TRIÂNGULO RETÂNGULO. (PINKER, Steven. Como a Mente Funciona. São Paulo: Companhia das Letras, 1998, p. 9.)

Tamanho: px
Começar a partir da página:

Download "TRIÂNGULO RETÂNGULO. (PINKER, Steven. Como a Mente Funciona. São Paulo: Companhia das Letras, 1998, p. 9.)"

Transcrição

1 TRIÂNGULO RETÂNGULO TEXTO PARA A PRÓXIMA QUESTÃO: Qualquer livro intitulado Como a mente funciona deveria começar com uma nota de humildade; começarei com duas. Primeiro, não entendemos como a mente funciona nem de longe tão bem quanto compreendemos como funciona o corpo, e certamente não o suficiente para projetar utopias ou curar a infelicidade. Então, por que esse título audacioso? O linguista Noam Chomsky declarou certa vez que nossa ignorância pode ser dividida em problemas e mistérios. Quando estamos diante de um problema, podemos não saber a solução, mas temos insights, acumulamos um conhecimento crescente sobre ele e temos uma vaga ideia do que buscamos. Porém, quando defrontamos um mistério, ficamos entre maravilhados e perplexos, sem ao menos uma ideia de como seria a explicação. Escrevi este livro porque dezenas de mistérios da mente, das imagens mentais ao amor romântico, foram recentemente promovidos a problemas (embora ainda haja também alguns mistérios!). Cada ideia deste livro pode revelar-se errônea, mas isso seria um progresso, pois nossas velhas ideias eram muito sem graça para estar erradas. Em segundo lugar, eu não descobri o que de fato sabemos sobre o funcionamento da mente. Poucas das ideias apresentadas nas páginas seguintes são minhas. Selecionei, de muitas disciplinas, teorias que me parecem oferecer um insight especial a respeito dos nossos pensamentos e sentimentos, que se ajustam aos fatos, predizem fatos novos e são coerentes em seu conteúdo e estilo explicativo. Meu objetivo foi tecer essas ideias em um quadro coeso, usando duas ideias ainda maiores que não são minhas: a teoria computacional da mente e a teoria da seleção natural dos replicadores. (PINKER, Steven. Como a Mente Funciona. São Paulo: Companhia das Letras, 998, p. 9.). Num projeto hidráulico, um cano com diâmetro externo de 6 cm será encaixado no vão triangular de uma superfície, como ilustra a figura abaixo. Que porção x da altura do cano permanecerá acima da superfície? a) cm b) cm c) cm d) cm e) cm. Considere um triângulo ABC retângulo em C e o ângulo BAC. ˆ Sendo AC sen( ), quanto vale a medida da hipotenusa desse triângulo? e Página de 7

2 a) b) c) 0 d) 4 e). Para determinar a distância de um barco até a praia, um navegante utilizou o seguinte procedimento: a partir de um ponto A, mediu o ângulo visual a fazendo mira em um ponto fixo P da praia. Mantendo o barco no mesmo sentido, ele seguiu até um ponto B de modo que fosse possível ver o mesmo ponto P da praia, no entanto sob um ângulo visual. A figura ilustra essa situação: Suponha que o navegante tenha medido o ângulo 0º e, ao chegar ao ponto B, verificou que o barco havia percorrido a distância AB 000 m. Com base nesses dados e mantendo a mesma trajetória, a menor distância do barco até o ponto fixo P será a) 000 m. b) 000 m. c) 000 m. d) 000 m. e) 000 m. 4. Um indivíduo em férias na praia observa, a partir da posição P, um barco ancorado no horizonte norte na posição B. Nesta posição P, o ângulo de visão do barco, em relação à praia, é de 90, como mostrado na figura a seguir. Página de 7

3 Ele corre aproximadamente 000 metros na direção oeste e observa novamente o barco a partir da posição P. Neste novo ponto de observação P, o ângulo de visão do barco, em relação à praia, é de 45. Qual a distância PB aproximadamente? a) 000 metros b) 04 metros c) 44 metros d) 74 metros e) 44 metros 5. Um foguete é lançado de uma rampa situada no solo sob um ângulo de 60º, conforme a figura. Dados: sen 60º ; cos 60º ; tg 60º. A altura em que se encontra o foguete, após ter percorrido km, é a) 600 dam b).000 m c) dm d) cm Página de 7

4 6. A trigonometria estuda as relações entre os lados e os ângulos de um triângulo. Em um cat. oposto cat. adjacente triângulo retângulo, sabemos que senθ, cosθ e hipotenusa hipotenusa cat. oposto tgθ. Considere o triângulo abaixo e as proposições I, II e III. cat.adjacente I. o ΔABC é retângulo em B. II. cosâ 0,8 III. sen  tg  5 Assinale a alternativa correta. a) Apenas a proposição I é verdadeira. b) Apenas as proposições II e III são verdadeiras. c) Apenas as proposições I e III são verdadeiras. d) Apenas a proposição II é verdadeira. e) Todas as proposições são verdadeiras. 7. Uma baixa histórica no nível das águas no rio Amazonas em sua parte peruana deixou o Estado do Amazonas em situação de alerta e a Região Norte na expectativa da pior seca desde 005. [...] Em alguns trechos, o Rio Amazonas já não tem profundidade para que balsas com mercadorias e combustível para energia elétrica cheguem até as cidades. A Defesa Civil já declarou situação de atenção em 6 municípios e situação de alerta etapa imediatamente anterior à situação de emergência em outros nove. Porém, alguns trechos do rio Amazonas ainda permitem plenas condições de navegabilidade. Texto adaptado de: Acesso em: 0 nov. 00. Considerando que um barco parte de A para atravessar o rio Amazonas; que a direção de seu deslocamento forma um ângulo de 0º com a margem do rio; que a largura do rio, teoricamente constante, de 60 metros, então, podemos afirmar que a distância AB em metros percorrida pela embarcação foi de... Dados: Página 4 de 7

5 0º 45º 60º Seno Cosseno Tangente a) 60 metros. b) 40 metros. c) 0 metros. d) 0 metros. e) 40 metros. 8. Uma pessoa cujos olhos estão a,80 m de altura em relação ao chão avista o topo de um edifício segundo um ângulo de 0 com a horizontal. Percorrendo 80 m no sentido de aproximação do edifício, esse ângulo passa a medir 60. Usando o valor,7 para a raiz quadrada de, podemos concluir que a altura desse edifício é de aproximadamente: a) 59 m b) 6 m c) 65 m d) 69 m e) 7 m 9. Um balão atmosférico, lançado em Bauru (4 quilômetros a Noroeste de São Paulo), na noite do último domingo, caiu nesta segunda-feira em Cuiabá Paulista, na região de Presidente Prudente, assustando agricultores da região. O artefato faz parte do programa Projeto Hibiscus, desenvolvido por Brasil, Franca, Argentina, Inglaterra e Itália, para a medição do comportamento da camada de ozônio, e sua descida se deu após o cumprimento do tempo previsto de medição. Disponível em: Acesso em: 0 maio 00. Na data do acontecido, duas pessoas avistaram o balão. Uma estava a,8 km da posição vertical do balão e o avistou sob um ângulo de 60 ; a outra estava a 5,5 km da posição vertical do balão, alinhada com a primeira, e no mesmo sentido, conforme se vê na figura, e o avistou sob um ângulo de 0. Qual a altura aproximada em que se encontrava o balão? a),8 km b),9 km c), km d),7 km e) 5,5 km Página 5 de 7

6 0. O valor de cos45 sen0 é: cos60 a) b) c) 4 d) e) 0. Na figura, a seguir, um fazendeiro (F) dista 600 m da base da montanha (ponto B). A medida do ângulo A ˆF B é igual a 0º. Ao calcular a altura da montanha, em metros, o fazendeiro encontrou a medida correspondente a a) 00. b) 00. c) 50. d) 50.. Em parques infantis, é comum encontrar um brinquedo, chamado escorrego, constituído de uma superfície plana inclinada e lisa (rampa), por onde as crianças deslizam, e de uma escada que dá acesso à rampa. No parque de certa praça, há um escorrego, apoiado em um piso plano e horizontal, cuja escada tem m de comprimento e forma um ângulo de 45º com o piso; e a rampa forma um ângulo de 0º com o piso, conforme ilustrado na figura a seguir. De acordo com essas informações, é correto afirmar que o comprimento (L) da rampa é de: a) m b) m c) m d) 4 m Página 6 de 7

7 e) 5 m. Sobre um plano inclinado deverá ser construída uma escadaria. Sabendo que cada degrau da escada deverá ter uma altura de 0 cm e que a base do plano inclinado mede 80 a) 0 degraus. b) 8 degraus. c) 4 degraus. d) 54 degraus. e) 6 degraus. cm, conforme mostra a figura, então a escada deverá ter: 4. Ao morrer, o pai de João, Pedro e José deixou como herança um terreno retangular de km x km que contém uma área de extração de ouro delimitada por um quarto de círculo de raio km a partir do canto inferior esquerdo da propriedade. Dado o maior valor da área de extração de ouro, os irmãos acordaram em repartir a propriedade de modo que cada um ficasse com a terça parte da área de extração, conforme mostra a figura. Em relação à partilha proposta, constata-se que a porcentagem da área do terreno que coube a João corresponde, aproximadamente, a (considere a) 50%. b) 4%. c) 7%. d) %. e) 9%. = 0,58) Página 7 de 7

8 5. Para representar as localizações de pontos estratégicos de um acampamento em construção, foi usado um sistema de eixos cartesianos ortogonais, conforme mostra a figura a seguir, em que os pontos F e M representam os locais onde serão construídos os respectivos dormitórios feminino e masculino e R, o refeitório. Se o escritório da Coordenação do acampamento deverá ser equidistante dos dormitórios feminino e masculino e, no sistema, sua representação é um ponto pertencente ao eixo das abscissas, quantos metros ele distará do refeitório? a) 0 b) 0 c) 9 d) 9 e) 8 6. Para se calcular a altura de uma torre, utilizou-se o seguinte procedimento ilustrado na figura: um aparelho (de altura desprezível) foi colocado no solo, a uma certa distância da torre, e emitiu um raio em direção ao ponto mais alto da torre. O ângulo determinado entre o raio e o solo foi de ل = π radianos. A seguir, o aparelho foi deslocado 4 metros em direção à torre e o ângulo então obtido foi de â radianos, com tg â =. É correto afirmar que a altura da torre, em metros, é a) 4 b) 5 c) 6 d) 7 Página 8 de 7

9 e) 8 7. Dois edíficios, X e Y, estão um em frente ao outro, num terreno plano. Um observador, no pé do edifício X (ponto P), mede um ângulo á em relação ao topo do edifício Y (ponto Q). Depois disso, no topo do edifício X, num ponto R, de forma que RPTS formem um retângulo e QT seja perpendicular a PT, esse observador mede um ângulo â em relação ao ponto Q no edifício Y. Sabendo que a altura do edifício X é 0 m e que tg á = 4 tg â, a altura h do edifício Y, em metros, é: a) 40. b) c) 0. d) 40. e) As medidas dos lados dos triângulos a seguir são dadas em cm. O valor de x + y é: a) 8 cm. b) 0 cm. c) cm. d) 9 cm. e) cm. 9. Uma empresa de engenharia deseja construir uma estrada ligando os pontos A e B, que estão situados em lados opostos de uma reserva florestal, como mostra a figura a seguir. Página 9 de 7

10 A empresa optou por construir dois trechos retilíneos, denotados pelos segmentos AC e CB, ambos com o mesmo comprimento. Considerando que a distância de A até B, em linha reta, é igual ao dobro da distância de B a D, o ângulo á, formado pelos dois trechos retilíneos da estrada, mede a) 0 b) 0 c) 0 d) 40 e) Um avião levanta voo sob um ângulo de 0. Então, depois que tiver percorrido 500 m, conforme indicado na figura, sua altura h em relação ao solo, em metros, será igual a: Considere sen 0 = 0,50 ou cos 0 = 0,87. a) 50 b) 00 c) 400 d) 45. Em um shopping, uma pessoa sai do primeiro pavimento para o segundo através de uma escada rolante, conforme a figura a seguir. Página 0 de 7

11 A altura H, em metros, atingida pela pessoa, ao chegar ao segundo pavimento, é: a) 5 b) 0 c) 5 d) e) Página de 7

12 Gabarito: Resposta da questão : [B] o sen0 AO 6cm AO AO Logo, 6 x 8 x cm. Resposta da questão : [D] Sabendo que AC e sen, vem BC BC AB sen BC. AB AB Aplicando o Teorema de Pitágoras, obtemos: AB AB AC BC AB 8 AB 9 AB. 4 Resposta da questão : [B] Δ ABP é isósceles (AB BP 000) Página de 7

13 No ΔPBC temos: sen60 d o d 000 d m Resposta da questão 4: [C] cos 45º 000 x x x x,44 m 000 x Resposta da questão 5: [D] h = altura. o h sen60 h h 6. km = cm Resposta da questão 6: [C] I. (V) - Observar o desenho. Página de 7

14 II. (F) - cos(â) 6 0 0,6 ; III) (V) - sen  tg  ; Resposta da questão 7: [B] o 60 sen60 AB 60 AB 0 AB AB 40 m Resposta da questão 8: [E] sen60 o h 69, x 80,8 x 80. 7m 40.,7 69,m Resposta da questão 9: [C] Página 4 de 7

15 tg60 H,8 H,8. H,m Resposta da questão 0: [A] ( ) Resposta da questão : [A] tg 0 o = x 600 x 600. x 00. m Resposta da questão : [B] x x sen 0 o = x Resposta da questão : [C] L L. Seja n o número de degraus da escada. tg0 0 0 cm Página 5 de 7

16 n Resposta da questão 4: [E] No triângulo assinalado (João) temos: o x tg0,6. A x,6 Em porcentagem,6 6.0,58 9%,6 Resposta da questão 5: [B] Resposta da questão 6: [C] Resposta da questão 7: [D] Resposta da questão 8: [E] Resposta da questão 9: [B] Resposta da questão 0: [A] Resposta da questão : [C] Página 6 de 7

17 Resumo das questões selecionadas nesta atividade Data de elaboração: 7/0/0 às :8 Nome do arquivo: click- trigonometria Legenda: Q/Prova = número da questão na prova Q/DB = número da questão no banco de dados do SuperPro Q/prova Q/DB Matéria Fonte Tipo Matemática... Ufpr/0... Múltipla escolha Matemática... Ufjf/0... Múltipla escolha Matemática... Enem/0... Múltipla escolha Matemática... Uel/0... Múltipla escolha Matemática... G - cftmg/0... Múltipla escolha Matemática... G - ifsc/0... Múltipla escolha Matemática... G - ifsc/0... Múltipla escolha Matemática... Espm/00... Múltipla escolha Matemática... Enem/00... Múltipla escolha Matemática... Pucrj/00... Múltipla escolha Matemática... Uemg/00... Múltipla escolha Matemática... Ufpb/00... Múltipla escolha Matemática... Udesc/ Múltipla escolha Matemática... Enem/ Múltipla escolha Matemática... Pucsp/ Múltipla escolha Matemática... Fuvest/ Múltipla escolha Matemática... Unesp/ Múltipla escolha Matemática... G - cftsc/ Múltipla escolha Matemática... Ufg/ Múltipla escolha Matemática... Pucmg/ Múltipla escolha Matemática... Ufpb/ Múltipla escolha Página 7 de 7

Razões Trigonométricas no Triângulo Retângulo. Seno, Cosseno e Tangente

Razões Trigonométricas no Triângulo Retângulo. Seno, Cosseno e Tangente Razões Trigonométricas no Triângulo Retângulo Seno, Cosseno e Tangente 1. (Ufrn 01) A escadaria a seguir tem oito batentes no primeiro lance e seis, no segundo lance de escada. Sabendo que cada batente

Leia mais

2) (PUC-Camp) Uma pessoa encontra-se num ponto A, localizado na base de um prédio, conforme mostra a figura adiante.

2) (PUC-Camp) Uma pessoa encontra-se num ponto A, localizado na base de um prédio, conforme mostra a figura adiante. ATIVIDADES PARA RECUPERAÇÃO PARALELA - MATEMÁTICA PROFESSOR: CLAUZIR PAIVA NASCIMENTO TURMA: 9º ANO REVISÃO 1) (Cesesp-PE) Do alto de uma torre de 50 metros de altura, localizada numa ilha, avista-se a

Leia mais

1. Examine cada relação e escreva se é uma função de A em B ou não. Em caso afirmativo determine o domínio, a imagem e o contradomínio.

1. Examine cada relação e escreva se é uma função de A em B ou não. Em caso afirmativo determine o domínio, a imagem e o contradomínio. 1. Examine cada relação e escreva se é uma função de A em B ou não. Em caso afirmativo determine o domínio, a imagem e o contradomínio. 2. (Fgv) Um vendedor recebe mensalmente um salário fixo de R$ 800,00

Leia mais

Relações Métricas nos. Dimas Crescencio. Triângulos

Relações Métricas nos. Dimas Crescencio. Triângulos Relações Métricas nos Dimas Crescencio Triângulos Trigonometria A palavra trigonometria é de origem grega, onde: Trigonos = Triângulo Metrein = Mensuração - Relação entre ângulos e distâncias; - Origem

Leia mais

Com base nos dados apresentados nessa figura, é correto afirmar que a área do terreno reservado para o parque mede:

Com base nos dados apresentados nessa figura, é correto afirmar que a área do terreno reservado para o parque mede: ÁREAS 1. A prefeitura de certa cidade reservou um terreno plano, com o formato de um quadrilátero, para construir um parque, que servirá de área de lazer para os habitantes dessa cidade. O quadrilátero

Leia mais

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) Num triângulo retângulo, definimos o cosseno de seus ângulos agudos O triângulo retângulo da figura

Leia mais

Triângulo Retângulo. Exemplo: O ângulo do vértice em. é a hipotenusa. Os lados e são os catetos. O lado é oposto ao ângulo, e é adjacente ao ângulo.

Triângulo Retângulo. Exemplo: O ângulo do vértice em. é a hipotenusa. Os lados e são os catetos. O lado é oposto ao ângulo, e é adjacente ao ângulo. Triângulo Retângulo São triângulos nos quais algum dos ângulos internos é reto. O maior dos lados de um triângulo retângulo é oposto ao vértice onde se encontra o ângulo reto e á chamado de hipotenusa.

Leia mais

LISTA DE MATEMÁTICA II

LISTA DE MATEMÁTICA II Ensino Médio Unidade São Judas Tadeu Professora: Oscar Aluno (a): Série: 3ª Data: / / 2015. LISTA DE MATEMÁTICA II 1) (Fuvest-SP) Um lateral L faz um lançamento para um atacante A, situado 32 m à sua frente

Leia mais

Curso Wellington Matemática Trigonometria Lei dos Senos e Cossenos Prof Hilton Franco

Curso Wellington Matemática Trigonometria Lei dos Senos e Cossenos Prof Hilton Franco 1. A figura a seguir apresenta o delta do rio Jacuí, situado na região metropolitana de Porto Alegre. Nele se encontra o parque estadual Delta do Jacuí, importante parque de preservação ambiental. Sua

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 57 TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO

MATEMÁTICA - 3 o ANO MÓDULO 57 TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO MATEMÁTICA - 3 o ANO MÓDULO 57 TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO N 10 cm 10 cm M 10 cm 1 rad 2 cm 1 cm 2 cm θ a c α C 4 5 B 3 α A Como pode cair no enem F 1 (ENEM) Um balão atmosférico, lançado em Bauru

Leia mais

LISTÃO DE EXERCÍCIOS DE REVISÃO IFMA PROFESSOR: ARI

LISTÃO DE EXERCÍCIOS DE REVISÃO IFMA PROFESSOR: ARI 01.: A figura mostra um edifício que tem 15 m de altura, com uma escada colocada a 8 m de sua base ligada ao topo do edifício. comprimento dessa escada é de: a) 12 m. b) 30 m. c) 15 m. d) 17 m. e) 20 m.

Leia mais

2. Na figura, ANM é um triângulo e ABCD é um quadrado. Calcule a área do quadrado:

2. Na figura, ANM é um triângulo e ABCD é um quadrado. Calcule a área do quadrado: SEMELHANÇA DE TRIÂNGULOS 1. Duas cidades X e Y são interligadas pela rodovia R101, que é retilínea e apresenta 300 km de extensão. A 160 km de X, à beira da R101, fica a cidade Z, por onde passa a rodovia

Leia mais

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 9

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 9 RACIOCÍNIO LÓGICO AULA 9 TRIGONOMETRIA TRIÂNGULO RETÂNGULO Considere um triângulo ABC, retângulo em  ( = 90 ), onde a é a medida da hipotenusa, b e c, são as medidas dos catetos e a, β são os ângulos

Leia mais

7] As polias indicadas na figura se movimentam em rotação uniforme, ligados por um eixo fixo.

7] As polias indicadas na figura se movimentam em rotação uniforme, ligados por um eixo fixo. Colégio Militar de Juiz de Fora Lista de Exercícios C PREP Mil Prof.: Dr. Carlos Alessandro A. Silva Cinemática: Vetores, Cinemática Vetorial, Movimento Circular e Lançamento de Projéteis. Nível I 1] Dois

Leia mais

Assunto: Razões Trigonométricas no Triângulo Retângulo. 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras:

Assunto: Razões Trigonométricas no Triângulo Retângulo. 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras: Assunto: Razões Trigonométricas no Triângulo Retângulo 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras: b) 15 5 α α 1 resp: sen α =/5 cos α = /5 tgα=/ resp: sen α = 17 cos α

Leia mais

Espelho Plano. www.nsaulasparticulares.com.br Página 1 de 21

Espelho Plano. www.nsaulasparticulares.com.br Página 1 de 21 Espelho Plano 1. (Fuvest 2013) O telêmetro de superposição é um instrumento ótico, de concepção simples, que no passado foi muito utilizado em câmeras fotográficas e em aparelhos de medição de distâncias.

Leia mais

LISTA de RECUPERAÇÃO MATEMÁTICA

LISTA de RECUPERAÇÃO MATEMÁTICA LISTA de RECUPERAÇÃO Professor: ARGENTINO Recuperação: O ANO DATA: 0 / 06 / 015 MATEMÁTICA 1. A figura representa duas raias de uma pista de atletismo plana. Fábio (F) e André (A) vão apostar uma corrida

Leia mais

Exercícios Triângulos (1)

Exercícios Triângulos (1) Exercícios Triângulos (1) 1. Na figura dada, sabe-se que r // s. Calcule x. 2. Nas figuras abaixo, calcule o valor de x. 5. (PUC-SP) Na figura seguinte, as retas r e s são paralelas. Encontre os ângulos

Leia mais

Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada

Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada MATEMÁTICA APLICADA 1. SISTEMA ANGULAR INTERNACIONAL...2 2.

Leia mais

Matemática. Alex Amaral e PC Sampaio (Allan Pinho) Trigonometria

Matemática. Alex Amaral e PC Sampaio (Allan Pinho) Trigonometria Trigonometria Trigonometria 1. Um balão atmosférico, lançado em Bauru (343 quilômetros a Noroeste de São Paulo), na noite do último domingo, caiu nesta segunda-feira em Cuiabá Paulista, na região de Presidente

Leia mais

GA Estudo das Retas. 1. (Pucrj 2013) O triângulo ABC da figura abaixo tem área 25 e vértices A = (4, 5), B = (4, 0) e C = (c, 0).

GA Estudo das Retas. 1. (Pucrj 2013) O triângulo ABC da figura abaixo tem área 25 e vértices A = (4, 5), B = (4, 0) e C = (c, 0). GA Estudo das Retas 1. (Pucrj 01) O triângulo ABC da figura abaixo tem área 5 e vértices A = (, 5), B = (, 0) e C = (c, 0). A equação da reta r que passa pelos vértices A e C é: a) y x 7 x b) y 5 x c)

Leia mais

Curso Wellington - Física Óptica Espelhos Planos Prof Hilton Franco

Curso Wellington - Física Óptica Espelhos Planos Prof Hilton Franco 1. Considere um objeto luminoso pontual, fixo no ponto P, inicialmente alinhado com o centro de um espelho plano E. O espelho gira, da posição E 1 para a posição E 2, em torno da aresta cujo eixo passa

Leia mais

Matemática. Resolução das atividades complementares. M2 Trigonometria nos Triângulos

Matemática. Resolução das atividades complementares. M2 Trigonometria nos Triângulos Resolução das atividades complementares Matemática M Trigonometria nos Triângulos p. 1 Em cada caso, calcule o seno, o cosseno e a tangente do ângulo agudo assinalado. a) b) sen γ = cos γ = tg γ 1 sen

Leia mais

Exercícios de Razões Trigonométricas. b) Considerando o triângulo retângulo ABC da figura, determine as medidas a e b indicadas.

Exercícios de Razões Trigonométricas. b) Considerando o triângulo retângulo ABC da figura, determine as medidas a e b indicadas. Exercícios de Razões Trigonométricas a) No triângulo retângulo da figura abaixo, determine as medidas de x e y indicadas (Use: sen 65 = 0,91; cos 65 = 0,42 ; tg 65 = 2,14) b) Considerando o triângulo retângulo

Leia mais

Questão 2. Questão 1. Questão 3. Resposta. Resposta

Questão 2. Questão 1. Questão 3. Resposta. Resposta Instruções: Indique claramente as respostas dos itens de cada questão, fornecendo as unidades, caso existam. Apresente de forma clara e ordenada os passos utilizados na resolução das questões. Expressões

Leia mais

Lista de exercícios 04

Lista de exercícios 04 Lista de exercícios 04 Aluno (a) : Série: 9º ano (Ensino fundamental) Professor: Flávio Disciplina: Matemática No Anhanguera você é + Enem Observações: Data da entrega: 29/05/2015. A lista deverá apresentar

Leia mais

TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são:

TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são: TRIÂNGULO RETÂNGULO Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são: a: hipotenusa b e c: catetos h: altura relativa a hipotenusa m e

Leia mais

Lista 2 Espelhos Planos Construções Extensivo Noite

Lista 2 Espelhos Planos Construções Extensivo Noite 1. (Fuvest 2007) A janela de uma casa age como se fosse um espelho e reflete a luz do Sol nela incidente, atingindo, às vezes, a casa vizinha. Para a hora do dia em que a luz do Sol incide na direção indicada

Leia mais

COLÉGIO RESSURREIÇÃO NOSSA SENHORA

COLÉGIO RESSURREIÇÃO NOSSA SENHORA COLÉGIO RESSURREIÇÃO NOSSA SENHORA Data: 01/06/2016 Disciplina: Matemática LISTA 10 Trigonometria no triângulo retângulo Período: 2 o Bimestre Série/Turma: 2 a série EM Professor(a): Wysner Max Valor:

Leia mais

1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra

1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra GEOMETRIA PLANA: SEMELHANÇA DE TRIÂNGULOS 2 1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra a figura. A rodovia AC tem 40km, a rodovia AB tem 50km, os ângulos

Leia mais

AVALIAÇÃO BIMESTRAL I

AVALIAÇÃO BIMESTRAL I Nome: Nº Curso: Mecânica Integrado Disciplina: Matemática I 1 Ano Prof. Leonardo Data: / /016 INSTRUÇÕES: AVALIAÇÃO BIMESTRAL I Não é permitido o uso de calculadora ou de celular, caso contrário a sua

Leia mais

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge.

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge. Matemática 2 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um paralelepípedo retângulo acoplado a um prisma triangular. 1,6m 1m 1,4m Calcule o volume da estrutura, em dm 3, e indique

Leia mais

Lista para estudos. 1) Na figura ao lado, o triângulo ABC é retângulo em B. O cosseno, seno e tangente do ângulo BÂC é?

Lista para estudos. 1) Na figura ao lado, o triângulo ABC é retângulo em B. O cosseno, seno e tangente do ângulo BÂC é? Professor: Carlos Eduardo Guariglia Seno, Cosseno e Tangente Lista para estudos Nota: Em alguns exercícios não seriam necessários os desenhos, pois são simples, porém acredito que dando alguns exemplos

Leia mais

Taxas Relacionadas. Começaremos nossa discussão com um exemplo que descreve uma situação real.

Taxas Relacionadas. Começaremos nossa discussão com um exemplo que descreve uma situação real. 6/0/008 Fatec/Tatuí Calculo II - Taxas Relacionadas 1 Taxas Relacionadas Um problema envolvendo taxas de variação de variáveis relacionadas é chamado de problema de taxas relacionadas. Os passos a seguir

Leia mais

Aula 10 Triângulo Retângulo

Aula 10 Triângulo Retângulo Aula 10 Triângulo Retângulo Projeção ortogonal Em um plano, consideremos um ponto e uma reta. Chama-se projeção ortogonal desse ponto sobre essa reta o pé da perpendicular traçada do ponto à reta. Na figura,

Leia mais

CADERNO DE ATIVIDADES / MATEMÁTICA TECNOLOGIAS

CADERNO DE ATIVIDADES / MATEMÁTICA TECNOLOGIAS VSTIULR VILS 0. alcule x na figura: x + 0º x + 0º RNO TIVIS / MTMÁTI TNOLOGIS 0. Na figura, é o lado de um quadrado inscrito e é o lado do decágono regular. Qual a medida de x? x 0. Na figura a seguir,

Leia mais

UNIDADE 10 ESTUDOS DE MECÂNICA - INÍCIO LISTA DE EXERCÍCIOS

UNIDADE 10 ESTUDOS DE MECÂNICA - INÍCIO LISTA DE EXERCÍCIOS INTRODUÇÃO À FÍSICA turma MAN 26/2 profa. Marta F. Barroso UNIDADE 1 LISTA DE EXERCÍCIOS UNIDADE 1 ESTUDOS DE MECÂNICA - INÍCIO Exercício 1 Movendo-se com velocidade constante de 15 m/s, um trem, cujo

Leia mais

1. Determine x no caso a seguir: 2. No triângulo ABC a seguir, calcule o perímetro.

1. Determine x no caso a seguir: 2. No triângulo ABC a seguir, calcule o perímetro. 1. Determine x no caso a seguir: 2. No triângulo ABC a seguir, calcule o perímetro. 3. (Ufrrj) Milena, diante da configuração representada abaixo, pede ajuda aos vestibulandos para calcular o comprimento

Leia mais

a 2,0 m / s, a pessoa observa que a balança indica o valor de

a 2,0 m / s, a pessoa observa que a balança indica o valor de 1. (Fuvest 015) Uma criança de 30 kg está em repouso no topo de um escorregador plano de,5 m,5 m de altura, inclinado 30 em relação ao chão horizontal. Num certo instante, ela começa a deslizar e percorre

Leia mais

UNIDADE NO SI: F Newton (N) 1 N = 1 kg. m/s² F R = 6N + 8N = 14 N F R = 7N + 3N = 4 N F 2 = 7N

UNIDADE NO SI: F Newton (N) 1 N = 1 kg. m/s² F R = 6N + 8N = 14 N F R = 7N + 3N = 4 N F 2 = 7N Disciplina de Física Aplicada A 2012/2 Curso de Tecnólogo em Gestão Ambiental Professora Ms. Valéria Espíndola Lessa DINÂMICA FORÇA: LEIS DE NEWTON A partir de agora passaremos a estudar a Dinâmica, parte

Leia mais

Professor Bill apresenta: Trigonometria no triângulo retângulo

Professor Bill apresenta: Trigonometria no triângulo retângulo Professor Bill apresenta: Trigonometria no triângulo retângulo 1. (G1 - ifce 014) Uma rampa faz um ângulo de 0 com o plano horizontal. Uma pessoa que subiu 0 metros dessa rampa se encontra a altura de

Leia mais

GREGOR MENDEL PROF WILSON

GREGOR MENDEL PROF WILSON 1. (Mackenzie 01) Um avião, após deslocar-se 10 km para nordeste (NE), desloca-se 160 km para sudeste (SE). Sendo um quarto de hora, o tempo total dessa viagem, o módulo da velocidade vetorial média do

Leia mais

15 + 17 + 19 +... + 35 + 37 = 312

15 + 17 + 19 +... + 35 + 37 = 312 MATEMÁTICA 1 Para uma apresentação de dança, foram convidadas 31 bailarinas. Em uma de suas coreografias, elas se posicionaram em círculos. No primeiro círculo, havia 15 bailarinas. Para cada um dos círculos

Leia mais

Topografia Aula 2 Unidades Usuais e Revisão de Trigonometria

Topografia Aula 2 Unidades Usuais e Revisão de Trigonometria Topografia Aula 2 Unidades Usuais e Revisão de Trigonometria Agronomia / Arquitetura e Urbanismo / Engenharia Civil Prof. Luiz Miguel de Barros luizmiguel.barros@yahoo.com.br Revisão Aula 1 O que é topografia?

Leia mais

valdivinomat@yahoo.com.br Rua 13 de junho, 1882-3043-0109

valdivinomat@yahoo.com.br Rua 13 de junho, 1882-3043-0109 LISTA 17 RELAÇÕES MÉTRICAS 1. (Uerj 01) Um modelo de macaco, ferramenta utilizada para levantar carros, consiste em uma estrutura composta por dois triângulos isósceles congruentes, AMN e BMN, e por um

Leia mais

+ Do que xxx e escadas

+ Do que xxx e escadas Reforço escolar M ate mática + Do que xxx e escadas Dinâmica 6 1º Série 2º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática Ensino Médio 1ª Campo Geométrico DINÂMICA + Do que xxx e escadas Razões trigonométricas

Leia mais

Prof. Rogério Porto. Assunto: Cinemática em uma Dimensão - I

Prof. Rogério Porto. Assunto: Cinemática em uma Dimensão - I Questões COVEST Física Mecânica Prof. Rogério Porto Assunto: Cinemática em uma Dimensão - I 1. A imprensa pernambucana, em reportagem sobre os riscos que correm os adeptos da "direção perigosa", observou

Leia mais

Espelhos Planos. Parte I. www.soexatas.com Página 1. = 3 m e entre os espelhos fixo e giratório é D = 2,0 m.

Espelhos Planos. Parte I. www.soexatas.com Página 1. = 3 m e entre os espelhos fixo e giratório é D = 2,0 m. Parte I Espelhos Planos 1. (Unesp 2014) Uma pessoa está parada numa calçada plana e horizontal diante de um espelho plano vertical E pendurado na fachada de uma loja. A figura representa a visão de cima

Leia mais

Lista de exercícios Trigonometria Problemas Gerais. Parte 1 : Tangente da soma e da diferença de arcos e tangente do dobro de um arco

Lista de exercícios Trigonometria Problemas Gerais. Parte 1 : Tangente da soma e da diferença de arcos e tangente do dobro de um arco Lista de eercícios Trigonometria Problemas Gerais Prof ºFernandinho Parte 1 : Tangente da soma e da diferença de arcos e tangente do dobro de um arco 01.(Fuvest) Se é um ângulo tal que 0 < < 90 e sen =,

Leia mais

COLÉGIO SHALOM 1 ANO Professora: Bethânia Rodrigues 65 Geometria. Aluno(a):. Nº.

COLÉGIO SHALOM 1 ANO Professora: Bethânia Rodrigues 65 Geometria. Aluno(a):. Nº. COLÉGIO SHALOM 1 ANO Professora: Bethânia Rodrigues 65 Geometria Aluno(a):. Nº. TRABALHO DE RECUPERAÇÃO E a receita é uma só: fazer as pazes com você mesmo, diminuir a expectativa e entender que felicidade

Leia mais

(c) 30% (d) 25% aprovados. é a quantidade de: Em uma indústria é fabricado um produto ao custo de

(c) 30% (d) 25% aprovados. é a quantidade de: Em uma indústria é fabricado um produto ao custo de QUESTÃO - EFOMM 0 QUESTÃO - EFOMM 0 Se tgx sec x, o valor de senx cos x vale: ( 7 ( ( ( ( O lucro obtido pela venda de cada peça de roupa é de, sendo o preço da venda e 0 o preço do custo quantidade vendida

Leia mais

FUVEST 2008 1 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia.

FUVEST 2008 1 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia. FUVEST 008 a Fase Matemática Professora Maria Antônia Gouveia..0. Sabendo que os anos bissextos são os múltiplos de 4 e que o primeiro dia de 007 foi segunda-feira, o próximo ano a começar também em uma

Leia mais

Prof. Rogério Porto. Assunto: Cinemática em uma Dimensão III

Prof. Rogério Porto. Assunto: Cinemática em uma Dimensão III Questões COVEST Física Mecânica Prof. Rogério Porto Assunto: Cinemática em uma Dimensão III 1. Um atleta salta por cima do obstáculo na figura e seu centro de gravidade atinge a altura de 2,2 m. Atrás

Leia mais

1 COMO ESTUDAR GEOMETRIA

1 COMO ESTUDAR GEOMETRIA Matemática 2 Pedro Paulo GEOMETRIA ESPACIAL I 1 COMO ESTUDAR GEOMETRIA Só relembrando a primeira aula de Geometria Plana, aqui vão algumas dicas bem úteis para abordagem geral de uma questão de geometria:

Leia mais

COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO

COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO www.professorwaltertadeu.mat.br ) Uma escada de m de comprimento está apoiada no chão

Leia mais

DESENHO GEOMÉTRICO 1º ANO ENSINO MÉDIO

DESENHO GEOMÉTRICO 1º ANO ENSINO MÉDIO DESENHO GEOMÉTRICO 1º ANO ENSINO MÉDIO PROFESSOR: DENYS YOSHIDA PERÍODO: MANHÃ DESENHO GEOMÉTRICO 1º ANO - ENSINO MÉDIO - 016 1 Sumário 1. Trigonometria no triangulo retângulo...3 1.1 Triângulo retângulo...4

Leia mais

Nível B3 TRIGONOMETRIA DO TRIÂNGULO RECTÂNGULO

Nível B3 TRIGONOMETRIA DO TRIÂNGULO RECTÂNGULO Nível B3 TRIGONOMETRIA DO TRIÂNGULO RECTÂNGULO Razões trigonométricas A palavra trigonometria significa medir triângulos. Na figura, α e β são ângulos agudos do triângulo rectângulo. [CB] é a hipotenusa.

Leia mais

Neste ano estudaremos a Mecânica, que divide-se em dois tópicos:

Neste ano estudaremos a Mecânica, que divide-se em dois tópicos: CINEMÁTICA ESCALAR A Física objetiva o estudo dos fenômenos físicos por meio de observação, medição e experimentação, permite aos cientistas identificar os princípios e leis que regem estes fenômenos e

Leia mais

MENINO JESUS P R O B L E M Á T I C A 2. 1. Calcule as potências e marque a alternativa que contém as respostas corretas de I, II

MENINO JESUS P R O B L E M Á T I C A 2. 1. Calcule as potências e marque a alternativa que contém as respostas corretas de I, II Centro Educacional MENINO JESUS Aluno (a): Data: / / Professor (a): Disciplina: Matemática 8ª série / 9º ano: P R O B L E M Á T I C A 2 1. Calcule as potências e marque a alternativa que contém as respostas

Leia mais

UNIDADE DE ENSINO POTENCIALMENTE SIGNIFICATIVA PARA TÓPICOS DE MECÂNICA VETORIAL

UNIDADE DE ENSINO POTENCIALMENTE SIGNIFICATIVA PARA TÓPICOS DE MECÂNICA VETORIAL UNIVERSIDADE SEVERINO SOMBA PROGRAMA DE PÓS-GRADUAÇÃO STRICTO SENSU MESTRADO PROFISSIONAL EM EDUCAÇÃO MATEMÁTICA UNIDADE DE ENSINO POTENCIALMENTE SIGNIFICATIVA PARA TÓPICOS DE MECÂNICA VETORIAL BRUNO NUNES

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA Quarta lista de Eercícios de Cálculo Diferencial e Integral I - MTM 1 1. Nos eercícios a seguir admita

Leia mais

8º ANO. Lista extra de exercícios

8º ANO. Lista extra de exercícios 8º ANO Lista extra de exercícios 1. Encontre o valor do seno do ângulo α nos triângulos retângulos a seguir. a) c) b) d). Encontre o valor da tangente do ângulo α nos triângulos retângulos a seguir. a)

Leia mais

1 Analise a figura a seguir, que representa o esquema de um circuito com a forma da letra U, disposto perpendicularmente à superfície da Terra.

1 Analise a figura a seguir, que representa o esquema de um circuito com a forma da letra U, disposto perpendicularmente à superfície da Terra. FÍSIC 1 nalise a figura a seguir, que representa o esquema de um circuito com a forma da letra U, disposto perpendicularmente à superfície da Terra. Esse circuito é composto por condutores ideais (sem

Leia mais

MATEMÁTICA C PROFº LAWRENCE. Material Extra 2011

MATEMÁTICA C PROFº LAWRENCE. Material Extra 2011 Material Extra 011 MATEMÁTICA C PROFº LAWRENCE 01. (Cefet - MG) Um menino com altura de 1,0m empina um papagaio, em local apropriado, com um carretel de 10m de linha, conforme a figura abaixo. A altura

Leia mais

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura.

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura. NOME: ANO: º Nº: POFESSO(A): Ana Luiza Ozores DATA: Algumas definições Áreas: Quadrado: EVISÃO Lista 07 Áreas, Polígonos e Circunferência A, onde representa o lado etângulo: A b h, onde b representa a

Leia mais

9ª ANO - QUESTÕES PARA O SITE MATEMÁTICA

9ª ANO - QUESTÕES PARA O SITE MATEMÁTICA MATEMÁTICA. (ifce 04) Uma rampa faz um ângulo de 0 com o plano horizontal. Uma pessoa que subiu 0 metros dessa rampa se encontra a altura de do solo. a) 6 metros. b) 7 metros. c) 8 metros. d) 9 metros.

Leia mais

Exercícios Resolvidos de Velocidade Escalar Média

Exercícios Resolvidos de Velocidade Escalar Média 1. (Upf) Uma loja divulga na propaganda de um carro com motor 1.0 que o mesmo aumenta sua velocidade de 0 a 100 km/h em 10 s enquanto percorre 277 m. De acordo com essas informações, pode-se afirmar que

Leia mais

Exercícios de Matemática Geometria Analítica - Circunferência

Exercícios de Matemática Geometria Analítica - Circunferência Exercícios de Matemática Geometria Analítica - Circunferência ) (Unicamp-000) Sejam A e B os pontos de intersecção da parábola y = x com a circunferência de centro na origem e raio. a) Quais as coordenadas

Leia mais

QUESTÕES ÁREAS DE POLÍGONOS

QUESTÕES ÁREAS DE POLÍGONOS QUESTÕES ÁREAS DE POLÍGONOS 1. (Unicamp 014) O perímetro de um triângulo retângulo é igual a 6,0 m e as medidas dos lados estão em progressão aritmética (PA). A área desse triângulo é igual a a),0 m. b),0

Leia mais

CPV 82% de aprovação na ESPM

CPV 82% de aprovação na ESPM CPV 8% de aprovação na ESPM ESPM NOVEMBRO/009 Prova E matemática x + y y x 1. O valor da expressão + 6 : x + y para x 4 e y 0,15 é: a) 0 b) 1 c) d) e) 4 Temos x + y y x + 6 : x + y. Uma costureira pagou

Leia mais

TRIGONOMETRIA. AO VIVO MATEMÁTICA Professor Haroldo Filho 02 de fevereiro, AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO OA OA OA OA OA OA

TRIGONOMETRIA. AO VIVO MATEMÁTICA Professor Haroldo Filho 02 de fevereiro, AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO OA OA OA OA OA OA TRIGONOMETRIA 1. AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO Considere um ângulo agudo = AÔB, e tracemos a partir dos pontos A, A 1, A etc. da semirreta AO, perpendiculares à semirreta OB. AB A1B1 AB OAB

Leia mais

Instituto Nacional de Matemática Pura e Aplicada Programa de Aperfeiçoamento para Professores de Matemática do Ensino Médio PROPORCIONALIDADE

Instituto Nacional de Matemática Pura e Aplicada Programa de Aperfeiçoamento para Professores de Matemática do Ensino Médio PROPORCIONALIDADE Instituto Nacional de Matemática Pura e Aplicada Programa de Aperfeiçoamento para Professores de Matemática do Ensino Médio PROPORCIONALIDADE 1. Por um trabalho adicional a seu emprego, Álvaro deve descontar

Leia mais

TRIÂNGULO RETÂNGULO. Os triângulos AHB e AHC são semelhantes, então podemos estabelecer algumas relações métricas importantes:

TRIÂNGULO RETÂNGULO. Os triângulos AHB e AHC são semelhantes, então podemos estabelecer algumas relações métricas importantes: TRIÂNGULO RETÂNGULO Num triângulo retângulo, os lados perpendiculares, aqueles que formam um ângulo de 90º, são denominados catetos e o lado oposto ao ângulo de 90º recebe o nome de hipotenusa. O teorema

Leia mais

Lei dos Senos e dos Cossenos

Lei dos Senos e dos Cossenos Lei dos Senos e dos Cossenos 1. (G1 - cftrj 014) Considerando que ABC é um triângulo tal que AC 4 cm, BC 1 cm e  60, calcule os possíveis valores para a medida do lado AB.. (Ufpr 014) Dois navios deixam

Leia mais

CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer.

CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer. LISTA DE EXERCICIOS - ESTUDO PARA A PROVA PR1 3ºTRIMESTRE PROF. MARCELO CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer. (seno, cosseno e tangente; lei dos senos e lei dos

Leia mais

1. (Upe 2014) O deslocamento Δ x de uma partícula em função do tempo t é ilustrado no gráfico a seguir:

1. (Upe 2014) O deslocamento Δ x de uma partícula em função do tempo t é ilustrado no gráfico a seguir: 1. (Upe 2014) O deslocamento Δ x de uma partícula em função do tempo t é ilustrado no gráfico a seguir: Com relação ao movimento mostrado no gráfico, assinale a alternativa CORRETA. a) A partícula inicia

Leia mais

Levantamento topográfico

Levantamento topográfico MA092 - Geometria plana e analítica - Segundo projeto Levantamento topográfico Francisco A. M. Gomes Outubro de 2014 1 Descrição do projeto Nessa atividade, vamos usar a lei dos senos e a lei dos cossenos

Leia mais

---------------------------------------------------------- 1 UCS Vestibular de Inverno 2004 Prova 2 A MATEMÁTICA

---------------------------------------------------------- 1 UCS Vestibular de Inverno 2004 Prova 2 A MATEMÁTICA MATEMÁTICA 49 A distância que um automóvel percorre após ser freado é proporcional ao quadrado de sua velocidade naquele instante Um automóvel, a 3 km/, é freado e pára depois de percorrer mais 8 metros

Leia mais

Semelhança de Triângulos

Semelhança de Triângulos Semelhança de Triângulos 1. (Pucrj 2013) O retângulo DEFG está inscrito no triângulo isósceles ABC, como na figura abaixo: Assumindo DE = GF =12, EF = DG = 8 e AB =15, a altura do triângulo ABC é: a) 35

Leia mais

Construção Geométrica com Espelhos Esféricos

Construção Geométrica com Espelhos Esféricos Construção Geométrica com Espelhos Esféricos 1. (Ufsm 2012) A figura de Escher, Mão com uma esfera espelhada, apresentada a seguir, foi usada para revisar propriedades dos espelhos esféricos. Então, preencha

Leia mais

Esfera e Sólidos Redondos Área da Esfera. Volume da Esfera

Esfera e Sólidos Redondos Área da Esfera. Volume da Esfera Aula n ọ 04 Esfera e Sólidos Redondos Área da Esfera A área de uma esfera é a medida de sua superfície. Podemos dizer que sua área é igual a quatro vezes a área de um círculo máximo, ou seja: eixo R O

Leia mais

Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M.

Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M. Módulo de Geometria Anaĺıtica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano a série EM Geometria Analítica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano 1 Exercícios

Leia mais

Resolução comentada Lista sobre lei dos senos e lei dos cossenos

Resolução comentada Lista sobre lei dos senos e lei dos cossenos Resolução comentada Lista sobre lei dos senos e lei dos cossenos 1 1. A figura mostra o trecho de um rio onde se deseja construir uma ponte AB. De um ponto P, a 100m de B, mediu-se o ângulo APB = 45º e

Leia mais

Plano Inclinado Com Atrito

Plano Inclinado Com Atrito Plano Inclinado Com Atrito 1. (Fgv 2013) A figura representa dois alpinistas A e B, em que B, tendo atingido o cume da montanha, puxa A por uma corda, ajudando-o a terminar a escalada. O alpinista A pesa

Leia mais

TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS

TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS 1) Uma escada está apoiada em um muro de 2 m de altura, formando um ângulo de 45º. Forma-se, portanto, um triângulo retângulo isósceles. Qual é o comprimento da escada?

Leia mais

3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA

3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA 3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA 01. Um topógrafo pretende calcular o comprimento da ponte OD que passa sobre o rio mostrado na figura abaio. Para isto, toma como referência

Leia mais

CEEJA MAX DADÁ GALLIZZI

CEEJA MAX DADÁ GALLIZZI CEEJA MAX DADÁ GALLIZZI MATEMÁTICA ENSINO MÉDIO APOSTILA 14 Parabéns!!! Você já é um vencedor! Voltar a estudar é uma vitória que poucos podem dizer que conseguiram. É para você, caro aluno, que desenvolvemos

Leia mais

Matemática. Resolução das atividades complementares. M20 Geometria Analítica: Circunferência

Matemática. Resolução das atividades complementares. M20 Geometria Analítica: Circunferência Resolução das atividades complementares Matemática M Geometria Analítica: ircunferência p. (Uneb-A) A condição para que a equação 6 m 9 represente uma circunferência é: a), m, ou, m, c) < m < e), m, ou,

Leia mais

PROFESSOR: DENYS YOSHIDA

PROFESSOR: DENYS YOSHIDA APOSTILA 015 DESENHO GEOMÉTRICO PROFESSOR: DENYS YOSHIDA DESENHO GEOMÉTRICO 1º ANO - ENSINO MÉDIO - 015 1 Sumário 1. Trigonometria no triangulo retângulo...3 1.1 Triângulo retângulo...4 1. Teorema de Pitágoras...,,,,,,,...4

Leia mais

. Para que essa soma seja 100, devemos ter 56 + 2x donde 2x = 44 e então x = 22, como antes.

. Para que essa soma seja 100, devemos ter 56 + 2x donde 2x = 44 e então x = 22, como antes. OBMEP 008 Nível 3 1 QUESTÃO 1 Carlos começou a trabalhar com 41-15=6 anos. Se y representa o número total de anos que ele trabalhará até se aposentar, então sua idade ao se aposentar será 6+y, e portanto

Leia mais

MATEMÁTICA TIPO C. 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a

MATEMÁTICA TIPO C. 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a 1 MATEMÁTICA TIPO C 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a veracidade das afirmações seguintes sobre, cujo gráfico está esboçado a seguir.

Leia mais

2. (G1 - ifsp 2012) Em um trecho retilíneo de estrada, dois veículos, A e B, mantêm velocidades constantes. 54 km/h

2. (G1 - ifsp 2012) Em um trecho retilíneo de estrada, dois veículos, A e B, mantêm velocidades constantes. 54 km/h MU 1. (Uerj 2013) Um motorista dirige um automóvel em um trecho plano de um viaduto. O movimento é retilíneo e uniforme. A intervalos regulares de 9 segundos, o motorista percebe a passagem do automóvel

Leia mais

Questões do capítulo oito que nenhum aluno pode ficar sem fazer

Questões do capítulo oito que nenhum aluno pode ficar sem fazer Questões do capítulo oito que nenhum aluno pode ficar sem fazer 1) A bola de 2,0 kg é arremessada de A com velocidade inicial de 10 m/s, subindo pelo plano inclinado. Determine a distância do ponto D até

Leia mais

GOIÂNIA, / / 2015. ALUNO(a): LISTA DE EXERCÍCIOS DE FÍSICA 4BI L1

GOIÂNIA, / / 2015. ALUNO(a): LISTA DE EXERCÍCIOS DE FÍSICA 4BI L1 GOIÂNIA, / / 2015 PROFESSOR: Fabrízio Gentil Bueno DISCIPLINA: FÍSICA SÉRIE: 2 o ALUNO(a): NOTA: No Anhanguera você é + Enem LISTA DE EXERCÍCIOS DE FÍSICA 4BI L1 01 - (UDESC) João e Maria estão a 3m de

Leia mais

PROVA DE MATEMÁTICA EFOMM-2007

PROVA DE MATEMÁTICA EFOMM-2007 1ª Questão: PROVA DE MATEMÁTICA EFOMM-2007 Numa companhia de 496 alunos, 210 fazem natação, 260 musculação e 94 estão impossibilitados de fazer esportes. Neste caso, o número de alunos que fazem só natação

Leia mais

Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é igual a: a) radianos b) 116 o 40' ;

Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é igual a: a) radianos b) 116 o 40' ; APOSTILAS (ENEM) VOLUME COMPLETO Exame Nacional de Ensino Médio (ENEM) 4 VOLUMES APOSTILAS IMPRESSAS E DIGITAIS Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é

Leia mais

Aula 12 Áreas de Superfícies Planas

Aula 12 Áreas de Superfícies Planas MODULO 1 - AULA 1 Aula 1 Áreas de Superfícies Planas Superfície de um polígono é a reunião do polígono com o seu interior. A figura mostra uma superfície retangular. Área de uma superfície é um número

Leia mais

Lista 1 Cinemática em 1D, 2D e 3D

Lista 1 Cinemática em 1D, 2D e 3D UNIVERSIDADE ESTADUAL DO SUDOESTE DA BAHIA DEPARTAMENTO DE ESTUDOS BÁSICOS E INSTRUMENTAIS CAMPUS DE ITAPETINGA PROFESSOR: ROBERTO CLAUDINO FERREIRA DISCIPLINA: FÍSICA I Aluno (a): Data: / / NOTA: Lista

Leia mais

MÓDULO DE RECUPERAÇÃO

MÓDULO DE RECUPERAÇÃO DISCIPLINA Física II 2º ANO ENSINO MÉDIO MÓDULO DE RECUPERAÇÃO ALUNO(A) Nº TURMA TURNO Manhã 1º SEMESTRE DATA / / 01- A figura representa um feixe de raios paralelos incidentes numa superfície S e os correspondentes

Leia mais