PLANO INCLINADO AULA 4. Classe. Forças aplicadas ao corpo apoiado sobre plano inclinado sem atrito

Tamanho: px
Começar a partir da página:

Download "PLANO INCLINADO AULA 4. Classe. www.cursoanglo.com.br. Forças aplicadas ao corpo apoiado sobre plano inclinado sem atrito"

Transcrição

1 009 Treinamento para Olimpíadas de Física 3 ª- s é r i e E M UL 4 PLNO INCLINDO Forças aplicadas ao corpo apoiado sobre plano inclinado sem atrito N P Forças aplicadas ao corpo apoiado sobre plano inclinado com atrito C N P Em Classe 1. Um carrino de massa m desce um apoio plano inclinado de um ângulo θ em relação à orizontal. sendo g a aceleração local da gravidade, determinar, desprezando atritos e a resistência do ar: a) a aceleração do carrino; b) a intensidade da força normal que o apoio exerce no camino.. No sistema esquematizado na figura, não á atritos a considerar. Os corpos são abandonados do repouso e do corpo está apoiado sobre uma superfície plana orizontal. O corpo tem as dimensões indicadas na figura e o corpo tem dimensões desprezíveis. dotar g = 10m/s. D C a) Determinar a aceleração do corpo no caso do corpo ser mantido em repouso. b) Determinar a aceleração orizontal a que deve ser submetido o conjunto para que não aja movimento relativo entre os corpos. E CD = 0,30 m CE = 0,50 m DE = 0,40 m SISTEM NGLO DE ENSINO 1 Treinamento para Olimpíadas de Física 009

2 3. (OF) Determinar o valor da força de atrito que atua sobre o bloco de 100kg, considerando que o módulo da força F que atua sobre o corpo, como indicado pelo deseno seja 100N. O coeficiente de atrito estático é 0,0 e o dinâmico 0,17. F 30º Em Casa 1. (OF) Uma força orizontal de magnitude F, representada na figura abaixo, e utilizada para empurrar um bloco. de peso mg, com velocidade constante ao longo do plano inclinado. O coeficiente de atrito entre o plano e o bloco é µ. magnitude da força de atrito que age no bloco é: a) µmgcosθ. d) µ(fcosθ mgsenθ ). b) µmg/cosθ. e) µf cosθ. c) µ(mg cosθ + F senθ ). θ. (OF) Para mostrar a um amigo a validade das leis de Newton. você pega um pequeno bloco de madeira e o coloca no pára-brisa dianteiro de um carro, que tem uma inclinação de 45º em relação à orizontal. O bloco, então, escorrega pelo pára-brisa com velocidade constante. Você então repete a experiência, mas agora com o carro acelerando com uma aceleração a = 3 m/s. O bloco, então, fica em repouso em relação ao vidro. Para responder aos itens abaixo, considere um observador em repouso na Terra. a) Faça um diagrama das forças que atuam no bloco, identificando-as, para as duas situações descritas acima. Discuta se á ou não diferença entre estas duas situações. b) Calcule o coeficiente de atrito estático entre o vidro e a madeira (supondo que a segunda situação descrita acima seja a de iminência de movimento). 3. (OF) Um bloco em forma de paralelepípedo de arestas d, d e d/ é colocado na parte superior de um outro bloco em forma de cuna, de arestas d, 3d e 4d, feito do mesmo material, como representado na figura. d/ 3d d Na ausência de atrito entre as superfícies dos blocos e entre a base da cuna e o plano orizontal, encontre o 4d tempo de queda do paralelepípedo até tocar o plano orizontal na forma é a aceleração da gravidade. id jg, onde i e j são números inteiros e g SISTEM NGLO DE ENSINO Treinamento para Olimpíadas de Física 009

3 ULS 5 e 6 TRLHO E ENERGI TRLHO DE UM FORÇ Força Constante F F α d τ F = F d cosα Força Variável F t F t α F F t = F cos α τ F = N ± F t1 S 1 S d S O trabalo é positivo quando F t tiver o sentido do deslocamento. O trabalo é negativo quando F t tiver o sentido oposto ao do deslocamento. unidade de trabalo no SI é o J (joule). ENERGI Energia Cinética É uma grandeza física atribuída a corpos com velocidade. EC = 1 mv Energia Potencial É uma grandeza física atribuída a sistemas de corpos cuja posição relativa de seus elementos propiciam a aparição de movimento ou o aumento de movimento. Energia Potencial Gravitacional m g E P = mg SISTEM NGLO DE ENSINO 3 Treinamento para Olimpíadas de Física 009

4 Energia Potencial Elástica k x EP = 1 kx Energia Mecânica E M = E C + E P TEOREM D ENERGI CINÉTIC τ F = E c final Ec inicial TEOREM D ENERGI MECÂNIC τ F não conser = E M final EM inicial Todas as forças, com exceção das forças Peso, Elástica e Elétrica, são consideradas não conservativas. SISTEMS CONSERVTIVOS São os sistemas em que não á trabalo das forças não conservativas, portanto a energia mecânica é constante. τ F não conser = 0 E M = cte Em Classe 1. (FUVEST) O gráfico velocidade contra tempo, mostrado adiante, representa o movimento retilíneo de um carro de massa m = 600kg numa estrada molada. No instante t = 6s o motorista vê um engarrafamento à sua frente e pisa no freio. O carro, então, com as rodas travadas, desliza na pista até parar completamente. Despreze a resistência do ar. 10 v(m/s) t(s) a) Qual é o coeficiente de atrito entre os pneus do carro e a pista? b) Qual o trabalo, em módulo, realizado pela força de atrito entre os instantes t = 6s e t = 8s? SISTEM NGLO DE ENSINO 4 Treinamento para Olimpíadas de Física 009

5 . (UNICMP) Numa câmara frigorífica, um bloco de gelo de massa m = 8,0kg desliza sobre a rampa de madeira da figura a seguir, partindo do repouso, de uma altura = 1,8m. 1,8 m a) Se o atrito entre o gelo e a madeira fosse desprezível, qual seria o valor da velocidade do bloco ao atingir o solo (ponto da figura)? b) Entretanto, apesar de pequeno, o atrito entre o gelo e a madeira não é desprezível, de modo que o bloco de gelo cega à base da rampa com velocidade de 4,0m/s. Qual foi a energia dissipada pelo atrito? c) Qual a massa de gelo (a 0 C) que seria fundida com esta energia? Considere o calor latente de fusão do gelo L = 80cal/g e, para simplificar, adote 1cal = 4,0J. 3. (UFRS-modificado) figura representa uma mola, de massa desprezível, comprimida entre dois blocos, de massas M 1 = 1kg e M = kg, que podem deslizar sem atrito sobre uma superfície orizontal. O sistema é mantido inicialmente em repouso. M 1 M Num determinado instante, a mola é liberada e se expande, impulsionando os blocos. Depois de terem perdido contato com a mola, as massas M 1 e M passam a deslizar com velocidades de módulos v 1 = 4m/s e v = m/s, respectivamente. Supondo que o sistema é conservativo: a) calcule a energia potencial elástica da mola no instante em que o sistema é liberado. b) sendo k =, N/m a constante elástica da mola, determine a deformação da mola no instante em que o sistema é liberado. 4. (UFSC) figura mostra um bloco, de massa m = 500g, mantido encostado em uma mola comprimida de X = 0cm. constante elástica da mola é K = 400N/m. mola é solta e empurra o bloco que, partindo do repouso no ponto, atinge o ponto, onde pára. No percurso entre os pontos e, a força de atrito da superfície sobre o bloco dissipa 0% da energia mecânica inicial no ponto. nalise as proposições: I. ( ) Na situação descrita, não á conservação da energia mecânica. II. ( ) energia mecânica do bloco no ponto é igual a 6,4J. III. ( ) O trabalo realizado pela força de atrito sobre o bloco, durante o seu movimento, foi 1,6J. IV. ( ) O ponto situa-se a 80cm de altura, em relação ao ponto. V. ( ) força peso não realizou trabalo no deslocamento do bloco entre os pontos e, por isso não ouve conservação da energia mecânica do bloco. VI. ( ) energia mecânica total do bloco, no ponto, é igual a 8,0J. VII. ( ) energia potencial elástica do bloco, no ponto, é totalmente transformada na energia potencial gravitacional do bloco, no ponto. SISTEM NGLO DE ENSINO 5 Treinamento para Olimpíadas de Física 009

6 5. (UFMT) Um bloco de 3,0kg é abandonado no ponto P do plano inclinado, conforme figura a seguir. P,0 m k Q 4,0 m R s O plano inclinado não possui atrito, entretanto no treco QR o coeficiente de atrito cinético (µ c ), entre o bloco e o plano orizontal vale 0,5. Sendo a constante elástica da mola k = 1, N/m e g = 10m/s, determine aproximadamente, em cm, a compressão que o bloco proporciona à mola. 6. (UFPR) Um esporte atual que tem camado a atenção por sua radicalidade é o bungee jumping. É praticado da seguinte maneira: uma corda elástica é presa por uma de suas extremidades no alto de uma plataforma, em geral sobre um rio ou lago, e a outra é presa aos pés de uma pessoa que em seguida salta da plataforma e, ao final de alguns movimentos, permanece dependurada pela corda, em repouso. Sejam 70kg a massa da pessoa, 10m o comprimento da corda não tensionada e 100N/m a sua constante elástica. Desprezando a massa da corda e considerando que a pessoa, após o salto, executa somente movimentos na vertical. nalise as proposições: I. ( ) Em nenum instante, após o salto, ocorre movimento de queda livre. II. ( ) pós o salto, a velocidade da pessoa na posição 10m é de 0m/s. III. ( ) pós a corda atingir a sua deformação máxima, a pessoa retorna para cima e fica oscilando em torno da posição de equilíbrio, que se encontra a 17m abaixo do ponto em que está presa a corda na plataforma. IV. ( ) Durante o movimento oscilatório, a força elástica da corda é a única força que realiza trabalo sobre a pessoa. V. ( ) No movimento oscilatório realizado pela pessoa, a energia mecânica é conservada. VI. ( ) deformação da corda depende da massa da pessoa. 7. (IT) figura ao lado ilustra um carrino de massa m percorrendo um treco de uma montana russa. Desprezando-se todos os atritos que agem sobre ele e supondo que o carrino seja abandonado em, o menor valor de para que o carrino efetue a trajetória completa é: ( 3R) a) ( 5R) b) c) R m R ( 5gR) d) e) 3R 3 8. (FUVEST) Um brinquedo é constituído por um cano (tubo) em forma de de arco de circunferência, de raio médio R, 4 posicionado num plano vertical, como mostra a figura. H bola 1 bola R g SISTEM NGLO DE ENSINO 6 Treinamento para Olimpíadas de Física 009

7 O desafio é fazer com que a bola 1, ao ser abandonada de uma certa altura H acima da extremidade, entre pelo cano em, bata na bola que se encontra parada em, ficando nela grudada, e ambas atinjam juntas a extremidade. s massas das bolas 1 e são M e M, respectivamente. Despreze os efeitos do ar e das forças de atrito. a) Determine a velocidade v com que as duas bolas grudadas devem sair da extremidade do tubo para atingir a extremidade. b) Determine o valor de H para que o desafio seja vencido. Em Casa 1. (UNESP) Uma pequena esfera maciça, presa à extremidade de um fio leve e inextensível, é posta a oscilar, como mostra a figura adiante. v Se v é a velocidade da esfera na parte mais baixa da trajetória e g a aceleração da gravidade, a altura máxima que ela poderá alcançar, em relação à posição mais baixa, será dada por: a) gv d) gv v b) e) g c) v g. (UNICMP) Um carrino de massa m = 300kg percorre uma montana russa cujo treco CD é um arco de circunferência de raio R = 5,4m, conforme a figura adiante. velocidade do carrino no ponto é v = 1m/s. Considerando g = 10m/s e desprezando o atrito, calcule; v g C D R a) a velocidade do carrino no ponto C; b) a aceleração do carrino no ponto C; c) a força feita pelos trilos sobre o carrino no ponto C. 3. Um objeto de massa 400g desce, a partir do repouso no ponto, por uma rampa, em forma de um quadrante de circunferência de raio R = 1,0m. Na base, coca-se com uma mola de constante elástica k = 00N/m. dotando g = 10m/s, a) Desprezando a ação de forças dissipativas em todo o movimento, determine a máxima deformação da mola. b) Supona agora, que durante a descida, ocorra dissipação de 36% da energia mecânica inicial do sistema devido às resistências passivas. Determine a máxima deformação da mola. 4. (VUNESP) Um carrino de,0kg, que dispõe de um ganco, movimenta-se sobre um plano orizontal, com velocidade constante de 1,0m/s, em direção à argola presa na extremidade do fio mostrado na figura 1. outra extremidade do fio está presa a um bloco, de peso 5,0N, que se encontra em repouso sobre uma prateleira. Engancando-se na argola, o carrino puxa o fio e eleva o bloco, parando momentaneamente quando o bloco atinge a altura máxima acima da prateleira como mostra a figura. SISTEM NGLO DE ENSINO 7 Treinamento para Olimpíadas de Física 009

8 Figura 1 Figura bloco de 5,0 N prateleira ganco argola,0 kg 1,0 m/s Nestas condições determine: a) a energia cinética inicial do carrino; b) a altura, supondo que ocorra perda de 0% da energia cinética inicial do carrino quando o ganco se prende na argola. (Despreze quaisquer atritos e as massas das polias.) 5. Dois carrinos e, de massas m = 4,0kg e m =,0kg, movem-se sobre um plano orizontal sem atrito, com velocidade de 3,0m/s. Os carrinos são mantidos presos um ao outro através de um fio que passa por dentro de uma mola comprimida (fig.1). Em determinado momento, o fio se rompe e a mola se distende, fazendo com que o carrino pare (fig. ), enquanto que o carrino passa a se mover com velocidade V. Considere que toda a energia potencial elástica da mola tena sido transferida para os carrinos. v = 3,0 m/s (fig. 1) v Determine a velocidade que o carrino adquire, após o fio se romper. 6. (UFPE) Em um dos esportes radicais da atualidade, uma pessoa de 70kg pula de uma ponte de altura H = 50m em relação ao nível do rio, amarrada à cintura por um elástico. O elástico, cujo comprimento livre é L = 10m, se comporta como uma mola de constante elástica k. (fig. ) H No primeiro movimento para baixo, a pessoa fica no limiar de tocar a água e depois de várias oscilações fica em repouso a uma altura, em relação à superfície do rio. Calcule, em m. 7. (FUVEST) Um pequeno corpo de massa m é abandonado em com velocidade nula e escorrega ao longo do plano inclinado, percorrendo a distância d. g d SISTEM NGLO DE ENSINO 8 Treinamento para Olimpíadas de Física 009

9 o cegar a, verifica-se que sua velocidade é igual a agiu sobre o corpo, supondo-a constante, é a) zero. d) b) mg. e) c) g. Pode-se então deduzir que o valor da força de atrito que 8. (OF) Dois corpos e, de massa m e m respectivamente, são colocados em movimento orizontal, a partir do repouso, pela ação de forças iguais. pós percorrerem a mesma distância d, suas velocidades são respectivamente V F e V F. Tomando estes mesmos corpos, porém abandonando-os a partir do repouso sob efeito da aceleração da gravidade, após percorrerem a mesma distância anterior d, mas na vertical, suas velocidades serão V g e V g. Ignorando qualquer força de atrito, podemos dizer então que as razões V F / V F e V g / V ag valem, respectivamente: a) e 1 d) 1e b) e e) e 1 c) mg. e mg d. mg 4 d. 9. (OF) alões preencidos com gás idrogênio são usados para suspender equipamentos meteorológicos. Um aluno, acompanando o lançamento, percebeu que o balão, partindo do repouso, em poucos instantes, aumentava visivelmente sua velocidade. Tomando como base o princípio da conservação da energia, perguntou-se: como é possível a energia potencial gravitacional do balão estar aumentando e a sua energia cinética também? ssinale a alternativa que esclarece a situação: a) conservação da energia mecânica não pode ser usada no caso dos corpos que se movem pelo princípio de rquimedes. b) s energias cinética e potencial gravitacional do balão só podem aumentar, pois a força peso tem sentido contrário ao do movimento e realiza um trabalo nulo. c) Todo corpo em ascensão aumenta a sua energia cinética até que a fricção com o ar estabeleça um movimento de velocidade escalar constante. Deste ponto em diante a força peso realiza um trabalo nulo, a energia cinética não aumenta mais, mas a energia potencial gravitacional do balão continua aumentando. d) No período de aceleração, o aumento da energia cinética e potencial gravitacional do balão se dá pela redução da energia potencial gravitacional do ar por ele deslocado. e) Na realidade, ao subir, o balão tem a sua energia potencial gravitacional diminuída por ter uma densidade média inferior à do ar, e sua energia cinética aumentada. 10. (OF) Um jovem de massa 100kg fixado pelos tornozelos a um cabo elástico, solta-se do parapeito de uma ponte () para praticar bungee jump. superfície do rio encontra-se a 70m abaixo do parapeito da ponte. O cabo elástico tem comprimento não deformado igual a 40m e uma constante elástica igual a 300N/m. a) Calcule o maior comprimento atingido pelo cabo elástico. b) Se a máxima aceleração desejada pelos responsáveis pelo brinquedo é igual a 30m/s (3g) verifique se este valor é ultrapassado calculando o valor da máxima aceleração a que o jovem fica submetido. 11. (OF) Um corpo de massa m igual a kg é abandonado de uma certa altura de um plano inclinado e atinge uma mola ideal de constante elástica igual a 900N/m, deformando-a de 10cm. Entre os pontos e, separados 0,50m, existe atrito cujo coeficiente de atrito vale 0,10. s outras regiões não possuem atrito. que distância de o corpo M irá parar? SISTEM NGLO DE ENSINO 9 Treinamento para Olimpíadas de Física 009

10 1. (OF) Um corpo de massa m desce um plano inclinado. O coeficiente de atrito cinético entre o corpo e o plano varia de acordo com µ = µ 0 x, onde µ 0 é uma constante e x é a distância percorrida pelo corpo a partir do ponto inicial x = 0, mostrado na figura. x = 0 θ x a) Esboce o gráfico da magnitude da força de atrito em função de x e, a partir dele, ace a magnitude do trabalo realizado pela força de atrito cinético para uma distância x percorrida pelo corpo. b) Determine a distância d percorrida pelo corpo até que sua aceleração seja nula. c) ao atingir este ponto, o corpo irá parar? Supona que o corpo parte do repouso na posição x = (OF) Um corpo de massa m, preso a uma corda de comprimento l e de massa desprezível, é abandonado da posição orizontal, como mostra a figura. Desprezando forças dissipativas e considerando que o sistema encontra-se num campo gravitacional de módulo g, pergunta-se: a) Em quais pontos da trajetória o vetor aceleração do corpo terá componente vertical com sentido para baixo? E com sentido para cima? b) Determine o ângulo θ para o qual o vetor aceleração estará na direção orizontal. C l θ g SISTEM NGLO DE ENSINO Coordenação Geral: Nicolau Marmo; Coordenação do TOF: Marco ntônio Gabriades; Supervisão de Convênios: Helena Serebrinic; Equipe 3 a série Ensino Médio: Djalma Nunes da Silva PRNÁ, DULCIDIO raz Junior, José Roberto Castilo Piqueira SOROC, Luis Ricardo RRUD de ndrade, Marcelo SMIR Ferreira Francisco, RONLDO Moura de Sá; Projeto Gráfico, rte e Editoração Eletrônica: Gráfica e Editora nglo Ltda; SISTEM NGLO DE ENSINO 10 Treinamento para Olimpíadas de Física 009

3) Uma mola de constante elástica k = 400 N/m é comprimida de 5 cm. Determinar a sua energia potencial elástica.

3) Uma mola de constante elástica k = 400 N/m é comprimida de 5 cm. Determinar a sua energia potencial elástica. Lista para a Terceira U.L. Trabalho e Energia 1) Um corpo de massa 4 kg encontra-se a uma altura de 16 m do solo. Admitindo o solo como nível de referência e supondo g = 10 m/s 2, calcular sua energia

Leia mais

ROTEIRO DE RECUPERAÇÃO ANUAL DE FÍSICA 2 a SÉRIE

ROTEIRO DE RECUPERAÇÃO ANUAL DE FÍSICA 2 a SÉRIE ROTEIRO DE RECUPERAÇÃO ANUAL DE FÍSICA 2 a SÉRIE Nome: Nº Série: 2º EM Data: / /2015 Professores Gladstone e Gromov Assuntos a serem estudados - Movimento Uniforme. Movimento Uniformemente Variado. Leis

Leia mais

Física. Pré Vestibular / / Aluno: Nº: Turma: ENSINO MÉDIO

Física. Pré Vestibular / / Aluno: Nº: Turma: ENSINO MÉDIO Pré Vestibular ísica / / luno: Nº: Turma: LEIS DE NEWTON 01. (TEC daptada) Dois blocos e de massas 10 kg e 20 kg, respectivamente, unidos por um fio de massa desprezível, estão em repouso sobre um plano

Leia mais

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20.

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20. 11 FÍSICA Um bloco de granito com formato de um paralelepípedo retângulo, com altura de 30 cm e base de 20 cm de largura por 50 cm de comprimento, encontra-se em repouso sobre uma superfície plana horizontal.

Leia mais

Bacharelado Engenharia Civil

Bacharelado Engenharia Civil Bacharelado Engenharia Civil Disciplina: Física Geral e Experimental I Força e Movimento- Leis de Newton Prof.a: Msd. Érica Muniz Forças são as causas das modificações no movimento. Seu conhecimento permite

Leia mais

UNIVERSIDADE CATÓLICA DE GOIÁS Departamento de Matemática e Física Coordenador da Área de Física LISTA 03. Capítulo 07

UNIVERSIDADE CATÓLICA DE GOIÁS Departamento de Matemática e Física Coordenador da Área de Física LISTA 03. Capítulo 07 01 UNIVERSIDADE CATÓLICA DE GOIÁS Departamento de Matemática e Física Coordenador da Área de Física Disciplina: Física Geral e Experimental I (MAF 2201) LISTA 03 Capítulo 07 1. (Pergunta 01) Classifique

Leia mais

Dinâmica do movimento de Rotação

Dinâmica do movimento de Rotação Dinâmica do movimento de Rotação Disciplina: Mecânica Básica Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: O que significa o torque produzido por uma força;

Leia mais

Lista de Exercícios para Recuperação Final. Nome: Nº 1 º ano / Ensino Médio Turma: A e B Disciplina(s): Física LISTA DE EXERCÍCIOS RECUPERAÇÃO - I

Lista de Exercícios para Recuperação Final. Nome: Nº 1 º ano / Ensino Médio Turma: A e B Disciplina(s): Física LISTA DE EXERCÍCIOS RECUPERAÇÃO - I Lista de Exercícios para Recuperação Final Nome: Nº 1 º ano / Ensino Médio Turma: A e B Disciplina(s): Física Data: 04/12/2014 Professor(a): SANDRA HELENA LISTA DE EXERCÍCIOS RECUPERAÇÃO - I 1. Dois móveis

Leia mais

Olimpíada Brasileira de Física 2001 2ª Fase

Olimpíada Brasileira de Física 2001 2ª Fase Olimpíada Brasileira de Física 2001 2ª Fase Gabarito dos Exames para o 1º e 2º Anos 1ª QUESTÃO Movimento Retilíneo Uniforme Em um MRU a posição s(t) do móvel é dada por s(t) = s 0 + vt, onde s 0 é a posição

Leia mais

sendo as componentes dadas em unidades arbitrárias. Determine: a) o vetor vetores, b) o produto escalar e c) o produto vetorial.

sendo as componentes dadas em unidades arbitrárias. Determine: a) o vetor vetores, b) o produto escalar e c) o produto vetorial. INSTITUTO DE FÍSICA DA UFRGS 1 a Lista de FIS01038 Prof. Thomas Braun Vetores 1. Três vetores coplanares são expressos, em relação a um sistema de referência ortogonal, como: sendo as componentes dadas

Leia mais

Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) Prof.: João Arruda e Henriette Righi. Atenção: Semana de prova S1 15/06 até 30/06

Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) Prof.: João Arruda e Henriette Righi. Atenção: Semana de prova S1 15/06 até 30/06 Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) Prof.: João Arruda e Henriette Righi Maio/2015 Atenção: Semana de prova S1 15/06 até 30/06 LISTA DE EXERCÍCIOS # 2 1) Um corpo de 2,5 kg está

Leia mais

1 a QUESTÃO Valor 1,0

1 a QUESTÃO Valor 1,0 1 a QUESTÃO Valor 1,0 Um esquimó aguarda a passagem de um peixe sob um platô de gelo, como mostra a figura abaixo. Ao avistá-lo, ele dispara sua lança, que viaja com uma velocidade constante de 50 m/s,

Leia mais

Mecânica 2007/2008. 3ª Série

Mecânica 2007/2008. 3ª Série Mecânica 2007/2008 3ª Série Questões: 1. Se o ouro fosse vendido a peso, preferia comprá-lo na serra da Estrela ou em Lisboa? Se fosse vendido pela massa em qual das duas localidades preferia comprá-lo?

Leia mais

EXERCÍCIOS 2ª SÉRIE - LANÇAMENTOS

EXERCÍCIOS 2ª SÉRIE - LANÇAMENTOS EXERCÍCIOS ª SÉRIE - LANÇAMENTOS 1. (Unifesp 01) Em uma manhã de calmaria, um Veículo Lançador de Satélite (VLS) é lançado verticalmente do solo e, após um período de aceleração, ao atingir a altura de

Leia mais

Trabalho Mecânico. A força F 2 varia de acordo com o gráfico a seguir: Dados sem 30º = cos = 60º = 1/2

Trabalho Mecânico. A força F 2 varia de acordo com o gráfico a seguir: Dados sem 30º = cos = 60º = 1/2 Trabalho Mecânico 1. (G1 - ifce 2012) Uma pessoa sobe um lance de escada, com velocidade constante, em 1,0 min. Se a mesma pessoa subisse o mesmo lance, também com velocidade constante em 2,0 min, ela

Leia mais

Imagine que você esteja sustentando um livro de 4N em repouso sobre a palma de sua mão. Complete as seguintes sentenças:

Imagine que você esteja sustentando um livro de 4N em repouso sobre a palma de sua mão. Complete as seguintes sentenças: UNIVERSIDADE FEDERAL DE SANTA CATARINA-CFM DEPARTAMENTO DE FÍSICA FSC 5107 FÍSICA GERAL IA- Semestre 2012.2 LISTA DE EXERCÍCIOS 4 LEIS DE NEWTON (PARTE I) Imagine que você esteja sustentando um livro de

Leia mais

Intensivo 2015.2. Trabalho, potência e Energia mecânica. Obs: cada andar do edifício tem aproximadamente 2,5m.

Intensivo 2015.2. Trabalho, potência e Energia mecânica. Obs: cada andar do edifício tem aproximadamente 2,5m. Intensivo 2015.2 Trabalho, potência e Energia mecânica 01 - (PUC PR) Uma motocicleta de massa 100kg se desloca a uma velocidade constante de 10m/s. A energia cinética desse veículo é equivalente ao trabalho

Leia mais

FÍSICA. Valores de algumas grandezas físicas:

FÍSICA. Valores de algumas grandezas físicas: Valores de algumas grandezas físicas: Aceleração da gravidade: 10 m/s Velocidade da luz no vácuo: 3,0 x 10 8 m/s. Velocidade do som no ar: 330 m/s Calor latente de fusão do gelo: 80 cal/g Calor específico

Leia mais

Resolução Vamos, inicialmente, calcular a aceleração escalar γ. Da figura dada tiramos: para t 0

Resolução Vamos, inicialmente, calcular a aceleração escalar γ. Da figura dada tiramos: para t 0 46 a FÍSICA Um automóvel desloca-se a partir do repouso num trecho retilíneo de uma estrada. A aceleração do veículo é constante e algumas posições por ele assumidas, bem como os respectivos instantes,

Leia mais

Lista de Exercícios de: Trabalho de uma força paralela ao deslocamento

Lista de Exercícios de: Trabalho de uma força paralela ao deslocamento Lista de Exercícios de: Trabalho de uma força paralela ao deslocamento Quando aplicamos uma força sobre um corpo, provocando um deslocamento, estamos gastando energia, estamos realizando um trabalho. Ʈ

Leia mais

Questão 46 Questão 47

Questão 46 Questão 47 Questão 46 Questão 47 Um estudante que se encontrava sentado em uma praça, em frente de um moderno edifício, resolveu observar o movimento de um elevador panorâmico. Após haver efetuado algumas medidas,

Leia mais

Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ

Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ º Exame de Qualificação 011 Questão 6 Vestibular 011 No interior de um avião que se desloca horizontalmente em relação ao

Leia mais

Lista de Exercícios - Unidade 8 Eu tenho a força!

Lista de Exercícios - Unidade 8 Eu tenho a força! Lista de Exercícios - Unidade 8 Eu tenho a força! Forças 1. (UFSM 2013) O uso de hélices para propulsão de aviões ainda é muito frequente. Quando em movimento, essas hélices empurram o ar para trás; por

Leia mais

horizontal, se choca frontalmente contra a extremidade de uma mola ideal, cuja extremidade oposta está presa a uma parede vertical rígida.

horizontal, se choca frontalmente contra a extremidade de uma mola ideal, cuja extremidade oposta está presa a uma parede vertical rígida. Exercícios: Energia 01. (UEPI) Assinale a alternativa que preenche corretamente as lacunas das frases abaixo. O trabalho realizado por uma força conservativa, ao deslocar um corpo entre dois pontos é da

Leia mais

1 a QUESTÃO: (1,5 ponto) Avaliador Revisor

1 a QUESTÃO: (1,5 ponto) Avaliador Revisor 1 a QUESTÃO: (1,5 ponto) Avaliador Revisor Um mol de um gás ideal é levado do estado A para o estado B, de acordo com o processo representado no diagrama pressão versus volume conforme figura abaixo: a)

Leia mais

CINEMÁTICA SUPER-REVISÃO REVISÃO

CINEMÁTICA SUPER-REVISÃO REVISÃO Física Aula 10/10 Prof. Oromar Baglioli UMA PARCERIA Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM.BR Visite a loja virtual www.conquistadeconcurso.com.br MATERIAL DIDÁTICO EXCLUSIVO PARA

Leia mais

Trabalho e potência. 1º caso: a força F não é paralela a d. 2º caso: a força F é paralela a d. 3º caso: a força F é perpendicular a d

Trabalho e potência. 1º caso: a força F não é paralela a d. 2º caso: a força F é paralela a d. 3º caso: a força F é perpendicular a d Trabalho e potência Trabalho mecânico Realizar trabalho, em Física, implica a transferência de energia de um sistema para outro e, para que isso ocorra, são necessários uma força e um deslocamento adequados.

Leia mais

Energia potencial e Conservação da Energia

Energia potencial e Conservação da Energia Energia potencial e Conservação da Energia Disciplina: Física Geral e Experimental Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: Como usar o conceito de energia

Leia mais

É usual dizer que as forças relacionadas pela terceira lei de Newton formam um par ação-reação.

É usual dizer que as forças relacionadas pela terceira lei de Newton formam um par ação-reação. Terceira Lei de Newton A terceira lei de Newton afirma que a interação entre dois corpos quaisquer A e B é representada por forças mútuas: uma força que o corpo A exerce sobre o corpo B e uma força que

Leia mais

a) Um dos fatores que explicam esse fenômeno é a diferença da velocidade da água nos dois rios, cerca de vn

a) Um dos fatores que explicam esse fenômeno é a diferença da velocidade da água nos dois rios, cerca de vn 1. (Unicamp 014) Correr uma maratona requer preparo físico e determinação. A uma pessoa comum se recomenda, para o treino de um dia, repetir 8 vezes a seguinte sequência: correr a distância de 1 km à velocidade

Leia mais

Código: FISAP Disciplina: Física Aplicada Preceptores: Marisa Sayuri e Rodrigo Godoi Semana: 05/11/2015 14/11/2015

Código: FISAP Disciplina: Física Aplicada Preceptores: Marisa Sayuri e Rodrigo Godoi Semana: 05/11/2015 14/11/2015 Código: FISAP Disciplina: Física Aplicada Preceptores: Marisa Sayuri e Rodrigo Godoi Semana: 05/11/2015 14/11/2015 1) Certo dia, uma escaladora de montanhas de 75 kg sobe do nível de 1500 m de um rochedo

Leia mais

FUVEST 2000-2 a Fase - Física - 06/01/2000 ATENÇÃO

FUVEST 2000-2 a Fase - Física - 06/01/2000 ATENÇÃO ATENÇÃO VERIFIQUE SE ESTÃO IMPRESSOS EIXOS DE GRÁFICOS OU ESQUEMAS, NAS FOLHAS DE RESPOSTAS DAS QUESTÕES 1, 2, 4, 9 e 10. Se notar a falta de uma delas, peça ao fiscal de sua sala a substituição da folha.

Leia mais

4.1 MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES

4.1 MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES CAPÍTULO 4 67 4. MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES Consideremos um bloco em contato com uma superfície horizontal, conforme mostra a figura 4.. Vamos determinar o trabalho efetuado por uma

Leia mais

ENERGIA SISTEMAS CONSERVATIVOS

ENERGIA SISTEMAS CONSERVATIVOS ENERGIA SISTEMAS CONSERVATIVOS TEXTO PARA A PRÓXIMA QUESTÃO (Ufpe 2007) Constantes físicas necessárias para a solução dos problemas: aceleração da gravidade: 10 m/s constante de Planck: 6,6 x 10 J.s 1.

Leia mais

A figura a seguir representa um atleta durante um salto com vara, em três instantes distintos

A figura a seguir representa um atleta durante um salto com vara, em três instantes distintos Energia 1-Uma pequena bola de borracha, de massa 50g, é abandonada de um ponto A situado a uma altura de 5,0m e, depois de chocar-se com o solo, eleva-se verticalmente até um ponto B, situado a 3,6m. Considere

Leia mais

3a. prova Simulado 5 Dissertativo 27.09.06 FÍSICA INSTRUÇÕES PARA REALIZAÇÃO DO SIMULADO

3a. prova Simulado 5 Dissertativo 27.09.06 FÍSICA INSTRUÇÕES PARA REALIZAÇÃO DO SIMULADO Simulado 5 Padrão FUVEST Aluno: N o do Cursinho: Sala: FÍSICA INSTRUÇÕES PARA REALIZAÇÃO DO SIMULADO 1. Aguarde a autorização do fiscal para abrir o caderno de questões e iniciar a prova. 2. Duração da

Leia mais

FÍSICA - 1 o ANO MÓDULO 17 LANÇAMENTO VERTICAL E QUEDA LIVRE

FÍSICA - 1 o ANO MÓDULO 17 LANÇAMENTO VERTICAL E QUEDA LIVRE FÍSICA - 1 o ANO MÓDULO 17 LANÇAMENTO VERTICAL E QUEDA LIVRE Como pode cair no enem? celeração de 5 g (ou 50 m/s²), ocorrendo o enrijecimento dos músculos devido a força que o sangue exerce na volta

Leia mais

Trabalho. a) F; b) peso c) força normal; d) força de atrito; e) resultante das forças.

Trabalho. a) F; b) peso c) força normal; d) força de atrito; e) resultante das forças. Trabalho 1- Um corpo de massa igual 20Kg deslocava-se para a direita sobre um plano horizontal rugoso. Sobre o corpo é, então, aplicada uma força F, horizontal, constante de módulo igual a 100N. O módulo

Leia mais

(a) a aceleração do sistema. (b) as tensões T 1 e T 2 nos fios ligados a m 1 e m 2. Dado: momento de inércia da polia I = MR / 2

(a) a aceleração do sistema. (b) as tensões T 1 e T 2 nos fios ligados a m 1 e m 2. Dado: momento de inércia da polia I = MR / 2 F128-Lista 11 1) Como parte de uma inspeção de manutenção, a turbina de um motor a jato é posta a girar de acordo com o gráfico mostrado na Fig. 15. Quantas revoluções esta turbina realizou durante o teste?

Leia mais

= + + = = + = = + 0 AB

= + + = = + = = + 0 AB FÍSIC aceleração da gravidade na Terra, g 0 m/s densidade da água, a qualquer temperatura, r 000 kg/m 3 g/cm 3 velocidade da luz no vácuo 3,0 x 0 8 m/s calor específico da água @ 4 J/(ºC g) caloria @ 4

Leia mais

ENERGIA CINÉTICA E TRABALHO

ENERGIA CINÉTICA E TRABALHO ENERGIA CINÉTICA E TRABALHO O que é energia? O termo energia é tão amplo que é diícil pensar numa deinição concisa. Teoricamente, a energia é uma grandeza escalar associada ao estado de um ou mais objetos;

Leia mais

Questão 2 Uma esfera de cobre de raio R0 é abandonada em repouso sobre um plano inclinado de forma a rolar ladeira abaixo. No entanto, a esfera

Questão 2 Uma esfera de cobre de raio R0 é abandonada em repouso sobre um plano inclinado de forma a rolar ladeira abaixo. No entanto, a esfera Questão 1 Na figura abaixo, vê-se um trecho de uma linha de produção de esferas. Para testar a resistência das esferas a impacto, são impulsionadas a partir de uma esteira rolante, com velocidade horizontal

Leia mais

a 2,0 m / s, a pessoa observa que a balança indica o valor de

a 2,0 m / s, a pessoa observa que a balança indica o valor de 1. (Fuvest 015) Uma criança de 30 kg está em repouso no topo de um escorregador plano de,5 m,5 m de altura, inclinado 30 em relação ao chão horizontal. Num certo instante, ela começa a deslizar e percorre

Leia mais

Questão 46. Questão 47. Questão 48. alternativa A. alternativa D. alternativa D

Questão 46. Questão 47. Questão 48. alternativa A. alternativa D. alternativa D Questão 46 Um automóvel desloca-se a partir do repouso num trecho retilíneo de uma estrada. A aceleração do veículo é constante e algumas posições por ele assumidas, bem como os respectivos instantes,

Leia mais

ESCOLA SECUNDÁRIA DE CASQUILHOS

ESCOLA SECUNDÁRIA DE CASQUILHOS ESCOLA SECUNDÁRIA DE CASQUILHOS FQA Ficha 3 - Forças fundamentais, leis de Newton e Lei da gravitação universal 11.º Ano Turma A e B 1 outubro 2014 NOME Nº Turma 1. Associe um número da coluna 1 a uma

Leia mais

Estudaremos aqui como essa transformação pode ser entendida a partir do teorema do trabalho-energia.

Estudaremos aqui como essa transformação pode ser entendida a partir do teorema do trabalho-energia. ENERGIA POTENCIAL Uma outra forma comum de energia é a energia potencial U. Para falarmos de energia potencial, vamos pensar em dois exemplos: Um praticante de bungee-jump saltando de uma plataforma. O

Leia mais

Questão 46. Questão 48. Questão 47. alternativa D. alternativa E

Questão 46. Questão 48. Questão 47. alternativa D. alternativa E Questão 46 Correndo com uma bicicleta, ao longo de um trecho retilíneo de uma ciclovia, uma criança mantém a velocidade constante de módulo igual a,50 m/s. O diagrama horário da posição para esse movimento

Leia mais

Física. Resolução. temos: τ = Resolução. τ F = E C F. d = E C E C0 (E C0 = 0) E C = 4. 5 = 20 J. Alternativa B. Resolução

Física. Resolução. temos: τ = Resolução. τ F = E C F. d = E C E C0 (E C0 = 0) E C = 4. 5 = 20 J. Alternativa B. Resolução Física Dinâmica EXERCÍCIOS 01. (CESGRNRIO) Um corpo de massa kg está em movimento retilíneo. Durante certo intervalo de tempo, a sua velocidade passa de m/s para 40 m/s. Qual é o trabalho, em joules, realizado

Leia mais

PROVA DE FÍSICA 3 o TRIMESTRE DE 2014

PROVA DE FÍSICA 3 o TRIMESTRE DE 2014 PROVA DE FÍSICA 3 o TRIMESTRE DE 2014 PROF. VIRGÍLIO NOME N o 1 a SÉRIE A compreensão do enunciado faz parte da questão. Não faça perguntas ao examinador. É terminantemente proibido o uso de corretor.

Leia mais

TIPO-A FÍSICA. x v média. t t. x x

TIPO-A FÍSICA. x v média. t t. x x 12 FÍSICA Aceleração da gravidade, g = 10 m/s 2 Constante gravitacional, G = 7 x 10-11 N.m 2 /kg 2 Massa da Terra, M = 6 x 10 24 kg Velocidade da luz no vácuo, c = 300.000 km/s 01. Em 2013, os experimentos

Leia mais

Resolução da Questão 1 Item I Texto definitivo

Resolução da Questão 1 Item I Texto definitivo Questão A seguir, é apresentada uma expressão referente à velocidade (v) de um ciclista, em km/min, em função do tempo t, computado em minutos. 0,t, se 0 t < 0,, se t < v ( t) = 0, + 0,t,

Leia mais

PROCESSO SELETIVO TURMA DE 2010 FASE 1 PROVA DE FÍSICA E SEU ENSINO

PROCESSO SELETIVO TURMA DE 2010 FASE 1 PROVA DE FÍSICA E SEU ENSINO PROCESSO SELETIVO TURM DE 2010 FSE 1 PROV DE FÍSIC E SEU ENSINO Caro professor, esta prova tem 4 (quatro) questões, com valores diferentes indicados nas próprias questões. Duas das questões são objetivas,

Leia mais

LISTA UERJ! (Considere π 3. ) a) 9 m/s. b) 15 m/s. c) 18 m/s. d) 60 m/s.

LISTA UERJ! (Considere π 3. ) a) 9 m/s. b) 15 m/s. c) 18 m/s. d) 60 m/s. 1. (Unicamp 014) As máquinas cortadeiras e colheitadeiras de cana-de-açúcar podem substituir dezenas de trabalhadores rurais, o que pode alterar de forma significativa a relação de trabalho nas lavouras

Leia mais

(Desconsidere a massa do fio). SISTEMAS DE BLOCOS E FIOS PROF. BIGA. a) 275. b) 285. c) 295. d) 305. e) 315.

(Desconsidere a massa do fio). SISTEMAS DE BLOCOS E FIOS PROF. BIGA. a) 275. b) 285. c) 295. d) 305. e) 315. SISTEMAS DE BLOCOS E FIOS PROF. BIGA 1. (G1 - cftmg 01) Na figura, os blocos A e B, com massas iguais a 5 e 0 kg, respectivamente, são ligados por meio de um cordão inextensível. Desprezando-se as massas

Leia mais

PROVA G1 FIS 1033 23/08/2011 MECÅNICA NEWTONIANA

PROVA G1 FIS 1033 23/08/2011 MECÅNICA NEWTONIANA PROVA G1 FIS 1033 23/08/2011 MECÅNICA NEWTONIANA NOME LEGÇVEL: Gabarito TURMA: ASSINATURA: MATRÇCULA N o : QUESTÉO VALOR GRAU REVISÉO 1 1,0 2 1,0 3 4,0 4 4,0 TOTAL 10,0 Dados: r/ t = (v + v 0 )/2; v v

Leia mais

Série 1º ANO. Colégio da Polícia Militar de Goiás - Hugo. MAT Disciplina: FISICA Professor: JEFFERSON. Aluno (a): Nº

Série 1º ANO. Colégio da Polícia Militar de Goiás - Hugo. MAT Disciplina: FISICA Professor: JEFFERSON. Aluno (a): Nº Polícia Militar do Estado de Goiás CPMG Hugo de Carvalho Ramos Ano Letivo - 2015 Série 1º ANO Lista de Exercícios 4º Bim TURMA (S) ABC Valor da Lista R$ MAT Disciplina: FISICA Professor: JEFFERSON Data:

Leia mais

CORTESIA Prof. Renato Brito www.vestseller.com.br Espaço

CORTESIA Prof. Renato Brito www.vestseller.com.br Espaço INSTITUTO TECNOLÓGICO DE AERONÁUTICA ESTIBULAR 983/984 PROA DE FÍSICA 0. (ITA-84) Colocou-se uma certa quantidade de bolinhas de chumbo numa seringa plástica e o volume lido na própria escala da seringa

Leia mais

Capítulo 4 Trabalho e Energia

Capítulo 4 Trabalho e Energia Capítulo 4 Trabalho e Energia Este tema é, sem dúvidas, um dos mais importantes na Física. Na realidade, nos estudos mais avançados da Física, todo ou quase todos os problemas podem ser resolvidos através

Leia mais

Física Fácil prof. Erval Oliveira. Aluno:

Física Fácil prof. Erval Oliveira. Aluno: Física Fácil prof. Erval Oliveira Aluno: O termo trabalho utilizado na Física difere em significado do mesmo termo usado no cotidiano. Fisicamente, um trabalho só é realizado por forças aplicadas em corpos

Leia mais

Física 1 ano Prof. Miranda. Lista de Exercícios II Unidade

Física 1 ano Prof. Miranda. Lista de Exercícios II Unidade Física 1 ano Prof. Miranda Lista de Exercícios II Unidade mirandawelber@gmail.com 01. O que é necessário para determinar (caracterizar) uma: a) grandeza escalar? b) grandeza vetorial? 02. Classifique os

Leia mais

Energia potencial e Conservação da Energia

Energia potencial e Conservação da Energia Energia potencial e Conservação da Energia Disciplina: Física Geral I Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: Como usar o conceito de energia potencial

Leia mais

UNICAMP - 2006. 2ª Fase FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

UNICAMP - 2006. 2ª Fase FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR UNICAMP - 2006 2ª Fase FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Física Questão 01 Um corredor de 100 metros rasos percorre os 20 primeiros metros da corrida em 4,0 s com aceleração constante. A velocidade

Leia mais

NTD DE FÍSICA 1 a SÉRIE ENSINO MÉDIO ALUNO(A): Nº TURMA: TURNO: DATA: / /

NTD DE FÍSICA 1 a SÉRIE ENSINO MÉDIO ALUNO(A): Nº TURMA: TURNO: DATA: / / NTD DE FÍSICA 1 a SÉRIE ENSINO MÉDIO Professor: Rodrigo Lins ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: 1) Na situação esquematizada na f igura, a mesa é plana, horizontal e perfeitamente polida. A

Leia mais

CONSERVAÇÃO DA ENERGIA

CONSERVAÇÃO DA ENERGIA CONSERVAÇÃO DA ENERGIA Introdução Quando um mergulhador pula de um trampolim para uma piscina, ele atinge a água com uma velocidade relativamente elevada, possuindo grande energia cinética. De onde vem

Leia mais

Lista de Exercícios - Unidade 6 Aprendendo sobre energia

Lista de Exercícios - Unidade 6 Aprendendo sobre energia Lista de Exercícios - Unidade 6 Aprendendo sobre energia Energia Cinética e Potencial 1. (UEM 01) Sobre a energia mecânica e a conservação de energia, assinale o que for correto. (01) Denomina-se energia

Leia mais

FÍSICA. Questões de 01 a 04

FÍSICA. Questões de 01 a 04 GRUPO 1 TIPO A FÍS. 1 FÍSICA Questões de 01 a 04 01. Considere uma partícula presa a uma mola ideal de constante elástica k = 420 N / m e mergulhada em um reservatório térmico, isolado termicamente, com

Leia mais

UFMG - 2005 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

UFMG - 2005 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR UFMG - 2005 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Física Questão 01 Durante um voo, um avião lança uma caixa presa a um paraquedas. Após esse lançamento, o paraquedas abre-se e uma força F,

Leia mais

Lançamento Horizontal

Lançamento Horizontal Lançamento Horizontal 1. (Ufsm 2013) Um trem de passageiros passa em frente a uma estação, com velocidade constante em relação a um referencial fixo no solo. Nesse instante, um passageiro deixa cair sua

Leia mais

SÉRIE DE EXERCÍCIOS DE FÍSICA CURSO DE ENSAIOS EM VOO (CEV)

SÉRIE DE EXERCÍCIOS DE FÍSICA CURSO DE ENSAIOS EM VOO (CEV) SÉRIE DE EXERCÍCIOS DE FÍSICA CURSO DE ENSAIOS EM VOO (CEV) 1) As vezes, um fator de conversão pode ser deduzido mediante o conhecimento de uma constante em dois sistemas diferentes. O peso de um pé cúbico

Leia mais

Vestibulando Web Page www.vestibulandoweb.com.br

Vestibulando Web Page www.vestibulandoweb.com.br 1. (Ufv 2000) Um aluno, sentado na carteira da sala, observa os colegas, também sentados nas respectivas carteiras, bem como um mosquito que voa perseguindo o professor que fiscaliza a prova da turma.

Leia mais

Fortaleza Ceará TD DE FÍSICA ENEM PROF. ADRIANO OLIVEIRA/DATA: 30/08/2014

Fortaleza Ceará TD DE FÍSICA ENEM PROF. ADRIANO OLIVEIRA/DATA: 30/08/2014 TD DE FÍSICA ENEM PROF. ADRIANO OLIVEIRA/DATA: 30/08/2014 1. Uma ave marinha costuma mergulhar de uma altura de 20 m para buscar alimento no mar. Suponha que um desses mergulhos tenha sido feito em sentido

Leia mais

A velocidade escalar constante do caminhão é dada por:

A velocidade escalar constante do caminhão é dada por: 46 c Da carroceria de um caminhão carregado com areia, pinga água à razão constante de 90 gotas por minuto. Observando que a distância entre as marcas dessas gotas na superfície plana da rua é constante

Leia mais

Questão 46. Questão 47. Questão 49. Questão 48. ver comentário. alternativa D. alternativa C

Questão 46. Questão 47. Questão 49. Questão 48. ver comentário. alternativa D. alternativa C Questão 46 Um casal de namorados passeia, de braços dados, com velocidade escalar constante de 80 cm/s. O passo da menina mede 40 cm e o do rapaz, 60 cm. Se, em certo instante, ambos tocam o pé direito

Leia mais

CONCEITOS CINÉTICOS PARA O MOVIMENTO HUMANO. Prof. Dr. Guanis de Barros Vilela Junior

CONCEITOS CINÉTICOS PARA O MOVIMENTO HUMANO. Prof. Dr. Guanis de Barros Vilela Junior CONCEITOS CINÉTICOS PARA O MOVIMENTO HUMANO Prof. Dr. Guanis de Barros Vilela Junior Lei da Inércia: todo corpo tende a permanecer no seu estado (repouso ou movimento) a menos que uma força externa resultante

Leia mais

FIS-14 Lista-09 Outubro/2013

FIS-14 Lista-09 Outubro/2013 FIS-14 Lista-09 Outubro/2013 1. Quando um projétil de 7,0 kg é disparado de um cano de canhão que tem um comprimento de 2,0 m, a força explosiva sobre o projétil, quando ele está no cano, varia da maneira

Leia mais

Questão 01 O dono do circo anuncia o início do espetáculo usando uma sirene.

Questão 01 O dono do circo anuncia o início do espetáculo usando uma sirene. As questões apresentadas nesta prova relacionam-se ao ambiente e às situações encontradas em um circo. Sempre que necessário, utilize, em seus cálculos, g = 10 m/s 2. Questão 01 O dono do circo anuncia

Leia mais

Unidade III: Movimento Uniformemente Variado (M.U.V.)

Unidade III: Movimento Uniformemente Variado (M.U.V.) Colégio Santa Catarina Unidade III: Movimento Uniformemente Variado (M.U.V.) 17 Unidade III: Movimento Uniformemente Variado (M.U.V.) 3.1- Aceleração Escalar (a): Em movimentos nos quais as velocidades

Leia mais

FÍSICA 3. k = 1/4πε 0 = 9,0 10 9 N.m 2 /c 2 1 atm = 1,0 x 10 5 N/m 2 tan 17 = 0,30. a (m/s 2 ) 30 20 10 1,0 2,0 3,0 4,0 5,0.

FÍSICA 3. k = 1/4πε 0 = 9,0 10 9 N.m 2 /c 2 1 atm = 1,0 x 10 5 N/m 2 tan 17 = 0,30. a (m/s 2 ) 30 20 10 1,0 2,0 3,0 4,0 5,0. FÍSIC 3 Valores de algumas grandezas físicas celeração da gravidade: 1 m/s Carga do elétron: 1,6 x 1-19 C Constante de Planck: 6,6 x 1-34 J Velocidade da luz: 3 x 1 8 m/s k = 1/4πε = 9, 1 9 N.m /c 1 atm

Leia mais

Professor(a): Série: 1ª EM. Turma: Bateria de Exercícios de Física

Professor(a): Série: 1ª EM. Turma: Bateria de Exercícios de Física Nome: nº Professor(a): Série: 1ª EM. Turma: Data: / /2013 Sem limite para crescer Bateria de Exercícios de Física 3º Trimestre 1- A casa de Dona Maria fica no alto de uma ladeira. O desnível entre sua

Leia mais

Exercícios 6 Aplicações das Leis de Newton

Exercícios 6 Aplicações das Leis de Newton Exercícios 6 plicações das Leis de Newton Primeira Lei de Newton: Partículas em Equilíbrio 1. Determine a intensidade e o sentido de F de modo que o ponto material esteja em equilíbrio. Resp: = 31,8 0,

Leia mais

Física setor F 01 unidade 01

Física setor F 01 unidade 01 Vale relembrar três casos particulares: ) a r e b r tem mesma direção e mesmo sentido: a b s = a+ b s ) a r e b r têm mesma direção e sentidos opostos: a s = a b s b a r e b r têm direções perpendiculares

Leia mais

Prof. A.F.Guimarães Questões de hidrostática 2

Prof. A.F.Guimarães Questões de hidrostática 2 Questão rof AFGuimarães Questões de idrostática (FUVST) Uma bolina de isopor é mantida submersa, em um tanque, por um fio preso no fundo O tanque contém um líquido de densidade r iual à da áua A bolina,

Leia mais

LISTA UERJ 1ª FASE LEIS DE NEWTON

LISTA UERJ 1ª FASE LEIS DE NEWTON 1. (Uerj 2013) Um bloco de madeira encontra-se em equilíbrio sobre um plano inclinado de 45º em relação ao solo. A intensidade da força que o bloco exerce perpendicularmente ao plano inclinado é igual

Leia mais

Escolha sua melhor opção e estude para concursos sem gastar nada

Escolha sua melhor opção e estude para concursos sem gastar nada Escolha sua melhor opção e estude para concursos sem gastar nada VALORES DE CONSTANTES E GRANDEZAS FÍSICAS - aceleração da gravidade g = 10 m/s 2 - calor específico da água c = 1,0 cal/(g o C) = 4,2 x

Leia mais

TC 2 UECE 2012 FASE 1 PROF. : Célio Normando

TC 2 UECE 2012 FASE 1 PROF. : Célio Normando TC UECE 01 FASE 1 PROF. : Célio Normando Conteúdo: Cinemática - MRUV 1. Um avião vai decolar em uma pista retilínea. Ele inicia seu movimento na cabeceira da pista com velocidade nula e corre por ela com

Leia mais

LOOPING 1 INTRODUÇÃO. 1.3 Problema (a)- Qual deve ser a altura da queda para que o carro faça o Looping completo?

LOOPING 1 INTRODUÇÃO. 1.3 Problema (a)- Qual deve ser a altura da queda para que o carro faça o Looping completo? FUNDAÇÃO ESCOLA TÉCNICA LIBERATO SALZANO VIEIRA DA CUNHA Projeto de Pesquisa da Primeira Série Série: Primeira Curso: Eletrotécnica Turma: 2112 Sala: 234 Início: 17 de junho de 2009 Entrega: 23 de junho

Leia mais

Questões do capítulo oito que nenhum aluno pode ficar sem fazer

Questões do capítulo oito que nenhum aluno pode ficar sem fazer Questões do capítulo oito que nenhum aluno pode ficar sem fazer 1) A bola de 2,0 kg é arremessada de A com velocidade inicial de 10 m/s, subindo pelo plano inclinado. Determine a distância do ponto D até

Leia mais

Lista de Exercício 3 MUV

Lista de Exercício 3 MUV Nome: Curso: Disciplina: FÍSICA I / MECÂNICA CLÁSSICA Lista de Exercício 3 MUV 1) Um móvel, cujo espaço inicial é S0 8m, se desloca a favor da trajetória, em movimento acelerado, com velocidade inicial

Leia mais

Fichas de sistemas de partículas

Fichas de sistemas de partículas Capítulo 3 Fichas de sistemas de partículas 1. (Alonso, pg 247) Um tubo de secção transversal a lança um fluxo de gás contra uma parede com uma velocidade v muito maior que a agitação térmica das moléculas.

Leia mais

n 1 L 1 n 2 L 2 Supondo que as ondas emergentes podem interferir, é correto afirmar que

n 1 L 1 n 2 L 2 Supondo que as ondas emergentes podem interferir, é correto afirmar que QUESTÃO 29 QUESTÃO 27 Uma escada de massa m está em equilíbrio, encostada em uma parede vertical, como mostra a figura abaixo. Considere nulo o atrito entre a parede e a escada. Sejam µ e o coeficiente

Leia mais

FÍSICA. Questões de 01 a 06

FÍSICA. Questões de 01 a 06 FIS. 1 FÍSICA Questões de 01 a 06 01. Um estudante de Física executou um experimento de Mecânica, colocando um bloco de massa m = 2kg sobre um plano homogêneo de inclinação regulável, conforme a figura

Leia mais

FÍSICA CADERNO DE QUESTÕES

FÍSICA CADERNO DE QUESTÕES CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES 2015 1 a QUESTÃO Valor: 1,00 Uma mola comprimida por uma deformação x está em contato com um corpo de massa m, que se encontra

Leia mais

LISTA DE EXERCÍCIOS PARA RECUPERAÇÃO DE FÍSICA 1

LISTA DE EXERCÍCIOS PARA RECUPERAÇÃO DE FÍSICA 1 COLÉGIO FRANCO-BRASILEIRO NOME: N : TURMA: PROFESSOR(A): SÉRIE: 1º DATA: / / 2014 LISTA DE EXERCÍCIOS PARA RECUPERAÇÃO DE FÍSICA 1 1. Em um trecho retilíneo e horizontal de uma ferrovia, uma composição

Leia mais

Você pode ter experimentado a ação das forças elétrica e magnética.

Você pode ter experimentado a ação das forças elétrica e magnética. Forças e interações Cotidianamente você lida com forças e quase nunca questiona que tipo de força está agindo sobre você ou que tipo de força você está exercendo sobre os objetos à sua volta. Todos nós

Leia mais

Física CPII. Exercícios p/ prova de Apoio de Física 2 a. Trim. 1 a. série Data / / Coordenador: Prof. Alexandre Ortiz Professor: Sérgio F.

Física CPII. Exercícios p/ prova de Apoio de Física 2 a. Trim. 1 a. série Data / / Coordenador: Prof. Alexandre Ortiz Professor: Sérgio F. COLÉGIO PEDRO II - UNIDADE CENTRO Exercícios p/ prova de Apoio de Física 2 a. Trim. 1 a. série Data / / Coordenador: Prof. Alexandre Ortiz Professor: Sérgio F. Lima Aluno(a): Nº Turma 1) Um bombeiro deseja

Leia mais

Problemas de Mecânica e Ondas

Problemas de Mecânica e Ondas Problemas de Mecânica e Ondas (LEMat, LQ, MEiol, MEmbi, MEQ) Tópicos: olisões: onservação do momento linear total, conservação de energia cinética nas colisões elásticas. onservação do momento angular

Leia mais

APOSTILA TECNOLOGIA MECANICA

APOSTILA TECNOLOGIA MECANICA FACULDADE DE TECNOLOGIA DE POMPEIA CURSO TECNOLOGIA EM MECANIZAÇÃO EM AGRICULTURA DE PRECISÃO APOSTILA TECNOLOGIA MECANICA Autor: Carlos Safreire Daniel Ramos Leandro Ferneta Lorival Panuto Patrícia de

Leia mais

e R 2 , salta no ar, atingindo sua altura máxima no ponto médio entre A e B, antes de alcançar a rampa R 2

e R 2 , salta no ar, atingindo sua altura máxima no ponto médio entre A e B, antes de alcançar a rampa R 2 FÍSICA 1 Uma pista de skate, para esporte radical, é montada a partir de duas rampas R 1 e R 2, separadas entre A e B por uma distância D, com as alturas e ângulos indicados na figura. A pista foi projetada

Leia mais

Capítulo 3 A Mecânica Clássica

Capítulo 3 A Mecânica Clássica Capítulo 3 A Mecânica Clássica AMecânica Clássica é formalmente descrita pelo físico, matemático e filósofo Isaac Newton no século XVII. Segundo ele, todos os eventos no universo são resultados de forças.

Leia mais

DATA: 17/12/2015 VALOR: 20,0 NOTA: NOME COMPLETO:

DATA: 17/12/2015 VALOR: 20,0 NOTA: NOME COMPLETO: DISCIPLINA: FÍSICA PROFESSORES: Erich/ André NOME COMPLETO: I N S T R U Ç Õ E S DATA: 17/12/2015 VALOR: 20,0 NOTA: ASSUNTO: TRABALHO DE RECUPERAÇÃO FINAL SÉRIE: 1 a EM Circule a sua turma: Funcionários:

Leia mais