Simuladão de Matemática 2015

Tamanho: px
Começar a partir da página:

Download "Simuladão de Matemática 2015"

Transcrição

1 Simuladão de Matemática (Unicamp 014) A figura abaixo exibe, em porcentagem, a previsão da oferta de energia no Brasil em 00, segundo o Plano Nacional de Energia. Segundo o plano, em 00, a oferta total de energia do país irá atingir 557 milhões de tep (toneladas equivalentes de petróleo). Nesse caso, podemos prever que a parcela oriunda de fontes renováveis, indicada em cinza na figura, equivalerá a a) 178,40 milhões de tep. b) 97,995 milhões de tep. c) 5,18 milhões de tep. d) 59,56 milhões de tep.. (Unifor 014) Após acionar um flash de uma câmera, a bateria imediatamente começa a recarregar o capacitor do flash, o qual armazena uma carga elétrica dada por t Q(t) Q 0 1e, onde Q 0 é a capacidade máxima da carga e t é medido em segundos. O tempo que levará para o capacitor recarregar 90% da capacidade é de: Dado ln10 =,. a),6 segundos. b),6 segundos. c) 4,6 segundos. d) 5,6 segundos. e) 6,6 segundos. Simuladão de Matemática 015 Página 1 de 60

2 . (Fuvest 015) A grafite de um lápis tem quinze centímetros de comprimento e dois milímetros de espessura. Dentre os valores abaixo, o que mais se aproxima do número de átomos presentes nessa grafite é Nota: 1) Assuma que a grafite é um cilindro circular reto, feito de grafita pura. A espessura da grafite é o diâmetro da base do cilindro. ) Adote os valores aproximados de:,g / cm para a densidade da grafita; a) 5 10 b) 1 10 c) g / mol para a massa molar do carbono; 1 6,0 10 mol para a constante de Avogadro d) e) (Ufg 014) A figura a seguir mostra duas retas que modelam o crescimento isolado de duas espécies (A e B) de angiospermas. Em um experimento, as duas espécies foram colocadas em um mesmo ambiente, obtendo-se os modelos de crescimento em associação, para o número de indivíduos das espécies A e B, em função do número t de semanas, dados pelas equações p A(t) 5 t e p B(t) 81 4t, respectivamente. Considerando-se os modelos de crescimento isolado e em associação, conclui-se que a semana na qual o número de indivíduos das duas espécies será igual, no modelo isolado, e o tipo de interação biológica estabelecida são, respectivamente: a) 4 e comensalismo. b) e comensalismo. c) e competição. d) e parasitismo. e) 4 e competição. 5. (Fuvest 01) Francisco deve elaborar uma pesquisa sobre dois artrópodes distintos. Eles serão selecionados, ao acaso, da seguinte relação: aranha, besouro, barata, lagosta, camarão, formiga, ácaro, caranguejo, abelha, carrapato, escorpião e gafanhoto. Qual é a probabilidade de que ambos os artrópodes escolhidos para a pesquisa de Francisco não sejam insetos? a) b) 14 c) 7 d) 5 e) Simuladão de Matemática 015 Página de 60

3 6. (Pucrj 015) A quantidade de anagramas da palavra CONCURSO é: a) 50 b) 5040 c) d) 0160 e) 400 TEXTO PARA A PRÓXIMA QUESTÃO: Uma loja identifica seus produtos com um código que utiliza 16 barras, finas ou grossas. Nesse sistema de codificação, a barra fina representa o zero e a grossa o 1. A conversão do código em algarismos do número correspondente a cada produto deve ser feita de acordo com esta tabela: Código Algarismo Código Algarismo Observe um exemplo de código e de seu número correspondente: 7. (Uerj 015) Considere o código abaixo, que identifica determinado produto. Esse código corresponde ao seguinte número: a) 685 b) 574 c) 8645 d) (Ufsm 015) Cada grama de sal de cozinha contém 0,4 grama de sódio, íon essencial para o organismo, pois facilita a retenção de água. Porém, o consumo excessivo de sal pode sobrecarregar o sistema cardiovascular. O Ministério da Saúde recomenda a ingestão de 5 gramas de sal por dia, entretanto pesquisas apontam que os brasileiros consomem, em média, 10 gramas de sal diariamente. A tabela a seguir mostra a quantidade de sódio (em miligramas) presente em alguns alimentos. Bebidas Pratos Sobremesas Refrigerante Água de coco (1 copo) (1 unidade) 10 mg 66 mg Macarrão instantâneo (1 pacote) 1951mg Paçoca (1 unidade) 41mg Hambúrguer com fritas (1 porção) 1810 mg Sorvete de flocos (1 bola) 7 mg Disponível em: Acesso em: 15 set (adaptado) Com base na tabela, o número de refeições com uma bebida, um prato e uma sobremesa que não ultrapassa o limite diário de sódio recomendado pelo Ministério da Saúde é igual a a) 8. b) 5. c) 4. d). e). Simuladão de Matemática 015 Página de 60

4 9. (Espcex (Aman) 015) O termo independente de x no desenvolvimento de igual a a) 110. b) 10. c) 10. d) 410. e) x x 10 é 10. (Pucpr 015) Em uma enquete, com 500 estudantes, sobre a preferência de cada um com três tipos diferentes de sucos (laranja, manga e acerola), chegou-se ao seguinte resultado: 00 estudantes gostam do suco de laranja; 00 gostam do suco de manga; 150 gostam do suco de acerola; 75 gostam dos sucos de laranja e acerola; 100 gostam dos sucos de laranja e manga; 10 gostam dos três sucos e 65 não gostam de nenhum dos três sucos. O número de alunos que gosta dos sucos de manga e acerola é: a) 40. b) 60. c) 10. d) 50. e) (Uerj 015) De acordo com os dados do quadrinho, a personagem gastou R$ 67,00 na compra de x lotes de maçã, y melões e quatro dúzias de bananas, em um total de 89 unidades de frutas. Desse total, o número de unidades de maçãs comprado foi igual a: a) 4 b) 0 c) 6 d) 4 1. (Ufsm 015) Um piscicultor cria alevinos em um tanque de 500 litros. Para garantir o desenvolvimento dos peixes, o piscicultor necessita que a salinidade da água do tanque seja de 18 gramas de sal por litro. Nesse tanque, foram misturadas água salobra com 5,5 gramas de sal por litro e água doce com 0,5 grama de sal por litro. A quantidade, em litros, de água salobra e doce que deve estar presente no tanque é de, respectivamente, a) 70 e 10. b) 187,5 e 1,5. c) 1750 e 750. d) 156,5 e 97,5. e) 150 e 150. Simuladão de Matemática 015 Página 4 de 60

5 1. (Unicamp 015) Considere o polinômio Se x 1 é a única raiz real de p(x), então podemos afirmar que a) a 0. b) a 1. c) a 0. d) a 1. p(x) x x ax a, onde a é um número real. 14. (Unesp 015) Em uma dissertação de mestrado, a autora investigou a possível influência do descarte de óleo de cozinha na água. Diariamente, o nível de oxigênio dissolvido na água de 4 aquários, que continham plantas aquáticas submersas, foi monitorado. Cada aquário continha diferentes composições do volume ocupado pela água e pelo óleo de cozinha, conforme consta na tabela. percentual do volume I II III IV óleo água Como resultado da pesquisa, foi obtido o gráfico, que registra o nível de concentração de oxigênio dissolvido na água (C), em partes por milhão (ppm), ao longo dos oito dias de experimento (T). Tomando por base os dados e resultados apresentados, é correto afirmar que, no período e nas condições do experimento, a) não há dados suficientes para se estabelecer o nível de influência da quantidade de óleo na água sobre o nível de concentração de oxigênio nela dissolvido. b) quanto maior a quantidade de óleo na água, maior a sua influência sobre o nível de concentração de oxigênio nela dissolvido. c) quanto menor a quantidade de óleo na água, maior a sua influência sobre o nível de concentração de oxigênio nela dissolvido. d) quanto maior a quantidade de óleo na água, menor a sua influência sobre o nível de concentração de oxigênio nela dissolvido. e) não houve influência da quantidade de óleo na água sobre o nível de concentração de oxigênio nela dissolvido. Simuladão de Matemática 015 Página 5 de 60

6 15. (Uerj 015) Um triângulo equilátero possui perímetro P, em metros, e área A, em metros quadrados. Os valores de P e A variam de acordo com a medida do lado do triângulo. Desconsiderando as unidades de medida, a expressão Y P A indica o valor da diferença entre os números P e A. O maior valor de Y é igual a: a) b) c) 4 d) (Pucrj 015) Sejam as funções f(x) x 6x e g(x) x 1. O produto dos valores inteiros de x que satisfazem a desigualdade f(x) g(x) é: a) 8 b) 1 c) 60 d) 7 e) (Fuvest 015) A trajetória de um projétil, lançado da beira de um penhasco sobre um terreno plano e horizontal, é parte de uma parábola com eixo de simetria vertical, como ilustrado na figura abaixo. O ponto P sobre o terreno, pé da perpendicular traçada a partir do ponto ocupado pelo projétil, percorre 0 m desde o instante do lançamento até o instante em que o projétil atinge o solo. A altura máxima do projétil, de 00 m acima do terreno, é atingida no instante em que a distância percorrida por P, a partir do instante do lançamento, é de 10 m. Quantos metros acima do terreno estava o projétil quando foi lançado? a) 60 b) 90 c) 10 d) 150 e) (Fuvest 015) A equação x x y my n, em que m e n são constantes, representa uma circunferência no plano cartesiano. Sabe-se que a reta y x 1 contém o centro da circunferência e a intersecta no ponto (, 4). Os valores de m e n são, respectivamente, a) 4 e b) 4 e 5 c) 4 e d) e 4 e) e Simuladão de Matemática 015 Página 6 de 60

7 19. (Espcex (Aman) 015) O ponto simétrico do ponto (1,5) em relação à reta de equação x y 4 0 é o ponto a), 1. b) 1,. c) 4,4. d),8. e),. x 5 0. (Pucrj 015) Sejam r e s as retas de equações y x e y, respectivamente, representadas no gráfico abaixo. Seja A o ponto de interseção das retas r e s. Sejam B e C os pontos de interseção de r e s com o eixo horizontal, respectivamente. A área do triângulo ABC vale: a) 1,0 b) 1,5 c),0 d) 4,5 e) 6,0 1. (Pucrj 015) O volume do sólido gerado pela rotação de um quadrado de lado cm em torno de um dos seus lados é, em a) π b) 6π c) 9π d) 18π e) 7π cm :. (Fuvest 015) O sólido da figura é formado pela pirâmide SABCD sobre o paralelepípedo reto ABCDEFGH. Sabe-se que S pertence à reta determinada por A e E e que AE cm, AD 4cm e AB 5cm. A medida do segmento SA que faz com que o volume do sólido seja igual a 4 do volume da pirâmide SEFGH é a) cm b) 4 cm c) 6 cm d) 8 cm e) 10 cm Simuladão de Matemática 015 Página 7 de 60

8 . (Uerj 015) Um recipiente com a forma de um cone circular reto de eixo vertical recebe água na razão constante de 1 cm s. A altura do cone mede 4 cm, e o raio de sua base mede cm. Conforme ilustra a imagem, a altura h do nível da água no recipiente varia em função do tempo t em que a torneira fica aberta. A medida de h corresponde à distância entre o vértice do cone e a superfície livre do líquido. Admitindo π, a equação que relaciona a altura h, em centímetros, e o tempo t, em segundos, é representada por: a) h 4 t b) h t c) h t d) h 4 t 4. (Uece 014) Um poliedro convexo tem faces, sendo 0 hexágonos e 1 pentágonos. O número de vértices deste polígono a) 90. b) 7. c) 60. d) (Unifor 014) Os pneus de uma bicicleta têm raio R e seus centros distam R. Além disso, a reta t passa por P e é tangente à circunferência do pneu, formando um ângulo α com a reta s que liga os dois centros. Pode-se concluir que cos α a) b) c) d) e) 6. (Uea 014) Caminhando 100 metros pelo contorno de uma praça circular, uma pessoa descreve um arco de 144. Desse modo, é correto afirmar que a medida, em metros, do raio da circunferência da praça é a) 15π b) 175 π c) 15 π d) 50 π e) 50π Simuladão de Matemática 015 Página 8 de 60

9 7. (Uerj 015) Uma chapa de aço com a forma de um setor circular possui raio R e perímetro R, conforme ilustra a imagem. A área do setor equivale a: a) R R b) 4 R c) R d) 8. (Upe 014) Um triângulo UPE é retângulo, as medidas de seus lados são expressas, em centímetros, por números naturais e formam uma progressão aritmética de razão 5. Quanto mede a área do triângulo UPE? a) 15 cm b) 5 cm c) 15 cm d) 150 cm e) 00 cm 9. (Upf 014) A figura a seguir representa, em sistemas coordenados com a mesma escala, os gráficos das funções reais f e g, com f(x) x e g(x) x. Sabendo que a região poligonal T demarca um trapézio de área igual a 160, o número real c é: a) b) 1,5 c) d) 1 e) 0,5 Simuladão de Matemática 015 Página 9 de 60

10 0. (Acafe 014) Analise as proposições abaixo e classifique-as em V - verdadeiras ou F - falsas. ( ) O triângulo ABC é equilátero e seu perímetro é 1cm. Sabendo que temos uma circunferência inscrita e outra circunscrita ao triângulo ABC, então, a razão entre a área da circunferência inscrita e a área da circunferência circunscrita é 1. 4 ( ) Uma das diagonais de um quadrado está contida na reta x y 4 0. Sabendo que a reta suporte da outra diagonal passa pelo ponto de coordenadas (5, ), pode-se concluir que o perímetro desse quadrado, em unidades de comprimento, é igual a 16. ( ) Na figura abaixo, ABCD, é um quadrado inscrito num triângulo PRQ. Sendo RQ 6cm e a altura relativa a essa base igual a 4cm, então, a área da região hachurada vale, aproximadamente, 5cm. A sequência correta, de cima para baixo, é: a) V - V - F b) V - F - V c) V - F - F d) F - F - V 1. (Unesp 015) Em 09 de agosto de 1945, uma bomba atômica foi detonada sobre a cidade japonesa de Nagasaki. A bomba explodiu a 500 m de altura acima do ponto que ficaria conhecido como marco zero. No filme Wolverine Imortal, há uma sequência de imagens na qual o herói, acompanhado do militar japonês Yashida, se encontrava a 1km do marco zero e a 50 m de um poço. No momento da explosão, os dois correm e se refugiam no poço, chegando nesse local no momento exato em que uma nuvem de poeira e material radioativo, provocada pela explosão, passa por eles. A figura a seguir mostra as posições do marco zero, da explosão da bomba, do poço e dos personagens do filme no momento da explosão da bomba. Simuladão de Matemática 015 Página 10 de 60

11 Se os ventos provocados pela explosão foram de 800 km h e adotando a aproximação 5,4, os personagens correram até o poço, em linha reta, com uma velocidade média, em km h, de aproximadamente a) 8. b) 4. c) 40. d) 6. e).. (Fuvest 015) No triângulo retângulo ABC, ilustrado na figura, a hipotenusa AC mede 1cm e o cateto BC mede 6cm. Se M é o ponto médio de BC, então a tangente do ângulo MAC é igual a a) b) 7 7 c) 7 d) 7 e) 7 Simuladão de Matemática 015 Página 11 de 60

12 . (Pucpr 015) Um mineroduto é uma extensa tubulação para levar minério de ferro extraído de uma mina até o terminal de minério para beneficiamento. Suponha que se pretenda instalar um mineroduto em uma mina que está à margem de um rio com 00 metros de largura até um porto situado do outro lado do rio,.000 metros abaixo. O custo para instalar a tubulação no rio é R$10,00 o metro e o custo para instalar a tubulação em terra é R$6,00 o metro. Estudos mostram que, neste caso, o custo será minimizado se parte do duto for instalada por terra e parte pelo rio. Determine o custo de instalação do duto em função de x, em que x é a distância da mina até o ponto P, como mostra a figura. a) C(x) 6x x b) C(x) x 10x c) C(x) x d) C(x) 6x x e) C(x) x 4. (Espm 014) A figura abaixo mostra a trajetória de um móvel a partir de um ponto A, com BC CD, DE EF, FG GH, HI IJ e assim por diante. Considerando infinita a quantidade desses segmentos, a distância horizontal AP alcançada por esse móvel será de: a) 65 m b) 7 m c) 80 m d) 96 m e) 100 m 5. (Uerj 015) Considere uma mercadoria que teve seu preço elevado de x reais para y reais. Para saber o percentual de aumento, um cliente dividiu y por x, obtendo quociente igual a,08 e resto igual a zero. Em relação ao valor de x, o aumento percentual é equivalente a: a) 10,8% b) 0,8% c) 108,0 d) 08,0% Simuladão de Matemática 015 Página 1 de 60

13 6. (Unicamp 015) Uma compra no valor de reais será paga com uma entrada de 600 reais e uma mensalidade de 40 reais. A taxa de juros aplicada na mensalidade é igual a a) %. b) 5%. c) 8%. d) 10%. 7. (Pucrj 015) Dois descontos sucessivos de % no preço de uma mercadoria equivalem a um único desconto de: a) menos de 6% b) 6% c) entre 6% e 9% d) 9% e) mais de 9% 8. (Unesp 015) Para divulgar a venda de um galpão retangular de m, uma imobiliária elaborou um anúncio em que constava a planta simplificada do galpão, em escala, conforme mostra a figura. O maior lado do galpão mede, em metros, a) 00. b) 5. c) 50. d) 80. e) (Uerj 015) Na imagem da etiqueta, informa-se o valor a ser pago por 0,56 kg de peito de peru. O valor, em reais, de um quilograma desse produto é igual a: a) 5,60 b),76 c) 40,00 d) 50,00 Simuladão de Matemática 015 Página 1 de 60

14 40. (Pucrj 015) A soma dos valores inteiros que satisfazem a desigualdade a) 9 b) 6 c) 0 d) 4 e) 9 x 6x 8 é: 41. (Uerj 014) Em um recipiente com a forma de um paralelepípedo retângulo com 40cm de comprimento, 5cm de largura e 0cm de altura, foram depositadas, em etapas, pequenas esferas, cada uma com volume igual a 0,5cm. Na primeira etapa, depositou-se uma esfera; na segunda, duas; na terceira, quatro; e assim sucessivamente, dobrando-se o número de esferas a cada etapa. Admita que, quando o recipiente está cheio, o espaço vazio entre as esferas é desprezível. 10 Considerando 1000, o menor número de etapas necessárias para que o volume total de esferas seja maior do que o volume do recipiente é: a) 15 b) 16 c) 17 d) (Uerj 015) Observe a matriz A, quadrada e de ordem três. 0, 0,47 0,6 A 0,47 0,6 x 0,6 x 0,77 Considere que cada elemento O valor de x é igual a: a) 0,50 b) 0,70 c) 0,77 d) 0,87 a ij dessa matriz é o valor do logaritmo decimal de (i j). 4. (Unesp 015) No artigo Desmatamento na Amazônia Brasileira: com que intensidade vem ocorrendo?, o pesquisador Philip M. Fearnside, do INPA, sugere como modelo matemático kt para o cálculo da área de desmatamento a função D(t) D(0) e, em que D(t) representa a área de desmatamento no instante t, sendo t medido em anos desde o instante inicial, D(0) a área de desmatamento no instante inicial t 0, e k a taxa média anual de desmatamento da região. Admitindo que tal modelo seja representativo da realidade, que a taxa média anual de desmatamento (k) da Amazônia seja 0,6% e usando a aproximação n 0,69, o número de anos necessários para que a área de desmatamento da Amazônia dobre seu valor, a partir de um instante inicial prefixado, é aproximadamente a) 51. b) 115. c) 15. d) 151. e) (Pucrj 015) Se log1x, então x x vale: a) 4 b) 6 c) 8 d) 50 e) 66 Simuladão de Matemática 015 Página 14 de 60

15 45. (Unicamp 015) Considere a matriz A A e A é invertível, então a) a 1 e b 1. b) a 1 e b 0. c) a 0 e b 0. d) a 0 e b (Mackenzie 014) Se a matriz 1 x y z y z y z z 0 a 0 A, b 1 onde a e b são números reais. Se é simétrica, o valor de x é a) 0 b) 1 c) 6 d) e) (Enem 014) Ao final de uma competição de ciências em uma escola, restaram apenas três candidatos. De acordo com as regras, o vencedor será o candidato que obtiver a maior média ponderada entre as notas das provas finais nas disciplinas química e física, considerando, respectivamente, os pesos 4 e 6 para elas. As notas são sempre números inteiros. Por questões médicas, o candidato II ainda não fez a prova final de química. No dia em que sua avaliação for aplicada, as notas dos outros dois candidatos, em ambas as disciplinas, já terão sido divulgadas. O quadro apresenta as notas obtidas pelos finalistas nas provas finais. Candidato Química Física I 0 II X 5 III 1 18 A menor nota que o candidato II deverá obter na prova final de química para vencer a competição é a) 18. b) 19. c). d) 5. e) (Insper 014) Para fazer parte do time de basquete de uma escola, é necessário ter, no mínimo, 11 anos. A média das idades dos cinco jogadores titulares desse time é 1 anos, sendo que o mais velho deles tem 17 anos. Dessa forma, o segundo mais velho do time titular pode ter, no máximo, a) 17 anos. b) 16 anos. c) 15 anos. d) 14 anos. e) 1 anos. 49. (Pucpr 015) Se (x ) é um fator do polinômio igual a: a). b). c). d) 6. e) 6. x kx 1x 8, então, o valor de k é Simuladão de Matemática 015 Página 15 de 60

16 50. (Espcex (Aman) 015) O polinômio q(x) x x deixa resto r(x). Sabendo disso, o valor numérico de r( 1) é a) 10. b) 4. c) 0. d) 4. e) f(x) x x x 1, quando dividido por 51. (Unesp 014) O polinômio P(x) a x x b é divisível por x e, quando divisível por x +, deixa resto 45. Nessas condições, os valores de a e b, respectivamente, são a) 1 e 4. b) 1 e 1. c) 1 e 1. d) e 16. e) 1 e (Insper 014) Sendo x e y dois números reais não nulos, a expressão equivalente a x y a). x y xy b). x y x y c). d) x y. e) x y. 1 (x y ) é 5. (G1 - ifsp 014) Leia as notícias: A NGC 4151 está localizada a cerca de 4 milhões de anos-luz da Terra e se enquadra entre as galáxias jovens que possui um buraco negro em intensa atividade. Mas ela não é só lembrada por esses quesitos. A NGC 4151 é conhecida por astrônomos como o olho de Sauron, uma referência ao vilão do filme O Senhor dos Anéis. (http://www1.folha.uol.com.br/ciencia/88760-galaxia-herda-nome-de-vilao-do-filmeo-senhor-dos-aneis.shtml Acesso em: ) Cientistas britânicos conseguiram fazer com que um microscópio ótico conseguisse enxergar objetos de cerca de 0, m, oferecendo um olhar inédito sobre o mundo nanoscópico. (http://noticias.uol.com.br/ultnot/cienciaesaude/ultimas-noticias/bbc/011/0/0/ com-metodo-inovador-cientistas-criam-microscopio-mais-potente-do-mundo.jhtm Acesso em: Adaptado) Assinale a alternativa que apresenta os números em destaque no texto, escritos em notação científica. 7 8 a) 4, 10 e 5,0 10. b) c) d) e) 7 8 4, 10 e 5, , 10 e 5, , 10 e 5, , 10 e 5,0 10. Simuladão de Matemática 015 Página 16 de 60

17 54. (Fuvest 015) De um baralho de 8 cartas, sete de cada naipe, Luís recebe cinco cartas: duas de ouros, uma de espadas, uma de copas e uma de paus. Ele mantém consigo as duas cartas de ouros e troca as demais por três cartas escolhidas ao acaso dentre as cartas que tinham ficado no baralho. A probabilidade de, ao final, Luís conseguir cinco cartas de ouros é: 1 a) 10 1 b) c) d) e) (Ufsm 015) A tabela a seguir mostra o número de internações hospitalares da população idosa ( 60 ou mais anos de idade), numa determinada região, de acordo com as causas da internação. Causas N de internações Doenças cardíacas 80 Doenças cerebrovasculares 49 Doenças pulmonares 4 Doenças renais 4 Diabetes melito 5 Fraturas de fêmur e ossos dos membros 6 Hipertensão arterial 4 Infecção de pele e tecido subcutâneo 11 Pneumonia bacteriana 77 Úlcera 1 Considere que hipertensão arterial, doenças renais, doenças cardíacas e osteoporose estão associadas ao consumo excessivo de sódio e que as fraturas de fêmur e ossos dos membros são causadas pela osteoporose. Assim, a probabilidade de um idoso internado, escolhido ao acaso, ter como diagnóstico principal uma doença associada ao consumo excessivo de sódio, de acordo com a tabela, é igual a a) 0,40. b) 0,70. c) 0,65. d) 0,5. e) 0, (Pucrj 015) Em uma urna existem 10 bolinhas de cores diferentes, das quais sete têm massa de 00 gramas cada e as outras três têm massa de 00 gramas cada. Serão retiradas bolinhas, sem reposição. A probabilidade de que a massa total das bolinhas retiradas seja de 900 gramas é de: a) 10 b) 7 4 c) 7 10 d) 1 15 e) Simuladão de Matemática 015 Página 17 de 60

18 57. (Unesp 015) Uma loja de departamentos fez uma pesquisa de opinião com consumidores, para monitorar a qualidade de atendimento de seus serviços. Um dos consumidores que opinaram foi sorteado para receber um prêmio pela participação na pesquisa. A tabela mostra os resultados percentuais registrados na pesquisa, de acordo com as diferentes categorias tabuladas. categorias percentuais ótimo 5 regular 4 péssimo 17 não opinaram 15 Se cada consumidor votou uma única vez, a probabilidade de o consumidor sorteado estar entre os que opinaram e ter votado na categoria péssimo é, aproximadamente, a) 0%. b) 0%. c) 6%. d) 9%. e) %. 58. (Enem 014) Para analisar o desempenho de um método diagnóstico, realizam-se estudos em populações contendo pacientes sadios e doentes. Quatro situações distintas podem acontecer nesse contexto de teste: 1. Paciente TEM a doença e o resultado do teste é POSITIVO.. Paciente TEM a doença e o resultado do teste é NEGATIVO.. Paciente NÃO TEM a doença e o resultado do teste é POSITIVO. 4. Paciente NÃO TEM a doença e o resultado do teste é NEGATIVO. Um índice de desempenho para avaliação de um teste diagnóstico é a sensibilidade, definida como a probabilidade de o resultado do teste ser POSITIVO se o paciente estiver com a doença. O quadro refere-se a um teste diagnóstico para a doença A, aplicado em uma amostra composta por duzentos indivíduos. Resultado do Teste Presente Doença A Ausente Positivo Negativo 5 85 BENSEÑOR, I. M.; LOTUFO, P. A. Epidemiologia: abordagem prática. São Paulo: Sarvier, 011 (adaptado). Conforme o quadro do teste proposto, a sensibilidade dele é de a) 47,5% b) 85,0% c) 86,% d) 94,4% e) 95,0% Simuladão de Matemática 015 Página 18 de 60

19 59. (G1 - ifce 014) Considere o lançamento simultâneo de dois dados distinguíveis e não viciados, isto é, em cada dado, a chance de se obter qualquer um dos resultados (1,,, 4, 5, 6) é a mesma. A probabilidade de que a soma dos resultados seja 8 é a) 1. 6 b) 5. 6 c) 1. d) 1. e) (Pucrj 015) Os números a1 5x 5, a x 14 e a 6x estão em PA. A soma dos números é igual a: a) 48 b) 54 c) 7 d) 15 e) 10 n 61. (Fuvest 015) Dadas as sequências an n 4n 4, bn, cn an1 an e bn1 d n, definidas para valores inteiros positivos de n, considere as seguintes afirmações: bn I. a n é uma progressão geométrica; II. b n é uma progressão geométrica; III. c n é uma progressão aritmética; IV. d n é uma progressão geométrica. São verdadeiras apenas a) I, II e III. b) I, II e IV. c) I e III. d) II e IV. e) III e IV. 6. (Ufsm 015) Em 011, o Ministério da Saúde firmou um acordo com a Associação das Indústrias de Alimentação (Abio) visando a uma redução de sódio nos alimentos industrializados. A meta é acumular uma redução de toneladas de sódio nos próximos anos. Suponha que a redução anual de sódio nos alimentos industrializados, a partir de 01, seja dada pela sequência: (1.400,.000,.600,..., 5.600) Assim, assinale verdadeira (V) ou falsa (F) em cada uma das afirmações a seguir. ( ) A sequência é uma progressão geométrica de razão 600. ( ) A meta será atingida em 019. ( ) A redução de sódio nos alimentos industrializados acumulada até 015 será de.00 toneladas. A sequência correta é a) F V V. b) V F V. c) V V F. d) F V F. e) F F V. Simuladão de Matemática 015 Página 19 de 60

20 6. (Espcex (Aman) 015) Na figura abaixo temos uma espiral formada pela união de infinitos semicírculos cujos centros pertencem ao eixo das abscissas. Se o raio do primeiro semicírculo (o maior) é igual a 1 e o raio de cada semicírculo é igual à metade do semicírculo anterior, o comprimento da espiral é igual a a) π. b) π. c) π. d) 4 π. e) 5 π. 64. (Udesc 014) Considere a função 1 aritmética de razão e f(a 1). Analise as proposições. 8 x5 f(x). Sejam (a 1, a, a,...) uma progressão I. a5 157 II. A soma dos 11 primeiros termos da progressão aritmética é III. f(a 5) IV. (f(a 1),f(a ),f(a ),...) é uma progressão geométrica de razão 64. Assinale a alternativa correta. a) Somente as afirmativas I e III são verdadeiras. b) Somente as afirmativas I, III e IV são verdadeiras. c) Somente as afirmativas I e II são verdadeiras. d) Somente as afirmativas III e IV são verdadeiras. e) Todas as afirmativas são verdadeiras , 4 é: 65. (Pucrj 015) O valor de a) 1 b) 15 c) 17 d) 19 e) 1 ax y (Fuvest 015) No sistema linear y z 1, nas variáveis x, y e z, a e m são x z m constantes reais. É correto afirmar: a) No caso em que a 1, o sistema tem solução se, e somente se, m. b) O sistema tem solução, quaisquer que sejam os valores de a e de m. c) No caso em que m, o sistema tem solução se, e somente se, a 1. d) O sistema só tem solução se a m 1. e) O sistema não tem solução, quaisquer que sejam os valores de a e de m. Simuladão de Matemática 015 Página 0 de 60

21 67. (Ufg 014) Em um determinado parque, existe um circuito de caminhada, como mostra a figura a seguir. Um atleta, utilizando um podômetro, percorre em um dia a pista 1 duas vezes, atravessa a ponte e percorre a pista uma única vez, totalizando 1157 passos. No dia seguinte, percorre a pista 1 uma única vez, atravessa a ponte e percorre a pista, também uma única vez, totalizando 757 passos. Além disso, percebe que o número de passos necessários para percorrer sete voltas na pista 1 equivale ao número de passos para percorrer oito voltas na pista. Diante do exposto, conclui-se que o comprimento da ponte, em passos, é: a) 5 b) 6 c) 7 d) 8 e) (Pucrj 015) Sabendo que a) b) 1 c) 6 π π x e 8 1 sen (x), é correto afirmar que sen (x) é: d) 1 7 e) (Upe 014) Um relógio quebrou e está marcando a hora representada a seguir: Felizmente os ponteiros ainda giram na mesma direção, mas a velocidade do ponteiro menor equivale a 9 8 da velocidade do ponteiro maior. Depois de quantas voltas, o ponteiro pequeno vai encontrar o ponteiro grande? a),0 b) 4,0 c) 4,5 d) 6,5 e) 9,5 Simuladão de Matemática 015 Página 1 de 60

22 70. (Insper 014) Na figura abaixo, em que o quadrado PQRS está inscrito na circunferência trigonométrica, os arcos AP e AQ têm medidas iguais a α e β, respectivamente, com 0 α β π. Sabendo que cos α 0,8, pode-se concluir que o valor de cos β é a) 0, 8. b) 0, 8. c) 0, 6. d) 0, 6. e) 0,. 71. (G1 - ifce 014) Considere um relógio analógico de doze horas. O ângulo obtuso formado entre os ponteiros que indicam a hora e o minuto, quando o relógio marca exatamente 5 horas e 0 minutos, é a) 0. b) 0. c) 10. d) 00. e) (Ufsm 015) Cerca de 4,% da população brasileira é hipertensa, quadro que pode ser agravado pelo consumo excessivo de sal. A variação da pressão sanguínea P (em mmhg) de um certo indivíduo é expressa em função do tempo por 8π P(t) 100 0cos t onde t é dado em segundos. Cada período dessa função representa um batimento cardíaco. Analise as afirmativas: I. A frequência cardíaca desse indivíduo é de 80 batimentos por minuto. II. A pressão em t segundos é de 110mmHg. III. A amplitude da função P(t) é de 0mmHg. Está(ão) correta(s) a) apenas I. b) apenas I e II. c) apenas III. d) apenas II e III. e) I, II e III. Simuladão de Matemática 015 Página de 60

PROVA DE MATEMÁTICA VESTIBULAR 2013 - FGV CURSO DE ECONOMIA RESOLUÇÃO: Profa. Maria Antônia C. Gouveia

PROVA DE MATEMÁTICA VESTIBULAR 2013 - FGV CURSO DE ECONOMIA RESOLUÇÃO: Profa. Maria Antônia C. Gouveia PROVA DE MATEMÁTICA VESTIBULAR 0 - FGV CURSO DE ECONOMIA Profa. Maria Antônia C. Gouveia QUESTÃO 0 Laura caminha pelo menos km por dia. Rita também caminha todos os dias, e a soma das distâncias diárias

Leia mais

A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto sergioln@smt.ufrj.br

A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto sergioln@smt.ufrj.br A Matemática no Vestibular do ITA Material Complementar: Prova 01 c 01, Sergio Lima Netto sergioln@smtufrjbr 11 Vestibular 01 Questão 01: Das afirmações: I Se x, y R Q, com y x, então x + y R Q; II Se

Leia mais

PROVAS DE MATEMÁTICA DO VESTIBULARES-2011 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 13 / 12 / 2010

PROVAS DE MATEMÁTICA DO VESTIBULARES-2011 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 13 / 12 / 2010 PROVAS DE MATEMÁTICA DO VESTIBULARES-0 DA MACKENZIE Profa. Maria Antônia Gouveia. / / 00 QUESTÃO N o 9 Dadas as funções reais definidas por f(x) x x e g(x) x x, considere I, II, III e IV abaixo. I) Ambas

Leia mais

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge.

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge. Matemática 2 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um paralelepípedo retângulo acoplado a um prisma triangular. 1,6m 1m 1,4m Calcule o volume da estrutura, em dm 3, e indique

Leia mais

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é:

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é: Aluno(a) Nº. Ano: º do Ensino Médio Exercícios para a Recuperação de MATEMÁTICA - Professores: Escossi e Luciano NÚMEROS COMPLEXOS 1) Calculando-se corretamente as raízes da função f(x) = x + 4x + 5, encontram-se

Leia mais

a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36

a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36 MATEMÁTICA Se Amélia der R$ 3,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade

Leia mais

Exercícios de Matemática Geometria Analítica - Circunferência

Exercícios de Matemática Geometria Analítica - Circunferência Exercícios de Matemática Geometria Analítica - Circunferência ) (Unicamp-000) Sejam A e B os pontos de intersecção da parábola y = x com a circunferência de centro na origem e raio. a) Quais as coordenadas

Leia mais

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa E. alternativa A. alternativa B

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa E. alternativa A. alternativa B Questão TIPO DE PROVA: A Em uma promoção de final de semana, uma montadora de veículos colocou à venda n unidades, ao preço único unitário de R$ 0.000,00. No sábado foram vendidos 9 dos Questão Na figura,

Leia mais

Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas.

Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas. PROVA APLICADA ÀS TURMAS DO O ANO DO ENSINO MÉDIO DO COLÉGIO ANCHIETA EM MARÇO DE 009. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES DE 0 A 08.

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C Questão TIPO DE PROVA: A Se a circunferência de um círculo tiver o seu comprimento aumentado de 00%, a área do círculo ficará aumentada de: a) 00% d) 00% b) 400% e) 00% c) 50% Aumentando o comprimento

Leia mais

FUVEST VESTIBULAR 2005 FASE II RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA.

FUVEST VESTIBULAR 2005 FASE II RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA. FUVEST VESTIBULAR 00 FASE II PROFA. MARIA ANTÔNIA GOUVEIA. Q 0. Para a fabricação de bicicletas, uma empresa comprou unidades do produto A, pagando R$9, 00, e unidades do produto B, pagando R$8,00. Sabendo-se

Leia mais

ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere os conjuntos S = {0,2,4,6}, T = {1,3,5} e U = {0,1} e as afirmações: I. {0} S e S U. II. {2} S\U e S T U={0,1}.

Leia mais

O B. Podemos decompor a pirâmide ABCDE em quatro tetraedros congruentes ao tetraedro BCEO. ABCDE tem volume igual a V = a2.oe

O B. Podemos decompor a pirâmide ABCDE em quatro tetraedros congruentes ao tetraedro BCEO. ABCDE tem volume igual a V = a2.oe GABARITO - QUALIFICAÇÃO - Setembro de 0 Questão. (pontuação: ) No octaedro regular duas faces opostas são paralelas. Em um octaedro regular de aresta a, calcule a distância entre duas faces opostas. Obs:

Leia mais

RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_2007_ 2A FASE. RESOLUÇÃO PELA PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_2007_ 2A FASE. RESOLUÇÃO PELA PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_007_ A FASE RESOLUÇÃO PELA PROFA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA Questão Se Amélia der R$3,00 a Lúcia, então ambas ficarão com a mesma quantia Se Maria

Leia mais

Soluções das Questões de Matemática da Universidade do Estado do Rio de Janeiro UERJ

Soluções das Questões de Matemática da Universidade do Estado do Rio de Janeiro UERJ Soluções das Questões de Matemática da Universidade do Estado do Rio de Janeiro UERJ 1º Exame de Qualificação 011 Questão 6 Vestibular 011 Observe a representação do trecho de um circuito elétrico entre

Leia mais

QUESTÕES ÁREAS DE POLÍGONOS

QUESTÕES ÁREAS DE POLÍGONOS QUESTÕES ÁREAS DE POLÍGONOS 1. (Unicamp 014) O perímetro de um triângulo retângulo é igual a 6,0 m e as medidas dos lados estão em progressão aritmética (PA). A área desse triângulo é igual a a),0 m. b),0

Leia mais

Função do 2º Grau. V(x) 3x 12x. C(x) 5x 40x 40.

Função do 2º Grau. V(x) 3x 12x. C(x) 5x 40x 40. Função do º Grau. (Espcex (Aman) 04) Uma indústria produz mensalmente x lotes de um produto. O valor mensal resultante da venda deste produto é dado por C(x) 5x 40x 40. V(x) 3x x e o custo mensal da produção

Leia mais

LISTA de RECUPERAÇÃO MATEMÁTICA

LISTA de RECUPERAÇÃO MATEMÁTICA LISTA de RECUPERAÇÃO Professor: ARGENTINO Recuperação: O ANO DATA: 0 / 06 / 015 MATEMÁTICA 1. A figura representa duas raias de uma pista de atletismo plana. Fábio (F) e André (A) vão apostar uma corrida

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web . (Pucrj 015) Sejam as funções f(x) = x 6x e g(x) = x 1. O produto dos valores inteiros de x que satisfazem a desigualdade f(x) < g(x) é: a) 8 b) 1 c) 60 d) 7 e) 10 4. (Acafe 014) O vazamento ocorrido

Leia mais

NOTAÇÕES. +... + a n. , sendo n inteiro não negativo k =1. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares.

NOTAÇÕES. +... + a n. , sendo n inteiro não negativo k =1. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares. MATEMÁTICA NOTAÇÕES : conjunto dos números reais : conjunto dos números complexos i: unidade imaginária, i = z: módulo do número z Re(z): parte real do número z Im(z): parte imaginária do número z det

Leia mais

Questão 1. Questão 3. Questão 2. alternativa B. alternativa C. alternativa D. Os trabalhadores A e B, trabalhando separadamente,

Questão 1. Questão 3. Questão 2. alternativa B. alternativa C. alternativa D. Os trabalhadores A e B, trabalhando separadamente, Questão Os trabalhadores A e B, trabalhando separadamente, levam cada um 9 e 0 horas, respectivamente, para construir um mesmo muro de tijolos Trabalhando juntos no serviço, sabe-se que eles assentam 0

Leia mais

1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra

1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra GEOMETRIA PLANA: SEMELHANÇA DE TRIÂNGULOS 2 1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra a figura. A rodovia AC tem 40km, a rodovia AB tem 50km, os ângulos

Leia mais

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul Resolução da Prova da Escola Naval 29. Matemática Prova Azul GABARITO D A 2 E 2 E B C 4 D 4 C 5 D 5 A 6 E 6 C 7 B 7 B 8 D 8 E 9 A 9 A C 2 B. Os 6 melhores alunos do Colégio Naval submeteram-se a uma prova

Leia mais

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 010 1 a Fase Profa Maria Antônia Gouveia QUESTÃO 01 Sobre números reais, é correto afirmar: (01) Se m é um número inteiro divisível por e n é um número inteiro divisível

Leia mais

Circunferência e Círculos

Circunferência e Círculos Circunferência e Círculos 1. (Unifor 2014) Os pneus de uma bicicleta têm raio R e seus centros distam R. Além disso, a reta t passa por P e é tangente à circunferência do pneu, formando um ângulo α com

Leia mais

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma.

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma. 2ª Fase Matemática Introdução A prova de matemática da segunda fase é constituída de 12 questões, geralmente apresentadas em ordem crescente de dificuldade. As primeiras questões procuram avaliar habilidades

Leia mais

GA Estudo das Retas. 1. (Pucrj 2013) O triângulo ABC da figura abaixo tem área 25 e vértices A = (4, 5), B = (4, 0) e C = (c, 0).

GA Estudo das Retas. 1. (Pucrj 2013) O triângulo ABC da figura abaixo tem área 25 e vértices A = (4, 5), B = (4, 0) e C = (c, 0). GA Estudo das Retas 1. (Pucrj 01) O triângulo ABC da figura abaixo tem área 5 e vértices A = (, 5), B = (, 0) e C = (c, 0). A equação da reta r que passa pelos vértices A e C é: a) y x 7 x b) y 5 x c)

Leia mais

Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema

Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema Matemática 01. A ilustração a seguir é de um cubo com aresta medindo 6 cm. A, B, C e D são os vértices indicados do cubo, E é o centro da face contendo C e D, e F é o pé da perpendicular a BD traçada a

Leia mais

ESCOLA DE ESPECIALISTAS DE AERONÁUTICA COLETÂNEA DE PROVAS DE MATEMÁTICA DO EXAME DE ADMISSÃO AO CURSO DE FORMAÇÃO DE SARGENTOS.

ESCOLA DE ESPECIALISTAS DE AERONÁUTICA COLETÂNEA DE PROVAS DE MATEMÁTICA DO EXAME DE ADMISSÃO AO CURSO DE FORMAÇÃO DE SARGENTOS. ESCOLA DE ESPECIALISTAS DE AERONÁUTICA COLETÂNEA DE PROVAS DE MATEMÁTICA DO EXAME DE ADMISSÃO AO CURSO DE FORMAÇÃO DE SARGENTOS ÁLGEBRA I: 003 a 013 Funções: definição de função; funções definidas por

Leia mais

MATEMÁTICA. Prova resolvida. Material de uso exclusivo dos alunos do Universitário

MATEMÁTICA. Prova resolvida. Material de uso exclusivo dos alunos do Universitário Prova resolvida Material de uso exclusivo dos alunos do Universitário Prova de Matemática - UFRGS/00 0. Durante os jogos Pan-Americanos de Santo Domingo, os rasileiros perderam o ouro para os cuanos por

Leia mais

Obs.: São cartesianos ortogonais os sistemas de coordenadas

Obs.: São cartesianos ortogonais os sistemas de coordenadas MATEMÁTICA NOTAÇÕES : conjunto dos números complexos : conjunto dos números racionais : conjunto dos números reais : conjunto dos números inteiros = {0,,, 3,...} * = {,, 3,...} Ø: conjunto vazio A\B =

Leia mais

EXAME DE ACESSO PROFMAT - 2015 - SOLUÇÕES (B) 7 (E) 12

EXAME DE ACESSO PROFMAT - 2015 - SOLUÇÕES (B) 7 (E) 12 EXAME DE ACESSO PROFMAT - 015 - SOLUÇÕES 1. Se x é um número real tal que x + 1 x = 3, então x + 1 é igual a: x (A) 6 (D) 9 Resposta: B) (B) 7 (E) 1 (C) 8 Elevando ambos os membros da equação x + 1 = 3

Leia mais

Exercícios Trigonometria

Exercícios Trigonometria Exercícios Trigonometria Temas Abordados: Funções Trigonométricas e Equações; Arcos na Circunferência; Redução ao Primeiro Quadrante; Razões Trigonométricas.. (Upe 0) Um relógio quebrou e está marcando

Leia mais

www.exatas.clic3.net

www.exatas.clic3.net www.exatas.clic.net 8)5*6±0$7(0È7,&$± (67$59$6(5 87,/,=$'66 6(*8,7(66Ì0%/6(6,*,),&$'6 i: unidade imaginária número complexo : a +bi; a, b números reais log x: logaritmo de x na base 0 cos x: cosseno de

Leia mais

MATEMÁTICA TIPO C. 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a

MATEMÁTICA TIPO C. 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a 1 MATEMÁTICA TIPO C 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a veracidade das afirmações seguintes sobre, cujo gráfico está esboçado a seguir.

Leia mais

α rad, assinale a alternativa falsa.

α rad, assinale a alternativa falsa. Nome: ºANO / CURSO TURMA: DATA: 0 / 09 / 0 Professor: Paulo (G - ifce 0) Considere um relógio analógico de doze horas O ângulo obtuso formado entre os ponteiros que indicam a hora e o minuto, quando o

Leia mais

( ) = = MATEMÁTICA. Prova: 28/07/13. Questão 17. Questão 18

( ) = = MATEMÁTICA. Prova: 28/07/13. Questão 17. Questão 18 Prova: 8/07/13 MATEMÁTICA Questão 17 A equação x 3 4 x + 5x + 3 = 0 possui as raízes m, p e q. O valor da expressão m + p + q é pq mq mp (A). (B) 3. (C). (D) 3. Gabarito: Letra A. A expressão é igual a:

Leia mais

UFRGS 2005 - MATEMÁTICA. 01) Considere as desigualdades abaixo. 2 2 3 3. 1 1 3 3. III) 3 2. II) Quais são verdadeiras?

UFRGS 2005 - MATEMÁTICA. 01) Considere as desigualdades abaixo. 2 2 3 3. 1 1 3 3. III) 3 2. II) Quais são verdadeiras? UFRGS 005 - MATEMÁTICA 0) Considere as desigualdades abaixo. I) 000 3000 3. II) 3 3. III) 3 3. Quais são verdadeiras? a) Apenas I. b) Apenas II. Apenas I e II. d) Apenas I e III e) Apenas II e III 0) Observe

Leia mais

Questão 2. Questão 1. Questão 3. Resposta. Resposta

Questão 2. Questão 1. Questão 3. Resposta. Resposta Instruções: Indique claramente as respostas dos itens de cada questão, fornecendo as unidades, caso existam. Apresente de forma clara e ordenada os passos utilizados na resolução das questões. Expressões

Leia mais

115% x + 120% + (100 + p)% = 93 2 2. 120% y + 120% + (100 + p)% = 106 2 2 x + y + z = 100

115% x + 120% + (100 + p)% = 93 2 2. 120% y + 120% + (100 + p)% = 106 2 2 x + y + z = 100 MATEMÁTICA Carlos, Luís e Sílvio tinham, juntos, 00 mil reais para investir por um ano. Carlos escolheu uma aplicação que rendia 5% ao ano. Luís, uma que rendia 0% ao ano. Sílvio aplicou metade de seu

Leia mais

Objetivas 2012. Qual dos números abaixo é o mais próximo de 0,7? A) 1/2 B) 2/3 C) 3/4 D) 4/5 E) 5/7 *

Objetivas 2012. Qual dos números abaixo é o mais próximo de 0,7? A) 1/2 B) 2/3 C) 3/4 D) 4/5 E) 5/7 * Objetivas 01 1 Qual dos números abaixo é o mais próximo de 0,7? A) 1/ B) /3 C) 3/4 D) 4/5 E) 5/7 * Considere três números, a, b e c. A média aritmética entre a e b é 17 e a média aritmética entre a, b

Leia mais

(c) 30% (d) 25% aprovados. é a quantidade de: Em uma indústria é fabricado um produto ao custo de

(c) 30% (d) 25% aprovados. é a quantidade de: Em uma indústria é fabricado um produto ao custo de QUESTÃO - EFOMM 0 QUESTÃO - EFOMM 0 Se tgx sec x, o valor de senx cos x vale: ( 7 ( ( ( ( O lucro obtido pela venda de cada peça de roupa é de, sendo o preço da venda e 0 o preço do custo quantidade vendida

Leia mais

FUVEST 2008 2 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia.

FUVEST 2008 2 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia. FUVEST 008 a Fase Matemática Professora Maria Antônia Gouveia Q0 João entrou na lanchonete BOG e pediu hambúrgueres, suco de laranja e cocadas, gastando R$,0 Na mesa ao lado, algumas pessoas pediram 8

Leia mais

(M120397A8) Observe a reta numérica abaixo. O número 0,20 está representado pelo ponto A) A. B) B. C) C. D) D. E) E.

(M120397A8) Observe a reta numérica abaixo. O número 0,20 está representado pelo ponto A) A. B) B. C) C. D) D. E) E. (M120397A8) Observe a reta numérica abaixo. O número 0,20 está representado pelo ponto A) A. B) B. C) C. D) D. E) E. (M050280A8) A professora Clotilde pediu que seus alunos escrevessem um número que representasse

Leia mais

UFRN 2013 Matemática Álgebra 3º ano Prof. Afonso

UFRN 2013 Matemática Álgebra 3º ano Prof. Afonso UFRN 203 Matemática Álgebra 3º ano Prof. Afonso 3 2. (Ufrn 203) Considere a função polinomial f ( x) = x 3x x + 3. a) Calcule os valores de f ( ), f ( ) e f ( 3 ). b) Fatore a função dada. c) Determine

Leia mais

RASCUNHO {a, e} X {a, e, i, o}?

RASCUNHO {a, e} X {a, e, i, o}? 01. Qual o número de conjuntos X que satisfazem a relação {a, e} X {a, e, i, o}? a) d) 7 b) 4 e) 5 c) 6 0. Considere os conjuntos A = {n.a n N} e B = {n.b n N} tal que a e b são números naturais não nulos.

Leia mais

Funções. Parte I. www.soexatas.com Página 1

Funções. Parte I. www.soexatas.com Página 1 Funções Parte I 1. (Uerj 01) O reservatório A perde água a uma taxa constante de 10 litros por hora, enquanto o reservatório B ganha água a uma taxa constante de 1 litros por hora. No gráfico, estão representados,

Leia mais

1. Sendo (x+2, 2y-4) = (8x, 3y-10), determine o valor de x e de y. 2. Dado A x B = { (1,0); (1,1); (1,2) } determine os conjuntos A e B. 3. (Fuvest) Sejam A=(1, 2) e B=(3, 2) dois pontos do plano cartesiano.

Leia mais

Inequação do Primeiro Grau

Inequação do Primeiro Grau Inequação do Primeiro Grau 1. (Unicamp 015) Seja a um número real positivo e considere as funções afins f(x) ax 3a e g(x) 9 x, definidas para todo número real x. a) Encontre o número de soluções inteiras

Leia mais

(A) (B) (C) (D) (E) RESPOSTA: (A)

(A) (B) (C) (D) (E) RESPOSTA: (A) 1. Assinale, dentre as regiões a seguir, pintadas de cinza, aquela que é formada pelos pontos do quadrado cuja distância a qualquer um dos vértices não é maior do que o comprimento do lado do quadrado.

Leia mais

Questão 1. Questão 2. Questão 3. Resposta. Resposta

Questão 1. Questão 2. Questão 3. Resposta. Resposta Questão Carlos, Luís e Sílvio tinham, juntos, 00 mil reais para investir por um ano. Carlos escolheu uma aplicação que rendia 5% ao ano. Luís, uma que rendia 0% ao ano. Sílvio aplicou metade de seu dinheiro

Leia mais

Curso Wellington Matemática Trigonometria Lei dos Senos e Cossenos Prof Hilton Franco

Curso Wellington Matemática Trigonometria Lei dos Senos e Cossenos Prof Hilton Franco 1. A figura a seguir apresenta o delta do rio Jacuí, situado na região metropolitana de Porto Alegre. Nele se encontra o parque estadual Delta do Jacuí, importante parque de preservação ambiental. Sua

Leia mais

Atividade 01 Ponto, reta e segmento 01

Atividade 01 Ponto, reta e segmento 01 Atividade 01 Ponto, reta e segmento 01 1. Crie dois pontos livres. Movimente-os. 2. Construa uma reta passando por estes dois pontos. 3. Construa mais dois pontos livres em qualquer lugar da tela, e o

Leia mais

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA A 2 ạ SÉRIE DO ENSINO MÉDIO EM 2014. Disciplina: MaTeMÁTiCa

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA A 2 ạ SÉRIE DO ENSINO MÉDIO EM 2014. Disciplina: MaTeMÁTiCa Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A ạ SÉRIE DO ENSINO MÉDIO EM 0 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO O medidor de energia elétrica de uma residência,

Leia mais

Geometria Métrica Espacial. Geometria Métrica Espacial

Geometria Métrica Espacial. Geometria Métrica Espacial UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA 1. Prismas Geometria Métrica

Leia mais

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%)

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%) Distribuição das.08 Questões do I T A 9 (8,97%) 0 (9,9%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais (, 0 (9,6%) Geo. Analítica Conjuntos (,96%) Geo. Espacial Funções Binômio de Newton

Leia mais

Aula 12 Áreas de Superfícies Planas

Aula 12 Áreas de Superfícies Planas MODULO 1 - AULA 1 Aula 1 Áreas de Superfícies Planas Superfície de um polígono é a reunião do polígono com o seu interior. A figura mostra uma superfície retangular. Área de uma superfície é um número

Leia mais

Prova 3 Matemática ... GABARITO 3 NOME DO CANDIDATO:

Prova 3 Matemática ... GABARITO 3 NOME DO CANDIDATO: Prova 3 QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA 1. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que constam da etiqueta

Leia mais

Troncos de Cone e de Pirâmide

Troncos de Cone e de Pirâmide Troncos de Cone e de Pirâmide 1. (Uerj 015) Um recipiente com a forma de um cone circular reto de eixo vertical recebe água na razão constante de 1 cm s. A altura do cone mede 4 cm, e o raio de sua base

Leia mais

1 A AVALIAÇÃO ESPECIAL UNIDADE I -2014 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C.

1 A AVALIAÇÃO ESPECIAL UNIDADE I -2014 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. 1 A AVALIAÇÃO ESPECIAL UNIDADE I -014 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA. MARIA ANTÔNIA C. GOUVEIA Questão 01. (UESC-Adaptada) (x + )!(x + )! O valor de x N, que

Leia mais

MATEMÁTICA. 01. Considere a função f, com domínio e contradomínio o conjunto dos números

MATEMÁTICA. 01. Considere a função f, com domínio e contradomínio o conjunto dos números MATEMÁTICA 01. Considere a função f, com domínio e contradomínio o conjunto dos números reais, dada por f(x) = 3 cos x sen x, que tem parte de seu gráfico esboçado a seguir. Analise a veracidade das afirmações

Leia mais

XXIX Olimpíada de Matemática da Unicamp Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

XXIX Olimpíada de Matemática da Unicamp Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas Gabarito da Prova da Primeira Fase Nível Alfa 1 Questão 1 Sabemos que a água do mar contém 3, 5% do seu peso em sal, isto é, um quilograma de água do mar contém 35 gramas de sal (a) Determine quantos litros

Leia mais

Aula 10 Triângulo Retângulo

Aula 10 Triângulo Retângulo Aula 10 Triângulo Retângulo Projeção ortogonal Em um plano, consideremos um ponto e uma reta. Chama-se projeção ortogonal desse ponto sobre essa reta o pé da perpendicular traçada do ponto à reta. Na figura,

Leia mais

COLÉGIO PEDRO II DEPARTAMENTO DE MATEMÁTICA UNIDADE ESCOLAR HUMAITÁ II. Notas de aula de Matemática. 3º ano/ensino Médio. Prof.

COLÉGIO PEDRO II DEPARTAMENTO DE MATEMÁTICA UNIDADE ESCOLAR HUMAITÁ II. Notas de aula de Matemática. 3º ano/ensino Médio. Prof. COLÉGIO PEDRO II DEPARTAMENTO DE MATEMÁTICA UNIDADE ESCOLAR HUMAITÁ II Notas de aula de Matemática 3º ano/ensino Médio Prof. Andrezinho NOÇÕES DE GEOMETRIA ESPACIAL Notas de aula de Matemática Prof. André

Leia mais

Prova 3 - Matemática

Prova 3 - Matemática Prova 3 - QUESTÕES OBJETIIVAS N ọ DE ORDEM: N ọ DE INSCRIÇÃO: NOME DO CANDIDATO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que constam na etiqueta

Leia mais

Combinatória. Matemática Professor: Paulo César 04/12/2014. Lista de Exercícios

Combinatória. Matemática Professor: Paulo César 04/12/2014. Lista de Exercícios Combinatória 1. (Espcex (Aman) 2015) De uma caixa contendo 50 bolas numeradas de 1 a 50 retiram-se duas bolas, sem reposição. A probabilidade do número da primeira bola ser divisível por 4 e o número da

Leia mais

2. Na figura, ANM é um triângulo e ABCD é um quadrado. Calcule a área do quadrado:

2. Na figura, ANM é um triângulo e ABCD é um quadrado. Calcule a área do quadrado: SEMELHANÇA DE TRIÂNGULOS 1. Duas cidades X e Y são interligadas pela rodovia R101, que é retilínea e apresenta 300 km de extensão. A 160 km de X, à beira da R101, fica a cidade Z, por onde passa a rodovia

Leia mais

(a) 9. (b) 8. (c) 7. (d) 6. (e) 5.

(a) 9. (b) 8. (c) 7. (d) 6. (e) 5. 41. Num supermercado, são vendidas duas marcas de sabão em pó, Limpinho, a mais barata, e Cheiroso, 30% mais cara do que a primeira. Dona Nina tem em sua carteira uma quantia que é suficiente para comprar

Leia mais

n! (n r)!r! P(A B) P(A B) = P(A)+P(B) P(A B) P(A/B) = 1 q, 0 < q < 1

n! (n r)!r! P(A B) P(A B) = P(A)+P(B) P(A B) P(A/B) = 1 q, 0 < q < 1 FORMULÁRIO DE MATEMÁTICA Análise Combinatória P n = n! = 1 n A n,r = Probabilidade P(A) = n! (n r)! número de resultados favoráveis a A número de resultados possíveis Progressões aritméticas a n = a 1

Leia mais

Questão 1. Questão 2. Resposta

Questão 1. Questão 2. Resposta Instruções: Indique claramente as respostas dos itens de cada questão, fornecendo as unidades, se for o caso. Apresente de forma clara e ordenada os passos utilizados na resolução das questões. Expressões

Leia mais

QUESTÃO 16 (UNICAMP) Três planos de telefonia celular são apresentados na tabela abaixo:

QUESTÃO 16 (UNICAMP) Três planos de telefonia celular são apresentados na tabela abaixo: Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 2015 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 16 (UNICAMP) Três planos de telefonia celular

Leia mais

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFPE VESTIBULAR 0 a Fase Profa. Maria Antônia Gouveia. 0. A ilustração a seguir é de um cubo com aresta medindo 6cm. A, B, C e D são os vértices indicados do cubo, E é o centro da

Leia mais

Com base nos dados apresentados nessa figura, é correto afirmar que a área do terreno reservado para o parque mede:

Com base nos dados apresentados nessa figura, é correto afirmar que a área do terreno reservado para o parque mede: ÁREAS 1. A prefeitura de certa cidade reservou um terreno plano, com o formato de um quadrilátero, para construir um parque, que servirá de área de lazer para os habitantes dessa cidade. O quadrilátero

Leia mais

. Para que essa soma seja 100, devemos ter 56 + 2x donde 2x = 44 e então x = 22, como antes.

. Para que essa soma seja 100, devemos ter 56 + 2x donde 2x = 44 e então x = 22, como antes. OBMEP 008 Nível 3 1 QUESTÃO 1 Carlos começou a trabalhar com 41-15=6 anos. Se y representa o número total de anos que ele trabalhará até se aposentar, então sua idade ao se aposentar será 6+y, e portanto

Leia mais

PROVA DO VESTIBULAR DA FUVEST 2002 2ª etapa MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÕNIA GOUVEIA.

PROVA DO VESTIBULAR DA FUVEST 2002 2ª etapa MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÕNIA GOUVEIA. PROVA DO VESTIBULAR DA FUVEST 00 ª etapa MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÕNIA GOUVEIA. QUESTÃO.01.Carlos, Luis e Sílvio tinham, juntos, 100 mil reais para investir por um ano. Carlos

Leia mais

Exercícios de Matemática Equações de Segundo Grau

Exercícios de Matemática Equações de Segundo Grau Exercícios de Matemática Equações de Segundo Grau 2. (Ita 2001) O conjunto de todos os valores de m para os quais a função TEXTO PARA A PRÓXIMA QUESTÃO (Ufba 96) Na(s) questão(ões) a seguir escreva nos

Leia mais

Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada

Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada MATEMÁTICA APLICADA 1. SISTEMA ANGULAR INTERNACIONAL...2 2.

Leia mais

UFPR_VESTIBULAR _2004 COMENTÁRIO E RESOLUÇÃO POR PROFA. MARIA ANTONIA GOUVEIA

UFPR_VESTIBULAR _2004 COMENTÁRIO E RESOLUÇÃO POR PROFA. MARIA ANTONIA GOUVEIA UFR_VESTIBULAR _004 COMENTÁRIO E RESOLUÇÃO OR ROFA. MARIA ANTONIA GOUVEIA QUESTÃO Um grupo de estudantes decidiu viajar de ônibus para participar de um encontro nacional. Ao fazerem uma pesquisa de preços,

Leia mais

FUVEST 2008 1 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia.

FUVEST 2008 1 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia. FUVEST 008 a Fase Matemática Professora Maria Antônia Gouveia..0. Sabendo que os anos bissextos são os múltiplos de 4 e que o primeiro dia de 007 foi segunda-feira, o próximo ano a começar também em uma

Leia mais

QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas.

QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas. Resolução por Maria Antônia Conceição Gouveia da Prova de Matemática _ Vestibular 5 da Ufba _ 1ª fase QUESTÕES de 1 a 8 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados

Leia mais

XXXI Olimpíada de Matemática da Unicamp Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

XXXI Olimpíada de Matemática da Unicamp Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas Gabarito da Prova da Primeira Fase Nível Alfa 1 Questão 1 0 pontos Na Tabela 1 temos a progressão mensal para o Imposto de Renda Pessoa Física 014 01. Tabela 1: Imposto de Renda Pessoa Física 014 01. Base

Leia mais

Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN

Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN Questão Concurso 00 Seja ABC um triângulo com lados AB 5, AC e BC 8. Seja P um ponto sobre o lado AC, tal que

Leia mais

QUESTÕES OBJETIVAS. N ọ DE INSCRIÇÃO:

QUESTÕES OBJETIVAS. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que constam na etiqueta fixada

Leia mais

Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se

Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se "Gigante pela própria natureza, És belo, és forte, impávido colosso, E o teu futuro espelha essa grandeza Terra adorada." 01. Um consumidor necessita comprar um determinado produto. Na loja, o vendedor

Leia mais

Progressão Aritmética

Progressão Aritmética Progressão Aritmética 1. (G1 - cftrj 14) Disponha os números 1,,, 4,, 6, 7, 8 e 9 nas casas do tabuleiro abaixo de modo que: o número 9 ocupe a casa central, os números da primeira linha sejam todos ímpares

Leia mais

Cilindro. www.nsaulasparticulares.com.br Página 1 de 13

Cilindro. www.nsaulasparticulares.com.br Página 1 de 13 Cilindro 1. (Ueg 01) Uma coluna de sustentação de determinada ponte é um cilindro circular reto. Sabendo-se que na maquete que representa essa ponte, construída na escala 1:100, a base da coluna possui

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2009 1 a Fase Professora Maria Antônia Gouveia.

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2009 1 a Fase Professora Maria Antônia Gouveia. RESOLUÇÃO DA PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 009 1 a Fase Professora Maria Antônia Gouveia. QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados

Leia mais

QUESTÃO 1 ALTERNATIVA D

QUESTÃO 1 ALTERNATIVA D OBMEP 015 Nível 3 1 QUESTÃO 1 Como,5 = 5 x 0,5, o tempo que o frango deve ficar no forno é 5 x 1 = 60 minutos. Logo, Paula deve colocar o frango no forno às 19 h, mas 15 minutos antes deve acender o forno.

Leia mais

Prova Final 2012 1.ª chamada

Prova Final 2012 1.ª chamada Prova Final 01 1.ª chamada 1. Num acampamento de verão, estão jovens de três nacionalidades: jovens portugueses, espanhóis e italianos. Nenhum dos jovens tem dupla nacionalidade. Metade dos jovens do acampamento

Leia mais

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura.

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura. NOME: ANO: º Nº: POFESSO(A): Ana Luiza Ozores DATA: Algumas definições Áreas: Quadrado: EVISÃO Lista 07 Áreas, Polígonos e Circunferência A, onde representa o lado etângulo: A b h, onde b representa a

Leia mais

PROVA DE MATEMÁTICA DA UEFS VESTIBULAR 2012 2. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UEFS VESTIBULAR 2012 2. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UEFS VESTIBULAR 0 Profa. Maria Antônia Gouveia. Questão Em um grupo de 0 casas, sabe-se que 8 são brancas, 9 possuem jardim e possuem piscina. Considerando-se essa infomação e as

Leia mais

b) 2. c) 4. d) 8. e) 3 π. 5. (Ita 2014) Uma pirâmide de altura h= 1cm e

b) 2. c) 4. d) 8. e) 3 π. 5. (Ita 2014) Uma pirâmide de altura h= 1cm e Geometria Espacial 1. (Uerj 015) Um funil, com a forma de cone circular reto, é utilizado na passagem de óleo para um recipiente com a forma de cilindro circular reto. O funil e o recipiente possuem a

Leia mais

Triângulo Retângulo. Exemplo: O ângulo do vértice em. é a hipotenusa. Os lados e são os catetos. O lado é oposto ao ângulo, e é adjacente ao ângulo.

Triângulo Retângulo. Exemplo: O ângulo do vértice em. é a hipotenusa. Os lados e são os catetos. O lado é oposto ao ângulo, e é adjacente ao ângulo. Triângulo Retângulo São triângulos nos quais algum dos ângulos internos é reto. O maior dos lados de um triângulo retângulo é oposto ao vértice onde se encontra o ângulo reto e á chamado de hipotenusa.

Leia mais

Seu pé direito nas melhores faculdades

Seu pé direito nas melhores faculdades Seu pé direito nas melhores faculdades IBMEC 0/junho/007 NÁLISE QUNTITTIV E LÓGIC OBJETIV. Numa lanchonete, um salgado e um refrigerante custam, respectivamente, X e Y reais. Pedro, que comprou X salgados

Leia mais

Colégio Anglo de Sete Lagoas Professor: Luiz Daniel (31) 2106-1750

Colégio Anglo de Sete Lagoas Professor: Luiz Daniel (31) 2106-1750 Lista de exercícios de Geometria Espacial PRISMAS 1) Calcular a medida da diagonal de um paralelepípedo retângulo de dimensões 10 cm, 8 cm e 6 cm 10 2 cm 2) Determine a capacidade em dm 3 de um paralelepípedo

Leia mais

CADERNO DE ATIVIDADES / MATEMÁTICA TECNOLOGIAS

CADERNO DE ATIVIDADES / MATEMÁTICA TECNOLOGIAS VSTIULR VILS 0. alcule x na figura: x + 0º x + 0º RNO TIVIS / MTMÁTI TNOLOGIS 0. Na figura, é o lado de um quadrado inscrito e é o lado do decágono regular. Qual a medida de x? x 0. Na figura a seguir,

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA UNICAMP 2008 2 a Fase Professora Maria Antônia Gouveia.

RESOLUÇÃO DA PROVA DE MATEMÁTICA UNICAMP 2008 2 a Fase Professora Maria Antônia Gouveia. RESOLUÇÃO DA PROVA DE MATEMÁTICA UNICAMP 8 a Fase Professora Maria Antônia Gouveia. Instruções: Indique claramente as respostas dos itens de cada questão, fornecendo as unidades, se for o caso. Apresente

Leia mais

ÁREAS. 01 (UFMG) Um terreno tem a forma da figura abaixo. Se AB AD, BC CD, AB = 10 m, BC = 70 m, CD = 40 m e AD = 80 m, então a área do terreno é

ÁREAS. 01 (UFMG) Um terreno tem a forma da figura abaixo. Se AB AD, BC CD, AB = 10 m, BC = 70 m, CD = 40 m e AD = 80 m, então a área do terreno é ÁRES 01 (UFMG) Um terreno tem a forma da figura abaixo. Se,, = 10 m, = 70 m, = 40 m e = 80 m, então a área do terreno é a) 1 500 m b) 1 600 m c) 1 700 m d) 1 800 m 0 (FMMG) - Observe a figura. Nessa figura,

Leia mais

Função Trigonométrica

Função Trigonométrica Função Trigonométrica 1. (Ufpr 013) O pistão de um motor se movimenta para cima e para baixo dentro de um cilindro, como ilustra a figura. Suponha que em um instante t, em segundos, a altura h(t) do pistão,

Leia mais

Pirâmide. P e R pertencem, respectivamente, às faces ABCD e EFGH; Q pertence à aresta EH; T é baricentro do triângulo ERQ e pertence à diagonal EG RF

Pirâmide. P e R pertencem, respectivamente, às faces ABCD e EFGH; Q pertence à aresta EH; T é baricentro do triângulo ERQ e pertence à diagonal EG RF Pirâmide 1. (Unifesp 01) Na figura, ABCDEFGH é um paralelepípedo reto-retângulo, e PQRE é um tetraedro regular de lado 6cm, conforme indica a figura. Sabe-se ainda que: P e R pertencem, respectivamente,

Leia mais