉGIO PEDRO II - CAMPUS CENTRO Lista de Exercícios de Dinâmica 2 a. Série 2015 d.c Coordenador: Prof. Marcos Gonçalves Professor: Sérgio F. Lima 1) Determine as trações nas cordas 1 e 2 da figura abaixo.

Leia mais

3. Mecânica de Newton

3. Mecânica de Newton 3. Mecânica de Newton 3.1. Uma partícula carregada com carga q, quando colocada num campo eléctrico E, fica sujeita a uma força F = q E. Considere o movimento de um electrão e um protão colocados num campo

Leia mais

Theory Portuguese (Portugal) Antes de iniciar este problema, leia cuidadosamente as Instruções Gerais que pode encontrar noutro envelope.

Theory Portuguese (Portugal) Antes de iniciar este problema, leia cuidadosamente as Instruções Gerais que pode encontrar noutro envelope. Q1-1 Dois Problemas de Mecânica Antes de iniciar este problema, leia cuidadosamente as Instruções Gerais que pode encontrar noutro envelope. Parte A. O Disco Escondido (3,5 pontos) Considere um cilindro

Leia mais

Física 1. Resumo e Exercícios P1

Física 1. Resumo e Exercícios P1 Física 1 Resumo e Exercícios P1 Fórmulas e Resumo Teórico Parte 1 Derivada de polinômios - Considerando um polinômio P x = ax %, temos: d P x = anx%() dx Integral de polinômios - Considerando um polinômio

Leia mais

Lista de Exercícios - OSCILAÇÕES

Lista de Exercícios - OSCILAÇÕES UNIVERSIDADE FEDERAL DE PELOTAS INSTITUTO DE FÍSICA E MATEMÁTICA Departamento de Física Disciplina: Física Básica II Lista de Exercícios - OSCILAÇÕES Perguntas: 1. O gráfico da figura 1 mostra a aceleração

Leia mais

Lista de Exercícios (Profº Ito) Componentes da Resultante

Lista de Exercícios (Profº Ito) Componentes da Resultante 1. Um balão de ar quente está sujeito às forças representadas na figura a seguir. Qual é a intensidade, a direção e o sentido da resultante dessas forças? c) qual o valor do módulo das tensões nas cordas

Leia mais

Oscilações. Uma partícula material executa um MHS quando oscila periodicamente em torno de uma posição de equilíbrio, sobre uma trajetória reta.

Oscilações. Uma partícula material executa um MHS quando oscila periodicamente em torno de uma posição de equilíbrio, sobre uma trajetória reta. Oscilações Movimento Harmônico Simples Uma partícula material executa um MHS quando oscila periodicamente em torno de uma posição de equilíbrio, sobre uma trajetória reta. Dinâmica do MCU As oscilações

Leia mais

Prof. Dr. Ronaldo Rodrigues Pelá. 12 de março de 2013

Prof. Dr. Ronaldo Rodrigues Pelá. 12 de março de 2013 GIROSCÓPIO Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 12 de março de 2013 Roteiro 1 2 Roteiro 1 2 Dinâmica F (ext) = M a CM τ (ext) = d L dt L = M r CM v CM + L CM τ (ext) CM = d L

Leia mais

PLANO INCLINADO. a. a aceleração com que o bloco desce o plano; b. a intensidade da reação normal sobre o bloco;

PLANO INCLINADO. a. a aceleração com que o bloco desce o plano; b. a intensidade da reação normal sobre o bloco; PLANO INCLINADO 1. Um corpo de massa m = 10kg está apoiado num plano inclinado de 30 em relação à horizontal, sem atrito, e é abandonado no ponto A, distante 20m do solo. Supondo a aceleração da gravidade

Leia mais

A unidade de freqüência é chamada hertz e simbolizada por Hz: 1 Hz = 1 / s.

A unidade de freqüência é chamada hertz e simbolizada por Hz: 1 Hz = 1 / s. Movimento Circular Uniforme Um movimento circular uniforme (MCU) pode ser associado, com boa aproximação, ao movimento de um planeta ao redor do Sol, num referencial fixo no Sol, ou ao movimento da Lua

Leia mais

PROCESSO SELETIVO TURMA DE 2015 FASE 1 PROVA DE FÍSICA E SEU ENSINO

PROCESSO SELETIVO TURMA DE 2015 FASE 1 PROVA DE FÍSICA E SEU ENSINO PROCESSO SELETIVO TURMA DE 2015 FASE 1 PROVA DE FÍSICA E SEU ENSINO Caro professor, cara professora esta prova tem 2 partes; a primeira parte é objetiva, constituída por 14 questões de múltipla escolha,

Leia mais

ESTÁTICA DO PONTO MATERIAL

ESTÁTICA DO PONTO MATERIAL ESTÁTICA DO PONTO MATERIAL 0) CFTMG- As figuras e a seguir representam, respectivamente, todas as forças, constantes e coplanares, que atuam sobre uma partícula e o diagrama da soma vetorial destas forças.

Leia mais

Figura 3.2: Quadro artisticamente suspenso

Figura 3.2: Quadro artisticamente suspenso 3.1. Uma partícula carregada com carga q, quando colocada num campo eléctrico E, fica sujeita a uma força F = q E. Considere o movimento de um electrão e um protão colocados num campo eléctrico E = 10

Leia mais

Graça Ventura Adaptado por Marília Peres

Graça Ventura Adaptado por Marília Peres Física 12º ano Novo Programa Relatividade einsteiniana Graça Ventura Adaptado por Marília Peres Memórias de Einstein... O que aconteceria se alguém cavalgasse um raio luminoso?... Seria capaz de ver a

Leia mais

Exercícios de Mecânica Analítica

Exercícios de Mecânica Analítica Universidade de São Paulo - Instituto de Física Complementos de Mecânica Clássica Exercícios de Mecânica Analítica Rafael Wagner - 8540310 1 de novembro de 016 1 Primeiro exercício Um sistema "pêndulo-mola"consiste

Leia mais

MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA (CONCURSO PUBLICO PARA INGRESSO NO CORPO DE ENGENHEIROS DA MARINHA / CP-CEM/2016)

MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA (CONCURSO PUBLICO PARA INGRESSO NO CORPO DE ENGENHEIROS DA MARINHA / CP-CEM/2016) MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA (CONCURSO PUBLICO PARA INGRESSO NO CORPO DE ENGENHEIROS DA MARINHA / CP-CEM/2016) ESTÁ AUTORIZADA A UTILIZAÇÃO DE RÉGUA SIMPLES PROVA ESCRITA DE MÚLTIPLA

Leia mais

ENS/NO SECUNOARIO 1."FASE " CHAMADA. PROVA ESCRITA DE FfslCA

ENS/NO SECUNOARIO 1.FASE  CHAMADA. PROVA ESCRITA DE FfslCA ENS/NO SECUNOARIO 12. Ano de Escolaridade (Decreto-Lei n.o 286/89, de 29 de Agosto) Rede Escolar de Amostragem (Portaria n. o 782/90, de 1 de Setembro e Despacho n. o 125/ME/92, de 9 de Julho) PONTO 115/5

Leia mais

Capítulo 11 Rotações e Momento Angular

Capítulo 11 Rotações e Momento Angular Capítulo 11 Rotações e Momento Angular Corpo Rígido Um corpo rígido é um corpo ideal indeformável de tal forma que a distância entre 2 pontos quaisquer do corpo não muda nunca. Um corpo rígido pode realizar

Leia mais

Física I Prova 3 7/06/2014

Física I Prova 3 7/06/2014 Nota Física I Prova 3 7/06/2014 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 2 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 12

Leia mais

a unidade de θ em revoluções e do tempo t em segundos (θ(rev.) t(s)). Também construa o gráfico da velocidade angular ω em função do tempo (ω( rev.

a unidade de θ em revoluções e do tempo t em segundos (θ(rev.) t(s)). Também construa o gráfico da velocidade angular ω em função do tempo (ω( rev. 30195-Física Geral e Exp. para a Engenharia I - 3 a Prova - 8/06/01 Nome: N o USP: Professor: Turma: A duração da prova é de horas. Material: lápis, caneta, borracha, régua. O uso de calculadora é proibido

Leia mais

aplicada à força sentida por uma carga q 0, devida à N cargas q 1 q 2 q n

aplicada à força sentida por uma carga q 0, devida à N cargas q 1 q 2 q n Eletricidade O Campo eléctrico Consideremos a equação aplicada à força sentida por uma carga q 0, devida à N cargas q 1 q 2 q n onde é a distância desde a carga até o ponto do espaço onde se encontra a

Leia mais

De modo análogo as integrais duplas, podemos introduzir novas variáveis de integração na integral tripla.

De modo análogo as integrais duplas, podemos introduzir novas variáveis de integração na integral tripla. 8 Mudança de variável em integrais riplas 38 De modo análogo as integrais duplas, podemos introduzir novas variáveis de integração na integral tripla. I f ( dxddz Introduzindo novas variáveis de integração

Leia mais

LEIS DE NEWTON DINÂMICA 3ª LEI TIPOS DE FORÇAS

LEIS DE NEWTON DINÂMICA 3ª LEI TIPOS DE FORÇAS DINÂMICA É a parte da Mecânica que estuda as causas e os movimentos. LEIS DE NEWTON 1ª Lei de Newton 2ª Lei de Newton 3ª Lei de Newton 1ª LEI LEI DA INÉRCIA Quando a resultante das forças que agem sobre

Leia mais

LISTA DE EXERCÍCIOS DE FÍSICA

LISTA DE EXERCÍCIOS DE FÍSICA LISTA DE EXERCÍCIOS DE FÍSICA / /2012 ALUNO: N.º TURMA 01. Em um jogo de basebol, o rebatedor aplica uma força de contato do taco com a bola. Com a tecnologia atual, é possível medir a força média aplicada

Leia mais

DISCURSIVAS. Solução: (a) Com os eixos escolhidos conforme a figura, a altura instantânea da caixa a partir do instante t=0 em que começa a cair é

DISCURSIVAS. Solução: (a) Com os eixos escolhidos conforme a figura, a altura instantânea da caixa a partir do instante t=0 em que começa a cair é DISCURSIVAS 1. Um pequeno avião monomotor, à altitude de 500m, deixa cair uma caixa. No instante em que a caixa é largada, o avião voava a 60,0m/s inclinado de 30,0 0 acima da horizontal. (a) A caixa atinge

Leia mais

Campo Magnético Girante de Máquinas CA

Campo Magnético Girante de Máquinas CA Apostila 3 Disciplina de Conversão de Energia B 1. Introdução Campo Magnético Girante de Máquinas CA Nesta apostila são descritas de forma sucinta as equações e os princípios relativos ao campo magnético

Leia mais

Trabalho e Energia. = g sen. 2 Para = 0, temos: a g 0. onde L é o comprimento do pêndulo, logo a afirmativa é CORRETA.

Trabalho e Energia. = g sen. 2 Para = 0, temos: a g 0. onde L é o comprimento do pêndulo, logo a afirmativa é CORRETA. Trabalho e Energia UFPB/98 1. Considere a oscilação de um pêndulo simples no ar e suponha desprezível a resistência do ar. É INCORRETO afirmar que, no ponto m ais baixo da trajetória, a) a energia potencial

Leia mais

ENSINO SECUNOARIO. PROVA ESCRITA DE FfsICA

ENSINO SECUNOARIO. PROVA ESCRITA DE FfsICA PONTO 115/5pags. ENSINO SECUNOARIO 12. Ana de Escolaridade (Decreta-Lei n.o 286/89, de 29 de Agosto) Rede Escolar de Amostragem (Portaria n.o 782/90, de 1 de Setembro e Despacho n.o 125/ME/92, de 9 de

Leia mais

Lista 12: Oscilações NOME:

Lista 12: Oscilações NOME: Lista 12: Oscilações NOME: Turma: Prof. : Matrícula: Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. iii. Responder a questão

Leia mais

Física I Reposição 2 3/12/2014

Física I Reposição 2 3/12/2014 Nota Física I Reposição 3/1/014 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 6 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 14

Leia mais

UC: STC 6 Núcleo Gerador: URBANISMO E MOBILIDADES Tema: Construção e Arquitectura Domínio de Ref.ª:RA1 Área: Ciência

UC: STC 6 Núcleo Gerador: URBANISMO E MOBILIDADES Tema: Construção e Arquitectura Domínio de Ref.ª:RA1 Área: Ciência UC: STC 6 Núcleo Gerador: URBANISMO E MOBILIDADES Tema: Construção e Arquitectura Domínio de Ref.ª:RA1 Área: Ciência Sumário: Betão armado armadura aplicações Equilíbrio estático de um ponto material Momento

Leia mais

As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um

As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um alto-falante, ou de um instrumento de percussão. Um terremoto

Leia mais

Lista 10: Dinâmica das Rotações NOME:

Lista 10: Dinâmica das Rotações NOME: Lista 10: Dinâmica das Rotações NOME: Turma: Prof. : Matrícula: Importante: i. Nas cinco páginas seguintes contém problemas para serem resolvidos e entregues. ii. Ler os enunciados com atenção. iii. Responder

Leia mais

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano Escola Secundária/ da Sé-Lamego Ficha de Trabalho de Matemática no Lectivo 00/0 Geometria - Revisões º no Nome: Nº: Turma: região do espaço definida, num referencial ortonormado, por + + = é: [] a circunferência

Leia mais

Física 1. 2 a prova 03/06/2017. Atenção: Leia as recomendações antes de fazer a prova.

Física 1. 2 a prova 03/06/2017. Atenção: Leia as recomendações antes de fazer a prova. Física 1 2 a prova 03/06/2017 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua

Leia mais

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 14

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 14 Ondas 5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Introdução: elementos básicos sobre ondas De maneira geral, uma onda é qualquer sinal que se transmite de um ponto a outro

Leia mais

6.1. Determine o momento de inércia de uma régua de comprimento L e densidade uniforme nas seguintes situações:

6.1. Determine o momento de inércia de uma régua de comprimento L e densidade uniforme nas seguintes situações: 6.1. Determine o momento de inércia de uma régua de comprimento L e densidade uniforme nas seguintes situações: a) em relação ao eixo que passa pelo centro e é perpendicular ao plano da régua; b) em relação

Leia mais

Física para Engenharia II - Prova P a (cm/s 2 ) -10

Física para Engenharia II - Prova P a (cm/s 2 ) -10 4320196 Física para Engenharia II - Prova P1-2012 Observações: Preencha todas as folhas com o seu nome, número USP, número da turma e nome do professor. A prova tem duração de 2 horas. Não somos responsáveis

Leia mais

Suponha que a velocidade de propagação v de uma onda sonora dependa somente da pressão P e da massa específica do meio µ, de acordo com a expressão:

Suponha que a velocidade de propagação v de uma onda sonora dependa somente da pressão P e da massa específica do meio µ, de acordo com a expressão: PROVA DE FÍSICA DO VESTIBULAR 96/97 DO INSTITUTO MILITAR DE ENGENHARIA (03/12/96) 1 a Questão: Valor : 1,0 Suponha que a velocidade de propagação v de uma onda sonora dependa somente da pressão P e da

Leia mais

Bacharelado Engenharia Civil

Bacharelado Engenharia Civil Bacharelado Engenharia Civil Física Geral e Experimental I Prof.a: Érica Muniz 1 Período Lançamentos Movimento Circular Uniforme Movimento de Projéteis Vamos considerar a seguir, um caso especial de movimento

Leia mais

LISTA DE EXERCÍCIOS 2

LISTA DE EXERCÍCIOS 2 LISTA DE EXERCÍCIOS 2 Esta lista trata de vários conceitos associados ao movimento harmônico forçado e/ou amortecido. Tais conceitos são abordados no capítulo 4 do livro-texto (seções 4.1 a 4.5): Moysés

Leia mais

a) N B > N A > N C. b) N B > N C > N A. c) N C > N B > N A. d) N A > N B > N C. e) N A = N C = N B.

a) N B > N A > N C. b) N B > N C > N A. c) N C > N B > N A. d) N A > N B > N C. e) N A = N C = N B. Prof. Renato SESI Carrão Física 1º. ano 2011 Lista de exercícios 1 (Aulas 13 a 24) *** Formulário *** v = Δx/Δt Δx = x f x i Δt = t f t i a = Δv/Δt Δv = v f v i F R = m.a g = 10 m/s 2 P = m.g F at = μ.n

Leia mais