Prof. MSc. David Roza José

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Prof. MSc. David Roza José david.jose@luzerna.ifc.edu.br"

Transcrição

1 1

2 Motivação Métodos numéricos são técnicas pelas quais problemas matemáticos são formulados de maneira a serem resolvidos através de uma sequência lógica de operações algébricas; principalmente através de computadores. Capacidades e limitações. 1) Expandir a gama de problemas com os quais podemos lidar. Grandes sistemas de equações, não-linearidades e geometrias complexas que costumam ser muito difíceis ou impossíveis de serem resolvidas analiticamente. 2) Permite utilizar softwares comerciais com senso crítico. Na ausência do conhecimento sobre métodos, estes softwares tornam-se caixas pretas ; e não se pode emitir juízo de valor a respeito da validade dos resultados produzidos. 2

3 Motivação 3) Muitos problemas não podem ser resolvidos com softwares comerciais. A versatilidade em métodos numéricos e programação permite que você produza seu próprio software. 4) A programação e análise dos métodos numéricos permite compreender as capacidades e limitações dos computadores. 5) Reforçam o conhecimento e compreensão da matemática. Uma função dos métodos numéricos é de reduzir matemática complexa a operações aritméticas básicas. 3

4 Objetivos Compreender como um modelo matemático pode ser formulado através de princípios científicos para simular o comportamento de um sistema físico simples; Entender como métodos numéricos oferecem um meio para gerar soluções numa maneira que pode ser implementada num computador; 4

5 Problema Suponha que uma companhia de bungee-jump o contrate. Possuímos a missão de prever a velocidade de alguém que salte como uma função do tempo durante o intervalo de queda livre do salto. 5

6 Modelo Matemático Um modelo matemático pode ser definido como uma formulação ou equação que expressa características essenciais de um processo ou sistema físico através de termos matemáticos. Var. Dep. - Variável dependente é uma característica que reflete o comportamento ou estado do sistema; Var. Ind. - Variável independente são dimensões, tais como tempo e espaço, ao longo das quais o comportamento do sistema é determinado; Par. - Parâmetros referem-se a propriedades ou composição do sistema; Funções são influências externas que agem no sistema. 6

7 Modelo Matemático Podemos tomar como exemplo a Segunda Lei de Newton e apresentá-la da seguinte forma: tal que a é a variável dependente; F é uma função e m é um parâmetro. Neste caso simples não há variável independente. 7

8 Problema A equação diferencial obtida anteriormente Possui a seguinte solução analítica. Em muitos casos não é possível obter uma solução exata do problema. Assim, a única alternativa é desenvolver uma solução numérica que aproxime a solução exata. 8

9 Problema Para o caso da nossa equação a seguinte aproximação pode ser adotada: 9

10 Problema A equação diferencial foi transformada numa equação que pode ser utilizada para determinar algebricamente a velocidade num instante t(i+1). Para isto é utilizada a inclinação e valores prévios de v e t. Dada a velocidade num instante inicial t(i) é possível calcular o tempo num outro instante t(i+1). Novo Valor = Valor Antigo + Inclinação X Tamanho do Passo Este método chama-se Método de Euler e será melhor explicado no futuro. 10

11 Problema Calcularemos a velocidade como função do tempo e faremos a comparação com a solução exata. 11

12 Leis de Conservação na Engenharia Entre as equações mais importantes nas Engenharias estão as equações de conservação. Todas elas resumem-se a: Variação = Entra Sai Foi exatamente este o raciocínio utilizado para obtermos o balanço de força para o saltador de bungee-jump. Apesar de simples, a igualdade acima representa uma das maneiras mais fundamentais nas quais as equações de conservação são utilizadas na engenharia para prever mudanças em relação ao tempo. Daremos a estes casos o nome especial de regime transiente. 12

13 Leis de Conservação na Engenharia Para os casos onde não existe variação da grandeza em questão, obtemos: Variação = 0 = Entra Sai Entra = Sai Assim, se não existe variação, o quê entra está em equilíbrio com o quê sai. A este caso também é dado um nome especial, regime permanente. Para escoamento de fluidos numa tubulação, uma junção de dutos deve estar em equilíbrio: Escoamento que entra = Escoamento que sai 13

14 Leis de Conservação na Engenharia 14

15 Leis de Conservação na Engenharia Da mesma maneira podemos obter uma situação onde a velocidade não varia para equação do praticante de bungee-jump. O quê resulta em Que é definido como velocidade terminal (física 1? ) 15

16 Exercícios

Prof. MSc. David Roza José 1/34

Prof. MSc. David Roza José 1/34 1/34 Contexto As equações de conservação que regem praticamente todos os fenômenos do dia a dia costumam ser escritas em termos de variação espacial e temporal. Ou seja: tais leis descrevem mecanismos

Leia mais

Hidrocinemática 1.1 Conceitos básicos: A hidrocinemática

Hidrocinemática 1.1 Conceitos básicos: A hidrocinemática Hidrocinemática 1.1 Conceitos básicos: A hidrocinemática estuda o movimento dos fluidos desde o ponto de vista meramente descritivo, isto e, sem considerar as causas que o originam. Consideram-se unicamente

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA QUÍMICA ENG 008 Fenômenos de Transporte I A Profª Fátima Lopes

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA QUÍMICA ENG 008 Fenômenos de Transporte I A Profª Fátima Lopes Equações básicas Uma análise de qualquer problema em Mecânica dos Fluidos, necessariamente se inicia, quer diretamente ou indiretamente, com a definição das leis básicas que governam o movimento do fluido.

Leia mais

LIMITES E DERIVADAS COM O SOFTWARE MATHEMATICA 10.3

LIMITES E DERIVADAS COM O SOFTWARE MATHEMATICA 10.3 Sociedade Brasileira de Matemática Matemática na Contemporaneidade: desafios e possibilidades LIMITES E DERIVADAS COM O SOFTWARE MATHEMATICA 10.3 Cláudio Firmino Arcanjo Secretaria de Estado da de Alagoas

Leia mais

CENTRO DE CIÊNCIAS EXATAS, AMBIENTAIS E DE TECNOLOGIAS FACULDADE DE ENGENHARIA DE PRODUÇÃO CURSO DE ENGENHARIA DE PRODUÇÃO Currículo Atual MATUTINO

CENTRO DE CIÊNCIAS EXATAS, AMBIENTAIS E DE TECNOLOGIAS FACULDADE DE ENGENHARIA DE PRODUÇÃO CURSO DE ENGENHARIA DE PRODUÇÃO Currículo Atual MATUTINO Série: 1ª Período: 2º (05421) Cálculo Diferencial e Integral (06348) Organização: Teoria e (05421) Cálculo Diferencial e Integral (28398) Antropologia Teológica (06353) Ciências do Ambiente (05421) Cálculo

Leia mais

Desvendando o futuro: Matemática Computacional

Desvendando o futuro: Matemática Computacional Desvendando o futuro: Matemática Computacional L. Felipe Bueno lfelipebueno@gmail.com Universidade Federal de São Paulo (UNIFESP) São José dos Campos 11/03/15 Resumo O que é Matemática Computacional Habilidades

Leia mais

CAPÍTULO 3 DINÂMICA DA PARTÍCULA: TRABALHO E ENERGIA

CAPÍTULO 3 DINÂMICA DA PARTÍCULA: TRABALHO E ENERGIA CAPÍLO 3 DINÂMICA DA PARÍCLA: RABALHO E ENERGIA Neste capítulo será analisada a lei de Newton numa de suas formas integrais, aplicada ao movimento de partículas. Define-se o conceito de trabalho e energia

Leia mais

Prof. MSc. David Roza José 1/25

Prof. MSc. David Roza José 1/25 1/25 Fórmulas de Integração Numérica Objetivos: Saber implementar as seguintes fórmulas de Newton-Cotes: (1) Regra de 1/8 de Simpson; Saber como utilizar a regra trapezoidal para integrar dados desigualmente

Leia mais

0.5 setgray0 0.5 setgray1. Mecânica dos Fluidos Computacional. Aula 4. Leandro Franco de Souza. Leandro Franco de Souza p.

0.5 setgray0 0.5 setgray1. Mecânica dos Fluidos Computacional. Aula 4. Leandro Franco de Souza. Leandro Franco de Souza p. Leandro Franco de Souza lefraso@icmc.usp.br p. 1/1 0.5 setgray0 0.5 setgray1 Mecânica dos Fluidos Computacional Aula 4 Leandro Franco de Souza Leandro Franco de Souza lefraso@icmc.usp.br p. 2/1 A pressão

Leia mais

Prof. MSc. David Roza José 1/44

Prof. MSc. David Roza José 1/44 1/44 Regressão Linear Objetivos: Familiarizar-se com estatística descritiva e distribuição normal; Saber como calcular coeficientes angular e linear da reta de melhor ajuste com regressão linear; Saber

Leia mais

Mecânica dos Fluidos. Prof. Eduardo Loureiro, DSc.

Mecânica dos Fluidos. Prof. Eduardo Loureiro, DSc. Mecânica dos Fluidos Prof. Eduardo Loureiro, DSc. Apresentação Objetivos Introdução à Mecânica dos Fluidos. Apresentação dos seus princípios fundamentais. Demonstrar como estes princípios são usados no

Leia mais

Regra para calcular o determinante de matrizes quadradas de ordem 2x2:

Regra para calcular o determinante de matrizes quadradas de ordem 2x2: O cálculo do determinante de uma matriz quadrada ou triangular é importante para ajudar a solucionar uma série problemas de álgebra, tais como: Determinar se uma matriz possui inversa (se ela é inversível)

Leia mais

Prof. Juan Avila

Prof. Juan Avila Prof. Juan Avila http://professor.ufabc.edu.br/~juan.avila Que é a mecânica dos fluidos? É um ramo da mecânica que estuda o comportamento dos líquidos e gases tanto em repouso quanto em movimento. Existem

Leia mais

Aplicações: Funções marginais

Aplicações: Funções marginais Eercícios propostos ) Calcular dy da função y= f ( ) = e no ponto = para =,. ) Obtenha a diferencial de y= f ( ) = no ponto = para =,. 3) Seja a função y= f ( ) = 5. Calcular y e dy para = e =,. Aplicações:

Leia mais

SIMULAÇÃO DE UM ESCOAMENTO BIFÁSICO ÓLEO- ÁGUA EM RESERVATÓRIO DE PETRÓLEO

SIMULAÇÃO DE UM ESCOAMENTO BIFÁSICO ÓLEO- ÁGUA EM RESERVATÓRIO DE PETRÓLEO SIMULAÇÃO DE UM ESCOAMENTO BIFÁSICO ÓLEO- ÁGUA EM RESERVATÓRIO DE PETRÓLEO T. B. FORTUNATO 1, J. C. S. DUTRA 2 e W. B. da SILVA 3 LAMCES Laboratório de Métodos Computacionais, Controle e Estimação Universidade

Leia mais

SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY

SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY PLANO DE ENSINO IDENTIFICAÇÃO Curso: Engenharia Mecânica Período/Módulo: 1 o Período Disciplina/Unidade Curricular: Cálculo I Código: CE375

Leia mais

Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada

Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada 1) Velocidade e Aceleração 1.1 Velocidade Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada Suponhamos que um corpo se move em

Leia mais

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização:

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO Realização: Fortaleza, Fevereiro/2010 1. LIMITES 1.1. Definição Geral Se os valores de f(x) puderem

Leia mais

Progressões aritméticas

Progressões aritméticas A UUL AL A Progressões aritméticas Quando escrevemos qualquer quantidade de números, um após o outro, temos o que chamamos de seqüência. As seqüências são, freqüentemente, resultado da observação de um

Leia mais

SOLUÇÃO DE UM PROBLEMA UNIDIMENSIONAL DE CONDUÇÃO DE CALOR

SOLUÇÃO DE UM PROBLEMA UNIDIMENSIONAL DE CONDUÇÃO DE CALOR SOLUÇÃO DE UM ROBLEMA UNIDIMENSIONAL DE CONDUÇÃO DE CALOR Marcelo M. Galarça ós Graduação em Engenharia Mecânica Universidade Federal do Rio Grande do Sul ransferência de Calor e Mecânica dos Fluidos Computacional

Leia mais

Investigação Operacional

Investigação Operacional Métodos de Programação Linear: Gráfica, (Mestrado) Engenharia Industrial http://dps.uminho.pt/pessoais/zan - Escola de Engenharia Departamento de Produção e Sistemas 1 Representação Gráfica Considere o

Leia mais

3 Métodos Numéricos Análise das Equações de Movimento

3 Métodos Numéricos Análise das Equações de Movimento 3 Métodos Numéricos A dinâmica de sistemas mecânicos normalmente é modelada como um sistema de equações diferenciais. Estas equações diferenciais devem ser resolvidas a fim de relacionar as variáveis entre

Leia mais

MODELAGEM E SIMULAÇÃO

MODELAGEM E SIMULAÇÃO MODELAGEM E SIMULAÇÃO Professor: Dr. Edwin B. Mitacc Meza edwin@engenharia-puro.com.br www.engenharia-puro.com.br/edwin Análise da Decisão Pela própria natureza da vida, todos nós devemos continuamente

Leia mais

Escola Secundária Eça de Queirós

Escola Secundária Eça de Queirós Escola Secundária Eça de Queirós Laboratório de Física - 12º Ano TL I.6 Coeficiente De Viscosidade De Um Líquido Relatório realizado por: Luís Artur Domingues Rita Nº16 12ºC3 Grupo 1 12 de abril de 2013

Leia mais

DEPARTAMENTO DE ENERGIA LABORATÓRIO DE MECÂNICA DOS FLUIDOS

DEPARTAMENTO DE ENERGIA LABORATÓRIO DE MECÂNICA DOS FLUIDOS Nome: unesp DEPARTAMENTO DE ENERGIA LABORATÓRIO DE MECÂNICA DOS FLUIDOS Turma: Conservação da Massa e Quantidade de Movimento 1 - OBJETIVO Os principais objetivos desta aula prática é aplicar as equações

Leia mais

Capítulo 19. Fórmulas de Integração Numérica

Capítulo 19. Fórmulas de Integração Numérica Capítulo 19 Fórmulas de Integração Numérica Você tem um problema Lembre-se que a velocidade de um saltador de bungee jumping em queda livre como uma função do tempo pode ser calculada como: v t gm gc.

Leia mais

Prof. MSc. David Roza José 1/36

Prof. MSc. David Roza José 1/36 1/36 Integração Numérica de Funções Objetivos: Compreender como a extrapolação de Richardson fornece os meios adequados para criar uma integral mais precisa ao se combinar duas estimativas menos precisas;

Leia mais

ALVARO ANTONIO OCHOA VILLA

ALVARO ANTONIO OCHOA VILLA UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE TECNOLOGIA E GEOCIÊNCIAS DEPARTAMENTO DE ENGENHARIA MECÂNICA PÓS-GRADUAÇÃO. DOUTORADO EM ENERGIA. ANÁLISE DIMENSIONAL E SEMELHANÇA ALVARO ANTONIO OCHOA VILLA

Leia mais

TRANSMISSÃO DE ENERGIA ELÉTRICA

TRANSMISSÃO DE ENERGIA ELÉTRICA UNIVERSIDADE FEDERAL DE JUIZ DE FORA Graduação em Engenharia Elétrica TRANSMISSÃO DE ENERGIA ELÉTRICA PROF. FLÁVIO VANDERSON GOMES E-mail: flavio.gomes@ufjf.edu.br Aula Número: 06 2 - 3 4 5 6 7 8 9 10

Leia mais

LABORATÓRIO DE FÍSICA I - Curso de Engenharia Mecânica

LABORATÓRIO DE FÍSICA I - Curso de Engenharia Mecânica LABORATÓRIO DE FÍSICA I - Curso de Engenharia Mecânica Experimento N 0 03: MOVIMENTO RETILINEO UNIFORME E MOVIMENTO RETILÍNEO UNIFORME VARIADO Objetivos Gerais Ao termino desta atividade o aluno deverá

Leia mais

Comandos de Repetição

Comandos de Repetição Programação de Computadores I UFOP DECOM 2013 2 Exercícios de Revisão Comandos de Repetição Sumário 1 Testes de Compreensão 1 2 Exercícios de Programação 2 1 Testes de Compreensão 1 Determine o valor de

Leia mais

AGRUPAMENTO DE ESCOLAS DO CADAVAL

AGRUPAMENTO DE ESCOLAS DO CADAVAL AGRUPAMENTO DE ESCOLAS DO CADAVAL DEPARTAMENTO: PLANIFICAÇÃO ANUAL - ANO LETIVO: DISCIPLINA: Matemática A (12.º ano) Matemática e Ciências Experimentais 2015/2016 UNIDADE Tema 1 - Probabilidades e Combinatória

Leia mais

Prever qual é a altura máxima atingida após o ressalto de uma bola que é deixada cair de uma determinada altura.

Prever qual é a altura máxima atingida após o ressalto de uma bola que é deixada cair de uma determinada altura. ACTIVIDADE LABORATORIAL FÍSICA 0.º ANO ALF 2.2 BOLA SALTITONA O que se pretende Prever qual é a altura máxima atingida após o ressalto de uma bola que é deixada cair de uma determinada altura. Para tal

Leia mais

A TRANSFORMADA DE LAPLACE E ALGUMAS APLICAÇÕES. (UFG) RESUMO

A TRANSFORMADA DE LAPLACE E ALGUMAS APLICAÇÕES. (UFG) RESUMO A TRANSFORMADA DE LAPLACE E ALGUMAS APLICAÇÕES Fernando Ricardo Moreira 1, Esdras Teixeira Costa 2, Marcio Koetz 3, Samanta Andressa Santos Dumke Teixeira 4, Henrique Bernardes da Silva 5 1 Professor Mestre

Leia mais

Engenharia de Controle e Automação

Engenharia de Controle e Automação ATIVIDADES PRÁTICAS SUPERVISIONADAS 2ª Série Cálculo I Engenharia de Controle e Automação A atividade prática supervisionada (ATPS) é um método de ensinoaprendizagem desenvolvido por meio de um conjunto

Leia mais

A velocidade instantânea (Texto para acompanhamento da vídeo-aula)

A velocidade instantânea (Texto para acompanhamento da vídeo-aula) A velocidade instantânea (Texto para acompanamento da vídeo-aula) Prof. Méricles Tadeu Moretti Dpto. de Matemática - UFSC O procedimento que será utilizado neste vídeo remete a um tempo em que pesquisadores

Leia mais

Regime: Semestre: GRANDEZAS FÍSICAS, UNIDADES E DIMENSÕES Conceito de Grandeza: Grandezas fundamentais e derivadas

Regime: Semestre: GRANDEZAS FÍSICAS, UNIDADES E DIMENSÕES Conceito de Grandeza: Grandezas fundamentais e derivadas FUNDAMENTOS DE FÍSICA [10400] GERAL Regime: Semestre: OBJETIVOS O objectivo da disciplina de Física é o de adquirir conhecimentos técnicos baseados nos princípios físicos fundamentais à análise de problemas

Leia mais

Professor: Juan Julca Avila. Site:

Professor: Juan Julca Avila. Site: Professor: Juan Julca Avila Site: http://professor.ufabc.edu.br/~juan.avila Bibliografia Cook, R.; Malkus, D.; Plesha, M., Concepts and Applications of Finite Element Analysis, John Wiley, New York, Fourth

Leia mais

ADL A Representação Geral no Espaço de Estados

ADL A Representação Geral no Espaço de Estados ADL14 3.3 A Representação Geral no Espaço de Estados definições Combinação linear: Uma combinação linear de n variáveis, x i, para r = 1 a n, é dada pela seguinte soma: (3.17) onde cada K i é uma constante.

Leia mais

UNIVERSIDADE ESTADUAL DE MARINGÁ CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA 1 GRÁFICOS

UNIVERSIDADE ESTADUAL DE MARINGÁ CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA 1 GRÁFICOS UNIVERSIDADE ESTADUAL DE MARINGÁ CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA Prof. Irineu Hibler 1 GRÁFICOS Os gráficos desempenham na Física Experimental um papel preponderante. Mais facilmente pelos

Leia mais

VERSÃO RESPOSTAS PROVA DE MÉTODOS QUANTITATIVOS

VERSÃO RESPOSTAS PROVA DE MÉTODOS QUANTITATIVOS UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM ADMINISTRAÇÃO DE ORGANIZAÇÕES PROCESSO SELETIVO DOUTORADO - TURMA 20 VERSÃO

Leia mais

DERIVADAS Prof. Ricardo Luiz Araújo 28/03/2016

DERIVADAS Prof. Ricardo Luiz Araújo 28/03/2016 1 - Revisão a) Nomenclatura da derivada Sendo uma função dada da seguinte forma: y=f(x) a derivada desta função pode ser referenciada das seguintes maneiras: (deve ser lida como efe linha de f(x) ) ou

Leia mais

Elasticidade e Análise Marginal

Elasticidade e Análise Marginal GOVERNO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CÂMPUS JUAZEIRO/BA COLEG. DE ENG. ELÉTRICA PROF. PEDRO MACÁRIO DE MOURA MATEMÁTICA APLICADA A ADM 2015.2 Discentes CPF

Leia mais

Análise de Dados e Simulação

Análise de Dados e Simulação Universidade de São Paulo Instituto de Matemática e Estatística http:www.ime.usp.br/ mbranco Simulação de Variáveis Aleatórias Contínuas. O método da Transformada Inversa Teorema Seja U U (0,1). Para qualquer

Leia mais

MÉTODO DE ELEMENTOS FINITOS (MEF) -UMA INTRODUÇÃO-

MÉTODO DE ELEMENTOS FINITOS (MEF) -UMA INTRODUÇÃO- MÉTODO DE ELEMENTOS FINITOS (MEF) -UMA INTRODUÇÃO- Curso de Transferência de Calor 1 - FEN03-5190 Prof. Gustavo R. Anjos gustavo.anjos@uerj.br 17 e 23 de junho de 2015 EXEMPLOS - VÍDEOS Escoamento de fluido

Leia mais

A Matemática como Serviço a Ciência da Computação. Prof. Dr. Carlos Eduardo de Barros Paes Coordenador do Curso de Ciência da Computação

A Matemática como Serviço a Ciência da Computação. Prof. Dr. Carlos Eduardo de Barros Paes Coordenador do Curso de Ciência da Computação A Matemática como Serviço a Ciência da Computação Prof. Dr. Carlos Eduardo de Barros Paes Coordenador do Curso de Ciência da Computação A Matemática e Ciência da Computação A Matemática faz parte do DNA

Leia mais

Tópico 3. Limites e continuidade de uma função (Parte 1)

Tópico 3. Limites e continuidade de uma função (Parte 1) Tópico 3. Limites e continuidade de uma função (Parte 1) O Cálculo Diferencial e Integral, também chamado de Cálculo Infinitesimal, ou simplesmente Cálculo, é um ramo importante da matemática, desenvolvido

Leia mais

Conceitos matemáticos:

Conceitos matemáticos: Conceitos matemáticos: Para entender as possíveis mudanças quantitativas que ocorrem, ao nível de uma amostra de sementes, é preciso compreender alguns princípios básicos de cálculo. Tendo sido desenvolvido

Leia mais

Escoamento completamente desenvolvido

Escoamento completamente desenvolvido Escoamento completamente desenvolvido A figura mostra um escoamento laminar na região de entrada de um tubo circular. Uma camada limite desenvolve-se ao longo das paredes do duto. A superfície do tubo

Leia mais

DUTOS E CHAMINÉS DE FONTES ESTACIONÁRIAS DETERMINAÇÃO DA VELOCIDADE E VAZÃO DOS GASES. Método de ensaio

DUTOS E CHAMINÉS DE FONTES ESTACIONÁRIAS DETERMINAÇÃO DA VELOCIDADE E VAZÃO DOS GASES. Método de ensaio CETESB DUTOS E CHAMINÉS DE FONTES ESTACIONÁRIAS DETERMINAÇÃO DA VELOCIDADE E VAZÃO DOS GASES Método de ensaio L9.222 MAI/92 SUMÁRIO Pág. 1 Objetivo...1 2 Normas complementares...1 3 Definições...1 4 Apare1hagem...2

Leia mais

Capítulo 7: Equações Diferenciais Ordinárias. 1. Problema de valor inicial

Capítulo 7: Equações Diferenciais Ordinárias. 1. Problema de valor inicial Capítulo 7: Equações Diferenciais Ordinárias. Problema de valor inicial Definição: Sea uma função de e n um número inteiro positivo então uma relação de igualdade que envolva... n é camada uma equação

Leia mais

Programação Linear (PL) Solução algébrica - método simplex

Programação Linear (PL) Solução algébrica - método simplex Universidade Federal de Itajubá Instituto de Engenharia de Produção e Gestão Pesquisa Operacional Simplex Prof. Dr. José Arnaldo Barra Montevechi Programação Linear (PL) Solução algébrica - método simplex

Leia mais

na Órbita Terrestre: um Estudo do Caos Thales Agricola Instituto de Física UFRJ

na Órbita Terrestre: um Estudo do Caos Thales Agricola Instituto de Física UFRJ 1 Introdução A Influência de Júpiter na Órbita Terrestre: um Estudo do Caos Thales Agricola Instituto de Física UFRJ Investigar o movimento da Terra ( ) quando submetida aos campos gravitacionais do Sol

Leia mais

Letras a b c d e f g h i j l m n o p q r s t u v x z

Letras a b c d e f g h i j l m n o p q r s t u v x z UMA INTRODUÇÃO AO ESTUDO DAS FUNÇÕES MATEMÁTICAS. PROF. ILYDIO PEREIRA DE SÁ I) CRIPTOGRAFIA E FUNÇÕES MATEMÁTICAS Um dos problemas encarados como um passatempo até poucos anos atrás, e que se tornou de

Leia mais

Dada uma função contínua a(t) definida num intervalo I = [0, T ], considere o problema x = a(t) x, x(0) = x 0. (1) Solução do Problema. 0 a(s) ds.

Dada uma função contínua a(t) definida num intervalo I = [0, T ], considere o problema x = a(t) x, x(0) = x 0. (1) Solução do Problema. 0 a(s) ds. Lei Exponencial Dada uma função contínua a(t) definida num intervalo I = [, T ], considere o problema x = a(t) x, x() = x. (1) Solução do Problema O problema (1) admite uma única solução, que é explicitamente

Leia mais

Introdução à Mecânica dos Fluidos

Introdução à Mecânica dos Fluidos Introdução à Mecânica dos Fluidos Definição de Fluido A mecânica dos fluidos lida com o comportamento dos fluidos em repouso e em movimento. Um fluido é uma substância que se deforma continuamente sob

Leia mais

y ds, onde ds é uma quantidade infinitesimal (muito pequena) da curva C. A curva C é chamada o

y ds, onde ds é uma quantidade infinitesimal (muito pequena) da curva C. A curva C é chamada o Integral de Linha As integrais de linha podem ser encontradas em inúmeras aplicações nas iências Eatas, como por eemplo, no cálculo do trabalho realizado por uma força variável sobre uma partícula, movendo-a

Leia mais

GILVANDRO CORREIA DE MELO JÚNIOR UMA ABORDAGEM SOBRE TAXA DE VARIAÇÃO E DERIVADA

GILVANDRO CORREIA DE MELO JÚNIOR UMA ABORDAGEM SOBRE TAXA DE VARIAÇÃO E DERIVADA UNIVERSIDADE ESTADUAL DA PARAÍBA CAMPUS I CENTRO DE CIÊNCIAS E TECNOLOGIAS CCT DEPARTAMENTO DE MATEÁTICA - DM CURSO DE GRADUAÇÃO EM LICENCIATURA PLENA EM MATEMÁTICA GILVANDRO CORREIA DE MELO JÚNIOR UMA

Leia mais

Capítulo 7 - Equações Diferenciais Ordinárias

Capítulo 7 - Equações Diferenciais Ordinárias Capítulo 7 - Equações Diferenciais Ordinárias Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil, Química e Gestão Industrial Carlos

Leia mais

Mecânica dos Fluidos. Análise Dimensional AULA 18. Prof.: Anastácio Pinto Gonçalves Filho

Mecânica dos Fluidos. Análise Dimensional AULA 18. Prof.: Anastácio Pinto Gonçalves Filho Mecânica dos Fluidos AULA 18 Análise Dimensional Prof.: Anastácio Pinto Gonçalves Filho Análise Dimensional Muitos problemas práticos de escoamento de fluidos são muitos complexos, tanto geometricamente

Leia mais

CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x;

CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 22: A Função Logaritmo Natural Objetivos da Aula Denir a função f(x) = ln x; Calcular limites, derivadas e integral envolvendo a função

Leia mais

Um modelo estocástico para o fluxo de caixa de um plano de previdência de um indivíduo 15

Um modelo estocástico para o fluxo de caixa de um plano de previdência de um indivíduo 15 2 Simulação estocástica A simulação computacional consiste em empregar técnicas matemáticas em computadores com o propósito de gerar ensaios que tentam reproduzir de maneira análoga um processo ou operação

Leia mais

PRODUÇÃO DE UMA INTERFACE GRÁFICA (SOFTWARE ACADÊMICO) PARA SIMULAÇÃO DE UMA COLUNA DE DESTILAÇÃO

PRODUÇÃO DE UMA INTERFACE GRÁFICA (SOFTWARE ACADÊMICO) PARA SIMULAÇÃO DE UMA COLUNA DE DESTILAÇÃO PRODUÇÃO DE UMA INTERFACE GRÁFICA (SOFTWARE ACADÊMICO) PARA SIMULAÇÃO DE UMA COLUNA DE DESTILAÇÃO F. L. BEZERRA 1, C.H. SODRÉ 2 e A. MORAIS Jr 3 1,2 Universidade Federal de Alagoas, Centro de Tecnologia

Leia mais

International Rectifier, Blair, e Pillsbury: análise de negócios para apoio à decisão. Fato Real 1

International Rectifier, Blair, e Pillsbury: análise de negócios para apoio à decisão. Fato Real 1 Tecnologias de e-business As muitas tecnologias de e-business tornaram-se componentes cruciais dos sistemas de apoio à decisão. Ferramentas de análise de dados estão sendo usadas para executar processos

Leia mais

Cálculo dos requisitos de arrefecimento para centros de dados

Cálculo dos requisitos de arrefecimento para centros de dados Cálculo dos requisitos de arrefecimento para centros de dados Por Neil Rasmussen Aplicação Técnica Nº 25 Revisão 1 Sumário executivo Este documento descreve como estimar o calor dissipado pelos equipamentos

Leia mais

5 Validação do Software

5 Validação do Software 8 5 Validação do Software Para garantir que os resultados deste trabalho sejam confiáveis, é preciso validar o simulador quanto às leis da física. Para tal, este capítulo apresenta dois casos onde há soluções

Leia mais

CURSO DE ENGENHARIA DE PRODUÇÃO Autorizado pela Portaria nº de 25/08/10 DOU Nº 165 de 27/08/10 PLANO DE CURSO

CURSO DE ENGENHARIA DE PRODUÇÃO Autorizado pela Portaria nº de 25/08/10 DOU Nº 165 de 27/08/10 PLANO DE CURSO CURSO DE ENGENHARIA DE PRODUÇÃO Autorizado pela Portaria nº 1.150 de 25/08/10 DOU Nº 165 de 27/08/10 Componente Curricular: Mecânica Geral Código: ENGP- 273 CH Total: 60 horas Pré-requisito: Física Geral

Leia mais

HIDRODINÂMICA. Princípios gerais do movimento dos fluidos. Teorema de Bernoulli

HIDRODINÂMICA. Princípios gerais do movimento dos fluidos. Teorema de Bernoulli HIDRODINÂMICA Princípios gerais do movimento dos fluidos. Teorema de Bernoulli Movimento dos fluidos perfeitos A hidrodinâmica tem por objeto o estudo do movimento dos fluidos. Consideremos um fluido perfeito

Leia mais

Condições especiais de Acesso e Ingresso ao Ensino Superior

Condições especiais de Acesso e Ingresso ao Ensino Superior Condições especiais de Acesso e Ingresso ao Ensino Superior Provas especialmente adequadas destinadas a avaliar a capacidade, dos maiores de 23 anos, para a frequência dos cursos ministrados na Escola

Leia mais

Fenômenos de Transporte Aula- Equação da energia

Fenômenos de Transporte Aula- Equação da energia Fenômenos de Transporte Aula- Equação da energia para regime permanente Professor: Gustavo Silva 1 Introdução Como já visto, através da equação da continuidade é possível realizar o balanço das vazões

Leia mais

COLÉGIO SÃO JOÃO GUALBERTO

COLÉGIO SÃO JOÃO GUALBERTO RESOLUÇÃO COMENTADA Prof.: Pedro Bittencourt Série: 1ª Turma: A Disciplina: Física Nota: Atividade: Avaliação mensal 1º bimestre Valor da Atividade: 10 Instruções Esta avaliação é individual e sem consulta.

Leia mais

CIRCUITOS DE CORRENTE CONTÍNUA

CIRCUITOS DE CORRENTE CONTÍNUA Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T5 Física Experimental I - 2007/08 CIRCUITOS DE CORRENTE CONTÍNUA 1. Objectivo Verificar as leis fundamentais de conservação da

Leia mais

Ressonador de Helmholtz.

Ressonador de Helmholtz. Ressonador de Helmholtz. Modelo mecânico do ressonador de Helmholtz O ressonador é composto por um volume V, esférico no caso mostrado na figura, e um gargalo de seção reta S e comprimento l. A primeira

Leia mais

CAPÍTULO VI: HIDRODINÂMICA

CAPÍTULO VI: HIDRODINÂMICA CAPÍTULO VI: HIDRODINÂMICA Aula 01 Equação de Euler Hipóteses Simplificadoras para a dedução da Equação de Bernoulli Equação de Bernoulli Significado dos termos da Equação de Bernoulli Representação gráfica

Leia mais

II.4 - Técnicas de Integração Integração de funções racionais:

II.4 - Técnicas de Integração Integração de funções racionais: Nesta aula, em complemento ao da aula anterior iremos resolver integrais de funções racionais utilizando expandindo estas funções em frações parciais. O uso deste procedimento é útil para resolução de

Leia mais

AGRUPAMENTO DE ESCOLAS ANSELMO DE ANDRADE

AGRUPAMENTO DE ESCOLAS ANSELMO DE ANDRADE AGRUPAMENTO DE ESCOLAS ANSELMO DE ANDRADE DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS - Grupo 500 Planificação Anual /Critérios de avaliação Disciplina: Matemática _ 7º ano 2016/2017 Início Fim

Leia mais

Décima aula de FT. Segundo semestre de 2013

Décima aula de FT. Segundo semestre de 2013 Décima aula de FT Segundo semestre de 2013 Vamos eliminar a hipótese do fluido ideal! Por que? Simplesmente porque não existem fluidos sem viscosidade e para mostrar que isto elimina uma situação impossível,

Leia mais

Cálculo Diferencial e Integral I Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Diferencial e Integral I Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Diferencial e Integral I Faculdade de Engenaria, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling Parte 1 - Limites Definição e propriedades; Obtendo limites; Limites laterais. 1) Introdução

Leia mais

Plano de Trabalho Docente Ensino Médio. Habilitação Profissional: Técnico em informática para Internet Integrado ao Ensino Médio

Plano de Trabalho Docente Ensino Médio. Habilitação Profissional: Técnico em informática para Internet Integrado ao Ensino Médio Plano de Trabalho Docente - 2015 Ensino Médio Código: 0262 ETEC ANHANQUERA Município: Santana de Parnaíba Área de Conhecimento: Matemática Componente Curricular: Matemática Série: 1ª Eixo Tecnológico:

Leia mais

Unidade 5: Força e movimento

Unidade 5: Força e movimento Unidade 5: Força e movimento Desde a antiguidade até os dias atuais que nós, seres humanos, estudamos e aprendemos sobre a produção do movimento e como dominá-lo. E essa constante evolução tecnológica

Leia mais

Aula 10 Relatividade. Física 4 Ref. Halliday Volume4. Profa. Keli F. Seidel

Aula 10 Relatividade. Física 4 Ref. Halliday Volume4. Profa. Keli F. Seidel Aula 10 Relatividade Física 4 Ref. Halliday Volume4 Relatividade Relatividade tem a ver com a relação entre valores medidos em referenciais que estão se movendo um em relação ao outro; Teoria da relatividade

Leia mais

Estratégia de Operações

Estratégia de Operações Estratégia de Operações Prof. MSc. Hugo J. Ribeiro Junior Engenharia de Produção - 9º período Janeiro de 2011 SUMÁRIO 1. Introdução; 2. Competências Essenciais; 3. Prioridades Competitivas; 4. Estratégia

Leia mais

MEDIDAS DE PERDA DE CARGA DISTRIBUIDA

MEDIDAS DE PERDA DE CARGA DISTRIBUIDA MEDIDAS DE PERDA DE CARGA DISTRIBUIDA - OBJETIVO Consolidar o conceito de perda de carga a partir do cálculo das perdas distribuídas e localizadas em uma tubulação. - INTRODUÇÃO TEÓRICA.. PERDA DE CARGA

Leia mais

ALGA - Eng. Civil e Eng. Topográ ca - ISE /11 - Geometria Analítica 88. Geometria Analítica

ALGA - Eng. Civil e Eng. Topográ ca - ISE /11 - Geometria Analítica 88. Geometria Analítica ALGA - Eng. Civil e Eng. Topográ ca - ISE - 010/ - Geometria Analítica Geometria Analítica A noção de recta em R e R ; tal como a noção de plano em R já foram abordados no ensino secundário. Neste capítulo

Leia mais

PROVA MODELO Duração da prova: 120 minutos. Grupo 1 - Três questões de resposta múltipla de matemática.

PROVA MODELO Duração da prova: 120 minutos. Grupo 1 - Três questões de resposta múltipla de matemática. Página 1 de 9 Provas de ingresso específicas para avaliar a capacidade para a frequência do ciclo de estudos de licenciatura, pelos titulares de um diploma de especialização tecnológica, Decreto-Lei n.º

Leia mais

Como modelar o comportamento de um sistema? MAB-515

Como modelar o comportamento de um sistema? MAB-515 Como modelar o comportamento de um sistema? MAB-515 Possibilidades de modelagem PARAMETRIZA modelo matemático experimento real AJUDA A COMPREENDER SIMULAÇÃO SOLUÇÃO ANALÍTICA MEDIDAS EXPERIMENTAIS NO MODELO

Leia mais

Simulação de enchimento de um tanque de combustível automotivo utilizando técnicas de CFD

Simulação de enchimento de um tanque de combustível automotivo utilizando técnicas de CFD Universidade Federal de São João Del-Rei MG 26 a 28 de maio de 2010 Associação Brasileira de Métodos Computacionais em Engenharia Simulação de enchimento de um tanque de combustível automotivo utilizando

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aulas 5 e 6 03/2014 Erros Aritmética no Computador A aritmética executada por uma calculadora ou computador é diferente daquela

Leia mais

que o aluno consiga construir uma base sólida de conhecimento, o que o ajudará de forma decisiva no decorrer do seu curso e de toda sua vida acadêmica

que o aluno consiga construir uma base sólida de conhecimento, o que o ajudará de forma decisiva no decorrer do seu curso e de toda sua vida acadêmica MATEMÁTICA I AULA 01: FUNÇÃO E OPERAÇÕES COM FUNÇÕES TÓPICO 01: CONCEITO DE FUNÇÃO MULTIMÍDIA Ligue o som do seu computador! OBS.: Alguns recursos de multimídia utilizados em nossas aulas, como vídeos

Leia mais

Gestão da Inovação. Recursos produtivos, inovação e ciclo de vida do produto

Gestão da Inovação. Recursos produtivos, inovação e ciclo de vida do produto Gestão da Inovação Recursos produtivos, inovação e ciclo de vida do produto 1 Fonte Leitura para a aula REIS, Fernanda Oliveira Alves de. O ciclo de vida do produto e as estratégias de mercado na gestão

Leia mais

AGRUPAMENTO DE ESCOLAS

AGRUPAMENTO DE ESCOLAS AGRUPAMENTO DE ESCOLAS De CASTRO DAIRE Escola Secundária de Castro Daire Grupo de Recrutamento 00 MATEMÁTICA Ano letivo 202/203 Planificação Anual Disciplina: Matemática A Ano: 0º Carga horária semanal:

Leia mais

Tema 0: Módulo Inicial Nº de Aulas Previstas (90 m): 18

Tema 0: Módulo Inicial Nº de Aulas Previstas (90 m): 18 Planificação Anual Matemática A 0º Ano Ano Lectivo 0/0 Tema 0: Módulo Inicial Nº de Aulas Previstas (90 m): 8 (BLOCOS DE 90M) Revelar espírito crítico, de rigor e confiança nos seus raciocínios. Abordar

Leia mais

R R R. 7. corrente contínua e circuitos os circuitos são constituídos por um gerador e cargas ligadas em: Série. resistências & lei de Ohm R A

R R R. 7. corrente contínua e circuitos os circuitos são constituídos por um gerador e cargas ligadas em: Série. resistências & lei de Ohm R A resistências & lei de Ohm R A V R 7. corrente contínua e circuitos os circuitos são constituídos por um gerador e cargas ligadas em: Série Paralelo corrente Rsérie R R Rparalelo R R2 2 SÉREigual corrente

Leia mais

Por fim, deve-se mencionar o problema da geometria 2D complexa. Segundo a MFLE, as taxas de propagação das trincas por fadiga dependem

Por fim, deve-se mencionar o problema da geometria 2D complexa. Segundo a MFLE, as taxas de propagação das trincas por fadiga dependem 1 Introdução Este trabalho trata da simulação numérica, com verificação experimental, do processo de trincamento de componentes estruturais bi-dimensionais (2D) por fadiga sob cargas de amplitude variável.

Leia mais

AGRUPAMENTO DE ESCOLAS ANSELMO DE ANDRADE

AGRUPAMENTO DE ESCOLAS ANSELMO DE ANDRADE AGRUPAMENTO DE ESCOLAS ANSELMO DE ANDRADE DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS Grupo 500 Planificação Anual / Critérios de Avaliação Disciplina: Matemática _ 9.º ano 2016 / 2017 Início Fim

Leia mais

DETERMINAÇÃO DO CALOR ESPECÍFICO DO ALUMÍNIO

DETERMINAÇÃO DO CALOR ESPECÍFICO DO ALUMÍNIO DETERMINAÇÃO DO CALOR ESPECÍFICO DO ALUMÍNIO INTRODUÇÃO Equação de resfriamento de Newton Quando dois objetos, com temperaturas diferentes, são colocados em contato térmico, há transferência de calor do

Leia mais

Unidade Curricular: Física Aplicada

Unidade Curricular: Física Aplicada Mestrado Integrado em Ciências Farmacêuticas Unidade Curricular: Física Aplicada Aulas Laboratoriais Trabalho laboratorial nº. 3 (1ª. parte) Viscosidade de Líquidos DETERMINAÇÃO DO COEFICIENTE DE VISCOSIDADE

Leia mais

Integrais. Parte I I. Integrais Indefinidos [ELL] Definição

Integrais. Parte I I. Integrais Indefinidos [ELL] Definição Parte I I. Indefinidos [ELL] A taxa de crescimento da população Estafilococos é dada por 21, em milhares de indivíduos por minuto, onde representa o tempo, em minutos. Qual a função que devolve o número

Leia mais

EXAME ENSINO PROFISSIONAL

EXAME ENSINO PROFISSIONAL AGRUPAMENTO DE ESCOLAS DE OLIVEIRA DE FRADES EXAME ENSINO PROFISSIONAL Disciplina: Física e Química Módulo: F1 Tipo de Prova: Escrita Duração: 90 minutos Ano letivo: 2012/2013 Conteúdos Objetivos Estrutura

Leia mais

Zeros de Polinômios. 1 Resultados Básicos. Iguer Luis Domini dos Santos 1, Geraldo Nunes Silva 2

Zeros de Polinômios. 1 Resultados Básicos. Iguer Luis Domini dos Santos 1, Geraldo Nunes Silva 2 Zeros de Polinômios Iguer Luis Domini dos Santos, Geraldo Nunes Silva 2 DCCE/IBILCE/UNESP, São José do Rio Preto, SP, Brazil, iguerluis@hotmail.com 2 DCCE/IBILCE/UNESP, São José do Rio Preto, SP,Brazil,

Leia mais