P16: Cálculo Diferencial e Integral na Grécia antiga: A contribuição de Arquimedes de Siracusa

Tamanho: px
Começar a partir da página:

Download "P16: Cálculo Diferencial e Integral na Grécia antiga: A contribuição de Arquimedes de Siracusa"

Transcrição

1 P16: Cálculo Diferencial e Integral na Grécia antiga: A contribuição de Arquimedes de Siracusa Francisco Lucas Santos Oliveira Instituto Federal de Educação, Ciência e Tecnologia do Sertão Pernambucano lucas.apologeta.jy@gmail.com RESUMO É conhecido por muitos que Leibniz e Newton são considerados os fundadores do cálculo diferencial e integral no século XVII, pois estes organizaram grande parte de sua estrutura e também grande parte do seu método. Porém como todo fato na história da humanidade, o seu ápice ocorre em um dado momento, porém anteriormente todo um contexto existiu e colaborou pra que aquele episódio tão importante urgisse na história da humanidade. Dessa maneira, a pergunta que surge é, em que instante foram lançadas as bases desse tão útil ramo da matemática? Desenvolvemos um estudo analisando as raízes do cálculo desde os primórdios civilizacionais humanos conhecidos até então (Egito, Mesopotâmia e Grécia) para identificar em que momento as derivadas e as integrais começaram a ser usadas, mesmo que de maneira informal. Mediante uma pesquisa bibliográfica em diversos livros e artigos, pudemos verificar que foi na Grécia, reconhecida internacionalmente como a civilização que foi o berço da matemática, que os fundamentos do cálculo foram lançados, de maneira mais exuberante com Arquimedes, que sustentado sobre a ideia de Eudoxo e o seu princípio da exaustão, conseguiu fazer os primeiros cálculos de derivadas e integrais, construindo uma reta tangente a uma espiral, calculando a área abaixo de uma parábola e o volume do cone, do cilindro e da esfera. Ainda que a terminologia não fosse essa na época, os principais instrumentos do cálculo diferencial e integral vieram para resolver dois problemas históricos: o da reta tangente a uma curva qualquer e o de calcular a área abaixo de uma curva. Dessa forma, Arquimedes os realiza, ainda que para alguns casos particulares. Esse artigo pretende ainda discutir a importância da história da matemática inserida nas disciplinas do Ensino Superior de maneira que esta possa se tornar uma ferramenta pedagógica para o professor, gerando uma melhor compreensão do cálculo diferencial e integral pelos seus discentes. Palavras-chave: Cálculo, História, Arquimedes Introdução No século XVII, o cálculo foi definido. Seus conceitos de integral e derivada foram elaborados e se perpetuam até os nossos tempos. Porém, como todo conhecimento científico, foi necessária uma problemática para que estes conhecimentos científicos

2 pudessem ser elaborados. Dois grandes problemas circundavam os corredores da história, o da reta tangente a uma curva qualquer e o do cálculo da área abaixo de uma curva qualquer. Apenas no século XVII esses problemas foram resolvidos de uma maneira generalizada. Mas anteriormente na Grécia antiga, Arquimedes havia conseguido realizar tais cálculos para alguns casos particulares, mesmo não tendo mãos de uma matemática analítica oriunda de Descartes, com planos cartesianos e todos os artifícios matemáticos que se originaram no renascimento. Utilizando-se do método da exaustão de Eudoxo, Arquimedes conseguiu realizar tais proezas que só viriam quase vinte séculos depois. É com bases nesses dados que pretendemos exibir que o cálculo diferencial e integral teve suas raízes oriundas na Grécia antiga com Eudoxo, mas principalmente com Arquimedes. Pretendemos posteriormente tentar inserir os problemas e fatos históricos tratados neste trabalho nas disciplinas de Cálculo nos cursos de nível superior, de tal forma que a história possa se tornar subsídio, mas sem descartar sua importância nela mesma, para uma melhor compreensão da referida disciplina, de maneira que o conteúdo possa se tornar significativo para o aluno, o auxiliando na sua análise crítica de pensamento. Origens dos postulados com Zenão e Eudoxo Os primeiros passos do cálculo na história surgem desde que os povos antigos passaram a se dedicar a matemática. Seu ápice foi no século XVII, mas os primeiros vestígios podem ser encontrados nos antigos papiros, como bem nos fala Boyer: No sentido mais formal, o cálculo foi moldado no século XVII de nossa era; mas as questões das quais surgiu já tinham sido colocadas mais de dezessete séculos antes do começo de nossa era. Papiros egípcios e tábulas cuneiformes babilônicas incluem problemas de mensuração retilínea e curvilínea que pertencem ao domínio do cálculo. (BOYER, 1993, p 1) 2

3 Apesar de já existirem vestígios do cálculo nestes povos antigos, não existia uma rigorosidade dedutiva, não havia uma lógica apurada no processo de desenvolvimento dos cálculos. O que havia era a presença de dados empíricos e de algumas aproximações, mas sem um prova concreta e lógica do que se afirmara. Dessa maneira, é admitida em toda a comunidade internacional que os gregos são considerados os primeiros matemáticos, pois foi a partir deles que a matemática se desenvolveu partindo de axiomas e teoremas. Isso significa que a matemática ganhou uma estrutura lógica e sequencial, de tal maneira que tudo era feito a partir do raciocínio dedutivo. (BATISTA, 2010) Apesar de todo esse avanço, os mesmos ainda tiveram alguns problemas de cunho epistemológico, como foi o caso da questão dos incomensuráveis. A ideia de infinito perturbava a mentalidade dos matemáticos da época. Esta situação gerou um problema axiomático, pois na época a base de toda matemática eram os paradoxos de Zenão. Os paradoxos de Zenão mostravam a inconsistência dos argumentos de movimento, multiplicidade, divisibilidade entre outros. Como por exemplo, poderíamos citar o argumento da Dicotomia: O primeiro dizia que antes que um objeto possa percorrer uma distância dada, deve percorrer a primeira metade dessa distância; mas antes disso deve percorrer o primeiro quarto; e antes disso, o primeiro oitavo e assim por diante, através de uma infinidade de subdivisões. O corredor que quer pôr-se em movimento precisa fazer infinitos contatos num tempo finito; mas é impossível exaurir uma coleção infinita, logo é impossível iniciar o movimento (BOYER, 1974, p 55) Esta problemática só seria resolvida séculos depois com a definição de conjuntos discretos e contínuos. A solução paliativa foi o método da exaustão de Eudoxo, também conhecido como lema de Arquimedes, que para a época pareceu irrefutável e permitiu os gregos de progredirem seus avanços em cálculos que envolvessem processos infinitos. Este método consistia em: Consideradas duas grandezas desiguais, se da maior subtrairmos uma grandeza maior que a sua metade, e da que resta uma grandeza 3

4 maior que a sua metade, e se este processo é repetido continuamente, restará uma grandeza que é a menor das grandezas consideradas (BOYER, 1993, p 4) Este método poderia ser definido, mesmo que de uma maneira bem rudimentar e simplista, como a primeira definição histórica de limite. Porém, como este não é a questão do nosso trabalho, não nos demoraremos neste ponto. Este método serve apenas para ressaltar que agora, teríamos uma certa doutrina atomística nos postulados matemáticos, podendo dizer que existia um ser infinitamente pequeno compondo os outros seres. Tomando como pressuposto teórico o método da exaustão de Eudoxo, se tornaria possível tratar com problemas envolvendo divisibilidade, multiplicidade e outros. Dentre vários matemáticos gregos que o utilizaram, o mais notável foi Arquimedes, que de uma maneira formal, mas ainda não estruturada como área da matemática, lançou as bases do cálculo diferencial e integral. Arquimedes e o avanço do cálculo Em uma das obras de Arquimedes, Sobre Espirais, ele trata sobre o problema da reta tangente abordado no cálculo diferencial. Segundo a imagem abaixo, podemos perceber que Arquimedes consegue traçar a reta tangente a uma espiral, curva esta que Arquimedes atribui a seu amigo Conon de Alexandria. Figura 1. Reta tangente a uma espiral 4

5 Pelo ponto P trace-se a reta tangente à espiral POR e suponhamos que essa reta tangente corte no ponto Q a reta por O que é perpendicular a OP. Então provou Arquimedes, o segmento de reta OQ tem comprimento igual ao do arco circular OS do círculo com centro O e raio OP, que é cortado pela semi-reta inicial e pelia semi-reta OP (BOYER, 1974, p 94) O autor ainda retrata que é possível com as técnicas de hoje, utilizando-se de coordenadas polares, vetores e principalmente derivadas, que os métodos usados por Arquimedes podem sim ser demonstrados como verídicos. Além disto, nesta mesma obra supracitada, podemos encontrar também várias proposições que tratam sobre áreas de espirais. Poderíamos citar o caso em que se verifica que a área varrida pelo raio vetor em sua primeira rotação completa é um terço da área do primeiro círculo (BOYER, 1993). Arquimedes para atingir este resultado, utilizou-se do método da exaustão de Eudoxo, mas isso pode ser facilmente provado por qualquer estudante de cálculo utilizando-se de integrais. Arquimedes também em outras obras tratou amplamente sobre o cálculo de áreas usando o método da exaustão, como por exemplo quando calculou a área do círculo através de áreas de polígonos regulares inscritos e circunscritos, chegando também a uma aproximação do valor de pi notadamente boa. Arquimedes conseguiu perceber que no círculo, a área ficava a uma razão do quadrado do raio, chegando a aproximação de pi. (BOYER, 1993) Arquimedes foi capaz de utilizar de maneira fantástica o método da exaustão de Eudoxo. Para o cálculo da área abaixo de uma parábola, tomemos C, D e E os pontos do arco de segmento parabólico conforme a figura abaixo, obtidos traçando-se LC, MD, NE paralelos ao eixo da parábola peos pontos médios L, M, N de AB, AC, CB. Usando geometria da parábola, Arquimedes mostrou que: 5

6 Figura 2. Área de uma parábola CDA + CEB = ABC 4 parabólico é: Fazendo esse processo recursivas vezes, conclui-se que a área do segmento ABC + ABC 4 + ABC 4 + ABC 4 + = ABC = 4 3 ABC O processo usado aqui foi o método das somas dos termos de uma progressão geométrica, mas Arquimedes utilizou para chegar a esse resultado o método da exaustão de Eudoxo. (EVES, 2011) Em outro tratado de Arquimedes chamado de O Método, tratado este que foi enviado a Erastótenes na forma de uma carta, escrito em um pergaminho que se perderam algumas coisas devido a deteriorização do tempo e da ação humana. A ideia de Arquimedes para a demonstração de tal fato era o uso da ideia de equilíbrio. Tomada uma 6

7 alavanca e uma determinada região que se deseja conhecer o volume, corte esta região dada em um número muito grande de fatias paralelas finas e pendure esses pedaços em um dos lados da alavanca dada, por meio de um processo imaginário. A partir daí, você tentará estabelecer o equilíbrio usando na outra extremidade uma figura conhecida. Dessa forma, pode-se descobrir o volume do sólido. Dada a figura abaixo: Figura 3. Volume da esfera, cone e cilindro Tomemos uma reta HC tal que A seja o seu fulcro, ou seja, AH=AC. Seja também AQDCP uma secção transversal de uma esfera com centro O e de diâmetro AC e AUV uma secção de um cone circular reto com diâmetro de base UV e de eixo AC. Tomemos também IUJV um cilindro circular reto onde UV é o diâmetro e AC seu eixo. Tomando S um ponto qualquer de AC, menos possivelmente os próprios A e C, o plano cortará as três superfícies em círculos de raios r = SP, r = SR e r = SN respectivamente. Chamando as áreas dos círculos gerados através desse corte de A, A e A, Arquimedes percebeu que quando colocamos os centros de A e A em H, se equilibrará com A onde ele está. 7

8 Chamando os volumes da esfera, do cone e do cilindro de V, V e V, nesta ordem, podemos perceber que V + V = V, e como V = V, a esfera é V. Como Eudoxo e Demócrito haviam descoberto o volume do cilindro, o volume da esfera fica determinado - escrevendo em notação atual V = πr³. Fazendo isso para os outros, também é possível encontrar o volume das outras regiões. (BOYER, 1993) Arquimedes também usou este mesmo método para descobrir os volumes dos parabolóide, elipsoide e hiperboloide de revolução. Desta forma, os avanços de cálculo de Arquimedes foram consideráveis para a história e principalmente pelo fato de o mesmo não ter tantos artifícios de caráter analítico e algébrico na época. Conclusões e Considerações Finais De todo nosso trabalho, podemos concluir que, Arquimedes contribuiu para a história da humanidade, dando avanços consideráveis no cálculo diferencial e integral, mesmo que de maneira pontual e fora dos moldes modernos desta disciplina, porém seus resultados obtidos são de uma natureza considerável para a história da matemática e da humanidade. Devido a essa relação entre os trabalhos desenvolvidos por Arquimedes e as técnicas formais do cálculo diferencial, esta disciplina poderia conter em seu plano de curso uma parte destinada ao estudo desse trabalho desse brilhante matemático, como via pedagógica para uma aprendizagem crítica e mais eficiente. Existe uma defasagem nos mais diversos níveis de educação, desde a infantil até a superior, onde o aluno permanece condicionado muitas vezes ao processo resolutivo, se ausentando do processo pelo qual aquele conhecimento chegou até suas mãos, de tal forma que geramos na nossa educação alunos incapazes de ter um pensamento crítico e mais eficiente. Se o processo histórico for bem trabalhado pelo professor em sala de aula com seus educandos, este sistema pode ser quebrado, gerando alunos mais conscientes diante do seu papel de não serem meros técnicos matemáticos, mas também profissionais capazes de questionar e de serem mais críticos perante o conhecimento. 8

9 Referências Bibliográficas BOYER, Carl B. História da Matemática. São Paulo: Edgar Blucher, 1974 BOYER, Carl B. Tópicos de História da Matemática para uso em sala de aula. Trad: Hygino H. Domingues. São Paulo: Atual Editora, 1993 EVES, Howard. Introdução à História da Matemática. Trad: Hygino H. Domingues. 5. ed. Campinas. SP: Editora da UNICAMP, SOUSA, Giselle Costa de. Um abordagem do cálculo integral dos primórdios aos tempos atuais: Atividades a luz da história Disponível em < Acesso em: 15 de novembro de 2014 BATISTA, Roberto Júnior, Uma breve introdução ao cálculo diferencial e integral Disponível em < Acesso em: 14 de novembro de FERREIRA, Lúcia Helena Bezerra, A história da matemática como mediador didático conceitual na formação de professores de matemática nos anos iniciais Disponível em < Acesso em: 20 de novembro de

ARQUIMEDES E CÁLCULO DE ÁREA. Palavras-chave: Arquimedes, áreas, alavancas, parábola, quadratura.

ARQUIMEDES E CÁLCULO DE ÁREA. Palavras-chave: Arquimedes, áreas, alavancas, parábola, quadratura. Sociedade Brasileira de na Contemporaneidade: desafios e possibilidades ARQUIMEDES E CÁLCULO DE ÁREA Julio Cesar Mohnsam Instituto Federal de Ciência e Tecnologia Sul-Riograndense Campus Pelotas Prof.juliomatfis@hotmail.com

Leia mais

XXIII SEMANA ACADÊMICA DA MATEMÁTICA

XXIII SEMANA ACADÊMICA DA MATEMÁTICA Muitos dos dispersos pitagóricos acorreram a Atenas e Zenão e Parmênides, da escola eleática, foram ao grande centro para ensinar. Zenão de Eléia, filósofo e matemático viveu por volta de (495-430 a.c.),

Leia mais

Profa. Andréa Cardoso UNIFAL-MG MATEMÁTICA-LICENCIATURA 2015/1

Profa. Andréa Cardoso UNIFAL-MG MATEMÁTICA-LICENCIATURA 2015/1 Profa. Andréa Cardoso UNIFAL-MG MATEMÁTICA-LICENCIATURA 2015/1 Aula 29: O cálculo de áreas 15/06/2015 2 Cálculo de área na Antiguidade Antes do século XVII, estudavam-se figuras e sólidos geométricos com

Leia mais

Conteúdo programático por disciplina Matemática 6 o ano

Conteúdo programático por disciplina Matemática 6 o ano 60 Conteúdo programático por disciplina Matemática 6 o ano Caderno 1 UNIDADE 1 Significados das operações (adição e subtração) Capítulo 1 Números naturais O uso dos números naturais Seqüência dos números

Leia mais

AS CÔNICAS DE APOLÔNIO

AS CÔNICAS DE APOLÔNIO Sociedade na Contemporaneidade: desafios e possibilidades AS CÔNICAS DE APOLÔNIO Arianne Alves da Silva Universidade Federal de Uberlândia arianne@mat.pontal.ufu.br Mirianne Andressa Silva Santos Universidade

Leia mais

Profa. Andréa Cardoso UNIFAL-MG MATEMÁTICA-LICENCIATURA 2015/1

Profa. Andréa Cardoso UNIFAL-MG MATEMÁTICA-LICENCIATURA 2015/1 Profa. Andréa Cardoso UNIFAL-MG MATEMÁTICA-LICENCIATURA 2015/1 Aula 26: Estudo de Curvas no século XVII 08/06/2015 2 Matemática na Europa do século XVII A Geometria como principal domínio da Matemática;

Leia mais

Matéria das Aulas e Exercícios Recomendados Cálculo II- MAA

Matéria das Aulas e Exercícios Recomendados Cálculo II- MAA Matéria das Aulas e Exercícios Recomendados Cálculo II- MAA Número da Aula Data da Aula Matéria Dada Exercícios Recomendados Obs 1 06/08 Sequências, definição, exemplos, convergência e divergência, propriedades,

Leia mais

CADERNO DE ORIENTAÇÕES

CADERNO DE ORIENTAÇÕES CADERNO DE ORIENTAÇÕES UNIDADE DE APRENDIZAGEM DO MÉTODO DE EXAUSTÃO AO CÁLCULO DE ÁREAS E VOLUMES Sugestões de problematização da UA: - Que problemas motivaram o desenvolvimento do cálculo integral? Produção

Leia mais

Provável ordem de Assuntos das Aulas e Exercícios Recomendados Cálculo II- MAC 123

Provável ordem de Assuntos das Aulas e Exercícios Recomendados Cálculo II- MAC 123 Provável ordem de Assuntos das Aulas e Exercícios Recomendados Cálculo II- MAC 123 Número da Data da Matéria Dada Exercícios Recomendados Obs Aula Aula 1 11/03 Sequências Numéricas, definição, exemplos,

Leia mais

Lista de Exercícios: Geometria Plana. Um triângulo isósceles tem base medindo 8 cm e lados iguais com medidas de 5 cm. A área deste triângulo é:

Lista de Exercícios: Geometria Plana. Um triângulo isósceles tem base medindo 8 cm e lados iguais com medidas de 5 cm. A área deste triângulo é: Lista de Exercícios: Geometria Plana Questão 1 Um triângulo isósceles tem base medindo 8 cm e lados iguais com medidas de 5 cm. A área deste triângulo é: A( ) 20 cm 2. B( ) 10 cm 2. C( ) 24 cm 2. D( )

Leia mais

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD.

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD. Questão Se Amélia der R$,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade do

Leia mais

8.1 Áreas Planas. 8.2 Comprimento de Curvas

8.1 Áreas Planas. 8.2 Comprimento de Curvas 8.1 Áreas Planas Suponha que uma certa região D do plano xy seja delimitada pelo eixo x, pelas retas x = a e x = b e pelo grá co de uma função contínua e não negativa y = f (x) ; a x b, como mostra a gura

Leia mais

Matéria das Aulas e Exercícios Recomendados Cálculo II- MAA

Matéria das Aulas e Exercícios Recomendados Cálculo II- MAA Matéria das Aulas e Exercícios Recomendados Cálculo II- MAA Número da Aula Data da Aula 1 02/09 Sequências Numéricas, definição, exemplos, representação geométrica, convergência e divergência, propriedades,

Leia mais

MAT Geometria Euclidiana Plana. Um pouco de história

MAT Geometria Euclidiana Plana. Um pouco de história Geometria Euclidiana Plana Um pouco de história Prof a. Introdução Estudo axiomático da geometria estudada no ensino fundamental e médio, a Geometria Euclidiana Plana. Método axiomático (dedutivo): utilizado

Leia mais

A DESCOBERTA DO VOLUME DA ESFERA UTILIZANDO A HISTÓRIA DA MATEMÁTICA COMO PROPOSTA DIDÁTICA

A DESCOBERTA DO VOLUME DA ESFERA UTILIZANDO A HISTÓRIA DA MATEMÁTICA COMO PROPOSTA DIDÁTICA A DESCOBERTA DO VOLUME DA ESFERA UTILIZANDO A HISTÓRIA DA MATEMÁTICA COMO PROPOSTA DIDÁTICA Lucas Siebra Rocha (1); Luis Filipe Ramos Campos da Silva (2); Lucas da Silva (3); Daniel Cordeiro de Morais

Leia mais

A FORMA das coisas. Anne Rooney Por Margarete Farias Medeiros Geometria Plana/2017 IFC- Campus Avançado Sombrio

A FORMA das coisas. Anne Rooney Por Margarete Farias Medeiros Geometria Plana/2017 IFC- Campus Avançado Sombrio A FORMA das coisas Anne Rooney Por Margarete Farias Medeiros Geometria Plana/2017 IFC- Campus Avançado Sombrio A Geometria A Geometria - trabalhar com distâncias, áreas e volumes no mundo real foi uma

Leia mais

Exercícios de Aprofundamento Mat Geom Espacial

Exercícios de Aprofundamento Mat Geom Espacial 1. (Fuvest 015) No cubo ABCDEFGH, representado na figura abaixo, cada aresta tem medida 1. Seja M um ponto na semirreta de origem A que passa por E. Denote por θ o ângulo BMH e por x a medida do segmento

Leia mais

CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18

CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18 Sumário CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1 Sistema de Coordenadas Lineares 1 Intervalos Finitos 3 Intervalos Infinitos 3 Desigualdades 3 CAPÍTULO 2 Sistemas de

Leia mais

PADRÃO DE RESPOSTA - MATEMÁTICA - GRUPOS I e J

PADRÃO DE RESPOSTA - MATEMÁTICA - GRUPOS I e J PADRÃO DE RESPOSTA - MATEMÁTICA - GRUPOS I e J 1 a QUESTÃO: (,0 pontos) Avaliador Revisor Verifique se as afirmações abaixo são verdadeiras ou falsas Justifique sua resposta a) O número é irracional; (0,5

Leia mais

E.E.M.FRANCISCO HOLANDA MONTENEGRO PLANO DE CURSO ENSINO MÉDIO

E.E.M.FRANCISCO HOLANDA MONTENEGRO PLANO DE CURSO ENSINO MÉDIO E.E.M.FRANCISCO HOLANDA MONTENEGRO PLANO DE CURSO ENSINO MÉDIO DISCIPLINA: GEOMETRIA SÉRIE: 1º ANO (B, C e D) 2015 PROFESSORES: Crislany Bezerra Moreira Dias BIM. 1º COMPETÊNCIAS/ HABILIDADES D48 - Identificar

Leia mais

Associamos a esse paralelepípedo um número real, chamado volume, e definido por. V par = a b c.

Associamos a esse paralelepípedo um número real, chamado volume, e definido por. V par = a b c. Volumes Paralelepípedo Retângulo Dado um retângulo ABCD num plano α, consideremos um outro plano β paralelo à α. À reunião de todos os segmentos P Q perpendiculares ao plano α, com P sobre ABCD e Q no

Leia mais

FORMAÇÃO CONTINUADA EM MATEMÁTICA

FORMAÇÃO CONTINUADA EM MATEMÁTICA 1 FORMAÇÃO CONTINUADA EM MATEMÁTICA Fundação Cecierj/Consórcio CEDERJ. COLÉGIO ESTADUAL ESTEFÂNIA PEREIRA PINTO MATEMÁTICA 2º ANO- 4º BIMESTRE/ 2012 PLANO DE TRABALHO ESFERAS TAREFA 2 CURSISTA: MARCIA

Leia mais

Cinemática Bidimensional

Cinemática Bidimensional Cinemática Bidimensional INTRODUÇÃO Após estudar cinemática unidimensional, vamos dar uma perspectiva mais vetorial a tudo isso que a gente viu, abrangendo mais de uma dimensão. Vamos ver algumas aplicações

Leia mais

Geometria Métrica na Babilônia, Egito, Grécia.

Geometria Métrica na Babilônia, Egito, Grécia. Geometria Métrica na Babilônia, Egito, Grécia. Autor: Christian Fernando Cordeiro Pinheiro Disciplina de História da Matemática Universidade Federal de Alfenas Professora: Andréa Cardoso Introdução Geometria

Leia mais

CALCULANDO VOLUME DE ESFERAS COM LÍQUIDOS. Formação de Professores e Educação Matemática (FPM) GT8

CALCULANDO VOLUME DE ESFERAS COM LÍQUIDOS. Formação de Professores e Educação Matemática (FPM) GT8 CALCULANDO VOLUME DE ESFERAS COM LÍQUIDOS Formação de Professores e Educação Matemática (FPM) GT8 Thainá de Sousa MENEZES Instituto Federal de Educação Ciência e Tecnologia do Ceará thaina_tf@hotmail.com

Leia mais

Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Cone. Professores Cleber Assis e Tiago Miranda

Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Cone. Professores Cleber Assis e Tiago Miranda Módulo Geometria Espacial - olumes e Áreas de Cilindro, Cone e Esfera Cone. ano/e.m. Professores Cleber Assis e Tiago Miranda Geometria Espacial - olumes e Áreas de Cilindro, Cone e Esfera. Cone. 1 Exercícios

Leia mais

OFICINA 14 DESCOBRINDO E CONSTRUINDO NÚMEROS IRRACIONAIS

OFICINA 14 DESCOBRINDO E CONSTRUINDO NÚMEROS IRRACIONAIS OFICINA 4 DESCOBRINDO E CONSTRUINDO NÚMEROS IRRACIONAIS Profª Dra. Virgínia Cardia Cardoso I PROBLEMAS. Uma estrada é muito perigosa, com muitos acidentes. Existem dois trechos retilíneos onde resolveram

Leia mais

Definição. Geometria plana

Definição. Geometria plana Geometria analítica Definição A palavra geometria vem do grego geometrien onde geo significa terra e metrien medida. Geometria foi, em sua origem, a ciência de medição de terras. O historiador grego Heródoto

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA 120 PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA Registros Dinâmicos de Representação e Aprendizagem de Conceitos de

Leia mais

Aplicação de Integral Definida: Volumes de Sólidos de Revolução

Aplicação de Integral Definida: Volumes de Sólidos de Revolução Aplicação de Integral Definida: Prof a. Sólidos Exemplos de Sólidos: esfera, cone circular reto, cubo, cilindro. Sólidos de Revolução são sólidos gerados a partir da rotação de uma área plana em torno

Leia mais

Introdução à Cosmologia Física

Introdução à Cosmologia Física Introdução à Cosmologia Física Desafio: encontrar o z desta galáxia: Resposta: Hoje: Relatividade Restrita (revisão rápida) O Princípio da Equivalência A Relatividade Geral de Einstein Coordenadas generalizadas

Leia mais

Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Esfera. Professores Cleber Assis e Tiago Miranda

Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Esfera. Professores Cleber Assis e Tiago Miranda Módulo Geometria Espacial - Volumes e Áreas de Cilindro, Cone e Esfera Esfera. a série E.M. Professores Cleber Assis e Tiago Miranda Geometria Espacial - Volumes e Áreas de Cilindro, Cone e Esfera. Esfera.

Leia mais

FORMAÇÃO CONTINUADA EM MATEMÁTICA Fundação CECIERJ Consórcio CEDERJ Matemática do 3º Ano 4º Bimestre 2014 Plano de Trabalho 2 Geometria Analítica II

FORMAÇÃO CONTINUADA EM MATEMÁTICA Fundação CECIERJ Consórcio CEDERJ Matemática do 3º Ano 4º Bimestre 2014 Plano de Trabalho 2 Geometria Analítica II FORMAÇÃO CONTINUADA EM MATEMÁTICA Fundação CECIERJ Consórcio CEDERJ Matemática do 3º Ano 4º Bimestre 2014 Plano de Trabalho 2 Geometria Analítica II Tarefa: 002 PLANO DE TRABALHO 2 Cursista: CLÁUDIO MAGNO

Leia mais

OS PRISMAS. 1) Definição e Elementos :

OS PRISMAS. 1) Definição e Elementos : 1 OS PRISMAS 1) Definição e Elementos : Dados dois planos paralelos α e β, um polígono contido em um desses planos e um reta r, que intercepta esses planos, chamamos de PRISMA o conjunto de todos os segmentos

Leia mais

A (im)possibilidade da quadratura do círculo por meio da quadratriz

A (im)possibilidade da quadratura do círculo por meio da quadratriz A (im)possibilidade da quadratura do círculo por meio da quadratriz revista do professor de matemática n o. 81 1 artigo A (IM) POSSIBILIDADE DA QUADRATURA DO CÍRCULO POR MEIO DA QUADRATRIZ ELISANDRA BAR

Leia mais

MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL MINAS GERAIS CAMPUS

MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL MINAS GERAIS CAMPUS MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL MINAS GERAIS CAMPUS CONCURSO PÚBLICO DE PROVAS E TÍTULOS - MAGISTÉRIO - EDITAL Nº 01/2014 CARGO: Professor de Ensino Básico, Técnico e Tecnológico ÁREA: Matemática

Leia mais

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 1ª. SÉRIE Exercícios de PA e PG 1. Determinar o 61º termo da PA ( 9,13,17,21,...) Resp. 249 2. Determinar a razão da PA ( a 1,a 2, a 3,...) em que o primeiro

Leia mais

Plano de Recuperação Semestral 1º Semestre 2017

Plano de Recuperação Semestral 1º Semestre 2017 Disciplina: MATEMÁTICA 1 - Álgebra Série/Ano: 9º ANO Professores: Tammy, Figo, Pupo, Laendle Objetivo: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados durante o 1º semestre nos

Leia mais

CONSTRUÇÕES GEOMÉTRICAS FUNDAMENTAIS

CONSTRUÇÕES GEOMÉTRICAS FUNDAMENTAIS UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA CONSTRUÇÕES GEOMÉTRICAS FUNDAMENTAIS 2 1 NOÇÕES DE GEOMETRIA PLANA 1.1 GEOMETRIA A necessidade de medir terras

Leia mais

PARTE 4. ESFERAS E SUPERFÍCIES QUÁDRICAS EM GERAL (Leitura para Casa)

PARTE 4. ESFERAS E SUPERFÍCIES QUÁDRICAS EM GERAL (Leitura para Casa) PARTE 4 REVISÃO DE PLANOS, CILINDROS, SUPERFÍCIES DE REVOLUÇÃO, ESFERAS E SUPERFÍCIES QUÁDRICAS EM GERAL (Leitura para Casa) Vamos agora faer uma revisão de planos, cilindros, superfícies de revolução,

Leia mais

A equação da circunferência

A equação da circunferência A UA UL LA A equação da circunferência Introdução Nas duas últimas aulas você estudou a equação da reta. Nesta aula, veremos que uma circunferência desenhada no plano cartesiano também pode ser representada

Leia mais

Aplicações Diferentes Para Números Complexos

Aplicações Diferentes Para Números Complexos Material by: Caio Guimarães (Equipe Rumoaoita.com) Aplicações Diferentes Para Números Complexos Capítulo II Aplicação 2: Complexos na Geometria Na rápida revisão do capítulo I desse artigo mencionamos

Leia mais

Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido:

Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido: Capítulo 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r é assim definido: (r1, r ) 0o se r1 e r são coincidentes, se as retas são concorrentes, isto é, r1

Leia mais

AVALIAÇÃO DA IMPLEMENTAÇÃO DO PT 2

AVALIAÇÃO DA IMPLEMENTAÇÃO DO PT 2 AVALIAÇÃO DA IMPLEMENTAÇÃO DO PT 2 A implementação do plano de trabalho2, começou através da revisão do plano cartesiano e da marcação das coordenadas no plano. Nessa revisão eu utilizei o mapa-múndi planificado

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Fase

Prova final de MATEMÁTICA - 3o ciclo a Fase Prova final de MATEMÁTICA - 3o ciclo 015-1 a Fase Proposta de resolução Caderno 1 1. 1.1. Os alunos que têm uma altura inferior a 155 cm são os que medem 150 cm ou 15 cm. Assim, o número de alunos com

Leia mais

1 - POLÍGONOS REGULARES E CIRCUNFERÊNCIAS

1 - POLÍGONOS REGULARES E CIRCUNFERÊNCIAS Matemática 2 Pedro Paulo GEOMETRIA PLANA X 1 - POLÍGONOS REGULARES E CIRCUNFERÊNCIAS 1.2 Triângulo equilátero circunscrito A seguir, nós vamos analisar a relação entre alguns polígonos regulares e as circunferências.

Leia mais

MATEMÁTICA. Questões de 01 a 04

MATEMÁTICA. Questões de 01 a 04 GRUPO 1 TIPO A MAT. 5 MATEMÁTICA Questões de 01 a 04 01. Considere duas circunferências concêntricas em C, conforme figura, em que a externa representa o círculo trigonométrico e a interna, o velocímetro,

Leia mais

COLÉGIO ANCHIETA-BA. ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA

COLÉGIO ANCHIETA-BA. ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA A AVALIAÇÃO UNIDADE II -5 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA. MARIA ANTÔNIA C. GOUVEIA - (MACK) Em uma das provas de uma gincana, cada um dos 4 membros de cada equipe

Leia mais

Um pouco de história. Ariane Piovezan Entringer. Geometria Euclidiana Plana - Introdução

Um pouco de história. Ariane Piovezan Entringer. Geometria Euclidiana Plana - Introdução Geometria Euclidiana Plana - Um pouco de história Prof a. Introdução Daremos início ao estudo axiomático da geometria estudada no ensino fundamental e médio, a Geometria Euclidiana Plana. Faremos uso do

Leia mais

Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos

Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos Candidatura de 206 Exame de Matemática Tempo para realização da prova: 2 horas Tolerância: 30 minutos Material admitido: material de escrita

Leia mais

Prova Vestibular ITA 2000

Prova Vestibular ITA 2000 Prova Vestibular ITA Versão. ITA - (ITA ) Sejam f, g : R R definidas por f ( ) = e g cos 5 ( ) =. Podemos afirmar que: f é injetora e par e g é ímpar. g é sobrejetora e f é bijetora e g é par e f é ímpar

Leia mais

35% de 9, : 0,35 9, = 3,

35% de 9, : 0,35 9, = 3, Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 27-A 1500-236 Lisboa Tel.: +351 21 716 36 90 / 21 711 03 77 Fax: +351 21 716 64 24 http://www.apm.pt email: geral@apm.pt PROPOSTA

Leia mais

Aula 7 Complementos. Exercício 1: Em um plano, por um ponto, existe e é única a reta perpendicular

Aula 7 Complementos. Exercício 1: Em um plano, por um ponto, existe e é única a reta perpendicular MODULO 1 - AULA 7 Aula 7 Complementos Apresentamos esta aula em forma de Exercícios Resolvidos, mas são resultados importantes que foram omitidos na primeira aula que tratou de Conceitos Básicos. Exercício

Leia mais

1- Traçar uma perpendicular ao meio de um segmento AB - Método Mediatriz.

1- Traçar uma perpendicular ao meio de um segmento AB - Método Mediatriz. 1- Traçar uma perpendicular ao meio de um segmento AB - Método Mediatriz. 1º - traçar uma reta A-B 2º - ponta seca em A (abertura do compasso um pouco maior que a metade), risca em cima e risca embaixo.

Leia mais

APLICAÇÕES DAS FÓRMULAS DE FRENET EM CURVAS PLANAS E ESFÉRICAS

APLICAÇÕES DAS FÓRMULAS DE FRENET EM CURVAS PLANAS E ESFÉRICAS APLICAÇÕES DAS FÓRMULAS DE FRENET EM CURVAS PLANAS E ESFÉRICAS Adailson Ribeiro da Silva; Carlos Rhamon Batista Morais; Alecio Soares Silva; José Elias da Silva Universidade Estadual da Paraíba; adailsonribeiro1@gmail.com;

Leia mais

SITUAÇÃO DE APRENDIZAGEM 4 PROBABILIDADE E GEOMETRIA

SITUAÇÃO DE APRENDIZAGEM 4 PROBABILIDADE E GEOMETRIA SITUAÇÃO DE APRENDIZAGEM 4 PROBABILIDADE E GEOMETRIA Leitura e Análise de Texto O π e a agulha de Buffon O estudo da probabilidade, aparentemente, não tem uma ligação direta com a Geometria. A probabilidade

Leia mais

3º ANO DO ENSINO MÉDIO. 1.- Quais são os coeficientes angulares das retas r e s? 60º 105º. 0 x x. a) Escreva uma equação geral da reta r.

3º ANO DO ENSINO MÉDIO. 1.- Quais são os coeficientes angulares das retas r e s? 60º 105º. 0 x x. a) Escreva uma equação geral da reta r. EXERCÍCIOS DE REVISÃO 3º BIMESTRE GEOMETRIA ANALÍTICA 3º ANO DO ENSINO MÉDIO 1.- Quais são os coeficientes angulares das retas r e s? s 60º 105º r 2.- Considere a figura a seguir: 0 x r 2 A C -2 0 2 5

Leia mais

Desenho e Projeto de Tubulação Industrial Nível II

Desenho e Projeto de Tubulação Industrial Nível II Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 05 Prismas Prismas são sólidos geométricos que possuem as seguintes características: bases paralelas são iguais; arestas laterais iguais

Leia mais

1. Encontre a equação das circunferências abaixo:

1. Encontre a equação das circunferências abaixo: Nome: nº Professor(a): Série: 2ª EM. Turma: Data: / /2013 Nota: Sem limite para crescer Exercícios de Matemática II 2º Ano 2º Trimestre 1. Encontre a equação das circunferências abaixo: 2. Determine o

Leia mais

Física III-A /1 Lista 7: Leis de Ampère e Biot-Savart

Física III-A /1 Lista 7: Leis de Ampère e Biot-Savart Física III-A - 2019/1 Lista 7: Leis de Ampère e Biot-Savart 1. (F) Considere um solenoide como o mostrado na figura abaixo, onde o fio é enrolado de forma compacta. Justificando todas as suas respostas,

Leia mais

CONSTRUINDO UM SABER GEOMÉTRICO ESPACIAL

CONSTRUINDO UM SABER GEOMÉTRICO ESPACIAL CONSTRUINDO UM SABER GEOMÉTRICO ESPACIAL Lourenço de Lima Peixoto U.F.U. l_delima_peixoto@hotmail.com No concurso Matemática é uma Boa Temática promovido pela Faculdade de Matemática da Universidade Federal

Leia mais

sendo a segunda igualdade obtida da fórmula da soma dos termos de uma progressão geométrica infinita.

sendo a segunda igualdade obtida da fórmula da soma dos termos de uma progressão geométrica infinita. Ainda as Séries Infinitas Somas Infinitas Geraldo Ávila UFG - Goiânia, GO Em nosso artigo, na RPM 30, sobre séries infinitas, demos alguns exemplos de somas infinitas que surgem de maneira bastante natural,

Leia mais

A INTUIÇÃO E O RIGOR NOS TRABALHOS DE ARQUIMEDES: REFLEXÕES PARA O ENSINO E APRENDIZAGEM DO CÁLCULO

A INTUIÇÃO E O RIGOR NOS TRABALHOS DE ARQUIMEDES: REFLEXÕES PARA O ENSINO E APRENDIZAGEM DO CÁLCULO A INTUIÇÃO E O RIGOR NOS TRABALHOS DE ARQUIMEDES: REFLEXÕES PARA O ENSINO E APRENDIZAGEM DO CÁLCULO André Lúcio Grande andremath@uol.com.br PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO - BRASIL Tema:

Leia mais

Cálculo II Segunda Aula: Aplicações das Integrais Definidas

Cálculo II Segunda Aula: Aplicações das Integrais Definidas Cálculo II Segunda Aula: Aplicações das Integrais Definidas Prof. Jefferson Abrantes (Universidade Federal de Campina Grande) Unidade Acadêmica de Matemática-UAMat Campina Grande-PB Volumes por seções

Leia mais

6.2. Volumes. Nesta seção aprenderemos a usar a integração para encontrar o volume de um sólido. APLICAÇÕES DE INTEGRAÇÃO

6.2. Volumes. Nesta seção aprenderemos a usar a integração para encontrar o volume de um sólido. APLICAÇÕES DE INTEGRAÇÃO APLICAÇÕES DE INTEGRAÇÃO 6.2 Volumes Nesta seção aprenderemos a usar a integração para encontrar o volume de um sólido. SÓLIDOS IRREGULARES Começamos interceptando S com um plano e obtemos uma região plana

Leia mais

Prova final de MATEMÁTICA - 3o ciclo Época especial

Prova final de MATEMÁTICA - 3o ciclo Época especial Prova final de MATEMÁTICA - o ciclo 016 - Época especial Proposta de resolução Caderno 1 1. Como os triângulos [OAB] e [OCD] são semelhantes (porque têm um ângulo comum e os lados opostos a este ângulo

Leia mais

Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 3 Professor Marco Costa

Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 3 Professor Marco Costa 1 1. (Fgv 97) Uma empresa produz apenas dois produtos A e B, cujas quantidades anuais (em toneladas) são respectivamente x e y. Sabe-se que x e y satisfazem a relação: x + y + 2x + 2y - 23 = 0 a) esboçar

Leia mais

REVISÃO UNICAMP Ensino Médio Geometria Prof. Sérgio Tambellini

REVISÃO UNICAMP Ensino Médio Geometria Prof. Sérgio Tambellini REVISÃO UNICAMP Ensino Médio Geometria Prof. Sérgio Tambellini Aluno :... GEOMETRIA PLANA Questão 1 - (UNICAMP SP/015) A figura abaixo exibe um círculo de raio r que tangencia internamente um setor circular

Leia mais

RETA E CIRCUNFERÊNCIA

RETA E CIRCUNFERÊNCIA RETA E CIRCUNFERÊNCIA - 016 1. (Unifesp 016) Na figura, as retas r, s e t estão em um mesmo plano cartesiano. Sabe-se que r e t passam pela origem desse sistema, e que PQRS é um trapézio. a) Determine

Leia mais

2. (Uerj 2002) Admita uma esfera com raio igual a 2 m, cujo centro O dista 4 m de um determinado ponto P.

2. (Uerj 2002) Admita uma esfera com raio igual a 2 m, cujo centro O dista 4 m de um determinado ponto P. 1. (Ita 2002) Seja S a área total da superfície de um cone circular reto de altura h, e seja m a razão entre as áreas lateral e da base desse cone. Obtenha uma expressão que forneça h em função apenas

Leia mais

Física III-A /2 Lista 7: Leis de Ampère e Biot-Savart

Física III-A /2 Lista 7: Leis de Ampère e Biot-Savart Física III-A - 2018/2 Lista 7: Leis de Ampère e Biot-Savart 1. (F) Considere um solenoide como o mostrado na figura abaixo, onde o fio é enrolado de forma compacta. Justificando todas as suas respostas,

Leia mais

GEOMETRIA PLANO. FÍSICA Curso para PRF Professor: Thiago Cardoso. Professor:Thiago Cardoso RETA

GEOMETRIA PLANO. FÍSICA Curso para PRF Professor: Thiago Cardoso. Professor:Thiago Cardoso  RETA GEOMETRIA RETA Uma reta é construída a partir de dois pontos; Retas Concorrentes: encontram-se em um único ponto; Retas Paralelas: pertencem ao mesmo plano e não se encontram; Retas Reversas: não pertencem

Leia mais

Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)

Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora) Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 92/1.ª Fase Caderno 1: 7 Páginas Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30

Leia mais

SUPERFÍCIES REGRADAS NÃO DESENVOLVÍVEIS

SUPERFÍCIES REGRADAS NÃO DESENVOLVÍVEIS 1 INTRODUÇÃO SUPERFÍCIES REGRADAS NÃO DESENVOLVÍVEIS Na aula sobre esfera você deve ter notado que é praticamente impossível construir o desenvolvimento perfeito de uma superfície esférica e que, se você

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Funções e Gráficos Generalidades. Funções polinomiais. Função módulo.

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Funções e Gráficos Generalidades. Funções polinomiais. Função módulo. Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Funções e Gráficos Generalidades. Funções polinomiais. Função módulo. Trabalho de casa nº 14 1. Um cilindro como o da figura tem 10 cm de

Leia mais

4.1 Superfície Cilíndrica

4.1 Superfície Cilíndrica 4. SUPERFÍCIES QUÁDRICAS CÁLCULO VETORIAL - 2017.2 4.1 Superfície Cilíndrica Uma superfície cilíndrica (ou simplesmente cilindro) é a superfície gerada por uma reta que se move ao longo de uma curva plana,

Leia mais

Matemática Básica II - Trigonometria Nota 01 - Sistema de Coordenadas no Plano

Matemática Básica II - Trigonometria Nota 01 - Sistema de Coordenadas no Plano Matemática Básica II - Trigonometria Nota 01 - Sistema de Coordenadas no Plano Márcio Nascimento da Silva Universidade Estadual Vale do Acaraú - UVA Curso de Licenciatura em Matemática marcio@matematicauva.org

Leia mais

Teste Intermédio de MATEMÁTICA - 9o ano 11 de maio de 2009

Teste Intermédio de MATEMÁTICA - 9o ano 11 de maio de 2009 Teste Intermédio de MATEMÁTICA - 9o ano 11 de maio de 009 Proposta de resolução 1. 1.1. Como na gaveta 1 existem três maillots (1 preto, 1 cor-de-rosa e 1 lilás), são 3 os casos possíveis, dos quais são

Leia mais

Física III-A /1 Lista 7: Leis de Ampère e Biot-Savart

Física III-A /1 Lista 7: Leis de Ampère e Biot-Savart Física III-A - 2018/1 Lista 7: Leis de Ampère e Biot-Savart Prof. Marcos Menezes 1. Considere mais uma vez o modelo clássico para o átomo de Hidrogênio discutido anteriormente. Supondo que podemos considerar

Leia mais

Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013

Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013 Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013 Sem limite para crescer Bateria de Exercícios de Matemática II 1) A área do triângulo, cujos vértices são (1, 2),

Leia mais

PLANIFICAÇÃO MODULAR. Ano Letivo 2016/2017

PLANIFICAÇÃO MODULAR. Ano Letivo 2016/2017 AGRUPAMENTO DE ESCOLAS DE MIRA Escola Secundária c/3 Dr.ª Maria Cândida CURSO VOCACIONAL CURSO VOCACIONAL DO ENSINO BÁSICO: Jardinagem / Comércio / Socorrismo DISCIPLINA: MATEMÁTICA CICLO DE FORMAÇÃO:

Leia mais

COMPREENDENDO A NOÇÃO DE LIMITES A PARTIR DA ARITMÉTICA. UMA ABORDAGEM AO PARADOXO DA DICOTOMIA

COMPREENDENDO A NOÇÃO DE LIMITES A PARTIR DA ARITMÉTICA. UMA ABORDAGEM AO PARADOXO DA DICOTOMIA COMPREENDENDO A NOÇÃO DE LIMITES A PARTIR DA ARITMÉTICA. UMA ABORDAGEM AO PARADOXO DA DICOTOMIA Resumo Alexsandro de Melo Silva 1 - IFAL Rosana Loiola Carlos² - IFAL Luiz Galdino³ - IFAL. Grupo de trabalho

Leia mais

Os pentágonos regulares ABCDE e EF GHI da figura abaixo estão em posição tal que as retas CD e GH são perpendiculares.

Os pentágonos regulares ABCDE e EF GHI da figura abaixo estão em posição tal que as retas CD e GH são perpendiculares. GABARITO MA1 Geometria I - Avaliação - 01/ Questão 1. (pontuação: ) Os pentágonos regulares ABCDE e EF GHI da figura abaixo estão em posição tal que as retas CD e GH são perpendiculares. Calcule a medida

Leia mais

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente.

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente. Aula 15 Derivadas Direcionais e Vetor Gradiente Seja f(x, y) uma função de variáveis. Iremos usar a notação D u f(x 0, y 0 ) para: Derivada direcional de f no ponto (x 0, y 0 ), na direção do vetor unitário

Leia mais

3. Achar a equação da esfera definida pelas seguintes condições: centro C( 4, 2, 3) e tangente ao plano π : x y 2z + 7 = 0.

3. Achar a equação da esfera definida pelas seguintes condições: centro C( 4, 2, 3) e tangente ao plano π : x y 2z + 7 = 0. Universidade Federal de Uerlândia Faculdade de Matemática Disciplina : Geometria Analítica (GMA00) Assunto: Superfícies, Quádricas, Curvas e Coordenadas Professor Sato 4 a Lista de exercícios. Determinar

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: MATA0 - CÁLCULO B UNIDADE I - LISTA DE EXERCÍCIOS Atualizada 0. Áreas de figuras planas em coordenadas cartesianas [] Determine a área

Leia mais

GAAL: Exercícios 1, umas soluções

GAAL: Exercícios 1, umas soluções GAAL: Exercícios 1, umas soluções 1. Determine o ponto C tal que AC = 2 AB, sendo A = (0, 2), B = (1, 0). R: Queremos C tal que AC = 2 AB. Temos AB = (1 0, 0 ( 2)) = (1, 2), logo 2 AB = (2, 4). Então queremos

Leia mais

ÂNGULOS. Ângulos no círculo

ÂNGULOS. Ângulos no círculo ÂNGULOS Ângulos no círculo A circunferência:. Diâmetro Semicircunferên cia Diâmetro - é o segmento de recta que une 2 pontos da circunferência passando pelo centro. Raio - é o segmento de recta que une

Leia mais

MATEMÁTICA A - 10o Ano Geometria Propostas de resolução

MATEMÁTICA A - 10o Ano Geometria Propostas de resolução MATEMÁTIA A - 10o Ano Geometria Propostas de resolução Eercícios de eames e testes intermédios 1. omo os pontos A, B e têm abcissa 1, todos pertencem ao plano de equação = 1. Assim a secção produida no

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Fase

Prova final de MATEMÁTICA - 3o ciclo a Fase Prova final de MATEMÁTICA - 3o ciclo 2016-2 a Fase Proposta de resolução Caderno 1 1. Calculando a diferença entre 3 1 e cada uma das opções apresentadas, arredondada às centésimas, temos que: 3 1 2,2

Leia mais

MÚLTIPLOS SIGNIFICADOS PARA AS FUNÇÔES

MÚLTIPLOS SIGNIFICADOS PARA AS FUNÇÔES 1 MÚLTIPLOS SIGNIFICADOS PARA AS FUNÇÔES 1. Desenvolvimento histórico A noção de função surgiu como o instrumento matemático indispensável para o estudo quantitativo dos fenômenos naturais, iniciado por

Leia mais

Estudo Dirigido - Desvendando a Geometria Analítica: Distância entre dois pontos

Estudo Dirigido - Desvendando a Geometria Analítica: Distância entre dois pontos Estudo Dirigido - Desvendando a Geometria Analítica: Distância entre dois pontos Conteúdo: Plano Cartesiano Público-alvo: Alunos de Ensino Médio Competências; Modelar e resolver problemas que envolvem

Leia mais

Alguns textos de história em livros de matemática: uma primeira aproximação

Alguns textos de história em livros de matemática: uma primeira aproximação Alguns textos de história em livros de matemática: uma primeira aproximação Paulo Henrique Trentin INTRODUÇÃO Quando buscamos tratar da análise de textos de história em livros de matemática vemos que não

Leia mais

PITÁGORAS: UM MATEMÁTICO INSUPERÁVEL. ¹Discente do Curso de Matemática da UEG-UnU de Santa Helena de Goiás

PITÁGORAS: UM MATEMÁTICO INSUPERÁVEL. ¹Discente do Curso de Matemática da UEG-UnU de Santa Helena de Goiás 7ª JORNADA ACADÊMICA 2013 18 a 23 de Novembro Unidade Universitária de Santa Helena de Goiás Crescimento Regional Inovação e tecnologia no mercado de trabalho PITÁGORAS: UM MATEMÁTICO INSUPERÁVEL Gleiciane

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: MATA0 - CÁLCULO B UNIDADE I - LISTA DE EXERCÍCIOS Atualizada 00. Áreas de figuras planas em coordenadas cartesianas [] Determine a área

Leia mais

Geometria. Roberta Godoi Wik Atique

Geometria. Roberta Godoi Wik Atique Geometria Roberta Godoi Wik Atique 1 Introdução A Geometria é uma ciência muito antiga. Conhecimentos geométricos não triviais já eram dominados no Egito antigo, na Babilônia e na Grécia. Na forma como

Leia mais

Mat. Monitor: Gabriella Teles

Mat. Monitor: Gabriella Teles Mat. Professor: Rafael Jesus Monitor: Gabriella Teles Geometria analítica plana: distância e reta 13 out RESUMO Distância entre dois pontos: Dado dois pontos A e B do plano cartesiano, chama-se distância

Leia mais

Universidade Estadual de Campinas

Universidade Estadual de Campinas Universidade Estadual de Campinas Nathalia Cristina Ribeiro Ra: 105480 Universidade Estadual de Campinas Fernando Torres 2 Sumário. Introdução 4 Biografia de Leonardo Fibonacci 5 O que é uma seqüência?

Leia mais

TRABALHANDO MEDIDAS E GRANDEZAS POR MEIO DE MATERIAIS CONCRETOS

TRABALHANDO MEDIDAS E GRANDEZAS POR MEIO DE MATERIAIS CONCRETOS TRABALHANDO MEDIDAS E GRANDEZAS POR MEIO DE MATERIAIS CONCRETOS Nelson Leal dos Santos Júnior 1 Fabíola da Cruz Martins 2 Jaqueline Lixandrão Santos 3 RESUMO No Brasil, os professores tinham certa dificuldade

Leia mais

Volume de Sólidos. Principio de Cavalieri

Volume de Sólidos. Principio de Cavalieri Volume de Sólidos Principio de Cavalieri Volume Entenderemos por sólido qualquer um dos seguintes subconjuntos do espaço: cilindro, cone, esfera, poliedro (que iremos definir no próximo capítulo) ou qualquer

Leia mais