Pesquisa Operacional

Tamanho: px
Começar a partir da página:

Download "Pesquisa Operacional"

Transcrição

1 Faculdade de Engenharia - Campus de Guaratinguetá Pesquisa Operacional Livro: Introdução à Pesquisa Operacional Capítulo 2 - Programação Linear Fernando Marins Departamento de Produção 1

2 Sumário Modelagem e limitações da Programação Linear. Resolução Gráfica. Forma padrão de um modelo de Programação Linear. Definições e Teoremas. Forma canônica de um sistema de equações lineares. Método Simplex. Exercícios 2

3 Programação Linear Programação Linear: Preocupação em encontrar a melhor solução para problemas associados com modelos lineares. Modelo de Programação Linear: Maximização (ou minimização) de uma função objetivo linear com relação as variáveis de decisão do modelo. Respeitando-se as limitações (restrições) do problema expressas por um sistema de equações e inequações associadas com as variáveis de decisão do modelo. 3

4 Modelagem em Programação Linear Razões para o uso da Programação Linear: 1. Grande variedade de situações podem ser aproximadas por modelos lineares. 2. Existência de técnicas (algoritmos) eficientes para a solução de modelos lineares. 3. Possibilidade de realização de análise de sensibilidade nos dados do modelo. 4. Estágio de desenvolvimento da tecnologia computacional. 4

5 Modelagem em Programação Linear Passos básicos na obtenção de modelos de PL: 1. Identificar as variáveis de decisão, representá-las em simbologia algébrica. 2. Identificar as restrições do problema, expressá-las como equações ou inequações lineares em termos das variáveis de decisão. 3. Identificar o objetivo de interesse no problema, representá-lo como função linear em termos das variáveis de decisão, que deverá ser maximizada ou minimizada. 5

6 Modelagem em Programação Linear Construção de modelos não é uma ciência, mas uma arte, podendo ser melhorada com a prática. Exemplos a serem trabalhados: Determinação do mix de produção Seleção de mídia para propaganda Um problema de treinamento Uma indústria química Uma oficina mecânica Dimensionamento de equipes de inspeção 6

7 Modelagem em Programação Linear Determinação do mix de produção Uma companhia deseja programar a produção de um utensílio de cozinha que requer o uso de dois tipos de recursos mão-de-obra e material. A companhia está considerando a fabricação de três modelos e o seu departamento de engenharia forneceu os dados a seguir: Mão-de-obra (horas por unidade) Material (kg por unidade) Lucro ($ por unidade) Modelo A B C O suprimento de material é de 200 kg por dia. A disponibilidade diária de mãode-obra é 150 horas. Formule um modelo de Programação Linear para determinar a produção diária de cada um dos modelos de modo a maximizar o lucro total da companhia. 7

8 Modelagem em Programação Linear Formulação do modelo 1. Identificação das variáveis de decisão: X A produção diária do modelo A X B produção diária do modelo B X C produção diária do modelo C 2. Identificação das restrições: (Limitação de mão-de-obra) 7X a + 3X b + 6X c 150 (Limitação de material) 4X a + 4X b +5X c 200 (Não-negatividade) X a 0, X b 0, X c Identificação do objetivo: maximização do lucro total Lucro Total = L = 4X a + 2X b +3X c Max L = 4X a + 2X b +3X c 8

9 Modelagem em Programação Linear Modelo Encontrar números X a, X b, X c tais que: Max L= 4X a + 2X b +3X c Sujeito as restrições: 7X a + 3X b +6X c 150 4X a + 4X b +5X c 200 X a 0, X b 0, X c 0 9

10 Modelagem em Programação Linear Seleção de mídia para propaganda Uma companhia de propaganda deseja planejar uma campanha em 03 diferentes meios: TV, rádio e revistas. Pretende-se alcançar o maior número de clientes possível. Um estudo de mercado resultou em: TV horário TV horário Rádio Revistas normal nobre Custo Clientes Atingidos Mulheres Atingidas bs: valores válidos para cada veiculação da propaganda. 10

11 Modelagem em Programação Linear A companhia não quer gastar mais de $ e, adicionalmente, deseja: (1) Que no mínimo 2 milhões de mulheres sejam atingidas; (2) Gastar no máximo $ com TV; (3) Que no mínimo 03 veiculações ocorram no horário normal TV; (4) Que no mínimo 02 veiculações ocorram no horário nobre TV; (5) Que o nº. de veiculações no rádio e revistas fiquem entre 05 e 10, para cada meio de divulgação. Formular um modelo de PL que trate este problema, determinando o nº. de veiculações a serem feitas em cada meio de comunicação, de modo a atingir o máximo possível de clientes. 11

12 Modelagem em Programação Linear Resolução do exemplo seleção de mídia para propaganda Variáveis de decisão: X 1 = nº. de exposições em horário normal na tv. X 2 = nº. de exposições em horário nobre na tv. X 3 = nº. de exposições feitas utilizando rádio X 4 = nº. de exposições feitas utilizando revistas. Função-objetivo: Maximizar nº. de clientes atingidos Max Z = X X X X 4 12

13 Modelagem em Programação Linear Restrições: Orçamento: X X X X Mulheres atingidas: X X X X Gasto com TV X X Nº. de veiculações em TV, rádio e revistas X 1 3, X 2 2, 5 X 3 10, 5 X 4 10 Não-negatividade X 1, X 2, X 3, X

14 Modelagem em Programação Linear Um problema de treinamento Uma empresa de máquinas ferramentas tem um programa de treinamento para operadores de máquinas. Alguns operadores já treinados podem trabalhar como instrutores neste programa ficando responsáveis por 10 trainees cada. A empresa pretende aproveitar apenas 07 trainees de cada turma de 10. Estes operadores treinados também são necessários na linha de fabricação, e sabe-se que serão necessários para os próximos meses: 100 operadores em janeiro, 150 em fevereiro, 200 em março, e 250 em abril. Atualmente há 130 operadores treinados disponíveis na empresa. 14

15 Modelagem em Programação Linear Os custos associados a cada situação são: Trainees...$ 400. Operador treinado trabalhando...$ 700. Operador treinado ocioso...$ 500. Encontrar um modelo de PL que forneça um programa de treinamento de custo mínimo e satisfaça os requisitos da empresa em termos de nº. de operadores treinados disponíveis a cada mês. Observação: acordo firmado com o sindicato proíbe demissões de operadores treinados no período. 15

16 Modelagem em Programação Linear Resolução do exemplo: Um problema de treinamento Observe que a cada mês um operador treinado está: operando máquina, trabalhando como instrutor, ou está ocioso. Além disto, o nº. de operadores treinados trabalhando nas máquinas é fixo e conhecido: 100 em janeiro, 150 em fevereiro, 200 em março e 250 em abril. Variáveis de decisão: X 1 = operadores trabalhando como instrutores em janeiro X 2 = operadores ociosos em janeiro X 3 = operadores trabalhando como instrutores em fevereiro X 4 = operadores ociosos em fevereiro X 5 = operadores trabalhando como instrutores em março X 6 = operadores ociosos em março 16

17 Modelagem em Programação Linear Função-objetivo: Custo total = custo trainees + custo instrutores + custo ociosos + custo operadores trabalhando em máquinas. Min C = 400(10X X X 5 ) + 700(X 1 + X 3 + X 5 ) (X 2 + X 4 + X 6 ) + 700( ) Min C = 4700X X X X X X

18 Modelagem em Programação Linear Restrições: X 1, X 2, X 3, X 4, X 5, X 6 0 (não-negatividade) Equação de balanço mensal: operadores treinados no início do mês = operadores nas máquinas + instrutores + operadores ociosos. Janeiro: 130 = X 1 + X 2 X 1 + X 2 = 30 Fevereiro: X 1 = X 3 + X 4 7X 1 - X 3 - X 4 = 20 Março: X 1 + 7X 3 = X 5 + X 6 7X 1 + 7X 3 - X 5 - X 6 = 70 Abril: 250 = X 1 + 7X 3 + 7X 5 7X 1 + 7X 3 + 7X 5 =

19 Modelagem em Programação Linear Uma indústria química Dois produtos, A e B, são feitos a partir de duas operações químicas. Cada unidade do produto A requer 02 horas da operação 1 e 03 horas da operação 2. Cada unidade do produto B requer 03 horas da operação 1 e 04 horas da operação 2. O tempo total disponível para a realização da operação 1 é de 16 horas, e o tempo total para a operação 2 é de 24 horas. A produção do produto B resulta, também, num subproduto C sem custos adicionais. Sabe-se que parte do produto C pode ser vendido com lucro, mas o restante deve ser destruído. Previsões mostram que no máximo 05 unidades do produto C serão vendidas, e sabe-se que cada unidade do produto B fabricada gera 02 unidades do produto C. 19

20 Modelagem em Programação Linear Sabe-se que: Produto A gera um lucro de $ 4 por unidade. Produto B gera um lucro de $ 10 por unidade. Produto C gera um lucro de $ 3 por unidade se for vendido. Produto C gera um custo de $ 2 por unidade se for destruído Determinar um modelo de PL para tratar este problema, e encontrar quanto produzir de cada produto, de modo a maximizar o lucro da indústria química. 20

21 Modelagem em Programação Linear Resolução do exemplo: Uma indústria química - produto A Observe que o lucro da venda do produto A é uma função linear, mas com respeito ao produto C isto não ocorre. Lucro Produto B Produto A Lucro Produto C Quantidade 5 Quantidade 21

22 Modelagem em Programação Linear Artifício: considerar as variáveis de decisão como sendo X 1 = quantidade produto A produzida X 2 = quantidade produto B produzida X 3 = quantidade produto C vendida X 4 = quantidade produto C destruída Função-objetivo: Max Z = 4 X X X 3 2 X 4 Restrições: 2 X X 2 16 (disponibilidade de tempo para operação 1) 3 X X 2 24 (disponibilidade de tempo para operação 2) X 3 + X 4 = 2 X 2 (produção do produto C a partir do produto B) X 3 5 (previsão de produto C que pode ser vendido) X 1, X 2, X 3, X 4 0 (não-negatividade) 22

23 Modelagem em Programação Linear Oficina mecânica Uma oficina mecânica tem 01 furadeira vertical e 05 fresas, que são usadas para a produção de conjuntos formados de 2 partes. Sabe-se qual é a produtividade de cada máquina na fabricação destas partes do conjunto: Furadeira Fresa Parte Parte Obs: tempo para produzir as partes dado em minutos. 23

24 Modelagem em Programação Linear O encarregado pela oficina deseja manter uma carga balanceada nas máquinas de modo que nenhuma delas seja usada mais que 30 minutos por dia que qualquer outra, sendo o carregamento de fresamento dividido igualmente entre as 05 fresas. Achar um modelo de PL para dividir o tempo de trabalho entre as máquinas de modo a obter o máximo de conjuntos completos ao final de um dia, num total de 08 horas de trabalho. 24

25 Modelagem em Programação Linear Resolução do exemplo: Oficina mecânica Variáveis de decisão: X 1 = número de partes 1 produzidas por dia X 2 = número de partes 2 produzidas por dia Restrições: 3X 1 + 5X (minutos por dia disponíveis para a furadeira) (20X X 2 )/5 = 4X 1 + 3X (minutos por dia disponíveis para cada fresa) 25

26 Modelagem em Programação Linear (4X 1 + 3X 2 ) - (3X 1 + 5X 2 ) = X 1-2X 2 30 (Balanceamento de carga entre as máquinas) Observe que esta última restrição não é linear, mas é equivalente a duas equações lineares que podem substituí-la: X 1-2X 2 30 e -X 1 + 2X 2 30 X 1, X 2 0 (não-negatividade). 26

27 Modelagem em Programação Linear Função-objetivo: maximização do número de conjuntos completos por dia Max Z = min (X 1, X 2 ) Observe que esta função não é linear, mas pode ser linearizada utilizando-se uma nova variável, da forma: Seja Y = min (X 1, X 2 ), Y 0, naturalmente tem-se duas novas restrições Dadas por: Y X 1 e Y X 2. A função-objetivo linear fica sendo: Max Z = Y 27

28 Modelagem em Programação Linear Problema de dimensionamento de equipes de inspeção Uma companhia deseja determinar quantos inspetores alocar à uma dada tarefa do controle da qualidade. As informações disponíveis são: Há 08 inspetores do nível 1 que podem checar as peças a uma taxa de 25 peças por hora, com uma acuracidade de 98%, sendo o custo de cada inspetor deste nível $4 por hora; Há 10 inspetores do nível 2 que podem checar as peças a uma taxa de 15 peças por hora, com uma acuracidade de 95%, sendo o custo de cada inspetor deste nível $3 por hora. 28

29 Modelagem em Programação Linear A companhia deseja que no mínimo 1800 peças sejam inspecionadas por dia (= 08 horas). Sabe-se, ainda, que cada erro cometido por inspetores no controle da qualidade das peças acarreta um prejuízo à companhia de $2 por peça mal inspecionada. Formular um modelo de PL para possibilitar a designação ótima do nº. de inspetores de cada nível de modo a otimizar o custo da inspeção diária da companhia. 29

30 Modelagem em Programação Linear Resolução do exemplo: Dimensionamento de equipes de inspeção Variáveis de decisão: X i = nº. de inspetores do nível i (= 1, 2) alocados à inspeção. Função objetivo: Minimizar C = custo total diário de inspeção ($/dia) onde : custo total = custo do salário dos inspetores + custo dos erros Min C = 8 *[(4X 1 + 3X 2 ) + 2 * (25*0,02X *0,05X 2 )] Min C = 40X X 2 30

31 Modelagem em Programação Linear Restrições: 1. Quanto ao nº. de inspetores disponíveis: X 1 8 (inspetores do nível 1) X 2 10 (inspetores do nível 2) 2. Quanto ao nº. de peças inspecionadas por dia: 8 * (25X X 2 ) X 1 + 3X Restrições implícitas de não negatividade: X 1 0 X

32 Resolução gráfica de modelos de PL Aplicável para modelos com 02 variáveis de decisão Útil para a ilustração de alguns conceitos básicos utilizados na resolução de modelos de maior porte. Etapas a serem seguidas na resolução gráfica 1º Passo: identificar a região viável do modelo, isto é, quais são os pares (X 1, X 2 ) que satisfazem a todas as restrições. 2º Passo: achar a melhor solução viável, denominada Solução Ótima e denotada por (X 1 *, X 2 *), que leva ao valor ótimo da função-objetivo Z*. 32

33 Resolução gráfica de modelos de PL Problema de mix de Produção Fabricação de dois modelos de brinquedos: B 1 e B 2. Lucros unitários/dúzia: $8 para B 1 e $5 para B 2 Recursos disponíveis: 1000 kg de plástico especial. 40 horas para produção semanal. Requisitos do Departamento de Marketing: Produção total não pode exceder 700 dúzias; A quantidade de dúzias de B 1 não pode exceder em 350 a quantidade de dúzias de B 2. Dados técnicos: B 1 requer 2 kg de plástico e 3 minutos por dúzia. B 2 requer 1 kg de plástico e 4 minutos por dúzia. 33

34 Resolução gráfica de modelos de PL A Gerência está procurando um programa de produção que aumente o lucro da Companhia. 34

35 Resolução gráfica de modelos de PL Variáveis de decisão: X 1 : produção semanal de B 1 (em dúzias). X 2 : produção semanal de B 2 (em dúzias). Função Objetivo: Maximizar o Lucro semanal 35

36 Resolução gráfica de modelos de PL Max 8X 1 + 5X 2 (Lucro semanal) sujeito a: 2X 1 + 1X (Plástico - Kg) 3X 1 + 4X (Tempo de produção - minutos) X 1 + X (Produção total) X 1 - X (mix) X j 0, j = 1,2 (Não negatividade) 36

37 Resolução gráfica de modelos de PL Conceitos importantes: Os pontos (X 1, X 2 ) que satisfazem todas as restrições do modelo formam a Região Viável. Esses pontos são chamados de Soluções Viáveis. Usando a resolução gráfica pode-se representar todos as restrições (semi-planos), a função objetivo (reta) e os três tipos de pontos viáveis. 37

38 Resolução gráfica de modelos de PL 1º Passo: Traçar eixos cartesianos, associando a cada um deles uma variável de decisão. No exemplo de fabricação de brinquedos: X 1 para o eixo das abscissas e X 2 para o eixo das ordenadas. As restrições de não-negatividade, X 1 0 e X 2 0, implicam que os pares (X 1, X 2 ) viáveis estão no 1º quadrante dos eixos considerados. 38

39 Resolução gráfica de modelos de PL Representando as condições de não negatividade X 2 X 1 39

40 Resolução gráfica de modelos de PL Observar que no exemplo dos brinquedos, as restrições correspondem a semi-planos associados, respectivamente, às retas suportes dadas por: 2X 1 + 1X 2 = X 1 + 4X 2 = 2400 X 1 + X 2 = 700 X 1 - X 2 = 350 X j 0, j = 1,2 Notar que cada reta suporte define dois semi-planos no espaço (X 1, X 2 ). Para identificar qual destes semi-planos é de interesse no caso, ou seja, contém os pontos que satisfazem a desigualdade da restrição, basta testar algum ponto à esquerda ou à direita (acima ou abaixo) da reta suporte da desigualdade. Um ponto que torna isto fácil é a origem (0, 0), mas poderia ser qualquer outro. 40

41 Resolução gráfica de modelos de PL X Restrição do plástico 2X 1 +X Restrição da produção total X 1 +X (redundante) Inviável Tempo de produção 3X 1 +4X Viável X 1 41

42 Resolução gráfica de modelos de PL X Tempo de Produção 3X 1 +4X Viável Restrição do plástico 2X 1 +X Restrição da produção total: X 1 +X (redundante) Inviável Restrição do mix da produção: X 1 -X X 1 42

43 Resolução gráfica de modelos de PL X Inviável Viável Pontos interiores. Pontos na fronteira. Pontos extremos. Há três tipos de pontos viáveis. X 1 43

44 Resolução gráfica de modelos de PL 2º Passo: Observar que a função-objetivo, ao se fixar um valor para Z, representa uma reta. Alterações neste valor de Z gera uma família de retas paralelas. No exemplo dos brinquedos: considere a reta obtida fazendo Z= 2000, isto é, a reta dada por 8X 1 + 5X 2 = Percebe-se que ao se traçar retas paralelas no sentido de ficar mais afastado da origem (0, 0), o valor de Z aumenta. De fato pode-se verificar que a reta paralela, que contém algum ponto da região viável, no caso o ponto ótimo X* = (320, 360), e está mais afastada da origem, corresponde a um valor ótimo da função objetivo Z* =

45 Resolução gráfica de modelos de PL A busca por uma Solução Ótima: X 2 Começar com algum valor de lucro arbitrário, Por exemplo $ Depois aumentar o lucro, se possível......e continuar até que seja inviável X* = (320, 360) com Z* = X 1 45

46 Resolução gráfica de modelos de PL Pontos extremos e Soluções Ótimas Se o problema de Programação Linear tem uma Solução Ótima, um ponto extremo é Solução Ótima. 46

47 Resolução gráfica de modelos de PL Soluções Ótimas Múltiplas Quando a função objetivo é paralela a alguma restrição. Todos os pontos do segmento de reta serão Soluções Ótimas. X* 1 X* = X* 1 + (1 - )X* 2, com 0 1 X* 2 47

48 Resolução gráfica de modelos de PL Visualização de situações possíveis X 2 X 2 Z Z* Z Solução única X 1 Solução ilimitada X 1 48

49 X 2 X 2 Resolução gráfica de modelos de PL Z * X* Z X* Múltiplas Soluções Ótimas 1 Segmento de Reta Ótimo X 1 Z* Múltiplas Soluções Ótimas 2 Semi-reta Ótima X 1 49

50 Resolução gráfica de modelos de PL X 2 O conjunto viável é vazio. Há restrições incompatíveis. Problema inviável X 1 50

51 Forma padrão de modelo de PL Um modelo de PL com m restrições e n variáveis está na forma padrão se possuir as características abaixo: 1. A função-objetivo é de minimização ou maximização; 2. Todas as restrições estão na forma de igualdade; 3. Todas as variáveis são não-negativas; 4. As constantes de cada restrição são não-negativas. 51

52 Forma padrão de modelo de PL Modelo na forma padrão: Minimizar (ou maximizar) Z = C 1 X 1 + C 2 X C n X n Sujeito a: A11 X1 + A12 X A1n Xn = b1 A21 X1 + A22 X A2n Xn = b Am1 X1 + Am2 X Amn Xn = b X1 0, X2 0,..., Xn 0 b1 0, b2 0,..., bm 0. m 52

53 Forma padrão de modelo de PL Notação matricial para um modelo na forma padrão: Minimizar (ou maximizar) Z = C X Sujeito a: AX X b Onde: A (m x n) matriz de coeficientes tecnológicos 0 0. b X (n x 1) vetor das variáveis de decisão b (m x 1) vetor de demandas C (1 x n) vetor de custos (lucros) 53

54 Forma padrão de modelo de PL Redução de um modelo geral para a forma padrão O Método Simplex exige que o modelo esteja na forma padrão. Tratando com restrições na forma de inequações: Estas restrições são transformadas em equações através da introdução de novas variáveis (não-negativas), chamadas de variáveis de folga. 54

55 Forma padrão de modelo de PL Exemplo: Considere o problema de dimensionamento de equipes de inspeção: X 1 8 X 1 + X 3 = 8, X 3 0 é uma variável de folga. X 2 10 X 2 + X 4 = 10, X 4 0 é uma variável de folga. 5 X X X X 2 X 5 = 45, X 5 0 é uma variável de folga. 55

56 Forma padrão de modelo de PL Interpretação das variáveis de folga no exemplo: X 3 = número de inspetores do nível 1 não utilizados. X 4 = número de inspetores do nível 2 não utilizados. X 5 = número (extra) de peças inspecionadas por dia, acima da quantidade mínima (1800) especificada pela empresa Variáveis de folga fornecem informações úteis sobre o problema. 56

57 Forma padrão de modelo de PL Tratando com variáveis livres (irrestritas em sinal): Em algumas situações exige-se o uso de variáveis que podem assumir tanto valores positivos, nulos, e negativos. Estas variáveis são chamadas de livres (free) ou irrestritas em sinal. Exemplo: Modelo de Planejamento Macroeconômico Uma das Variáveis de Decisão é a Taxa de Inflação que pode assumir qualquer valor positivo, nulo ou negativo (neste caso é conhecida como Deflação). 57

58 Tratando com variáveis livres (irrestritas em sinal): Estas variáveis devem ser eliminadas do modelo na forma padrão. Há, pelo menos, duas maneiras de se fazer isto: 1. Por substituição utilizando uma das restrições do modelo, já na forma padrão (igualdade), procura-se expressar a variável livre como função das demais variáveis (não negativas) do modelo. A seguir eliminar a variável livre do modelo substituindo-a pela função escolhida na etapa anterior. A equação utilizada para expressar a variável livre como função das demais variáveis também será eliminada do modelo. 2. Por transformação Suponha que a variável livre é S. Basta substituir em todas as restrições, e na função objetivo, a variável S por S = S S, com S 0 e S 0 sendo duas novas variáveis (auxiliares) no modelo. 58

59 Forma padrão de modelo de PL Tratando com variáveis não-positivas: Suponha que num determinado modelo há uma variável X 1 0. Basta substituí-la no modelo por uma nova variável não-negativa X 1 0, dada por X 1 = X 1. 59

60 Forma padrão de modelo de PL Exemplo Completo Obtenha a forma padrão do modelo abaixo: Maximizar Z = X 1 2X 2 + 3X 3 Sujeito a: X1 + X2 + X3 X1 X2 + X3 3X1 X2 2X3 X1 0, X2 0, 7 2 = 5 X 3 livre

61 Forma padrão de modelo de PL 1. Introduzir variáveis de folga nas restrições (1) e (2): X 1 + X 2 + X 3 + X 4 = 7 (1 ) com X 4 0. X 1 X 2 + X 3 X 5 = 2 (2 ) com X Multiplicar a restrição (3) por ( 1) para eliminar b 3 = 5 < 0: 3X 1 + X 2 + 2X 3 = 5 (3 ) 3. Substituir X 2 0 por X 2 0 através de X 2 = X 2 : Max Z = X X X 3 X Sujeito a: X 3X X 2' + X 2' + 2X X 2' + X X X 4 X 5 = 7 = 2 = 5 1'' 2'' 3'' 61

62 Forma padrão de modelo de PL 4. Eliminar X 3 : 4.1. Substituição ou 4.2. Transformação Max Z = -2X 1 + 5X 2-3X ou Max Z = X 1 + 2X 2 + 3X 3-3X 3 2X 2' X4 + X5 = 5 s. a: s. a: 5X1 X 2' + 2X4 = 9 X 1, X 2', X 4, X5 0 X1 X 2'+ X 3' X 3'' X4 X1 + X 2'+ X 3' X 3'' 3X1 X 2'+2X 3' 2X 3'' X 1, X 2', X 3', X 3'', X 4, X5 0 X 5 = 7 = 2 = 5 Usando De (1 ): X 3 = 7 X 1 + X 2 X 4 ou X 3 = X 3 X 3 62

63 Definições e Teoremas em PL Ponto central na resolução de modelos de PL é a solução de sistemas de equações lineares. Apresenta-se a seguir o Método de Eliminação de Gauss Jordan. Considere o sistema de equações abaixo: (S 1 ) X X 1 1 2X X 2 2 X X 3 3 4X 3X 4 4 2X X (nº variáveis >> nº equações) 63

64 Definições e Teoremas em PL Conjunto solução de (S 1 ) é a coleção de todos os valores de (X 1, X 2, X 3, X 4, X 5 ) que satisfazem as equações (1) e (2) conjuntamente. Dois sistemas são equivalentes se possuem o mesmo conjunto solução. Sistemas equivalentes podem ser obtidos por meio de operações elementares sobre as linhas do sistema: 1. Multiplicar (dividir) qualquer equação por um nº. 2. Adicionar à qualquer equação uma Combinação Linear das demais equações. 64

65 Forma Canônica Um sistema (S 2 ) equivalente a (S 1 ) pode ser obtido multiplicando-se a equação (1) por 1 e adicionando-se o resultado à equação (2): (S 2 ) Um sistema (S 3 ) equivalente a (S 1 ) pode ser obtido multiplicando-se equação (4) por 2 e adicionando-se o resultado à equação (3): (S 3 ) X 1 X 1 2X X X X 3 2X 3X 2X 3 4X X X X 2X 4 3X 4 (S 3 ) é denominado uma forma canônica do sistema original (S 1 ) X 3X = 6 = 2 (3) (4) (5) (6) 65

66 Forma Canônica Considere uma forma canônica de um sistema de equações lineares: (como (S 3 ) anteriormente obtido) Uma variável é dita ser variável básica para uma dada equação do sistema se ela possuir coeficiente 1 nesta equação e coeficientes nulos nas demais equações do sistema. Exemplo: em (S 3 ) X 1 e X 2 são variáveis básicas Variáveis que não satisfazem a condição acima são chamadas de variáveis não-básicas. Exemplo: em (S 3 ) X 3, X 4, X 5 são variáveis não-básicas. 66

67 Solução Básica A solução de um sistema na forma canônica, obtida fazendo-se as variáveis não-básicas iguais a zero, é chamada de uma solução básica (SB). Nº máximo de soluções básicas = Nº de soluções básicas = 5 = 10 2 N M Exemplo: Em (S 3 ) fazendo-se X 3 = X 4 = X 5 = 0 X 1 = 6 e X 2 = 2 formam uma solução básica. Uma Solução Básica Viável (SBV) de um sistema é uma solução básica onde todas as variáveis assumem valores não-negativos. Exemplo: a solução básica do exemplo anterior é uma SBV. 67

68 Pivoteamento Operações de Pivoteamento são as operações elementares aplicadas à um sistema para transformar uma dada variável em variável básica. São usadas pelo método de eliminação de Gauss Jordan. Deve-se identificar o elemento Pivô que deve ser transformado em 1 e os demais elementos da sua coluna que devem ser transformados em 0. Para obter uma forma canônica de um sistema basta aplicar uma sequência de operações de pivoteamento (método de Gauss Jordan) de modo se conseguir uma variável básica associada com cada equação. 68

69 Método de Eliminação de Gauss Jordan Artifício para a realização de operações de pivoteamento: Considere o sistema (S) abaixo: (S) 2X1 2X X1 + 4X X X 3 3 = 4 = 2 (1) (2) Achar (S ) uma forma canônica de (S) de modo que X 1 seja a variável básica associada com a equação (1), e X 3 seja a variável básica associada com a equação (2). 69

70 Método de Eliminação de Gauss Jordan VB X 1 X 2 X 3 b Operações Elementares Feitas X (1) - Pivô em azul X (2) X (1 ) = (1)/2 - Equação do Pivô X (2 ) = (2) + (1 ) Pivô em Azul X /2 0-4 (1 ) = (1 ) - 3*(2 ) X 3 0 3/2 1 2 (2 ) = (2 )/2 Equação do Pivô (S ) X1 11/ 2 X2 = 4 3/2X2 + X3 = 2 Solução básica (não é viável): X1 = 4 (Variável básica) X 3 = 2 (Variável básica) X2 = 0 (Variável não básica) 70

71 Teoremas em PL Teorema 1 Dado um modelo já na forma padrão, as soluções básicas viáveis do sistema de equações, correspondente às restrições do modelo, estão associadas a pontos extremos do conjunto de soluções viáveis do modelo original. Teorema 2 Se um modelo de Programação Linear possui Solução Ótima então pelo menos um ponto extremo, do conjunto de soluções viáveis do modelo original, corresponde a uma Solução Ótima. 71

72 Comentários Gerais Procedimento simplista para resolver um modelo de PL Gerar todas as possíveis soluções básicas viáveis. Determinar qual das soluções básicas viáveis corresponde ao melhor valor da função-objetivo. Problemas: 1. Nº de soluções básicas viáveis pode ser excessivo. 2. Modelo pode apresentar solução ilimitada ou ainda ser inviável. Observe que problemas de médio porte, que aparecem na prática, costumam envolver centenas de variáveis (valor de n) e milhares de restrições (valor de m). 72

73 Comentários Gerais Linhas de Pesquisa Algoritmos de pontos interiores e suas derivações. Implementações de algoritmos para processamento em paralelo. Linguagens de modelagem: ajudar no desenvolvimento e aplicação de modelos de Pesquisa Operacional. Exemplos: AMPL - Modeling Language for Mathematical Programming - R. Fourer, D. M. Gay, and B. W. Kerningham, GAMS - General Algebraic Modeling System - J. Bisschop and A. Meeraus, What s best - The ABC of Optimization - S. L. Savage,

74 Método Simplex Procedimento iterativo que resolve qualquer modelo de PL num número finito de iterações. Indica a ocorrência de múltiplas Soluções Ótimas, solução ilimitada, e problema inviável. Etapas de aplicação do Método Simplex Considere um modelo de PL que esteja na forma padrão, e uma Solução Básica Viável inicial. O Método Simplex consiste basicamente da aplicação sucessiva de duas etapas: Etapa A: Identificação de uma Solução Ótima. Etapa B: Melhoria de uma Solução Básica Viável. 74

75 Método Simplex Etapa A: Identificação de uma Solução Ótima. Verificar se a Solução Básica Viável atual satisfaz o critério de otimalidade do algoritmo: Se o critério for satisfeito termina a aplicação do método; Caso contrário deve-se aplicar a etapa B. Etapa B: Melhoria de uma Solução Básica Viável. Procurar obter uma Solução Básica Viável melhor que a atual: Determinação da variável não-básica que deve entrar; Determinação da variável básica que será substituída; Obtenção da nova Solução Básica Viável - através de operações de pivoteamento. 75

76 Método Simplex - Minimização Desenvolvimento do Método Simplex Seja um modelo de PL (minimização) colocado na forma padrão: Min Z = C 1 X 1 + C 2 X C n X n s. a: A11 X1 + A12 X A1n X n = b1 A21 X 1 + A22 X A2n X n = b Am1 X 1 + Am2 X Amn X n = b X 1 0, X 2 0,..., X n 0 b1 0, b2 0,..., bm 0 m 76

77 Considere o sistema (S) abaixo: s. a: Método Simplex - Minimização A11 X1 + A12 X A21 X1 + A22 X Am1 X1 + Am2 X Z + C1 X1 + C2 X (m +1) Obter, aplicando o método de eliminação de Gauss-Jordan, o sistema equivalente (S ) = uma forma canônica de (S) onde: + A + A 1n A + C 2n mn n X X X n n X n = b = b n = b = m (1) (2) (m) X 1 seja a variável básica referente a equação (1), X 2 seja a variável básica referente a equação (2),... X m seja a variável básica referente a equação (m), Z seja a variável básica referente a equação (m+1). 77

1. Método Simplex. Faculdade de Engenharia Eng. Celso Daniel Engenharia de Produção. Pesquisa Operacional II Profa. Dra. Lílian Kátia de Oliveira

1. Método Simplex. Faculdade de Engenharia Eng. Celso Daniel Engenharia de Produção. Pesquisa Operacional II Profa. Dra. Lílian Kátia de Oliveira Faculdade de Engenharia Eng. Celso Daniel Engenharia de Produção. Método Simple.. Solução eata para os modelos de Programação Linear O modelo de Programação Linear (PL) reduz um sistema real a um conjunto

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Linear (PL) Aula 5: O Método Simplex. 2 Algoritmo. O que é um algoritmo? Qualquer procedimento iterativo e finito de solução é um algoritmo. Um algoritmo é um processo que se repete (itera)

Leia mais

PESQUISA OPERACIONAL

PESQUISA OPERACIONAL Universidade Castelo Branco PESQUISA OPERACIONAL Prof. Cláudio H. S. Grecco RIO DE JANEIRO, RJ - BRASIL ii ÍNDICE. INTRODUÇÃO À PESQUISA OPERACIONAL. O Desenvolvimento da Pesquisa Operacional. Modelagem.3

Leia mais

Pesquisa Operacional

Pesquisa Operacional Pesquisa Operacional Prof. José Luiz Resolver um problema de Programação Linear significa basicamente resolver sistemas de equações lineares; Esse procedimento, apesar de correto, é bastante trabalhoso,

Leia mais

O Método Simplex para

O Método Simplex para O Método Simplex para Programação Linear Formas de Programas Lineares O problema de Programação Matemática consiste na determinação do valor de n variáveis x 1, x 2,, x n que tornam mínimo ou máximo o

Leia mais

Pesquisa Operacional. Função Linear - Introdução. Função do 1 Grau. Função Linear - Exemplos Representação no Plano Cartesiano. Prof.

Pesquisa Operacional. Função Linear - Introdução. Função do 1 Grau. Função Linear - Exemplos Representação no Plano Cartesiano. Prof. Pesquisa Operacional Prof. José Luiz Prof. José Luiz Função Linear - Introdução O conceito de função é encontrado em diversos setores da economia, por exemplo, nos valores pagos em um determinado período

Leia mais

PROBLEMA DE TRANSPORTE: MODELO E MÉTODO DE SOLUÇÃO

PROBLEMA DE TRANSPORTE: MODELO E MÉTODO DE SOLUÇÃO PROBLEMA DE TRANSPORTE: MODELO E MÉTODO DE SOLUÇÃO Luciano Pereira Magalhães - 8º - noite lpmag@hotmail.com Orientador: Prof Gustavo Campos Menezes Banca Examinadora: Prof Reinaldo Sá Fortes, Prof Eduardo

Leia mais

ão: modelagem e técnicas

ão: modelagem e técnicas Curso de Especialização em Gestão Empresarial (MBA Executivo Turma 15) Disciplina: Pesquisa Operacional Prof. Dr. Álvaro José Periotto 3. Otimização ão: modelagem e técnicas de resolução Passando da daetapa

Leia mais

Variantes sobre o método Simplex: Método do grande M

Variantes sobre o método Simplex: Método do grande M Variantes sobre o método Simplex: Método do grande M Revisões Simplex básico Solução óptima multipla Em simplex: valores 0 na função custo Solução degenerada Em simplex: empates na variável a sair, variáveis

Leia mais

PESQUISA OPERACIONAL NA TOMADA DE DECISÃO

PESQUISA OPERACIONAL NA TOMADA DE DECISÃO CENTRO DE CIÊNCIAS EXATAS CCE DEPARTAMENTO DE ESTATÍSTICA Curso de Especialização Lato Sensu em Engenharia de Produção com enfoque em Pesquisa Operacional PESQUISA OPERACIONAL NA TOMADA DE DECISÃO Professores:

Leia mais

Modelos lineares de otimização aos quais eventualmente se incorporam restrições

Modelos lineares de otimização aos quais eventualmente se incorporam restrições Capítulo 2 Programação Linear 21 Introdução Modelos lineares de otimização aos quais eventualmente se incorporam restrições de integralidade das variáveis de decisão são os mais utilizados em planejamento

Leia mais

a 1 x 1 +... + a n x n = b,

a 1 x 1 +... + a n x n = b, Sistemas Lineares Equações Lineares Vários problemas nas áreas científica, tecnológica e econômica são modelados por sistemas de equações lineares e requerem a solução destes no menor tempo possível Definição

Leia mais

Método Simplex - Variantes V 1.1, V.Lobo, EN / ISEGI, 2008

Método Simplex - Variantes V 1.1, V.Lobo, EN / ISEGI, 2008 Revisões Variantes sobre o método Simplex: Método do grande M Simplex básico Solução óptima multipla Em simplex: valores 0 na função custo Solução degenerada Em simplex: empates na variável a sair, variáveis

Leia mais

Investigação Operacional- 2009/10 - Programas Lineares 3 PROGRAMAS LINEARES

Investigação Operacional- 2009/10 - Programas Lineares 3 PROGRAMAS LINEARES Investigação Operacional- 2009/10 - Programas Lineares 3 PROGRAMAS LINEARES Formulação A programação linear lida com problemas nos quais uma função objectivo linear deve ser optimizada (maximizada ou minimizada)

Leia mais

[a11 a12 a1n 4. SISTEMAS LINEARES 4.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo

[a11 a12 a1n 4. SISTEMAS LINEARES 4.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo 4. SISTEMAS LINEARES 4.1. CONCEITO Um sistema de equações lineares é um conjunto de equações do tipo a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 11 x 1 + a 12 x 2 +... + a 1n x n = b 2... a n1 x 1 + a

Leia mais

Pesquisa Operacional Programação em Redes

Pesquisa Operacional Programação em Redes Pesquisa Operacional Programação em Redes Profa. Alessandra Martins Coelho outubro/2013 Modelagem em redes: Facilitar a visualização e a compreensão das características do sistema Problema de programação

Leia mais

Método Simplex - Exemplos. Iteração 1 - variáveis básicas: y 1, y 2, y 3. Exemplo 1. Facom - UFMS. Exemplo. Edna A. Hoshino.

Método Simplex - Exemplos. Iteração 1 - variáveis básicas: y 1, y 2, y 3. Exemplo 1. Facom - UFMS. Exemplo. Edna A. Hoshino. Tópicos Método Simplex - s Edna A. Hoshino 1 Facom - UFMS março de 2010 E. Hoshino (Facom-UFMS) Simplex março de 2010 1 / 21 E. Hoshino (Facom-UFMS) Simplex março de 2010 2 / 21 1 Iteração 1 - variáveis

Leia mais

Notas de aula número 1: Otimização *

Notas de aula número 1: Otimização * UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL UFRGS DEPARTAMENTO DE ECONOMIA CURSO DE CIÊNCIAS ECONÔMICAS DISCIPLINA: TEORIA MICROECONÔMICA II Primeiro Semestre/2001 Professor: Sabino da Silva Porto Júnior

Leia mais

Sistemas Lineares e Escalonamento

Sistemas Lineares e Escalonamento Capítulo 1 Sistemas Lineares e Escalonamento Antes de iniciarmos nos assuntos geométricos da Geometria Analítica, vamos recordar algumas técnicas sobre escalonamento de matrizes com aplicações na solução

Leia mais

Método de Eliminação de Gauss. Eduardo Camponogara

Método de Eliminação de Gauss. Eduardo Camponogara Sistemas de Equações Lineares Método de Eliminação de Gauss Eduardo Camponogara Departamento de Automação e Sistemas Universidade Federal de Santa Catarina DAS-5103: Cálculo Numérico para Controle e Automação

Leia mais

O Problema do Transporte. Pesquisa Operacional. Formulação do Problema. Descrição Geral de um problema de transporte. Parte 2

O Problema do Transporte. Pesquisa Operacional. Formulação do Problema. Descrição Geral de um problema de transporte. Parte 2 Pesquisa Operacional Parte Graduação em Engenharia de Produção DEPROT / UFRGS Prof. Flavio Fogliatto, Ph.D. O Problema do Transporte Descrição Geral de um problema de transporte:. Um conjunto de m pontos

Leia mais

CAP. 5 - INTRODUÇÃO A PROGRAMAÇÃO LINEAR

CAP. 5 - INTRODUÇÃO A PROGRAMAÇÃO LINEAR CAP. 5 - INTRODUÇÃO A PROGRAMAÇÃO LINEAR 1. GENERALIDADES Sem dúvida nenhuma a Programação Linear é uma das técnicas da Pesquisa Operacional das mais utilizadas em se tratando de problemas de otimização.

Leia mais

Álgebra Linear. Mauri C. Nascimento Departamento de Matemática UNESP/Bauru. 19 de fevereiro de 2013

Álgebra Linear. Mauri C. Nascimento Departamento de Matemática UNESP/Bauru. 19 de fevereiro de 2013 Álgebra Linear Mauri C. Nascimento Departamento de Matemática UNESP/Bauru 19 de fevereiro de 2013 Sumário 1 Matrizes e Determinantes 3 1.1 Matrizes............................................ 3 1.2 Determinante

Leia mais

Resolução da Lista 2 - Modelos determinísticos

Resolução da Lista 2 - Modelos determinísticos EA044 - Planejamento e Análise de Sistemas de Produção Resolução da Lista 2 - Modelos determinísticos Exercício 1 a) x ij são as variáveis de decisão apropriadas para o problemas pois devemos indicar quantos

Leia mais

Programação Linear com o Microsoft Excel R

Programação Linear com o Microsoft Excel R Programação Linear com o Microsoft Excel R Adriano Verdério 1, Clezio A. Braga 1 1 Colegiado do Curso de Matemática - Centro de Ciências Exatas e Tecnológicas da Universidade Estadual do Oeste do Paraná

Leia mais

ExemResumo parcial da última. 15.053 Quinta-feira, 28 de fevereiro. Os preços-sombra podem ser encontrados ao se examinar os quadros inicial e final!

ExemResumo parcial da última. 15.053 Quinta-feira, 28 de fevereiro. Os preços-sombra podem ser encontrados ao se examinar os quadros inicial e final! 15.053 Quinta-feira, 28 de fevereiro Análise de Sensibilidade 2 Mais sobre pricing out Efeitos sobre os quadros finais Apostilas: Notas de Aula ExemResumo parcial da última O preço-sombra é a alteração

Leia mais

INF05010 - Otimização combinatória Notas de aula

INF05010 - Otimização combinatória Notas de aula INF05010 - Otimização combinatória Notas de aula Luciana Buriol, Marcus Ritt com contribuições de Alysson M. Costa Versão 3777 de 9 de Maio de 2011 Universidade Federal do Rio Grande do Sul Instituto de

Leia mais

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação).

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação). 5. FUNÇÕES DE UMA VARIÁVEL 5.1. INTRODUÇÃO Devemos compreender função como uma lei que associa um valor x pertencente a um conjunto A a um único valor y pertencente a um conjunto B, ao que denotamos por

Leia mais

Capítulo 1. x > y ou x < y ou x = y

Capítulo 1. x > y ou x < y ou x = y Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

GABARITO OTM 09 [ ] [ ] ( ) [ ] O que mostra que e, logo o sistema não possui solução. [ ]

GABARITO OTM 09 [ ] [ ] ( ) [ ] O que mostra que e, logo o sistema não possui solução. [ ] GABARITO OTM 09 Questão 1 a) Observe que o, deste modo o sistema não possui única solução ou não possui solução. Como [ ] [ ] [ ] [ ] O que mostra que e, logo o sistema não possui solução. b) Sim. Basta

Leia mais

x0 = 1 x n = 3x n 1 x k x k 1 Quantas são as sequências com n letras, cada uma igual a a, b ou c, de modo que não há duas letras a seguidas?

x0 = 1 x n = 3x n 1 x k x k 1 Quantas são as sequências com n letras, cada uma igual a a, b ou c, de modo que não há duas letras a seguidas? Recorrências Muitas vezes não é possível resolver problemas de contagem diretamente combinando os princípios aditivo e multiplicativo. Para resolver esses problemas recorremos a outros recursos: as recursões

Leia mais

ficha 3 espaços lineares

ficha 3 espaços lineares Exercícios de Álgebra Linear ficha 3 espaços lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2011/12 3 Notação Sendo

Leia mais

O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2

O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2 3.2 O Espaço Nulo de A: Resolvendo Ax = 0 11 O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2 Esta seção trata do espaço de soluções para Ax = 0. A matriz A pode ser quadrada ou retangular. Uma solução imediata

Leia mais

MATRIZES Matriz quadrada Matriz linha e matriz coluna Matriz diagonal Matriz identidade

MATRIZES Matriz quadrada Matriz linha e matriz coluna Matriz diagonal Matriz identidade MATRIZES Matriz quadrada matriz quadrada de ordem. diagonal principal matriz quadrada de ordem. - 7 9 diagonal principal diagonal secundária Matriz linha e matriz coluna [ ] colunas). (linha e matriz linha

Leia mais

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel. Matemática Essencial Equações do Primeiro grau Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ Resumo: Notas de

Leia mais

Computação Gráfica Interativa

Computação Gráfica Interativa Computação Gráfica Interativa conceitos, fundamentos geométricos e algoritmos 1. Introdução Computação Gráfica é a criação, armazenamento e a manipulação de modelos de objetos e suas imagens pelo computador.

Leia mais

AULAS 13, 14 E 15 Correlação e Regressão

AULAS 13, 14 E 15 Correlação e Regressão 1 AULAS 13, 14 E 15 Correlação e Regressão Ernesto F. L. Amaral 23, 28 e 30 de setembro de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de

Leia mais

MATERIAL DIDÁTICO A REALIDADE DOS SISTEMAS DE EQUAÇÕES

MATERIAL DIDÁTICO A REALIDADE DOS SISTEMAS DE EQUAÇÕES MATERIAL DIDÁTICO A REALIDADE DOS SISTEMAS DE EQUAÇÕES Prof. ANTONIO ROBERTO GONÇALVES Aprendizagem de Conceitos Se você precisa encontrar o volume de um silo de milho, a distância percorrida por um carro

Leia mais

NIVELAMENTO MATEMÁTICA 2012

NIVELAMENTO MATEMÁTICA 2012 NIVELAMENTO MATEMÁTICA 202 Monitor: Alexandre Rodrigues Loures Monitor: Alexandre Rodrigues Loures SUMÁRIO. LOGARITMOS... 3.. Mudança de base... 3.2. Propriedades dos logaritmos... 4 2. DERIVADAS... 4

Leia mais

INTRODUÇÃO À PESQUISA OPERACIONAL

INTRODUÇÃO À PESQUISA OPERACIONAL INTRODUÇÃO À PESQUISA OPERACIONAL Prefaciais.indd 27/8/2 2:57:49 Universidade Estadual Paulista Vice-Reitor no exercício da Reitoria Julio Cezar Durigan Pró-Reitora de Graduação Sheila Zambello de Pinho

Leia mais

Pesquisa Operacional

Pesquisa Operacional Pesquisa Operacional Tópicos em Programação Linear e Inteira Prof. Dr.Ricardo Ribeiro dos Santos ricr.santos@gmail.com Universidade Católica Dom Bosco - UCDB Engenharia de Computação Roteiro Introdução

Leia mais

Dificuldades de Modelos de PNL. Onde está a solução ótima? Outro exemplo: Condição ótima Local vs. Global. 15.053 Quinta-feira, 25 de abril

Dificuldades de Modelos de PNL. Onde está a solução ótima? Outro exemplo: Condição ótima Local vs. Global. 15.053 Quinta-feira, 25 de abril 15.053 Quinta-feira, 25 de abril Teoria de Programação Não-Linear Programação Separável Dificuldades de Modelos de PNL Programa Linear: Apostilas: Notas de Aula Programas Não-Lineares 1 2 Análise gráfica

Leia mais

INTRODUÇÃO AO ASSUNTO PESQUISA OPERACIONAL. O que é Pesquisa Operacional?

INTRODUÇÃO AO ASSUNTO PESQUISA OPERACIONAL. O que é Pesquisa Operacional? INTRODUÇÃO AO ASSUNTO PESQUISA OPERACIONAL O que é Pesquisa Operacional? Denomina-se Management Sciences (Ciência de Negócios) a área de estudos que utiliza computadores, estatística e matemática para

Leia mais

Fundamentos da PESQUISA OPERACIONAL

Fundamentos da PESQUISA OPERACIONAL Andréa Cardoso Fundamentos da PESQUISA OPERACIONAL Março 200 2 0. Lista de Problemas 6. O quadro a seguir mostra o processo de resolução de um PPL. A partir dos dados fornecidos, responda às seguintes

Leia mais

Projetos. Universidade Federal do Espírito Santo - UFES. Mestrado em Informática 2004/1. O Projeto. 1. Introdução. 2.

Projetos. Universidade Federal do Espírito Santo - UFES. Mestrado em Informática 2004/1. O Projeto. 1. Introdução. 2. Pg. 1 Universidade Federal do Espírito Santo - UFES Mestrado em Informática 2004/1 Projetos O Projeto O projeto tem um peso maior na sua nota final pois exigirá de você a utilização de diversas informações

Leia mais

Pesquisa Operacional na Tomada de Decisões. Conteúdos do Capítulo. Programação Linear. Lindo. s.t. Resolvendo Programação Linear Em um Microcomputador

Pesquisa Operacional na Tomada de Decisões. Conteúdos do Capítulo. Programação Linear. Lindo. s.t. Resolvendo Programação Linear Em um Microcomputador ª Edição Pesquisa Operacional na Tomada de Decisões Resolvendo Programação Linear Em um Microcomputador Gerson Lachtermacher,00 Programação Linear Software Versão Windows e comandos Formulação do problema

Leia mais

Utilização do SOLVER do EXCEL

Utilização do SOLVER do EXCEL Utilização do SOLVER do EXCEL 1 Utilização do SOLVER do EXCEL José Fernando Oliveira DEEC FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO MAIO 1998 Para ilustrar a utilização do Solver na resolução de

Leia mais

Vestibular 2ª Fase Resolução das Questões Discursivas

Vestibular 2ª Fase Resolução das Questões Discursivas COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO VESTIBULAR 010 Prova de Matemática Vestibular ª Fase Resolução das Questões Discursivas São apresentadas abaixo possíveis

Leia mais

Unidade II - Sistemas de Equações Lineares

Unidade II - Sistemas de Equações Lineares Unidade II - Sistemas de Equações Lineares 1- Situando a Temática Discutiremos agora um dos mais importantes temas da matemática: Sistemas de Equações Lineares Trata-se de um tema que tem aplicações dentro

Leia mais

Apostila de Matemática Aplicada. Volume 1 Edição 2004. Prof. Dr. Celso Eduardo Tuna

Apostila de Matemática Aplicada. Volume 1 Edição 2004. Prof. Dr. Celso Eduardo Tuna Apostila de Matemática Aplicada Volume Edição 00 Prof. Dr. Celso Eduardo Tuna Capítulo - Revisão Neste capítulo será feita uma revisão através da resolução de alguns eercícios, dos principais tópicos já

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Não Linear Aula 25: Programação Não-Linear - Funções de Uma única variável Mínimo; Mínimo Global; Mínimo Local; Optimização Irrestrita; Condições Óptimas; Método da Bissecção; Método de Newton.

Leia mais

Uma Ferramenta para otimização em Engenharia Mecânica e aplicações na Fundição Eletromagnética de Metais

Uma Ferramenta para otimização em Engenharia Mecânica e aplicações na Fundição Eletromagnética de Metais Uma Ferramenta para otimização em Engenharia Mecânica e aplicações na Fundição Eletromagnética de Metais Departamento de Engenharia Mecânica COPPE UFRJ STIC-AMSUD, Novembro de 2009 Conteúdo Preliminares

Leia mais

Universidade Federal de Viçosa Departamento de Informática. Prof. Mauro Nacif Rocha Prof. Luiz Aurélio Raggi Prof. Heleno do Nascimento Santos

Universidade Federal de Viçosa Departamento de Informática. Prof. Mauro Nacif Rocha Prof. Luiz Aurélio Raggi Prof. Heleno do Nascimento Santos Universidade Federal de Viçosa Departamento de Informática Prof. Mauro Nacif Rocha Prof. Luiz Aurélio Raggi Prof. Heleno do Nascimento Santos INF-8 Pesquisa Operacional I Conteúdo: Programação Linear Programação

Leia mais

2 A Derivada. 2.1 Velocidade Média e Velocidade Instantânea

2 A Derivada. 2.1 Velocidade Média e Velocidade Instantânea 2 O objetivo geral desse curso de Cálculo será o de estudar dois conceitos básicos: a Derivada e a Integral. No decorrer do curso esses dois conceitos, embora motivados de formas distintas, serão por mais

Leia mais

Método Simplex Especializado para Redes

Método Simplex Especializado para Redes Método Simplex Especializado para Redes Prof. Fernando Augusto Silva Marins Departamento de Produção Faculdade de Engenharia Campus de Guaratinguetá UNESP www.feg.unesp.br/~fmarins fmarins@feg.unesp.br

Leia mais

Luiza Amalia Pinto Cantão. Felipe Sanches Stark

Luiza Amalia Pinto Cantão. Felipe Sanches Stark Programação Linear Luiza Amalia Pinto Cantão luiza@sorocaba.unesp.br Felipe Sanches Stark fsstark@gmail.com Sumário 1 Introdução à Pesquisa Operacional 4 1.1 Otimização (Cálculo Diferencial) e Sistemas

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) III Resolução de sistemas lineares por métodos numéricos. Objetivos: Veremos

Leia mais

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL PARTE FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL.1 Funções Vetoriais de Uma Variável Real Vamos agora tratar de um caso particular de funções vetoriais F : Dom(f R n R m, que são as funções vetoriais de uma

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU FUNÇÃO IDENTIDADE... FUNÇÃO LINEAR... FUNÇÃO AFIM... GRÁFICO DA FUNÇÃO DO º GRAU... IMAGEM... COEFICIENTES DA FUNÇÃO AFIM... ZERO DA FUNÇÃO AFIM... 8 FUNÇÕES CRESCENTES OU DECRESCENTES... 9 SINAL DE UMA

Leia mais

CAPÍTULO 6 - ESTRUTURA DE SELEÇÃO

CAPÍTULO 6 - ESTRUTURA DE SELEÇÃO 6.1 - INTRODUÇÃO CAPÍTULO 6 - ESTRUTURA DE SELEÇÃO Existem problemas que podem ter mais de um caminho a ser seguido para seleção correta, ou existem restrições em suas soluções. O sujeito que irá executar

Leia mais

INSTITUTO SUPERIOR DE GESTÃO

INSTITUTO SUPERIOR DE GESTÃO INSTITUTO SUPERIOR DE GESTÃO INVESTIGAÇÃO OPERACIONAL PROGRAMAÇÃO NÃO LINEAR (Exercícios) ( Texto revisto para o ano lectivo 1- ) António Carlos Morais da Silva Professor de I.O. / ISG Recomendações 1.

Leia mais

PESQUISA OPERACIONAL: UMA ABORDAGEM À PROGRAMAÇÃO LINEAR. Rodolfo Cavalcante Pinheiro 1,3 Cleber Giugioli Carrasco 2,3 *

PESQUISA OPERACIONAL: UMA ABORDAGEM À PROGRAMAÇÃO LINEAR. Rodolfo Cavalcante Pinheiro 1,3 Cleber Giugioli Carrasco 2,3 * PESQUISA OPERACIONAL: UMA ABORDAGEM À PROGRAMAÇÃO LINEAR 1 Graduando Rodolfo Cavalcante Pinheiro 1,3 Cleber Giugioli Carrasco 2,3 * 2 Pesquisador - Orientador 3 Curso de Matemática, Unidade Universitária

Leia mais

Programação Linear. Mauricio Pereira dos Santos Departamento de Matemática Aplicada Instituto de Matemática e Estatística

Programação Linear. Mauricio Pereira dos Santos Departamento de Matemática Aplicada Instituto de Matemática e Estatística Programação Linear Mauricio Pereira dos Santos Departamento de Matemática Aplicada Instituto de Matemática e Estatística UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO ii Copyright c 2.000 por Mauricio Pereira

Leia mais

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Lic. Eng. Biomédica e Bioengenharia-2009/2010 Para determinarmos um valor aproximado das raízes de uma equação não linear, convém notar inicialmente

Leia mais

1. Extremos de uma função

1. Extremos de uma função Máximo e Mínimo de Funções de Várias Variáveis 1. Extremos de uma função Def: Máximo Absoluto, mínimo absoluto Seja f : D R R função (i) Dizemos que f assume um máximo absoluto (ou simplesmente um máximo)

Leia mais

CAP. 3 - ANÁLISE DE INVESTIMENTOS EM SITUAÇÕES DE INCERTEZA

CAP. 3 - ANÁLISE DE INVESTIMENTOS EM SITUAÇÕES DE INCERTEZA CAP. 3 - ANÁLISE DE INVESTIMENTOS EM SITUAÇÕES DE INCERTEZA 1. INTRODUÇÃO No fluxo de caixa esquemático mostrado na Figura 1, como se sabe na data zero, normalmente se tem o investimento necessário para

Leia mais

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar GAAL - 201/1 - Simulado - 1 Vetores e Produto Escalar SOLUÇÕES Exercício 1: Determinar os três vértices de um triângulo sabendo que os pontos médios de seus lados são M = (5, 0, 2), N = (, 1, ) e P = (4,

Leia mais

Equipe de Matemática MATEMÁTICA

Equipe de Matemática MATEMÁTICA Aluno (a): Série: 3ª Turma: TUTORIAL 10B Ensino Médio Equipe de Matemática Data: MATEMÁTICA Função Afim Um vendedor recebe, mensalmente, um salário que é composto por uma parte fixa de R$ 3.000,00 e uma

Leia mais

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia. Introdução O Cálculo Numérico

Leia mais

A função do primeiro grau

A função do primeiro grau Módulo 1 Unidade 9 A função do primeiro grau Para início de conversa... Já abordamos anteriormente o conceito de função. Mas, a fim de facilitar e aprofundar o seu entendimento, vamos estudar algumas funções

Leia mais

OTIMIZAÇÃO VETORIAL. Formulação do Problema

OTIMIZAÇÃO VETORIAL. Formulação do Problema OTIMIZAÇÃO VETORIAL Formulação do Problema Otimização Multiobjetivo (também chamada otimização multicritério ou otimização vetorial) pode ser definida como o problema de encontrar: um vetor de variáveis

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Matrizes; Matrizes Especiais; Operações com Matrizes; Operações Elementares

Leia mais

CI202 - Métodos Numéricos

CI202 - Métodos Numéricos CI202 - Métodos Numéricos Lista de Exercícios 2 Zeros de Funções Obs.: as funções sen(x) e cos(x) devem ser calculadas em radianos. 1. Em geral, os métodos numéricos para encontrar zeros de funções possuem

Leia mais

Análise Combinatória. Prof. Thiago Figueiredo

Análise Combinatória. Prof. Thiago Figueiredo Análise Combinatória Prof. Thiago Figueiredo (Escola Naval) Um tapete de 8 faixas deve ser pintado com cores azul, preta e branca. A quantidade de maneiras que podemos pintar esse tapete de modo que as

Leia mais

Matrizes e Determinantes

Matrizes e Determinantes Capítulo 1 Matrizes e Determinantes 11 Generalidades Iremos usar K para designar IR conjunto dos números reais C conjunto dos números complexos Deste modo, chamaremos números ou escalares aos elementos

Leia mais

Funções algébricas do 1º grau. Maurício Bezerra Bandeira Junior

Funções algébricas do 1º grau. Maurício Bezerra Bandeira Junior Maurício Bezerra Bandeira Junior Definição Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma f(x) = ax + b, onde a e b são números reais dados

Leia mais

APLICAÇÕES DA DERIVADA

APLICAÇÕES DA DERIVADA Notas de Aula: Aplicações das Derivadas APLICAÇÕES DA DERIVADA Vimos, na seção anterior, que a derivada de uma função pode ser interpretada como o coeficiente angular da reta tangente ao seu gráfico. Nesta,

Leia mais

COLETÂNEA DE APLICAÇÕES DA ÁLGEBRA LINEAR

COLETÂNEA DE APLICAÇÕES DA ÁLGEBRA LINEAR UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS CURSO DE GRADUAÇÃO EM MATEMÁTICA ANA LICE CAROLINE SPECK COLETÂNEA DE APLICAÇÕES DA ÁLGEBRA LINEAR FLORIANÓPOLIS - SC 6 UNIVERSIDADE

Leia mais

- PROVA OBJETIVA - Câmpus Santos Dumont - Edital 004/2014

- PROVA OBJETIVA - Câmpus Santos Dumont - Edital 004/2014 MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO SUDESTE DE MINAS GERAIS CONCURSO PÚBLICO PARA PROVIMENTO DE CARGO EFETIVO DE DOCENTES ÁREA: Engenharia de Transportes - PROVA

Leia mais

Nesta aula iremos continuar com os exemplos de revisão.

Nesta aula iremos continuar com os exemplos de revisão. Capítulo 8 Nesta aula iremos continuar com os exemplos de revisão. 1. Exemplos de revisão Exemplo 1 Ache a equação do círculo C circunscrito ao triângulo de vértices A = (7, 3), B = (1, 9) e C = (5, 7).

Leia mais

PESQUISA OPERACIONAL APLICADA NA MAXIMIZAÇÃO DE RECEITA EM UMA ACADEMIA DE GINÁSTICA

PESQUISA OPERACIONAL APLICADA NA MAXIMIZAÇÃO DE RECEITA EM UMA ACADEMIA DE GINÁSTICA 1 PESQUISA OPERACIONAL APLICADA NA MAXIMIZAÇÃO DE RECEITA EM UMA ACADEMIA DE GINÁSTICA Elvis Magno Da Silva, graduando em Administração (FACESM); elvismagno@uol.com.br Prof. Dr.Roberval Rymer da Silva

Leia mais

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul Resolução da Prova da Escola Naval 29. Matemática Prova Azul GABARITO D A 2 E 2 E B C 4 D 4 C 5 D 5 A 6 E 6 C 7 B 7 B 8 D 8 E 9 A 9 A C 2 B. Os 6 melhores alunos do Colégio Naval submeteram-se a uma prova

Leia mais

Análise de Arredondamento em Ponto Flutuante

Análise de Arredondamento em Ponto Flutuante Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto

Leia mais

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 UNIVERSIDADE FEDERAL DE VIÇOSA Departamento de Matemática - CCE Cálculo Numérico - MAT 271 Prof.: Valéria Mattos da Rosa As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia

Leia mais

Sistemas lineares. Ricardo Biloti biloti@ime.unicamp.br 2S/2015. Cálculo Numérico UNICAMP. http://goo.gl/7dzpr

Sistemas lineares. Ricardo Biloti biloti@ime.unicamp.br 2S/2015. Cálculo Numérico UNICAMP. http://goo.gl/7dzpr Sistemas lineares Ricardo Biloti biloti@ime.unicamp.br Cálculo Numérico UNICAMP 2S/205 http://goo.gl/7dzpr Licença Seus direitos e deveres são: Você é livre para copiar e redistribuir este material, em

Leia mais

Definição. A expressão M(x,y) dx + N(x,y)dy é chamada de diferencial exata se existe uma função f(x,y) tal que f x (x,y)=m(x,y) e f y (x,y)=n(x,y).

Definição. A expressão M(x,y) dx + N(x,y)dy é chamada de diferencial exata se existe uma função f(x,y) tal que f x (x,y)=m(x,y) e f y (x,y)=n(x,y). PUCRS FACULDADE DE ATEÁTICA EQUAÇÕES DIFERENCIAIS PROF. LUIZ EDUARDO OURIQUE EQUAÇÔES EXATAS E FATOR INTEGRANTE Definição. A diferencial de uma função de duas variáveis f(x,) é definida por df = f x (x,)dx

Leia mais

Equação do 1º Grau. Maurício Bezerra Bandeira Junior

Equação do 1º Grau. Maurício Bezerra Bandeira Junior Maurício Bezerra Bandeira Junior Introdução às equações de primeiro grau Para resolver um problema matemático, quase sempre devemos transformar uma sentença apresentada com palavras em uma sentença que

Leia mais

A noção de função é imprescindível no decorrer do estudo de Cálculo e para se estabelecer essa noção tornam-se necessários:

A noção de função é imprescindível no decorrer do estudo de Cálculo e para se estabelecer essa noção tornam-se necessários: 1 1.1 Função Real de Variável Real A noção de função é imprescindível no decorrer do estudo de Cálculo e para se estabelecer essa noção tornam-se necessários: 1. Um conjunto não vazio para ser o domínio;

Leia mais

15.053 Quinta-feira, 14 de março. Introdução aos Fluxos de Rede Handouts: Notas de Aula

15.053 Quinta-feira, 14 de março. Introdução aos Fluxos de Rede Handouts: Notas de Aula 15.053 Quinta-feira, 14 de março Introdução aos Fluxos de Rede Handouts: Notas de Aula 1 Modelos de Rede Modelos de programação linear que exibem uma estrutura muito especial. Podem utilizar essa estrutura

Leia mais

Eduardo C. Xavier. 24 de fevereiro de 2011

Eduardo C. Xavier. 24 de fevereiro de 2011 Reduções Eduardo C. Xavier Instituto de Computação/Unicamp 24 de fevereiro de 2011 Eduardo C. Xavier (IC/Unicamp) Reduções 24 de fevereiro de 2011 1 / 23 Programação Linear (PL) Vimos que na tentativa

Leia mais

Joaquim J. Júdice. Pedro C. Martins. Marta B. Pascoal. Jorge P. Santos OPTIMIZAÇÃO EM REDES. Departamento de Matemática Universidade de Coimbra

Joaquim J. Júdice. Pedro C. Martins. Marta B. Pascoal. Jorge P. Santos OPTIMIZAÇÃO EM REDES. Departamento de Matemática Universidade de Coimbra Joaquim J Júdice Pedro C Martins Marta B Pascoal Jorge P Santos OPTIMIZAÇÃO EM REDES Departamento de Matemática Universidade de Coimbra 006 Conteúdo Introdução Alguns Problemas de Optimização em Redes

Leia mais

Números Complexos. Capítulo 1. 1.1 Unidade Imaginária. 1.2 Números complexos. 1.3 O Plano Complexo

Números Complexos. Capítulo 1. 1.1 Unidade Imaginária. 1.2 Números complexos. 1.3 O Plano Complexo Capítulo 1 Números Complexos 11 Unidade Imaginária O fato da equação x 2 + 1 = 0 (11) não ser satisfeita por nenhum número real levou à denição dos números complexos Para solucionar (11) denimos a unidade

Leia mais

Somatórias e produtórias

Somatórias e produtórias Capítulo 8 Somatórias e produtórias 8. Introdução Muitas quantidades importantes em matemática são definidas como a soma de uma quantidade variável de parcelas também variáveis, por exemplo a soma + +

Leia mais

Muitas aplicações modernas podem ser modeladas como tarefas divisíveis.

Muitas aplicações modernas podem ser modeladas como tarefas divisíveis. 1 Introdução O grande aumento de performance das redes de computadores, combinado com a proliferação de computadores de baixo custo e alto desempenho, trouxe à tona ambientes de meta-computação, ou grids[15,

Leia mais

Trabalho de Casa 1. 15.053 Introdução à Otimização Para ser entregue no início da aula de quinta-feira, 14 de fevereiro de 2002

Trabalho de Casa 1. 15.053 Introdução à Otimização Para ser entregue no início da aula de quinta-feira, 14 de fevereiro de 2002 Trabalho de Casa 1 15.053 Introdução à Otimização Para ser entregue no início da aula de quinta-feira, 14 de fevereiro de 2002 1. Formulações de PL a. Dê um exemplo de uma programação linear de duas variáveis

Leia mais

Previsão de demanda em uma empresa farmacêutica de manipulação

Previsão de demanda em uma empresa farmacêutica de manipulação Previsão de demanda em uma empresa farmacêutica de manipulação Ana Flávia Brito Rodrigues (Anafla94@hotmail.com / UEPA) Larissa Pinto Marques Queiroz (Larissa_qz@yahoo.com.br / UEPA) Luna Paranhos Ferreira

Leia mais

A ACVL está baseada numa série de supostos simplificadores, dentre os quais cabe mencionar os seguintes:

A ACVL está baseada numa série de supostos simplificadores, dentre os quais cabe mencionar os seguintes: ANÁLISE CUSTO/VOLUME/LUCRO Sabe-se que o processo de planejamento empresarial envolve a seleção de objetivos, bem como a definição dos meios para atingir tais objetivos. Neste sentido, cabe assinalar que

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO. Escola Básica e Secundária Dr. Vieira de Carvalho. Departamento de Ciências Experimentais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO. Escola Básica e Secundária Dr. Vieira de Carvalho. Departamento de Ciências Experimentais AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO Escola Básica e Secundária Dr. Vieira de Carvalho Departamento de Ciências Experimentais Planificação Anual de Matemática A 10º ano Ano Letivo 2015/2016 TEMA

Leia mais

Unidade III FINANÇAS EM PROJETO DE TI. Prof. Fernando Rodrigues

Unidade III FINANÇAS EM PROJETO DE TI. Prof. Fernando Rodrigues Unidade III FINANÇAS EM PROJETO DE TI Prof. Fernando Rodrigues Quando se trabalha com projetos, é necessária a utilização de técnicas e ferramentas que nos auxiliem a estudálos, entendê-los e controlá-los.

Leia mais

ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere os conjuntos S = {0,2,4,6}, T = {1,3,5} e U = {0,1} e as afirmações: I. {0} S e S U. II. {2} S\U e S T U={0,1}.

Leia mais