Exemplo Regressão Linear Múltipla

Tamanho: px
Começar a partir da página:

Download "Exemplo Regressão Linear Múltipla"

Transcrição

1 Exemplo Regressão Linear Múltipla Gilberto A. Paula Departamento de Estatística IME-USP, Brasil 1 o Semestre 2013 G. A. Paula (IME-USP) Salário de Executivos 1 o Semestre / 27

2 Salário de Executivos Sumário 1 Salário de Executivos 2 Análise de Dados Preliminar 3 Ajuste Modelo Linear Normal 4 Diagnóstico Modelo Ajustado 5 Resultados Modelo Ajustado 6 Conclusões 7 Referências G. A. Paula (IME-USP) Salário de Executivos 1 o Semestre / 27

3 Salário de Executivos Salário de Executivos Descrição dos Dados Como aplicação de modelos lineares normais vamos considerar os dados sobre o salário anual (em mil USD) de uma amostra aleatória de 220 executivos (145 homens e 75 mulheres). O salário será relacionado com as seguintes variáveis explicativas: (i) sexo (1: masculino; 0: feminino), (ii) posição na empresa (varia de 1 a 9), quanto maior o valor mais alta a posição e (iii) anos de experiência no cargo (Foster, Stine e Waterman, 1998, pp ). G. A. Paula (IME-USP) Salário de Executivos 1 o Semestre / 27

4 Análise de Dados Preliminar Sumário 1 Salário de Executivos 2 Análise de Dados Preliminar 3 Ajuste Modelo Linear Normal 4 Diagnóstico Modelo Ajustado 5 Resultados Modelo Ajustado 6 Conclusões 7 Referências G. A. Paula (IME-USP) Salário de Executivos 1 o Semestre / 27

5 Análise de Dados Preliminar Boxplots Salários Executivos Salario Feminino Masculino G. A. Paula (IME-USP) Salário de Executivos 1 o Semestre / 27

6 Análise de Dados Preliminar Comparação de Médias Descrição Sexo Amostra Média E.Padrão Masculino ,11 1,03 Feminino ,47 1,43 Diferença Teste-t valor-p Estimativa 3,64 2,06 0,04 E.Padrão 1,77 O valor-p indica diferença ao nível de 5%. Ignorando-se as demais variáveis há indícios de que os executivos ganham em média mais do que as executivas. G. A. Paula (IME-USP) Salário de Executivos 1 o Semestre / 27

7 Análise de Dados Preliminar Boxplots Posição e Experiência Posicao Experiencia Feminino Masculino Feminino Masculino G. A. Paula (IME-USP) Salário de Executivos 1 o Semestre / 27

8 Análise de Dados Preliminar Dispersão Variáveis Homens salariom posicaom experm G. A. Paula (IME-USP) Salário de Executivos 1 o Semestre / 27

9 Análise de Dados Preliminar Dispersão Variáveis Mulheres salariof posicaof experf G. A. Paula (IME-USP) Salário de Executivos 1 o Semestre / 27

10 Ajuste Modelo Linear Normal Sumário 1 Salário de Executivos 2 Análise de Dados Preliminar 3 Ajuste Modelo Linear Normal 4 Diagnóstico Modelo Ajustado 5 Resultados Modelo Ajustado 6 Conclusões 7 Referências G. A. Paula (IME-USP) Salário de Executivos 1 o Semestre / 27

11 Ajuste Modelo Linear Normal Modelo Linear Normal Descrição Nota-se indícios de aumento do salário com o aumento da posição e aumento da experiência para ambos os sexos, sugerindo inicialmente um modelo linear: y i = β 1 +β 2 sexo i +β 3 exper i +β 4 posic i +ǫ i, para i = 1,...,220, em que y i denota o salário do i-ésimo executivo da amostra com ǫ i iid N(0,σ 2 ). G. A. Paula (IME-USP) Salário de Executivos 1 o Semestre / 27

12 Ajuste Modelo Linear Normal Estimativas Descrição Aplicando o método de Akaike nenhuma variável é retirada do modelo. As estimativas dos parâmetros são dadas abaixo. Efeito Estimativa Erro padrão valor-t valor-p Constante 115,262 1,401 82,25 0,000 Experiência -0,472 0,113-4,17 0,000 SexoM -2,201 1,080-2,04 0,043 Posição 6,710 0,313 21,46 0,000 R 2 0,712 R 2 -ajustado 0,708 s 6,770 F 177,90 (3 e 216 g.l.) 0,000 Todas as variáveis são marginalmente significativas ao nível de 5%. G. A. Paula (IME-USP) Salário de Executivos 1 o Semestre / 27

13 Ajuste Modelo Linear Normal Interação entre Fatores Definição Ocorre quando a variação esperada para a resposta entre dois níveis quaisquer de um dos fatores não for a mesma segundo os níveis do outro fator. G. A. Paula (IME-USP) Salário de Executivos 1 o Semestre / 27

14 Ajuste Modelo Linear Normal Interação entre Fatores Definição Ocorre quando a variação esperada para a resposta entre dois níveis quaisquer de um dos fatores não for a mesma segundo os níveis do outro fator. Exemplo Presença de interação entre os fatores sexo e experiência significa que a diferença entre os salários médios de executivos e executivas não é a mesma à medida que varia o tempo de experiência. Interpretação similar para presença de interação entre sexo e posição. G. A. Paula (IME-USP) Salário de Executivos 1 o Semestre / 27

15 Ajuste Modelo Linear Normal Testando Interação entre Fatores Descrição Vamos testar a ausência das interações sexo*experiência, sexo*posição e experiência*posição, dado que estão no modelo constante + sexo + experiência + posição. Interação valor-f valor-p sexo*exper 1,615 0,20 sexo*posicão 0,001 0,97 exper*posição 7,594 0,00 Portanto, será incluída no modelo apenas a interação experiência*posição. G. A. Paula (IME-USP) Salário de Executivos 1 o Semestre / 27

16 Ajuste Modelo Linear Normal Modelo Linear Normal Descrição O modelo normal linear com interação entre experiência e exposição fica dado por: y i = β 1 +β 2 sexo i +β 3 exper i +β 4 posic i +β 5 exper i posic i +ǫ i, para i = 1,...,220, em que y i denota o salário do i-ésimo executivo iid da amostra com ǫ i N(0,σ 2 ). G. A. Paula (IME-USP) Salário de Executivos 1 o Semestre / 27

17 Ajuste Modelo Linear Normal Estimativas Descrição As estimativas do modelo final são dadas abaixo. Efeito Estimativa Erro padrão valor-t valor-p Constante 108,042 2,961 36,48 0,000 Experiência 0,336 0,314 1,07 0,285 SexoM -2,811 1,087-2,59 0,010 Posição 8,096 0,590 13,73 0,000 Posic*Exper -0, , R 2 0,722 R 2 -ajustado 0,716 s 6,670 F 139,40 (4 e 215 g.l.) 0,000 Exceto experiência, todas as variáveis são marginalmente significativas ao nível de 1%. G. A. Paula (IME-USP) Salário de Executivos 1 o Semestre / 27

18 Diagnóstico Modelo Ajustado Sumário 1 Salário de Executivos 2 Análise de Dados Preliminar 3 Ajuste Modelo Linear Normal 4 Diagnóstico Modelo Ajustado 5 Resultados Modelo Ajustado 6 Conclusões 7 Referências G. A. Paula (IME-USP) Salário de Executivos 1 o Semestre / 27

19 Diagnóstico Modelo Ajustado Diagnóstico Modelo Ajustado Medida h Distancia de Cook Indice Indice Residuo Padronizado Residuo Padronizado Indice Valor Ajustado G. A. Paula (IME-USP) Salário de Executivos 1 o Semestre / 27

20 Diagnóstico Modelo Ajustado Resíduos Modelo Ajustado Residuo Studentizado Percentil da N(0,1) G. A. Paula (IME-USP) Salário de Executivos 1 o Semestre / 27

21 Diagnóstico Modelo Ajustado Variações nas Estimativas Observações Influentes Apenas duas observações #4 e #30 causam variações desproporcionais em algumas estimativas, embora não ocorram mudanças inferencias. Esses pontos causam variações, respectivamente, de -14% e 11%, na estimativa do coeficiente de sexo. G. A. Paula (IME-USP) Salário de Executivos 1 o Semestre / 27

22 Diagnóstico Modelo Ajustado Variações nas Estimativas Observações Influentes Apenas duas observações #4 e #30 causam variações desproporcionais em algumas estimativas, embora não ocorram mudanças inferencias. Esses pontos causam variações, respectivamente, de -14% e 11%, na estimativa do coeficiente de sexo. Identificação das Observações A observação de # 4 é de uma executiva com salário anual de USD 139 mil, posição 7 e 13,9 anos de experiência e a observação de # 30 é de um executivo com salário anual de USD 110 mil, posição 2 e 2,4 anos de experiência. G. A. Paula (IME-USP) Salário de Executivos 1 o Semestre / 27

23 Resultados Modelo Ajustado Sumário 1 Salário de Executivos 2 Análise de Dados Preliminar 3 Ajuste Modelo Linear Normal 4 Diagnóstico Modelo Ajustado 5 Resultados Modelo Ajustado 6 Conclusões 7 Referências G. A. Paula (IME-USP) Salário de Executivos 1 o Semestre / 27

24 Resultados Modelo Ajustado Modelo Ajustado Valor Predito O modelo ajustado fica dado por: ŷ(x) = 108, 042+0, 336 exper 2, 811 sexo+ +8, 096 posic 0, 135 posic exper, em que x = (exper, sexo, posic) T. G. A. Paula (IME-USP) Salário de Executivos 1 o Semestre / 27

25 Resultados Modelo Ajustado Modelo Ajustado Valor Predito O modelo ajustado fica dado por: ŷ(x) = 108, 042+0, 336 exper 2, 811 sexo+ +8, 096 posic 0, 135 posic exper, em que x = (exper, sexo, posic) T. Estimativas Qual o salário previsto para executivos com 5 anos de experiência e posição 4? Executiva: USD 139,406 mil Executivo: USD 136,595 mil. G. A. Paula (IME-USP) Salário de Executivos 1 o Semestre / 27

26 Resultados Modelo Ajustado Modelo Ajustado Executivas Descrição O modelo ajustado para o grupo de executivas fica dado por: ŷ(x) = 108, 042+8, 096 posic+(0, 336 0, 135 posic) exper. G. A. Paula (IME-USP) Salário de Executivos 1 o Semestre / 27

27 Resultados Modelo Ajustado Modelo Ajustado Executivas Descrição O modelo ajustado para o grupo de executivas fica dado por: ŷ(x) = 108, 042+8, 096 posic+(0, 336 0, 135 posic) exper. Interpretações Portanto, executivas com posição alta e muita experiência tendem a ganhar menos do que executivas com posição alta e menos experiência. Isso quer dizer que aquelas executivas que permanecerem menos tempo no cargo tendem a ganhar mais do que aquelas que ficarem mais tempo no cargo. Mesmo resultado para os homens. G. A. Paula (IME-USP) Salário de Executivos 1 o Semestre / 27

28 Conclusões Sumário 1 Salário de Executivos 2 Análise de Dados Preliminar 3 Ajuste Modelo Linear Normal 4 Diagnóstico Modelo Ajustado 5 Resultados Modelo Ajustado 6 Conclusões 7 Referências G. A. Paula (IME-USP) Salário de Executivos 1 o Semestre / 27

29 Conclusões Conclusões Considerações Finais Nota-se neste exemplo a importância da interação na interpretação dos resultados. Ignorando-se as variáveis posição e experiência os salários anuais dos executivos são em média significativamente maiores do que das executivas. Porém, quando essas variáveis entram no modelo ocorre o contrário, para uma mesma posição e mesma experiência as executivas ganham em média mais do que os executivos. G. A. Paula (IME-USP) Salário de Executivos 1 o Semestre / 27

30 Referências Sumário 1 Salário de Executivos 2 Análise de Dados Preliminar 3 Ajuste Modelo Linear Normal 4 Diagnóstico Modelo Ajustado 5 Resultados Modelo Ajustado 6 Conclusões 7 Referências G. A. Paula (IME-USP) Salário de Executivos 1 o Semestre / 27

31 Referências Referências Referência Foster, D. P., Stine, R. A. e Waterman, R. P. (1998). Business Analysis using Regression. New York: Springer. G. A. Paula (IME-USP) Salário de Executivos 1 o Semestre / 27

Faturamento de Restaurantes

Faturamento de Restaurantes Faturamento de Restaurantes Gilberto A. Paula Departamento de Estatística IME-USP, Brasil giapaula@ime.usp.br 2 o Semestre 2015 G. A. Paula (IME-USP) Faturamento de Restaurantes 2 o Semestre 2015 1 / 28

Leia mais

Exemplo Regressão Linear Simples

Exemplo Regressão Linear Simples Exemplo Regressão Linear Simples Gilberto A. Paula Departamento de Estatística IME-USP, Brasil giapaula@ime.usp.br 1 o Semestre 2013 G. A. Paula (IME-USP) Área e Preço de Imóveis 1 o Semestre 2013 1 /

Leia mais

Exemplo Preferência de Automóveis

Exemplo Preferência de Automóveis Exemplo Preferência de Automóveis Gilberto A. Paula Departamento de Estatística IME-USP, Brasil giapaula@ime.usp.br 2 o Semestre 2013 G. A. Paula (IME-USP) Preferência Automóveis 2 o Semestre 2013 1 /

Leia mais

Exemplo Demanda de TV a Cabo

Exemplo Demanda de TV a Cabo Exemplo Demanda de TV a Cabo Gilberto A. Paula Departamento de Estatística IME-USP, Brasil giapaula@ime.usp.br 2 o Semestre 2015 G. A. Paula (IME-USP) Demanda de TV a Cabo 2 o Semestre 2015 1 / 21 Demanda

Leia mais

Introdução. Existem situações nas quais há interesse em estudar o comportamento conjunto de uma ou mais variáveis;

Introdução. Existem situações nas quais há interesse em estudar o comportamento conjunto de uma ou mais variáveis; UNIVERSIDADE FEDERAL DA PARAÍBA Correlação e Regressão Luiz Medeiros de Araujo Lima Filho Departamento de Estatística Introdução Eistem situações nas quais há interesse em estudar o comportamento conjunto

Leia mais

Exemplo Regressão Binomial Dados Emparelhados

Exemplo Regressão Binomial Dados Emparelhados Exemplo Regressão Binomial Dados Emparelhados Gilberto A. Paula Departamento de Estatística IME-USP, Brasil giapaula@ime.usp.br 2 o Semestre 2013 G. A. Paula (IME-USP) Desenvolvimento de Diabetes 2 o Semestre

Leia mais

Probabilidades e Estatística

Probabilidades e Estatística Departamento de Matemática - IST(TP) Secção de Estatística e Aplicações Probabilidades e Estatística 1 o Exame/1 o Teste/2 o Teste 2 o Semestre/1 a Época 2008/09 Duração: 3 horas/1 hora e 30 minutos 16/01/09

Leia mais

Aula 5 Técnicas para Estimação do Impacto

Aula 5 Técnicas para Estimação do Impacto Aula 5 Técnicas para Estimação do Impacto A econometria é o laboratório dos economistas, que busca reproduzir o funcionamento do mundo de forma experimental, como se faz nas ciências naturais. Os modelos

Leia mais

Comparação entre medidas clássicas e robustas para identificação de outliers em regressão

Comparação entre medidas clássicas e robustas para identificação de outliers em regressão Comparação entre medidas clássicas e robustas para identificação de outliers em regressão Gabriela Isabel L. Alves (1), Verônica Maria C. Lima (2) (1) Curso de Graduação em Estatística (2) Departamento

Leia mais

Estatística e Probabilidade

Estatística e Probabilidade Correlação Estatística e Probabilidade Uma correlação é uma relação entre duas variáveis. Os dados podem ser representados por pares ordenados (x,y), onde x é a variável independente ou variável explanatória

Leia mais

Modelo Linear Geral V

Modelo Linear Geral V Modelo Linear Geral V Aula 10 Heij et al., 2004 Capítulo 5 Wooldridge, 2011 (4. ed) Capítulo 7 ANÁLISE DE REGRESSÃO LINEAR MÚLTIPLA COM INFORMAÇÃO QUALITATIVA: O USO DA VARIÁVEL DUMMY Variável Dummy Uma

Leia mais

AULAS 13, 14 E 15 Correlação e Regressão

AULAS 13, 14 E 15 Correlação e Regressão 1 AULAS 13, 14 E 15 Correlação e Regressão Ernesto F. L. Amaral 23, 28 e 30 de setembro de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de

Leia mais

Relação potência ou alométrica

Relação potência ou alométrica Relação potência ou alométrica Relação potência : Y = α β (,y > 0 ; α > 0) 0.5 * ^2 0 2 4 6 8 10 12 β > 1 y = α 0.5 * ^(1/2) 0.2 0.4 0.6 0.8 1.0 y = α β < 1 Transformação : Logaritmizando, obtém-se: 0

Leia mais

AULAS 24 E 25 Análise de Regressão Múltipla: Inferência

AULAS 24 E 25 Análise de Regressão Múltipla: Inferência 1 AULAS 24 E 25 Análise de Regressão Múltipla: Inferência Ernesto F. L. Amaral 23 e 25 de novembro de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Wooldridge, Jeffrey M. Introdução à econometria: uma

Leia mais

Aula 5 Metodologias de avaliação de impacto

Aula 5 Metodologias de avaliação de impacto Aula 5 Metodologias de avaliação de impacto Metodologias de Avaliação de Impacto Objetiva quantificar as mudanças que o projeto causou na vida dos beneficiários. Plano de Aula Método experimental: regressão

Leia mais

CENTRO DE ESTATÍSTICA APLICADA CEA USP RELATÓRIO DE ANÁLISE ESTATÍSTICA

CENTRO DE ESTATÍSTICA APLICADA CEA USP RELATÓRIO DE ANÁLISE ESTATÍSTICA CENTRO DE ESTATÍSTICA APLICADA CEA USP RELATÓRIO DE ANÁLISE ESTATÍSTICA TÍTULO: Relatório de análise estatística sobre o projeto: Avaliação e pesquisa: Investigando as dificuldades em Matemática no Ensino

Leia mais

Exemplo Turbinas de Avião

Exemplo Turbinas de Avião Exemplo Turbinas de Avião Gilberto A. Paula Departamento de Estatística IME-USP, Brasil giapaula@ime.usp.br 2 o Semestre 2015 G. A. Paula (IME-USP) Turbinas de Avião 2 o Semestre 2015 1 / 29 Turbinas de

Leia mais

Aprendendo a Interpretar Dados Financeiros de uma Empresa Usando Estatística de Forma Simples e Prática

Aprendendo a Interpretar Dados Financeiros de uma Empresa Usando Estatística de Forma Simples e Prática Aprendendo a Interpretar Dados Financeiros de uma Empresa Usando Estatística de Forma Simples e Prática Ederson Luis Posselt (edersonlp@yahoo.com.br) Eduardo Urnau (dudaurnau@gmail.com) Eloy Metz (eloy@softersul.com.br)

Leia mais

AULAS 04 E 05 Estatísticas Descritivas

AULAS 04 E 05 Estatísticas Descritivas 1 AULAS 04 E 05 Estatísticas Descritivas Ernesto F. L. Amaral 19 e 28 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

ESTATÍSTICA EXPERIMENTAL Dr. Sérgio do N. Kronka 1. INTRODUÇÃO

ESTATÍSTICA EXPERIMENTAL Dr. Sérgio do N. Kronka 1. INTRODUÇÃO ESTATÍSTICA EXPERIMENTAL Dr. Sérgio do N. Kronka 1. INTRODUÇÃO A Estatística Experimental tem por objetivo o estudo dos experimentos, incluindo o planejamento, execução, análise dos dados e interpretação

Leia mais

Capítulo 7 Medidas de dispersão

Capítulo 7 Medidas de dispersão Capítulo 7 Medidas de dispersão Introdução Para a compreensão deste capítulo, é necessário que você tenha entendido os conceitos apresentados nos capítulos 4 (ponto médio, classes e frequência) e 6 (média).

Leia mais

MEDIDAS DE DISPERSÃO

MEDIDAS DE DISPERSÃO MEDIDAS DE DISPERSÃO 1) (PETROBRAS) A variância da lista (1; 1; 2; 4) é igual a: a) 0,5 b) 0,75 c) 1 d) 1,25 e) 1,5 2) (AFPS ESAF) Dada a seqüência de valores 4, 4, 2, 7 e 3 assinale a opção que dá o valor

Leia mais

Noções de Pesquisa e Amostragem. André C. R. Martins

Noções de Pesquisa e Amostragem. André C. R. Martins Noções de Pesquisa e Amostragem André C. R. Martins 1 Bibliografia Silva, N. N., Amostragem probabilística, EDUSP. Freedman, D., Pisani, R. e Purves, R., Statistics, Norton. Tamhane, A. C., Dunlop, D.

Leia mais

REGRESSÃO LINEAR SIMPLES

REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES O que é uma regressão linear simples. Fazendo a regressão "na mão". Francisco Cavalcante(f_c_a@uol.com.br) Administrador de Empresas graduado pela EAESP/FGV. É Sócio-Diretor da

Leia mais

Análise de Regressão. Tópicos Avançados em Avaliação de Desempenho. Cleber Moura Edson Samuel Jr

Análise de Regressão. Tópicos Avançados em Avaliação de Desempenho. Cleber Moura Edson Samuel Jr Análise de Regressão Tópicos Avançados em Avaliação de Desempenho Cleber Moura Edson Samuel Jr Agenda Introdução Passos para Realização da Análise Modelos para Análise de Regressão Regressão Linear Simples

Leia mais

Análise Exploratória de Dados

Análise Exploratória de Dados Análise Exploratória de Dados Profª Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Programa de Pós-graduação em Saúde Coletiva email: alcione.miranda@gmail.com Introdução O primeiro passo

Leia mais

Cláudio Tadeu Cristino 1. Julho, 2014

Cláudio Tadeu Cristino 1. Julho, 2014 Inferência Estatística Estimação Cláudio Tadeu Cristino 1 1 Universidade Federal de Pernambuco, Recife, Brasil Mestrado em Nutrição, Atividade Física e Plasticidade Fenotípica Julho, 2014 C.T.Cristino

Leia mais

Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística

Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Exercícios resolvidos em Análise de Regressão utilizando o MINITAB Giselle Silva de Carvalho Ilka Afonso Reis

Leia mais

Estatística Aplicada. Gestão de TI. Evanivaldo Castro Silva Júnior

Estatística Aplicada. Gestão de TI. Evanivaldo Castro Silva Júnior Gestão de TI Evanivaldo Castro Silva Júnior Porque estudar Estatística em um curso de Gestão de TI? TI trabalha com dados Geralmente grandes bases de dados Com grande variabilidade Difícil manipulação,

Leia mais

XVIII CONGRESSO DE PÓS-GRADUAÇÃO DA UFLA 19 a 23 de outubro de 2009

XVIII CONGRESSO DE PÓS-GRADUAÇÃO DA UFLA 19 a 23 de outubro de 2009 REGRESSÃO MÚLTIPLA APLICADA AOS DADOS DE VENDAS DE UMA REDE DE LOJAS DE ELETRODOMÉSTICOS VANESSA SIQUEIRA PERES 1 RESUMO: Esse trabalho foi realizado com o objetivo de ajustar os dados de vendas de uma

Leia mais

Instituto Superior de Economia e Gestão Universidade Técnica de Lisboa Econometria Época Normal 9/01/2013 Duração 2 horas

Instituto Superior de Economia e Gestão Universidade Técnica de Lisboa Econometria Época Normal 9/01/2013 Duração 2 horas Instituto Superior de Economia e Gestão Universidade Técnica de Lisboa Econometria Época Normal 9/01/2013 Duração 2 horas NOME: Turma: Processo Espaço Reservado para Classificações A utilização do telemóvel

Leia mais

O QUE É E COMO FUNCIONA O CREDIT SCORING PARTE I

O QUE É E COMO FUNCIONA O CREDIT SCORING PARTE I O QUE É E COMO FUNCIONA O CREDIT SCORING PARTE I! A utilização de escores na avaliação de crédito! Como montar um plano de amostragem para o credit scoring?! Como escolher as variáveis no modelo de credit

Leia mais

Área: Métodos Quantitativos. Modelagem da proporção de inadimplentes entre tomadores de empréstimo no Banco do Povo de Goiás utilizando Regressão Beta

Área: Métodos Quantitativos. Modelagem da proporção de inadimplentes entre tomadores de empréstimo no Banco do Povo de Goiás utilizando Regressão Beta Área: Métodos Quantitativos Modelagem da proporção de inadimplentes entre tomadores de empréstimo no Banco do Povo de Goiás utilizando Regressão Beta Sérgio de Holanda Rocha Mestre em Economia (UFPE PIMES)

Leia mais

Pesquisa de controle de desperdícios e ramais clandestinos em ligações de água residenciais unifamiliares 1

Pesquisa de controle de desperdícios e ramais clandestinos em ligações de água residenciais unifamiliares 1 Pesquisa de controle de desperdícios e ramais clandestinos em ligações de água residenciais unifamiliares 1 1 Escrito em 20 de fevereiro de 1996 e revisto em junho de 1998. 1 Sumário 1) Objetivo 2) Benefícios

Leia mais

O que é a estatística?

O que é a estatística? Elementos de Estatística Prof. Dr. Clécio da Silva Ferreira Departamento de Estatística - UFJF O que é a estatística? Para muitos, a estatística não passa de conjuntos de tabelas de dados numéricos. Os

Leia mais

A DIFERENCIAÇÃO DA RENDA DO TRABALHO NAS REGIÕES SUL E SUDESTE DO BRASIL

A DIFERENCIAÇÃO DA RENDA DO TRABALHO NAS REGIÕES SUL E SUDESTE DO BRASIL A DIFERENCIAÇÃO DA RENDA DO TRABALHO NAS REGIÕES SUL E SUDESTE DO BRASIL Amarildo Hersen (Economista, Mestre em Desenvolvimento Regional e Agronegócio, docente UNICENTRO) e-mail: amarildohersen@yahoo.com.br.

Leia mais

Modelos mistos na análise de dados longitudinais de um experimento para armazenamento de banana

Modelos mistos na análise de dados longitudinais de um experimento para armazenamento de banana Modelos mistos na análise de dados longitudinais de um experimento para armazenamento de banana Simone Silmara Werner Gurgel do Amaral Sara Regina Kulzer 2 Marcus Vinícius Silva Gurgel do Amaral Sílvia

Leia mais

Necessidade de Capital de Giro, Compras, Vendas e Regressão Linear.

Necessidade de Capital de Giro, Compras, Vendas e Regressão Linear. Necessidade de Capital de Giro, Compras, Vendas e Regressão Linear. MAXIMILLIANO DA SILVA MARINHO Graduando Do Curso De Ciências Contábeis Da UFPA maxi_marinho@yahoo.com.br Heber Lavor Moreira Prof Orientador

Leia mais

ESTUDO SOBRE POSSÍVEL MUDANÇA NA GEOGRAFIA ARROZ

ESTUDO SOBRE POSSÍVEL MUDANÇA NA GEOGRAFIA ARROZ ESTUDO SOBRE POSSÍVEL MUDANÇA NA GEOGRAFIA INTERNACIONAL DO ARROZ PANORAMA DO MERCADO MUNDIAL DE ARROZ PRINCIPAIS PRODUTORES (em milhões de toneladas) Região 2008 2009 2010 2011 2012 2013 2014* Var % (14*/13)

Leia mais

Desempenho dos Aprovados no Vestibular da UFPA antes e após a Política de Cotas: Uma Aplicação de Regressão Quantílica

Desempenho dos Aprovados no Vestibular da UFPA antes e após a Política de Cotas: Uma Aplicação de Regressão Quantílica Desempenho dos Aprovados no Vestibular da UFPA antes e após a Política de Cotas: Uma Aplicação de Regressão Quantílica 1. Introdução Diogo Braga Mendes¹ Charlene de Carvalho Silva² Marinalva Cardoso Maciel³

Leia mais

COMENTÁRIO AFRM/RS 2012 ESTATÍSTICA Prof. Sérgio Altenfelder

COMENTÁRIO AFRM/RS 2012 ESTATÍSTICA Prof. Sérgio Altenfelder Comentário Geral: Prova muito difícil, muito fora dos padrões das provas do TCE administração e Economia, praticamente só caiu teoria. Existem três questões (4, 45 e 47) que devem ser anuladas, por tratarem

Leia mais

4 Conclusões. 4.1 Da Análise Exploratória

4 Conclusões. 4.1 Da Análise Exploratória 4 Conclusões Neste capítulo iremos apresentar as conclusões acerca da pesquisa realizada, ressaltando os principais resultados obtidos e o que de mais valioso encontramos, em termos das informações que

Leia mais

TÉCNICAS DE ANÁLISE DE DADOS

TÉCNICAS DE ANÁLISE DE DADOS observação = previsível + aleatória aleatória obedece algum modelo de probabilidade ferramenta: análise de variância identificar fatores, controláveis, que expliquem o fenômeno ou alterem a característica

Leia mais

CRM e Prospecção de Dados

CRM e Prospecção de Dados CRM e Prospecção de Dados Marília Antunes aula de 11 de Maio 09 6 Modelos de regressão 6.1 Introdução No capítulo anterior foram apresentados alguns modelos preditivos em que a variável resposta (a variável

Leia mais

Engenharia da Produção Projeto de Produto, QFD, FMEA e DoE DoE Dr. Egon Walter Wildauer

Engenharia da Produção Projeto de Produto, QFD, FMEA e DoE DoE Dr. Egon Walter Wildauer Tema DoE Projeto Curso Disciplina Tema Professor Pós-graduação Engenharia da Produção Projeto de Produto, QFD, FMEA e DoE DoE Dr. Egon Walter Wildauer Introdução O DoE Design of Experiments é uma ferramenta

Leia mais

O QUE É E COMO FUNCIONA O BEHAVIOR SCORING

O QUE É E COMO FUNCIONA O BEHAVIOR SCORING O QUE É E COMO FUNCIONA O BEHAVIOR! O que é o gerenciamento do crédito através do behavior scoring?! Como construir o behavior scoring?! Como calcular a função discriminante usando o Excel?! Como implantar

Leia mais

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA 4 a LISTA DE EXERCÍCIOS GBQ12 Professor: Ednaldo Carvalho Guimarães AMOSTRAGEM

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA 4 a LISTA DE EXERCÍCIOS GBQ12 Professor: Ednaldo Carvalho Guimarães AMOSTRAGEM 1 UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA 4 a LISTA DE EXERCÍCIOS GBQ12 Professor: Ednaldo Carvalho Guimarães AMOSTRAGEM 1) Um pesquisador está interessado em saber o tempo médio que

Leia mais

UNIVERSIDADE FEDERAL DO PIAUÍ (UFPI) ENG. DE PRODUÇÃO PROBABILIDADE E ESTATÍSTICA 2

UNIVERSIDADE FEDERAL DO PIAUÍ (UFPI) ENG. DE PRODUÇÃO PROBABILIDADE E ESTATÍSTICA 2 UNIVERSIDADE FEDERAL DO PIAUÍ (UFPI) ENG. DE PRODUÇÃO PROBABILIDADE E ESTATÍSTICA 2 LISTA N O 2 Prof.: William Morán Sem. I - 2011 1) Considere a seguinte função distribuição conjunta: 1 2 Y 0 0,7 0,0

Leia mais

Introdução. Métodos de inferência são usados para tirar conclusões sobre a população usando informações obtidas a partir de uma amostra.

Introdução. Métodos de inferência são usados para tirar conclusões sobre a população usando informações obtidas a partir de uma amostra. Métodos Monte Carlo Introdução Métodos de inferência são usados para tirar conclusões sobre a população usando informações obtidas a partir de uma amostra. Estimativas pontuais e intervalares para os parâmetros;

Leia mais

ANÁLISE DE DADOS ESTATÍSTICOS COM O MICROSOFT OFFICE EXCEL 2007

ANÁLISE DE DADOS ESTATÍSTICOS COM O MICROSOFT OFFICE EXCEL 2007 ANÁLISE DE DADOS ESTATÍSTICOS COM O MICROSOFT OFFICE EXCEL 2007 2 Professor Claodomir Antonio Martinazzo Sumário 1 Introdução... 03 2 Instalação da ferramenta Análise de Dados... 04 3 Estatística Descritiva...

Leia mais

Correlação e Regressão

Correlação e Regressão Notas sobre Regressão, Correlação e Regressão Notas preparadas por L.A. Bertolo Índice Termos básicos e conceitos...1 Regressão simples...5 Regressão Múltipla...13 Terminologia de Regressão...20 Fórmulas

Leia mais

Avaliação da variação do sistema de medição Exemplo 1: Diâmetros de bico injetor de combustível

Avaliação da variação do sistema de medição Exemplo 1: Diâmetros de bico injetor de combustível Avaliação da variação do sistema de medição Exemplo 1: Diâmetros de bico injetor de combustível Problema Um fabricante de bicos injetores de combustível instala um novo sistema digital de medição. Os investigadores

Leia mais

MELHORAMENTO GENÉTICO DE PRECISÃO

MELHORAMENTO GENÉTICO DE PRECISÃO MELHORAMENTO GENÉTICO DE PRECISÃO Uma nova abordagem da seleção em tempos de mudanças climáticas, globalização e sustentabilidade Newton Tamassia Pegolo Abril - 2010 Deus está nos detalhes Gustave Flaubert,

Leia mais

[2.000] (IP:281473857278462

[2.000] (IP:281473857278462 1. [2.000] (IP:281473857278462 19:36:32 19:32:41 56:09 4.486) Considere e discuta a seguinte afirmativa: "Nem sempre o modelo com o melhor R² não-ajustado é o mais adequado". A afirmativa é verdadeira,

Leia mais

Vetores Aleatórios, correlação e conjuntas

Vetores Aleatórios, correlação e conjuntas Vetores Aleatórios, correlação e conjuntas Cláudio Tadeu Cristino 1 1 Universidade Federal Rural de Pernambuco, Recife, Brasil Segundo Semestre, 2013 C.T.Cristino (DEINFO-UFRPE) Vetores Aleatórios 2013.2

Leia mais

ESTUDO DO EFEITO DAS AÇÕES DE MARKETING SOBRE O FATURAMENTO DE UMA INSTITUIÇÃO DE SAÚDE DO SUL DE MINAS GERAIS UTLIZANDO TÉCNICAS DE SÉRIES TEMPORAIS

ESTUDO DO EFEITO DAS AÇÕES DE MARKETING SOBRE O FATURAMENTO DE UMA INSTITUIÇÃO DE SAÚDE DO SUL DE MINAS GERAIS UTLIZANDO TÉCNICAS DE SÉRIES TEMPORAIS ESTUDO DO EFEITO DAS AÇÕES DE MARKETING SOBRE O FATURAMENTO DE UMA INSTITUIÇÃO DE SAÚDE DO SUL DE MINAS GERAIS UTLIZANDO TÉCNICAS DE SÉRIES TEMPORAIS Maria de Lourdes Lima Bragion 1, Nivaldo Bragion 2,

Leia mais

GANHOS MÉDIOS ABRIL 2013. Direção de Serviços de Estatísticas do Trabalho da Direção Regional do Trabalho

GANHOS MÉDIOS ABRIL 2013. Direção de Serviços de Estatísticas do Trabalho da Direção Regional do Trabalho GANHOS MÉDIOS ABRIL 2013 Fonte: Inquérito aos Ganhos e Duração do Trabalho Abril 2013 Direção de Serviços de Estatísticas do Trabalho da Direção Regional do Trabalho/GEE do MEE- Gabinete de Estratégia

Leia mais

UMA NOVA FORMA DE MODELAR A VARIÂNCIA EM EXPERIMENTOS COM POUCAS REPLICAÇÕES

UMA NOVA FORMA DE MODELAR A VARIÂNCIA EM EXPERIMENTOS COM POUCAS REPLICAÇÕES UMA NOVA FORMA DE MODELAR A VARIÂNCIA EM EXPERIMENTOS COM POUCAS REPLICAÇÕES Pedro Alberto Barbetta Departamento de Informática e de Estatística - UFSC Caixa Postal 476 - Florianópolis - SC, 88.040-900

Leia mais

Contabilometria. Aula 11 Regressão Linear Múltipla e Variáveis Dummy

Contabilometria. Aula 11 Regressão Linear Múltipla e Variáveis Dummy Contailometria Aula Regressão Linear Múltipla e Variáveis Dummy O Modelo de Regressão Múltipla Ideia: Examinar a relação linear entre variável dependente (Y) & ou mais variáveis independentes (X i ). Modelo

Leia mais

PREVISÃO DE VENDAS DE CERVEJA PARA UMA INDÚSTRIA DE RIBEIRÃO PRETO

PREVISÃO DE VENDAS DE CERVEJA PARA UMA INDÚSTRIA DE RIBEIRÃO PRETO PREVISÃO DE VENDAS DE CERVEJA PARA UMA INDÚSTRIA DE RIBEIRÃO PRETO José Gilberto S. Rinaldi (UNESP/Presidente Prudente) Randal Farago (Faculdades Integradas FAFIBE) Resumo: Este trabalho aborda técnicas

Leia mais

Contabilometria. Aula 10 Grau de Ajustamento e Verificação das Premissas MQO

Contabilometria. Aula 10 Grau de Ajustamento e Verificação das Premissas MQO Contabilometria Aula 10 Grau de Ajustamento e Verificação das Premissas MQO Ferramentas -------- Análise de Dados -------- Regressão Regressão Linear - Exemplo Usando o Excel Regressão Linear Output do

Leia mais

Regressão Linear Multivariada

Regressão Linear Multivariada Regressão Linear Multivariada Prof. Dr. Leandro Balby Marinho Inteligência Artificial Prof. Leandro Balby Marinho / 37 UFCG DSC Roteiro. Introdução 2. Modelo de Regressão Multivariada 3. Equações Normais

Leia mais

Modelo SARIMA: um estudo de caso sobre venda mensal de gasolina

Modelo SARIMA: um estudo de caso sobre venda mensal de gasolina Modelo SARIMA: um estudo de caso sobre venda mensal de gasolina Ana Julia Righetto 1 Luiz Ricardo Nakamura 1 Pedro Henrique Ramos Cerqueira 1 Manoel Ivanildo Silvestre Bezerra 2 Taciana Villela Savian

Leia mais

Utilização da regressão linear como ferramenta de decisão na gestão de custos.

Utilização da regressão linear como ferramenta de decisão na gestão de custos. Utilização da regressão linear como ferramenta de decisão na gestão de custos. Isair Sell (Universidade Federal de Santa Catarina - Brasil) - isairsell@ibest.com.br Resumo A contabilidade é vista como

Leia mais

Hipóteses Estatísticas Testadas por Diversos Softwares em Modelos com Dois Fatores Cruzados e Dados Desbalanceados

Hipóteses Estatísticas Testadas por Diversos Softwares em Modelos com Dois Fatores Cruzados e Dados Desbalanceados TEMA Tend. Mat. Apl. Comput., 5, No. 1 (24), 117-124. c Uma Publicação da Sociedade Brasileira de Matemática Aplicada e Computacional. Hipóteses Estatísticas Testadas por Diversos Softwares em Modelos

Leia mais

CURSO ON-LINE PROFESSOR GUILHERME NEVES

CURSO ON-LINE PROFESSOR GUILHERME NEVES Olá pessoal! Neste ponto resolverei a prova de Matemática Financeira e Estatística para APOFP/SEFAZ-SP/FCC/2010 realizada no último final de semana. A prova foi enviada por um aluno e o tipo é 005. Os

Leia mais

Métodos Matemáticos para Gestão da Informação

Métodos Matemáticos para Gestão da Informação Métodos Matemáticos para Gestão da Informação Aula 05 Taxas de variação e função lineares III Dalton Martins dmartins@gmail.com Bacharelado em Gestão da Informação Faculdade de Informação e Comunicação

Leia mais

Análise de Componente Principais (PCA) Wagner Oliveira de Araujo

Análise de Componente Principais (PCA) Wagner Oliveira de Araujo Análise de Componente Principais (PCA) Wagner Oliveira de Araujo Technical Report - RT-MSTMA_003-09 - Relatório Técnico May - 2009 - Maio The contents of this document are the sole responsibility of the

Leia mais

PESQUISA SOBRE PRECONCEITO E DISCRIMINAÇÃO NO AMBIENTE ESCOLAR SUMÁRIO EXECUTIVO

PESQUISA SOBRE PRECONCEITO E DISCRIMINAÇÃO NO AMBIENTE ESCOLAR SUMÁRIO EXECUTIVO PESQUISA SOBRE PRECONCEITO E DISCRIMINAÇÃO NO AMBIENTE ESCOLAR SUMÁRIO EXECUTIVO Visando subsidiar a formulação de políticas e estratégias de ação que promovam, a médio e longo prazos, a redução das desigualdades

Leia mais

Noções de Probabilidade

Noções de Probabilidade Noções de Probabilidade Bacharelado em Economia - FEA - Noturno 1 o Semestre 2015 Gilberto A. Paula G. A. Paula - MAE0219 (IME-USP) Noções de Probabilidade 1 o Semestre 2015 1 / 59 Objetivos da Aula Sumário

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA SÉRIES, TABELAS E GRÁFICOS ESTATÍSTICOS Departamento de Estatística Tarciana Liberal TABELAS TABELAS TABELAS TABELAS TABELAS SÉRIES ESTATÍSTICAS Um gerente de produção da

Leia mais

Resoluções comentadas das questões de Estatística da prova para. ANALISTA DE GERENCIAMENTO DE PROJETOS E METAS da PREFEITURA/RJ

Resoluções comentadas das questões de Estatística da prova para. ANALISTA DE GERENCIAMENTO DE PROJETOS E METAS da PREFEITURA/RJ Resoluções comentadas das questões de Estatística da prova para ANALISTA DE GERENCIAMENTO DE PROJETOS E METAS da PREFEITURA/RJ Realizada pela Fundação João Goulart em 06/10/2013 41. A idade média de todos

Leia mais

UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo

UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo UNIVERSIDADE DE SÃO PAULO Faculdade de Arquitetura e Urbanismo DISTRIBUIÇÃO AMOSTRAL ESTIMAÇÃO AUT 516 Estatística Aplicada a Arquitetura e Urbanismo 2 DISTRIBUIÇÃO AMOSTRAL Na aula anterior analisamos

Leia mais

Modelos Logísticos e Hierárquicos

Modelos Logísticos e Hierárquicos 1 Modelos Logísticos e Hierárquicos Ernesto F. L. Amaral Magna M. Inácio 30 de setembro de 2010 Tópicos Especiais em Teoria e Análise Política: Problema de Desenho e Análise Empírica (DCP 859B4) REGRESSÃO

Leia mais

MODELOS ESPACIAIS DE ACIDENTES DE TRÂNSITO COM ÓBITOS

MODELOS ESPACIAIS DE ACIDENTES DE TRÂNSITO COM ÓBITOS MODELOS ESPACIAIS DE ACIDENTES DE TRÂNSITO COM ÓBITOS Murilo Castanho dos Santos Cira Souza Pitombo MODELOS ESPACIAIS DE ACIDENTES DE TRÂNSITO COM ÓBITOS Murilo Castanho dos Santos Cira Souza Pitombo Universidade

Leia mais

Monitoramento e Controle de Processo Multivariado

Monitoramento e Controle de Processo Multivariado Monitoramento e Controle de Processo Multivariado Roteiro 1. O Problema do Controle da Qualidade Multivariado 2. Descrição de Dados Multivariados 3. Gráfico de Controle T 2 de Hotelling (Subgrupos) 4.

Leia mais

Teorema Central do Limite e Intervalo de Confiança

Teorema Central do Limite e Intervalo de Confiança Probabilidade e Estatística Teorema Central do Limite e Intervalo de Confiança Teorema Central do Limite Teorema Central do Limite Um variável aleatória pode ter uma distribuição qualquer (normal, uniforme,...),

Leia mais

Metodos Praticos de Amostragem para Avaliações de Impacto

Metodos Praticos de Amostragem para Avaliações de Impacto Vincenzo Di Maro (DIME, World Bank) Metodos Praticos de Amostragem para Avaliações de Impacto Workshop de Avaliação de Impacto de Políticas Públicas São Paulo Março, 25-27 de 2013 1 Sumário 1. Componentes

Leia mais

Modelos bayesianos sem MCMC com aplicações na epidemiologia

Modelos bayesianos sem MCMC com aplicações na epidemiologia Modelos bayesianos sem MCMC com aplicações na epidemiologia Leo Bastos, PROCC/Fiocruz lsbastos@fiocruz.br Outline Introdução à inferência bayesiana Estimando uma proporção Ajustando uma regressão Métodos

Leia mais

TÉCNICAS EXPERIMENTAIS APLICADAS EM CIÊNCIA DO SOLO

TÉCNICAS EXPERIMENTAIS APLICADAS EM CIÊNCIA DO SOLO 1 TÉCNICAS EXPERIMENTAIS APLICADAS EM CIÊNCIA DO SOLO Mario de Andrade Lira Junior www.lira.pro.br direitos autorais. INTRODUÇÃO À ANÁLISE MULTIVARIADA Apenas uma breve apresentação Para não dizerem que

Leia mais

PROVA ESCRITA DE ESTATÍSTICA VERSÃO A. 04 As classes de uma distribuição de freqüência devem ser mutuamente exclusivas para que

PROVA ESCRITA DE ESTATÍSTICA VERSÃO A. 04 As classes de uma distribuição de freqüência devem ser mutuamente exclusivas para que COMANDO DA AERONÁUTICA DEPARTAMENTO DE ENSINO DA AERONÁUTICA CENTRO DE INSTRUÇÃO E ADAPTAÇÃO DA AERONÁUTICA CONCURSO DE ADMISSÃO AO EAOT 00 EXAME DE CONHECIMENTOS ESPECIALIZADOS PROVA ESCRITA DE ESTATÍSTICA

Leia mais

Introdução à Estatística Inferencial Luiz Pasquali

Introdução à Estatística Inferencial Luiz Pasquali Capítulo 4 Introdução à Estatística Inferencial Luiz Pasquali Os temas deste capítulo são: Teste Estatístico Hipótese estatística Pressuposições no teste de hipótese Regras de decisão Erros tipo I e tipo

Leia mais

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES. Comentários sobre as provas de estatística e financeira ICMS RJ

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES. Comentários sobre as provas de estatística e financeira ICMS RJ Comentários sobre as provas de estatística e financeira ICMS RJ Caríssimos, Acabei de voltar de uma longa auditoria em que visitamos inúmeros assentamentos federais do INCRA no interior do estado. Ou seja:

Leia mais

CONTEÚDO. 1.6.4 Tempo Médio e Vida Média Residual. 1.6.5 Relações entre as Funções 1.7 Exercícios...

CONTEÚDO. 1.6.4 Tempo Médio e Vida Média Residual. 1.6.5 Relações entre as Funções 1.7 Exercícios... Conteúdo Prefácio xiii 1 Conceitos Básicos e Exemplos 1 1.1 Introdução... 1 1.2 Objetivo e Planejamento dos Estudos 3 1.3 Caracterizando Dados de Sobrevivência 6 1.3.1 Tempo de Falha 7 1.3.2 Censura e

Leia mais

Exercício de Revisao 1

Exercício de Revisao 1 Exercício de Revisao 1 Considere que seu trabalho é comparar o desempenho de dois algoritmos (A e B) de computação gráfica, que usam métodos diferentes para geração de faces humanas realistas. São sistema

Leia mais

Medidas de Tendência Central

Medidas de Tendência Central Medidas de Tendência Central Generalidades Estatística Descritiva: Resumo ou descrição das características importantes de um conjunto conhecido de dados populacionais Inferência Estatística: Generalizações

Leia mais

TRATAMENTO DA INFORMAÇÃO/ANÁLISE DE DADOS AULA 09. Universidade Federal Fluminense

TRATAMENTO DA INFORMAÇÃO/ANÁLISE DE DADOS AULA 09. Universidade Federal Fluminense CURSO DE ESPECIALIZAÇÃO EM ENSINO DE MATEMÁTICA INSTITUTO DE MATEMÁTICA E ESTATÍSTICA 7 DE OUTUBRO DE 2014 TRATAMENTO DA INFORMAÇÃO/ANÁLISE DE DADOS AULA 09 Humberto José Bortolossi http://www.professores.uff.br/hjbortol/

Leia mais

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES Caros concurseiros, Como havia prometido, seguem comentários sobre a prova de estatística do ICMS RS. Em cada questão vou fazer breves comentários, bem como indicar eventual possibilidade de recurso. Não

Leia mais

LISTA DE EXERCÍCIOS 2 INE 7001 PROF. MARCELO MENEZES REIS ANÁLISE BIDIMENSIONAL

LISTA DE EXERCÍCIOS 2 INE 7001 PROF. MARCELO MENEZES REIS ANÁLISE BIDIMENSIONAL LISTA DE EXERCÍCIOS INE 7 PROF. MARCELO MENEZES REIS ANÁLISE BIDIMENSIONAL ) Uma pesquisa foi realizada com os integrantes das três categorias (professores, servidores, estudantes) da UFSC. Perguntou-se

Leia mais

25 a 30 de novembro de 2013

25 a 30 de novembro de 2013 Programa de Pós-Graduação em Estatística e Experimentação Agronômica ESALQ/USP 25 a 30 de novembro de 2013 Parte 1 - Conteúdo 1 2 3 4 5 R (http://www.r-project.org/) Action = Excel + R (http://www.portalaction.com.br)

Leia mais

Slides de Estatística Descritiva na HP-12C 01/10/2009 ESTATÍSTICAS. Na HP-12C. 01/10/2009 Bertolo 2. O que é Estatística?

Slides de Estatística Descritiva na HP-12C 01/10/2009 ESTATÍSTICAS. Na HP-12C. 01/10/2009 Bertolo 2. O que é Estatística? ESTATÍSTICAS Na HP-12C 01/10/2009 Bertolo 1 O que é Estatística? A estatística pode ser entendida como um conjunto de ferramentas envolvidas no estudo de métodos e procedimentos usados para 1. colecionar,

Leia mais

PLANIFICAÇÃO OPERACIONAL DA PESQUISA

PLANIFICAÇÃO OPERACIONAL DA PESQUISA Laboratório de Psicologia Experimental Departamento de Psicologia UFSJ Disciplina: Método de Pesquisa Quantitativa TEXTO 8: PLANIFICAÇÃO OPERACIONAL DA PESQUISA Autora: Prof. Marina Bandeira,Ph.D. 1. POPULAÇÃO-

Leia mais

Regressão Linear em SPSS

Regressão Linear em SPSS Regressão Linear em SPSS 1. No ficheiro Calor.sav encontram-se os valores do consumo mensal de energia, medido em milhões de unidades termais britânicas, acompanhados de valores de output, em milhões de

Leia mais

Análise de Variância com dois ou mais factores - planeamento factorial

Análise de Variância com dois ou mais factores - planeamento factorial Análise de Variância com dois ou mais factores - planeamento factorial Em muitas experiências interessa estudar o efeito de mais do que um factor sobre uma variável de interesse. Quando uma experiência

Leia mais

Tópicos em Inferência Estatística. Frases. Roteiro. 1. Introdução

Tópicos em Inferência Estatística. Frases. Roteiro. 1. Introdução Tópicos em Inferência Estatística Frases Torture os dados por um tempo suficiente, e eles contam tudo! fonte: mcrsoft@aimnet.com (Barry Fetter) Um homem com um relógio sabe a hora certa. Um homem com dois

Leia mais

CRM e Prospecção de Dados

CRM e Prospecção de Dados CRM e Prospecção de Dados Marília Antunes aula de 18 de Maio 09 6 Modelos de regressão (continuação) 6.1 Interpretação do modelo ajustado Os coeficientes do modelo de regressão múltipla podem ser interpretados

Leia mais

Correlação e Regressão

Correlação e Regressão Correlação e Regressão Análise de dados. Tópico Prof. Dr. Ricardo Primi & Prof. Dr. Fabian Javier Marin Rueda Adaptado de Gregory J. Meyer, University of Toledo, USA; Apresentação na Universidade e São

Leia mais

Introdução à Inferência Estatística

Introdução à Inferência Estatística Introdução à Inferência Estatística 1. População: conjunto de indivíduos, ou itens, com pelo menos uma característica em comum. Também será denotada por população objetivo, que é sobre a qual desejamos

Leia mais

AVALIAÇÃO DE VENDAS DE IMÓVEIS USANDO MODELO PROBIT

AVALIAÇÃO DE VENDAS DE IMÓVEIS USANDO MODELO PROBIT AVALIAÇÃO DE VENDAS DE IMÓVEIS USANDO MODELO PROBIT Francisco José Sales Rocha Professor Assistente III Universidade Federal do Ceará.Doutorando em Economia, PIMES - UFPE Manoel Estevão da Costa, 84, APTO.06,

Leia mais

Introdução à análise de dados discretos

Introdução à análise de dados discretos Exemplo 1: comparação de métodos de detecção de cárie Suponha que um pesquisador lhe apresente a seguinte tabela de contingência, resumindo os dados coletados por ele, oriundos de um determinado experimento:

Leia mais