DERROTAS 33.1 INTRODUÇÃO. REVISÃO DE CONCEITOS

Tamanho: px
Começar a partir da página:

Download "DERROTAS 33.1 INTRODUÇÃO. REVISÃO DE CONCEITOS"

Transcrição

1 33 DEOTAS 33.1 INTODUÇÃO. EVISÃO DE ONEITOS Um navio ou embarcação navega sempre por rumos. O rumo ou loxodromia, conforme visto no apítulo 1 (Volume I), é a linha que, na Terra, corta todos os meridianos segundo um ângulo constante. Na superfície da Terra, a loxodromia, curva que forma o mesmo ângulo com todos os meridianos, apresenta-se como uma espiral que tende para o ólo (figura 33.1). Nas figuras 33.1(a) e (b) está traçado o arco de loxodromia que une os pontos 1 e 2. Esta linha corta todos os meridianos segundo ângulos iguais. Assim, os ângulos 1A, AB, B e 2 são todos iguais e qualquer um deles pode ser tomado como o rumo entre os pontos 1 e 2. A loxodromia na Esfera Terrestre tem a forma de uma espiral que tende para o ólo, como mostrado na figura 33.1(c). A figura 33.2 mostra que, partindo das proximidades do Equador no rumo 060º, o navegante percorrerá a curva loxodrômica mostrada, formando com todos os meridianos o mesmo ângulo (igual ao rumo 060º) e convergindo em espiral para o ólo. Na rojeção de Mercator, entretanto, a linha de rumo ou loxodromia entre dois pontos é representada, como vimos no apítulo 2 (Volume I), por uma reta, formando com as transformadas de todos os meridianos um ângulo constante e igual ao rumo entre os dois pontos. Esta é a maior vantagem da rojeção de Mercator para uso em artografia Náutica. Na figura 33.3, por exemplo, o rumo, ou arco de loxodromia, entre os pontos A e 1157

2 B é traçado, em uma arta de Mercator, como uma linha reta unindo os dois pontos, cortando todos os meridianos segundo o mesmo ângulo, igual ao valor do rumo, que pode ser medido diretamente na carta. Figura 33.1 Linha de umo ou Loxodromia na Esfera Terrestre ' (a) (c) (b) Figura 33.2 Loxodromia (umo) de 060º na Superfície da Terra 60º 60º 60º 60º 60º 60º 60º 1158

3 Figura 33.3 Loxodromia (Linha de umo) na arta de Mercator 50ºN 68ºW 67ºW 66ºW 65ºW 64ºW 63ºW 62ºW 61ºW 60ºW 59ºW 58ºW 57ºW 56ºW 50ºN 49ºN 49ºN 48ºN 48ºN 47ºN 47ºN 46ºN 46ºN 45ºN 45ºN 44ºN 44ºN 68ºW 67ºW 66ºW 65ºW 64ºW 63ºW 62ºW 61ºW 60ºW 59ºW 58ºW 57ºW 56ºW ontudo, a menor distância entre dois pontos na superfície da Esfera Terrestre é o arco de círculo máximo que passa por estes dois pontos. Tal linha é denominada ortodromia. Na figura 33.4 está mostrada a ortodromia (arco de círculo máximo) entre os pontos A e B na superfície da Terra. Esta linha representa a menor distância entre os referidos pontos e não corta todos os meridianos sob o mesmo ângulo. Figura 33.4 Ortodromia (Arco de írculo Máximo) na Esfera Terrestre n Dl OTODOMIA B jb EQUADO A ja la lb ME. GEENWIH s 1159

4 A figura 33.5 apresenta a ortodromia e a loxodromia traçadas na Esfera Terrestre entre os pontos 1 e 2. A ortodromia (círculo máximo) representa a menor distância entre os referidos pontos, mas faz com os sucessivos meridianos ângulos diferentes (A ^ ¹ B ^ ¹ ^ ¹ D), ^ enquanto que a loxodromia, embora não seja a menor distância entre os pontos, corta todos os meridianos segundo um mesmo ângulo, igual ao rumo entre os pontos 1 e 2. Além disso, na rojeção de Mercator, utilizada na maioria das artas Náuticas, a ortodromia é representada por uma linha curva (figura 33.6). Figura 33.5 Loxodromia e Ortodromia (írculo Máximo) na Esfera Terrestre n A B IULO MÁXIMO D E' LOXODOMIA E s Figura 33.6 Ortodromia na arta de Mercator 50ºN 68ºW 67ºW 66ºW 65ºW 64ºW 63ºW 62ºW 61ºW 60ºW 59ºW 58ºW 57ºW 56ºW 50ºN 49ºN B 49ºN 48ºN 48ºN 47ºN 47ºN 46ºN 46ºN 45ºN 45ºN 44ºN A 44ºN 68ºW 67ºW 66ºW 65ºW 64ºW 63ºW 62ºW 61ºW 60ºW 59ºW 58ºW 57ºW 56ºW 1160

5 Desta forma, para manter-se sobre a ortodromia entre dois pontos, o navegante deveria variar o rumo constantemente, para navegar sobre o arco de círculo máximo entre os referidos pontos. omo não se pode mudar o rumo a cada instante, navega-se sempre em arcos de loxodromia, ou linha de rumo. ara pequenas distâncias, a loxodromia e a ortodromia praticamente se confundem. Assim, para uma pernada de 750 milhas na Latitude média de 40º, por exemplo, a diferença entre a ortodromia e a loxodromia é de apenas 1,5'. Entretanto, para grandes travessias, principalmente em Latitudes elevadas, a diferença entre a derrota ortodrômica e a derrota loxodrômica pode ser significativa. A distância ortodrômica de Valparaíso, hile (Latitude 33º 02,0' S, Longitude 071º 40,0' W) para Sydney, Austrália (Latitude 33º 53,0' S, Longitude 151º 10,0' E) é de 6.115,0 milhas, enquanto que a distância loxodrômica é 6.899,6 milhas, o que corresponde a uma diferença de 784,6 milhas. or isso, para grandes travessias deverá ser considerado o uso de derrota ortodrômica (decomposta em arcos de loxodromia) ou de uma derrota mista (derrota composta), como veremos adiante, neste mesmo capítulo DEOTA LOXODÔMIA A loxodromia, linha de rumo, ou simplesmente rumo entre dois pontos, é a linha que une estes dois pontos cortando todos os meridianos segundo um mesmo ângulo. ara navegar na loxodromia entre os dois pontos bastará que o navio governe em uma direção constante, tal que sua proa forme com os meridianos um ângulo igual ao rumo (contado a partir do Norte, no sentido horário). Figura 33.7 ortodromia loxodromia F paralelo equador ' T meridiano 90º 90º Quando o rumo é 090º ou 270º, a loxodromia é um arco de paralelo ou um arco do Equador (que é um círculo máximo). Quando o rumo é 000º ou 180º, a loxodromia coincide com um meridiano, que, também, é um círculo máximo (figura 33.7). Entre dois pontos na superfície da Terra há duas loxodromias; considera-se, entretanto, apenas a menor, que corresponde também ao menor caminho em Longitude. Assim, de ecife a Lisboa pode-se fazer passar duas loxodromias, uma para Oeste, no rumo aproximado 279º, e outra para Leste, no rumo 027º, mas se utilizará sempre a linha de rumo 027º, por ser a menor das duas. Os problemas de navegação loxodrômica podem se apresentar segundo duas formas: a. onhecem-se as coordenadas geográficas do ponto de partida e do destino e deseja-se obter o rumo da derrota loxodrômica e a distância a ser navegada; ou b. conhecem-se as coordenadas do ponto de partida, o rumo e a distância a ser navegada e deseja-se obter as coordenadas do ponto de chegada. 1161

6 Ambos os casos estão ilustrados na figura No primeiro, conhecem-se as coordenadas dos pontos A e B e deseja-se obter o umo e a Distância entre eles. No segundo, são conhecidas as coordenadas do ponto de partida A (j A, l A ), o rumo e a distância a ser navegada e deseja-se determinar as coordenadas do ponto de chegada B (j B, l B ). Figura 33.8 O roblema da Navegação Loxodrômica B j B G N A DISTÂNIA ap j B j A MEIDIANO DE GEENWIH EQUADO j A Dl l A l A l B l B ara solução de quaisquer das duas formas de problemas, é necessário empregar os conceitos de apartamento (ap), Latitude intermediária (ji) e Latitude média (jm) entre dois pontos. ara determinar o rumo e a distância de uma loxodromia, é preciso conhecer a distância ao longo de um paralelo entre os dois pontos dados, pois as fórmulas da derrota loxodrômica são deduzidas considerando um grande número de triângulos retângulos, cada um dos quais tem um lado situado sobre um paralelo de Latitude (figura 33.9). Figura 33.9 T f a b F A B ' 1162

7 Na figura (a), FT é um arco de paralelo, cujo comprimento deseja-se determinar. ortanto, FT é a distância ao longo do paralelo, entre os meridianos que passam por F e por T. AB é a distância ao longo do Equador entre os mesmos meridianos, ou seja, AB é a diferença de Longitude (Dl) entre os pontos F e T. Quanto mais próximo do pólo estiver o paralelo, isto é, quanto mais alta for a Latitude, mais curto torna-se o arco FT, porém a diferença de Longitude entre os dois meridianos que limitam o arco de paralelo não se altera. Assim, FT deve guardar alguma relação com AB, dependendo da Latitude. Figura Diatância ao Longo de um aralelo D D F j F T j A A B ' ' (a) (b) ara determinar esta relação, considerem-se as seções DFT e AB, que são paralelas e eqüiangulares. FT DF Então: = AB A Mas no triângulo DF, na figura 33.10(b): DF = F. cos (Lat) DF = A. cos (Lat) orque F = A, sendo ambos um raio da Terra (). Então: FT AB = A. os (Lat) A Ou seja: FT = AB. cos (Lat) FT = Dl. cos (Lat) ortanto, a distância ao longo de um paralelo, em milhas náuticas, é igual à diferença de Longitude, expressa em minutos de arco, multiplicada pelo cosseno da Latitude. 1163

8 Suponhamos, por exemplo, que a Latitude é de 45º S e que as Longitudes de F e de T são, respectivamente, 015º W e 060º W. Então: Dl = 045º = 2.700'; cos j = 0, Assim: FT = 2.700' x 0,707 = 1.909,2 milhas Se a Latitude fosse 60º S, teríamos: FT = 2.700'. cos 60º = 2.700'. 0,5 = milhas ou seja, na Latitude de 60º, o comprimento do arco de paralelo, em milhas náuticas, é metade da diferença de Longitude correspondente, expressa em minutos de arco. Se os pontos considerados estiverem sobre o Equador (j = 0º), o comprimento do arco, em milhas náuticas, é igual à diferença de Longitude correspondente, expressa em minutos de arco; no pólo (j = 90º), o comprimento será nulo. A distância ao longo de um paralelo é um caso particular do que se denomina apartamento (ap). Apartamento (ap) é a distância percorrida em uma direção Leste Oeste (E W) quando se navega de um ponto a outro ao longo de uma linha de rumo, ou loxodromia. Suponhamos que um navegante se desloca de F para T na figura A distância percorrida na direção E W será menor que FT'(distância ao longo do paralelo de F), porque os dois meridianos FF' e T'T convergem para o Norte de FT'. ela mesma razão, a distância percorrida na direção E W será maior que F'T. Figura T F' N ap M W T' F E ' Assim, a distância percorrida na direção E W quando o navegante desloca-se de F para T será igual à distância ao longo de um determinado paralelo MN, situado entre os paralelos de F e de T. 1164

9 A Latitude deste paralelo MN é denominada Latitude intermediária ( middle latitude ) entre F e T, sendo abreviadamente designada ji. Então, pela fórmula demonstrada para cálculo da distância ao longo de um paralelo, tem-se: ap = Dl. cos ji or trigonometria esférica, demonstra-se que: sec ji = Dl Entretanto, exceto quando a diferença de Latitude for muito grande, ou quando as Latitudes envolvidas forem, elas mesmas, muito altas, a Latitude intermediária (ji) pode ser considerada, sem erro apreciável, como a média aritmética entre as duas Latitudes, ou seja, como a Latitude média ( mean latitude ) entre os pontos, abreviadamente designada jm. Então, a fórmula precisa, ap = Dl. cos ji, é substituída pela fórmula aproximada, usada na prática da navegação: ap = Dl. cos jm ou: Dl = ap. sec jm Em geral, o uso da Latitude média (jm), em vez da Latitude intermediária (ji) é aceitável até distâncias da ordem de 600 milhas, ou quando a Latitude média não exceder 55º e a diferença de Latitudes for inferior a 15º. onhecidos os conceitos de apartamento (ap) e Latitude média (jm), podem-se resolver quaisquer dos dois tipos de problemas de derrotas loxodrômicas. omo vimos, para demonstração das fórmulas da navegação loxodrômica, o arco de loxodromia é dividido em inúmeros pequenos triângulos retângulos, cada um dos quais tem um lado situado sobre um paralelo de Latitude (ver a figura 33.9). Em cada um destes triângulos (figura 33.12): Figura n D ap D dist = D dist. cos e Dap = D dist. sen ou dj = d dist. cos e d ap = d dist. sen s 1165

10 Sendo a navegação loxodrômica, o rumo entre e será constante. Então, integrando dj e d ap, teremos: dj = d dist. cos ; d ap = d dist. sen ; ou: = dist. cos e: ap = dist. sen Dividindo-se a fórmula de baixo pela de cima, obtém-se: tg = ap ou: = arc tg ap Além disso, da figura conclui-se que: 2 2 dist + ap = Estas são as fórmulas que permitem resolver os dois casos que podem ocorrer na navegação loxodrômica, ilustrados nas figuras e Tais fórmulas são adequadas para solucionar problemas de derrotas loxodrômicas até cerca de 600 milhas de extensão, pois nada mais são do que as equações que relacionam os elementos de um triângulo retângulo plano, cuja hipotenusa é a distância navegada, o cateto adjacente é a diferença da Latitude (), o ângulo agudo de interesse é o umo (quadrantal) e o cateto oposto é o apartamento (ap). As fórmulas mostradas, portanto, consideram a Terra como uma superfície plana. Os problemas de derrotas loxodrômicas podem ser resolvidos analiticamente ou com o auxílio das Tábuas do onto, incluídas na publicação DN 6-1, Tábuas para Navegação Estimada, editada pela Diretoria de Hidrografia e Navegação, e reproduzidas no final do volume III deste Manual. 1166

11 Figura Derrota Loxodrômica (1º caso) N B ap B DIST jb A DIST ja A ap = DIST. sen EQUADO Dl = DIST. cos Dl = ap sec jm 1. ONHEIDOS: ja, la; jb, lb 2. A DETEMINA: Distância (AB); umo (AB) 3. FÓMULAS: a) AATAMENTO: ap = Dl cos jm b) UMO: = arc tg ap c) DISTÂNIA: Dist. = ap Figura Derrota Loxodrômica (2º caso) N B ap B A DIST jb DIST ja A ap = DIST. sen EQUADO Dl = DIST. cos Dl = ap sec jm 1. ONHEIDOS: ja, la; umo e Distância Navegada 2. A DETEMINA: jb, lb 3. FÓMULAS: a) = Dist. cos ; jb = ja + b) ap = Dist. sen c) Dl = ap sec jm ; lb = la + Dl 1167

12 A Tábua do onto propriamente dita (Tábua III da publicação DN 6-1) fornece a diferença de Latitude (d Lat na Tábua) e o apartamento (ap), tendo como argumentos de entrada o rumo (ângulo) e a distância navegada, resolvendo as seguintes fórmulas: = dist. cos ; ap = dist. sen Assim, conhecidas as coordenadas do ponto de partida, o rumo seguido e a distância navegada, a Tábua do onto informará a diferença de Latitude e o apartamento. Transforma-se, então, o apartamento em diferença de Longitude, obtendo-se, desta forma, as coordenadas geográficas do ponto de destino. Quando os rumos são menores que 045º, entra-se na tábua por cima; quando maiores, por baixo; a redução ao primeiro quadrante é facilitada pelos valores incluídos dentro dos parênteses. A coluna das distâncias é sempre a mesma; porém, a das diferenças de Latitude e dos apartamentos são trocadas quando o rumo excede 045º, conforme indicado na tábua. Assim, para um rumo compreendido entre 000º e 045º, tira-se a diferença de Latitude e o apartamento por cima, nas respectivas colunas; quando o rumo está compreendido entre 045º e 090º, tira-se a diferença de Latitude e o apartamento por baixo, nas respectivas colunas. O rumo de entrada na Tábua do onto é, na realidade, um umo Quadrantal, definido como o menor ângulo entre o meridiano e a proa do navio, contado a partir do Norte, ou a partir do Sul, para Leste ou para Oeste, conforme o caso. or exemplo, se o umo Verdadeiro do navio é 100º, o umo Quadrantal será 80º (SE). Este será o valor de entrada na Tábua do onto. Ademais, o umo Verdadeiro definirá, também, o sentido da diferença de Latitude e do apartamento fornecidos pela Tábua do onto. Assim, um navio governando em um rumo entre 000º e 090º está se movendo para o Norte e para Leste. Então, será Norte (N) e ap será Leste (E). Quando se navega em um rumo entre 090º e 180º, movese para o Sul e para Leste. Desta forma, será S e ap permanece E. Do mesmo modo, para rumos entre 180º e 270º, será S e ap será W. Entre 270º e 000º, será N e ap será W. Estes fatos mostram que, antes de usar a Tábua do onto, o rumo deve ser convenientemente expresso em termos quadrantais, em relação aos pontos cardeais apropriados. EXEMLOS: 1. Sendo o umo Verdadeiro 026º e a distância navegada 30 milhas, determinar a diferença de Latitude e o apartamento. a. = 026º Þ umo Quadrantal: qd = 26º NE; b. omo qd = 26º é menor que 45º, entra-se na Tábua do onto por cima, obtendo (ver a figura 33.15): d Lat (diferença de Latitude): = 27,0' N apartamento: ap = 13,2' E 1168

13 Figura TÁBUA III TÁBUA DO ONTO dist dlat ap ap = DIST. sen 30 27,0 13,2 = DIST. cos 40 36,0 17,5 1169

14 2. Sendo o umo Verdadeiro 296º e a distância navegada 40 milhas, determinar a diferença de Latitude e o apartamento. a. = 296º Þ qd = 64º NW; b. omo qd = 64º é maior que 45º, entra-se na Tábua do onto por baixo, obtendo (ver a figura 33.15): d Lat (diferença de Latitude): = 17,5' N apartamento: ap = 36,0' W A Tábua IV da publicação DN 6-1 onversão de Apartamento em Diferença de Longitude resolve a fórmula: Dl = ap. sec jm Entrando-se com a Latitude média entre dois pontos e o apartamento, obtém-se a diferença de Longitude correspondente. EXEMLOS: 1. Sendo a Latitude média 26º S e o apartamento 48,0' E, determinar a diferença de Longitude. a. Entrando na Tábua IV com jm = 26º como argumento horizontal, na linha superior, e ap = 48' como argumento vertical, na coluna da esquerda, obtém-se: Dl = 53,4' (ver a figura 33.16); b. omo o apartamento é E, tem-se: Dl = 53,4' E 2. Sendo a Latitude média 25º N e o apartamento 300,0' W, determinar a diferença de Longitude. a. 300' = 5º = 5 x 60' b. jm = 25º ap = 60' c. Então: } Dl = 66,2' (ver a figura 33.16); jm = 25º Dl = 5 x 66,2' = 331,0' ap = 300' Dl = 5º 31,0' d. omo o apartamento é W, tem-se: Dl = 5º 31,0' W 1170

15 Figura TÁBUA IV ONVESÃO DE AATAMENTO EM DIFEENÇA DE LONGITUDE 1171

16 NOTA: A conversão de apartamento em diferença de Longitude, ou vice-versa, também pode ser feita pela Tábua do onto (Tábua III da publicação DN6-1). Ou seja, a Tábua do onto também pode ser usada para resolver as equações: Dl = ap. sec jm ou ap = Dl. cos jm ara converter Dl em apartamento, use a Latitude média (jm) como se fosse o umo e a diferença de Longitude (Dl) como se fosse a distância navegada (dist), lendo o apartamento (ap) na coluna correspondente à diferença de Latitude (). EXEMLOS: 1. Sendo jm = 26º S e Dl = 53,4 E, determinar o apartamento (ap) pela Tábua do onto. a. Entra-se na Tábua do onto com jm = 26º como se fosse umo e Dl = 53,4' como se fosse dist, obtendo, na coluna de diferença de Latitude (d Lat), por interpolação, ap = 48,0' (ver a figura 33.15); b. omo Dl é E, tem-se: ap = 48,0' E 2. Sendo a Latitude média 25º N e a diferença de Longitude 5º 31,0' W, determinar o apartamento pela Tábua do onto. a. Entra-se na Tábua do onto (ver a figura 33.15) com jm = 25º como se fosse umo e Dl = 331,0' como se fosse dist, obtendo, na coluna de diferença de Latitude (d Lat), por interpolação, ap = 300,0'. b. omo Dl é W, tem-se: ap = 300,0' W ara converter apartamento em Dl pela Tábua do onto, use jm como se fosse umo e procure na coluna de diferença de Latitude (d Lat) o valor conhecido do apartamento, obtendo, na coluna de distância (dist) a diferença de Longitude (Dl) correspondente. EXEMLOS: 1. Sendo jm = 25º S e ap = 58,0' W, determinar Dl pela Tábua do onto: a. Entra-se na Tábua do onto (ver a figura 33.15) com jm = 25º como se fosse umo e ap = 58,0' como se fosse diferença de Latitude (d Lat), obtendo, na coluna de distância (dist), o valor da diferença de Longitude: Dl = 64,0'= 1º 04,0'. 1172

17 b. omo o apartamento é W, tem-se: Dl = 1º 04,0' W 2. Sendo jm = 26º N e ap = 719,0' E, determinar Dl pela Tábua do onto: a. Entra-se na Tábua do onto com jm = 26º como se fosse umo e ap = 719,0' como se fosse diferença de Latitude (d Lat). Obtém-se, na coluna de distância (dist): Dl = 800,0' (ver a figura 33.15). b. Dl = 800,0' E = 13º 20,0' E É de boa prática utilizar a Tábua do onto para conversão do apartamento em diferença de Longitude, ou vice-versa, em vez de usar a Tábua IV, pois a facilidade e rapidez de emprego dessa importante Tábua só pode ser adquirida pelo seu uso constante EXEÍIOS SOBE DEOTA LOXODÔMIA 1. Um navio partiu do ponto de coordenadas Latitude 10º 17,0' S, Longitude 035º 13,0' W e navegou no umo Verdadeiro 145º, por uma distância de 98,0 milhas náuticas. Determinar as coordenadas do ponto de chegada. a. Fórmulas a serem usadas: = dist. cos ; jb = ja + ap = dist. sen Dl = ap. sec jm ; lb = la + Dl b. Neste caso, pelas fórmulas ou pela Tábua do onto (entrando com o qd = 35º SE): = 80,3' S = 01º 20,3' S ja = = jb = 10º 17,0' S 01º 20,3' S 11º 37,3' S ap = 56,2' E jm= 10º 57,15' S Dl = 57,2' E la = 035º 13,0' W Dl = 57,2' E lb = 034º 15,8' W 1173

18 2. Um navio deve partir do ponto de coordenadas Latitude 23º 10,0' S, Longitude 042º 01,0' W, cerca de 10 milhas ao Sul do abo Frio, demandando um ponto de coordenadas Latitude 20º 32,5' S, Longitude 029º 46,0' W, nas proximidades da Ilha da Trindade. Determinar o umo Verdadeiro e a distância a ser navegada na derrota loxodrômica entre os dois pontos. a. Fórmulas a serem usadas: ap = Dl. cos jm = arc tg ap 2 2 dist + ap = (ou dist =. sec ) b. Neste caso: ja = 23º 10,0' S jb = 20º 32,5' S = 02º 37,5' N = 157,5' N la = 042º 01,0' W lb = 029º 46,0' W Dl = 12º 15,0' E = 735,0' E jm = ja + jb = 21º 51,3' S 2 c. ap = 682,2' E 682,2 = arc tg 157,5 = 77,0º = 077º d = 157, ,2 2 = 700,1 milhas NOTA: ara resolver este problema pela Tábua do onto, entra-se com a Latitude média (jm = 21º 51,3'), aproximada ao grau inteiro, como se fosse umo e com a diferença de Longitude (Dl = 735,0') como se fosse distância (dist), obtendo, na coluna d Lat, por interpolação, o valor do apartamento ap = 681,4' E. Entra-se novamente na Tábua do onto, com o apartamento (ap = 681,4') e a diferença de Latitude (d Lat = 157,5'), e corre-se toda a tábua, até encontrar os 2 valores em linha, obtendo o valor da distância e do umo Quadrantal. Neste caso, como ap > d Lat, entra-se na tábua por baixo, obtendo-se: dist = 700,0 milhas ; qd = 077º NE, ou seja, = 077º. Verificase que estes valores são praticamente idênticos aos obtidos pelo cálculo. 1174

19 3. Um navio parte do ponto de coordenadas Latitude 30º 10,0' S, Longitude 000º 16,0' E e navega no rumo 240º, por uma distância de 106,0 milhas. Determinar as coordenadas do ponto de chegada. a. Fórmulas a serem usadas: = dist. cos ; jb = ja + ap = dist. sen Dl = ap. sec jm ; lb = la + Dl b. Neste caso: = ap = 53,0' S 91,8' W jm = 30º 36,5' S Dl = 106,7' W = 01º 46,7' W c. Então: ja = 30º 10,0' S la = 000º 16,0' E = 53,0' S Dl = 01º 46,7' W jb = 31º 03,0' S lb = 001º 30,7' W 4. Um navio deve partir do ponto Latitude 23º 05,0' S, Longitude 043º 10,0' W, nas proximidades da Baía de Guanabara, J, demandando um ponto de coordenadas geográficas Latitude 28º 13,0' S, Longitude 048º 38,0' W, na entrada do orto de Imbituba, S. Determinar o umo Verdadeiro e a distância a ser navegada na derrota loxodrômica entre os dois pontos. a. Fórmulas a serem usadas: ap = Dl. cos jm = arc tg ap 2 2 dist + ap = (ou dist =. sec ) b. Neste caso: la = 043º 10,0' W lb = 048º 38,0' W Dl = 05º 28,0' W = 328,0' W 1175

20 ja jb = 23º 05,0' S = 28º 13,0' S = 05º 08,0' S = 308,0' S jm = 25º 39,0' S ap = 295,7' W = 43,8º SW = 224º Dist = 427,0' 33.4 DEOTA ESTIMADA OMOSTA A derrota estimada composta é aquela em que o navio navega diversos rumos, ou seja, diversos arcos de loxodromia. Fica formada uma linha poligonal, conforme mostrado na figura Figura Derrota Estimada omposta 21,9' 69,3' 120º 80' 40' 56,9' 021º 61' 26,4' 140º 41' ATIDA 230º 48' 30,9' 31,4' 36,8' HEGADA 1176

21 onhecendo-se os diversos rumos e distâncias navegadas, além das coordenadas geográficas do ponto de partida, procede-se da seguinte maneira: a. onstrói-se um quadro como o da figura 33.18; Figura Quadro para esolução da Derrota Estimada omposta umo d Ap N S E W = ap = b. com a Tábua do onto (ou pelo cálculo), para cada rumo e distância navegados, preenchem-se os valores das diferenças de Latitude e do apartamento, com a correspondente designação: se N ou S ; se E ou W; c. somam-se as colunas e determinam-se os valores finais de e ap; d. aplica-se o encontrado à Latitude de partida, encontrando-se a Latitude do ponto de chegada. alcula-se, então, a Latitude média; e. com a Latitude média e o valor final do apartamento, determina-se, pela Tábua do onto, ou pelo cálculo, a diferença de Longitude; e f. aplica-se a diferença de Longitude à Longitude de partida, determinando-se, assim, a Longitude do ponto de chegada. EXEMLO: om os rumos e distâncias navegados mostrados na figura e sabendo-se que as coordenadas do ponto de partida são Latitude 29º 37,3' S, Longitude 044º 13,0' W, determinar as coordenadas do ponto de chegada. a. Os rumos e distâncias navegados são, respectivamente: ENADA UMO DISTÂNIA NAVEGADA 1 021º 61,0' 2 120º 80,0' 3 140º 41,0' 4 230º 48,0' 1177

Conhecendo-se os diversos rumos e distâncias navegadas, além das coordenadas geográficas do ponto de partida, procede-se da seguinte maneira:

Conhecendo-se os diversos rumos e distâncias navegadas, além das coordenadas geográficas do ponto de partida, procede-se da seguinte maneira: Conhecendo-se os diversos rumos e distâncias navegadas, além das coordenadas geográficas do ponto de partida, procede-se da seguinte maneira: a. Constrói-se um quadro como o da figura 33.18; Figura 33.18

Leia mais

APOSTILA TECNOLOGIA MECANICA

APOSTILA TECNOLOGIA MECANICA FACULDADE DE TECNOLOGIA DE POMPEIA CURSO TECNOLOGIA EM MECANIZAÇÃO EM AGRICULTURA DE PRECISÃO APOSTILA TECNOLOGIA MECANICA Autor: Carlos Safreire Daniel Ramos Leandro Ferneta Lorival Panuto Patrícia de

Leia mais

Retas e Planos. Equação Paramétrica da Reta no Espaço

Retas e Planos. Equação Paramétrica da Reta no Espaço Retas e lanos Equações de Retas Equação aramétrica da Reta no Espaço Considere o espaço ambiente como o espaço tridimensional Um vetor v = (a, b, c) determina uma direção no espaço Dado um ponto 0 = (x

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

Sistemas de coordenadas e tempo. 1 Sistema de coordenadas horizontal local

Sistemas de coordenadas e tempo. 1 Sistema de coordenadas horizontal local José Laurindo Sobrinho Grupo de Astronomia da Universidade da Madeira Fevereiro 2014 Sistemas de coordenadas e tempo 1 Sistema de coordenadas horizontal local O sistema de coordenadas horizontal local

Leia mais

SISTEMAS DE 18 COORDENADAS UTILIZADOS EM ASTRONOMIA NÁUTICA E NAVEGAÇÃO ASTRONÔMICA

SISTEMAS DE 18 COORDENADAS UTILIZADOS EM ASTRONOMIA NÁUTICA E NAVEGAÇÃO ASTRONÔMICA SISTEMAS DE 18 COORDENADAS UTILIZADOS EM ASTRONOMIA NÁUTICA E NAVEGAÇÃO ASTRONÔMICA 18.1 CONCEITOS FUNDAMENTAIS Conforme visto no capítulo anterior, para determinar a posição de qualquer ponto na superfície

Leia mais

Introdução À Astronomia e Astrofísica 2010

Introdução À Astronomia e Astrofísica 2010 CAPÍTULO 1 ESFERA CELESTE E O SISTEMA DE COORDENADAS Esfera Celeste. Sistema de Coordenadas. Coordenadas Astronómicas. Sistema Horizontal. Sistema Equatorial Celeste. Sistema Equatorial Horário. Tempo

Leia mais

EMPREGO DE LINHAS DE POSIÇÃO DE SEGURANÇA

EMPREGO DE LINHAS DE POSIÇÃO DE SEGURANÇA 7 Emprego de linhas de posição de segurança EMPREGO DE LINHAS DE POSIÇÃO DE SEGURANÇA 7.1 CONCEITO DE NAVEGAÇÃO DE SEGURANÇA O emprego de linhas de posição (LDP) como limite de segurança é comum em navegação

Leia mais

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 9

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 9 RACIOCÍNIO LÓGICO AULA 9 TRIGONOMETRIA TRIÂNGULO RETÂNGULO Considere um triângulo ABC, retângulo em  ( = 90 ), onde a é a medida da hipotenusa, b e c, são as medidas dos catetos e a, β são os ângulos

Leia mais

Simulado ENEM: Matemática

Simulado ENEM: Matemática Simulado ENEM: Matemática Questão 1 Cinco diretores de uma grande companhia, doutores Arnaldo, Bernardo, Cristiano, Denis e Eduardo, estão sentados em uma mesa redonda, em sentido horário, para uma reunião

Leia mais

COMBINAÇÃO DOS SISTEMAS DE COORDENADAS UTILIZADOS EM NAVEGAÇÃO ASTRONÔMICA. O TRIÂNGULO ASTRONÔMICO OU TRIÂNGULO DE POSIÇÃO

COMBINAÇÃO DOS SISTEMAS DE COORDENADAS UTILIZADOS EM NAVEGAÇÃO ASTRONÔMICA. O TRIÂNGULO ASTRONÔMICO OU TRIÂNGULO DE POSIÇÃO COMBINAÇÃO DOS SISTEMAS DE COORDENADAS UTILIZADOS EM NAVEGAÇÃO ASTRONÔMICA. O TRIÂNGULO ASTRONÔMICO OU TRIÂNGULO DE POSIÇÃO 20 20.1 PROCESSO DE OBTENÇÃO DE LINHAS DE POSIÇÃO (LDP) E DE UMA POSIÇÃO ASTRONÔMICA

Leia mais

Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5

Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5 Cálculo em Computadores - 2007 - trajectórias Trajectórias Planas Índice Trajectórias. exercícios............................................... 2 2 Velocidade, pontos regulares e singulares 2 2. exercícios...............................................

Leia mais

Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta

Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta Classificação dos movimentos Introdução Velocidade Média

Leia mais

1 ELEMENTOS DA CIRCUNFERÊNCIA

1 ELEMENTOS DA CIRCUNFERÊNCIA Matemática 2 Pedro Paulo GEOMETRIA PLANA II 1 ELEMENTOS DA CIRCUNFERÊNCIA Circunferência é o conjunto de pontos que está a uma mesma distância (chamaremos essa distância de raio) de um ponto fixo (chamaremos

Leia mais

Projeções cartográficas

Projeções cartográficas Projeções cartográficas - Não há como transformar uma superfície esférica em um mapa plano sem que ocorram distorções. - Cada projeção é adequada a um tipo de aplicação -Na impossibilidade de se desenvolver

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva nos pontos onde e Vamos determinar a reta tangente à curva nos pontos de abscissas

Leia mais

IFSP - EAD - GEOMETRIA TRIÂNGULO RETÂNGULO CONCEITUAÇÃO :

IFSP - EAD - GEOMETRIA TRIÂNGULO RETÂNGULO CONCEITUAÇÃO : IFSP - EAD - GEOMETRIA TRIÂNGULO RETÂNGULO CONCEITUAÇÃO : Como já sabemos, todo polígono que possui três lados é chamado triângulo. Assim, ele também possui três vértices e três ângulos internos cuja soma

Leia mais

Palavras-Chave: Sistema de Posicionamento Global. Sistemas de Localização Espacial. Equação de Superfícies Esféricas.

Palavras-Chave: Sistema de Posicionamento Global. Sistemas de Localização Espacial. Equação de Superfícies Esféricas. METODOS MATEMÁTICOS PARA DEFINIÇÃO DE POSICIONAMENTO Alberto Moi 1 Rodrigo Couto Moreira¹ Resumo Marina Geremia¹ O GPS é uma tecnologia cada vez mais presente em nossas vidas, sendo que são inúmeras as

Leia mais

MATEMÁTICA - 1 o ANO MÓDULO 42 TRIGONOMETRIA: CÍRCULOS E LINHAS TRIGONOMÉTRICAS

MATEMÁTICA - 1 o ANO MÓDULO 42 TRIGONOMETRIA: CÍRCULOS E LINHAS TRIGONOMÉTRICAS MATEMÁTICA - 1 o ANO MÓDULO 42 TRIGONOMETRIA: CÍRCULOS E LINHAS TRIGONOMÉTRICAS O R I y 90º 180º II Q I Q + 0º/360º III Q IV Q - 270º 1290º 210 360º 3 Como pode cair no enem (ENEM) As cidades de Quito

Leia mais

NASCER E PÔR-DO-SOL E DA LUA. CREPÚSCULOS

NASCER E PÔR-DO-SOL E DA LUA. CREPÚSCULOS 24 NASCER E PÔR-DO-SOL E DA LUA. CREPÚSCULOS 24.1 IMPORTÂNCIA DO CONHECIMENTO DOS INSTANTES DO NASCER E DO PÔR-DO-SOL E DA LUA, E DA DURAÇÃO DOS CREPÚSCULOS Em Navegação Astronômica, é importante conhecer

Leia mais

Exercícios Teóricos Resolvidos

Exercícios Teóricos Resolvidos Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar

Leia mais

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFBA VESTIBULAR a Fase Profa. Maria Antônia Gouveia. Questão. Considerando-se as funções f: R R e g: R R definidas por f(x) = x e g(x) = log(x² + ), é correto afirmar: () A função

Leia mais

Aula 9 ESCALA GRÁFICA. Antônio Carlos Campos

Aula 9 ESCALA GRÁFICA. Antônio Carlos Campos Aula 9 ESCALA GRÁFICA META Apresentar as formas de medição da proporcionalidade entre o mundo real e os mapas através das escalas gráficas. OBJETIVOS Ao final desta aula, o aluno deverá: estabelecer formas

Leia mais

Faculdade Sagrada Família

Faculdade Sagrada Família AULA 12 - AJUSTAMENTO DE CURVAS E O MÉTODO DOS MÍNIMOS QUADRADOS Ajustamento de Curvas Sempre que desejamos estudar determinada variável em função de outra, fazemos uma análise de regressão. Podemos dizer

Leia mais

PROJEÇÕES CARTOGRÁFICAS; A CARTA NÁUTICA

PROJEÇÕES CARTOGRÁFICAS; A CARTA NÁUTICA 2 PROJEÇÕES CARTOGRÁFICAS; A CARTA NÁUTICA 2.1 MAPAS E CARTAS; O PROBLEMA DA REPRESENTAÇÃO DA TERRA SOBRE UMA SUPERFÍCIE PLANA Embora a distinção seja um tanto convencional, é oportuno iniciar este Capítulo

Leia mais

Sistemas de Coordenadas:

Sistemas de Coordenadas: Necessários para expressar a posição de pontos sobre a superfície (elipsóide, esfera, plano). Î Para o Elipsóide, empregamos o Sistema de Coordenadas Cartesiano e Curvilíneo: PARALELOS E MERIDIANOS. Î

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ CENTRO DE GEOCIÊNCIAS DEPARTAMENTO DE GEOLOGIA DISCIPLINA: GEOLOGIA ESTRUTURAL GEOLOGIA ESTRUTURAL - PRÁTICA

UNIVERSIDADE FEDERAL DO PARÁ CENTRO DE GEOCIÊNCIAS DEPARTAMENTO DE GEOLOGIA DISCIPLINA: GEOLOGIA ESTRUTURAL GEOLOGIA ESTRUTURAL - PRÁTICA 1 UNIVERSIDADE FEDERAL DO PARÁ CENTRO DE GEOCIÊNCIAS DEPARTAMENTO DE GEOLOGIA DISCIPLINA: GEOLOGIA ESTRUTURAL Cap. 01 - Mapas e Seções Geológicas GEOLOGIA ESTRUTURAL - PRÁTICA Antes que se comece a estudar

Leia mais

Aula 5 NOÇÕES BÁSICAS DE GEODÉSIA E ASTRONOMIA DE POSIÇÃO. Antônio Carlos Campos

Aula 5 NOÇÕES BÁSICAS DE GEODÉSIA E ASTRONOMIA DE POSIÇÃO. Antônio Carlos Campos Aula 5 NOÇÕES BÁSICAS DE GEODÉSIA E ASTRONOMIA DE POSIÇÃO META Mostrar as normas básicas de posicionamento e direção terrestre e apresentar formas de orientação que auxiliam na localização. OBJETIVOS Ao

Leia mais

POLÍGONOS E FIGURAS GEOMÉTRICAS ESPACIAIS

POLÍGONOS E FIGURAS GEOMÉTRICAS ESPACIAIS http://apostilas.netsaber.com.br/ver_apostila.php?c=622 ANGELO ROBERTO BONFIETI JUNIOR - MATRÍCULA 97003133 - BM3 01-011 POLÍGONOS E FIGURAS GEOMÉTRICAS ESPACIAIS ANGELO ROBERTO BONFIETI JUNIOR - MATRÍCULA

Leia mais

Curvas em coordenadas polares

Curvas em coordenadas polares 1 Curvas em coordenadas polares As coordenadas polares nos dão uma maneira alternativa de localizar pontos no plano e são especialmente adequadas para expressar certas situações, como veremos a seguir.

Leia mais

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL PARTE FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL.1 Funções Vetoriais de Uma Variável Real Vamos agora tratar de um caso particular de funções vetoriais F : Dom(f R n R m, que são as funções vetoriais de uma

Leia mais

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980 Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.

Leia mais

EXERCÍCIOS 2ª SÉRIE - LANÇAMENTOS

EXERCÍCIOS 2ª SÉRIE - LANÇAMENTOS EXERCÍCIOS ª SÉRIE - LANÇAMENTOS 1. (Unifesp 01) Em uma manhã de calmaria, um Veículo Lançador de Satélite (VLS) é lançado verticalmente do solo e, após um período de aceleração, ao atingir a altura de

Leia mais

Breve Introdução à Informação Geográfica. João Carreiras Geo-DES jmbcarreiras@iict.pt

Breve Introdução à Informação Geográfica. João Carreiras Geo-DES jmbcarreiras@iict.pt Breve Introdução à Informação Geográfica João Carreiras Geo-DES jmbcarreiras@iict.pt Resumo 1 Informação Geográfica 2 Características da Informação Geográfica 3 Conceito de Escala 4 Coordenadas, Projecções

Leia mais

Aula 17 GRANDEZAS ESCALARES E VETORIAIS. META Apresentar as grandezas vetoriais e seu signifi cado

Aula 17 GRANDEZAS ESCALARES E VETORIAIS. META Apresentar as grandezas vetoriais e seu signifi cado GRANDEZAS ESCALARES E VETORIAIS META Apresentar as grandezas vetoriais e seu signifi cado OBJETIVOS Ao fi nal desta aula, o aluno deverá: Diferenciar grandezas escalares e vetoriais; compreender a notação

Leia mais

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar GAAL - 201/1 - Simulado - 1 Vetores e Produto Escalar SOLUÇÕES Exercício 1: Determinar os três vértices de um triângulo sabendo que os pontos médios de seus lados são M = (5, 0, 2), N = (, 1, ) e P = (4,

Leia mais

Exercícios de Física Eletromagnetismo

Exercícios de Física Eletromagnetismo Exercícios de Física Eletromagnetismo 1-Considerando as propriedades dos ímãs, assinale a alternativa correta. a) Quando temos dois ímãs, podemos afirmar que seus pólos magnéticos de mesmo nome (norte

Leia mais

Exercícios de Física Eletromagnetismo

Exercícios de Física Eletromagnetismo Exercícios de Física Eletromagnetismo 1-Considerando as propriedades dos ímãs, assinale a alternativa correta. a) Quando temos dois ímãs, podemos afirmar que seus pólos magnéticos de mesmo nome (norte

Leia mais

Exercícios Eletromagnetismo

Exercícios Eletromagnetismo Exercícios Eletromagnetismo 1-Considerando as propriedades dos ímãs, assinale a alternativa correta. a) Quando temos dois ímãs, podemos afirmar que seus pólos magnéticos de mesmo nome (norte e norte, ou

Leia mais

17º Congresso de Iniciação Científica O CONHECIMENTO GEOMÉTRICO EM PORTUGAL NO SÉCULO XVI E SUAS APLICAÇÕES NA CARTOGRAFIA MARÍTIMA

17º Congresso de Iniciação Científica O CONHECIMENTO GEOMÉTRICO EM PORTUGAL NO SÉCULO XVI E SUAS APLICAÇÕES NA CARTOGRAFIA MARÍTIMA 17º Congresso de Iniciação Científica O CONHECIMENTO GEOMÉTRICO EM PORTUGAL NO SÉCULO XVI E SUAS APLICAÇÕES NA CARTOGRAFIA MARÍTIMA Autor(es) FLÁVIA DE ALMEIDA LUCATTI Orientador(es) JOANA DARC DA SILVA

Leia mais

Basta duplicar o apótema dado e utilizar o problema 1 (pág.: 45).

Basta duplicar o apótema dado e utilizar o problema 1 (pág.: 45). Aula 12 Exercício 1: Basta duplicar o apótema dado e utilizar o problema 1 (pág.: 45). Exercício 2: Traçar a diagonal AB, traçar a mediatriz de AB achando M (ponto médio de AB). Com centro em AB M e raio

Leia mais

Topografia. Conceitos Básicos. Prof.: Alexandre Villaça Diniz - 2004-

Topografia. Conceitos Básicos. Prof.: Alexandre Villaça Diniz - 2004- Topografia Conceitos Básicos Prof.: Alexandre Villaça Diniz - 2004- 1 ÍNDICE ÍNDICE...1 CAPÍTULO 1 - Conceitos Básicos...2 1. Definição...2 1.1 - A Planta Topográfica...2 1.2 - A Locação da Obra...4 2.

Leia mais

3)Seno de alguns arcos importantes

3)Seno de alguns arcos importantes Aula 4-A -Funções trigonométricas no ciclo trigonométrico ) Função seno (definição) )Gráfico da função seno )Seno de alguns arcos imortantes 4) Equações e inequações 5) Resolução de exercícios ) Função

Leia mais

I CAPÍTULO 19 RETA PASSANDO POR UM PONTO DADO

I CAPÍTULO 19 RETA PASSANDO POR UM PONTO DADO Matemática Frente I CAPÍTULO 19 RETA PASSANDO POR UM PONTO DADO 1 - RECORDANDO Na última aula, nós vimos duas condições bem importantes: Logo, se uma reta passa por um ponto e tem um coeficiente angular,

Leia mais

FONTES DE CAMPO MAGNÉTICO. Caracterizar e mostrar o campo magnético produzido por uma carga a velocidade constante.

FONTES DE CAMPO MAGNÉTICO. Caracterizar e mostrar o campo magnético produzido por uma carga a velocidade constante. FONTES DE CAMPO MAGNÉTICO META Aula 8 Caracterizar e mostrar o campo magnético produzido por uma carga a velocidade constante. Mostrar a lei da circulação de Ampère-Laplace e a lei de Biot-Savart. Estudar

Leia mais

Coordenadas Geográficas e Projeções Cartográficas. Prof. Bruno

Coordenadas Geográficas e Projeções Cartográficas. Prof. Bruno Coordenadas Geográficas e Projeções Cartográficas Prof. Bruno Paralelos Linhas Imaginárias que cortam o mundo no sentido horizontal Latitude É a medida do ângulo dos Paralelos. Varia de 0 a 90 graus, de

Leia mais

7 - Análise de redes Pesquisa Operacional CAPÍTULO 7 ANÁLISE DE REDES. 4 c. Figura 7.1 - Exemplo de um grafo linear.

7 - Análise de redes Pesquisa Operacional CAPÍTULO 7 ANÁLISE DE REDES. 4 c. Figura 7.1 - Exemplo de um grafo linear. CAPÍTULO 7 7 ANÁLISE DE REDES 7.1 Conceitos Básicos em Teoria dos Grafos Diversos problemas de programação linear, inclusive os problemas de transporte, podem ser modelados como problemas de fluxo de redes.

Leia mais

3º Ano do Ensino Médio. Aula nº10 Prof. Daniel Szente

3º Ano do Ensino Médio. Aula nº10 Prof. Daniel Szente Nome: Ano: º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº10 Prof. Daniel Szente Assunto: Função exponencial e logarítmica 1. Potenciação e suas propriedades Definição: Potenciação é a operação

Leia mais

2. (UFRN) Analise a figura abaixo e assinale a opção que corresponde, respectivamente, às coordenadas geográficas dos pontos X e Z.

2. (UFRN) Analise a figura abaixo e assinale a opção que corresponde, respectivamente, às coordenadas geográficas dos pontos X e Z. Lista de exercícios de Coordenadas Geográficas Professor: Jair Henrique 1.Examine atentamente as sentenças a seguir e assinale o grupo das que lhe parecerem corretas. 1 - Paralelamente ao Equador ficam

Leia mais

UNIDADE II Processos de medição de ângulos e distâncias.

UNIDADE II Processos de medição de ângulos e distâncias. FUNDAÇÃO EDUCACIONAL SERRA DOS ÓRGÃOS - FESO CENTRO UNIVERSITÁRIO SERRA DOS ÓRGÃOS UNIFESO CENTRO DE CIÊNCIAS E TECNOLOGIA CCT CURSO DE ENGENHARIA AMBIENTAL Profª Drª Verônica Rocha Bonfim Engª Florestal

Leia mais

PROVA G1 FIS 1033 23/08/2011 MECÅNICA NEWTONIANA

PROVA G1 FIS 1033 23/08/2011 MECÅNICA NEWTONIANA PROVA G1 FIS 1033 23/08/2011 MECÅNICA NEWTONIANA NOME LEGÇVEL: Gabarito TURMA: ASSINATURA: MATRÇCULA N o : QUESTÉO VALOR GRAU REVISÉO 1 1,0 2 1,0 3 4,0 4 4,0 TOTAL 10,0 Dados: r/ t = (v + v 0 )/2; v v

Leia mais

Matemática SSA 2 REVISÃO GERAL 1

Matemática SSA 2 REVISÃO GERAL 1 1. REVISÃO 01 Matemática SSA REVISÃO GERAL 1. Um recipiente com a forma de um cone circular reto de eixo vertical recebe água na razão constante de 1 cm s. A altura do cone mede cm, e o raio de sua base

Leia mais

MATEMÁTICA (UFOP 2ª 2009 PROVA A) Questões de 09 a 18

MATEMÁTICA (UFOP 2ª 2009 PROVA A) Questões de 09 a 18 MATEMÁTICA (UFOP 2ª 2009 PROVA A) Questões de 09 a 18 9. Na maquete de uma casa, a réplica de uma caixa d água de 1000 litros tem 1 mililitro de capacidade. Se a garagem da maquete tem 3 centímetros de

Leia mais

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO ESCOLA DE BELAS ARTES SISTEMA GEOMÉTRICO DE REPRESENTAÇÃO I PROF. CRISTINA GRAFANASSI TRANJAN

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO ESCOLA DE BELAS ARTES SISTEMA GEOMÉTRICO DE REPRESENTAÇÃO I PROF. CRISTINA GRAFANASSI TRANJAN UNIVERSIDADE FEDERAL DO RIO DE JANEIRO ESCOLA DE BELAS ARTES SISTEMA GEOMÉTRICO DE REPRESENTAÇÃO I PROF. CRISTINA GRAFANASSI TRANJAN MÉTODOS DESCRITIVOS Há determinados problemas em Geometria Descritiva

Leia mais

2) A área da parte mostarda dos 100 padrões é 6. 9. 2. 3) A área total bordada com a cor mostarda é (5400 + 3700) cm 2 = 9100 cm 2

2) A área da parte mostarda dos 100 padrões é 6. 9. 2. 3) A área total bordada com a cor mostarda é (5400 + 3700) cm 2 = 9100 cm 2 MATEMÁTICA 1 Um tapete deve ser bordado sobre uma tela de m por m, com as cores marrom, mostarda, verde e laranja, da seguinte forma: o padrão quadrado de 18 cm por 18 cm, mostrado abaio, será repetido

Leia mais

TEXTO DE REVISÃO: Uso da calculadora científica e potências de 10.

TEXTO DE REVISÃO: Uso da calculadora científica e potências de 10. TEXTO DE REVISÃO: Uso da calculadora científica e potências de 10. Caro aluno (a): No livro texto (Halliday) cap.01 - Medidas alguns conceitos muito importantes são apresentados. Por exemplo, é muito importante

Leia mais

5. DESENHO GEOMÉTRICO

5. DESENHO GEOMÉTRICO 5. DESENHO GEOMÉTRICO 5.1. Retas Paralelas e Perpendiculares No traçado de retas paralelas ou perpendiculares é indispensável o manejo adequado dos esquadros. Na construção das retas perpendiculares e

Leia mais

Triângulo Retângulo. Exemplo: O ângulo do vértice em. é a hipotenusa. Os lados e são os catetos. O lado é oposto ao ângulo, e é adjacente ao ângulo.

Triângulo Retângulo. Exemplo: O ângulo do vértice em. é a hipotenusa. Os lados e são os catetos. O lado é oposto ao ângulo, e é adjacente ao ângulo. Triângulo Retângulo São triângulos nos quais algum dos ângulos internos é reto. O maior dos lados de um triângulo retângulo é oposto ao vértice onde se encontra o ângulo reto e á chamado de hipotenusa.

Leia mais

GEOMETRIA ESFÉRICA, GEOGRAFIA E FORMAÇÃO CONTINUADA DE PROFESSORES: UMA INTERCONEXÃO POSSÍVEL 1

GEOMETRIA ESFÉRICA, GEOGRAFIA E FORMAÇÃO CONTINUADA DE PROFESSORES: UMA INTERCONEXÃO POSSÍVEL 1 GEOMETRIA ESFÉRICA, GEOGRAFIA E FORMAÇÃO CONTINUADA DE PROFESSORES: UMA INTERCONEXÃO POSSÍVEL 1 Irene Pataki Pontifícia Universidade Católica de São Paulo irene.pataki@terra.com.br Pretende-se, com esse

Leia mais

Cap. 7 - Fontes de Campo Magnético

Cap. 7 - Fontes de Campo Magnético Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 7 - Fontes de Campo Magnético Prof. Elvis Soares Nesse capítulo, exploramos a origem do campo magnético - cargas em movimento.

Leia mais

NIVELAMENTO 2007/1 MATEMÁTICA BÁSICA. Núcleo Básico da Primeira Fase

NIVELAMENTO 2007/1 MATEMÁTICA BÁSICA. Núcleo Básico da Primeira Fase NIVELAMENTO 00/ MATEMÁTICA BÁSICA Núcleo Básico da Primeira Fase Instituto Superior Tupy Nivelamento de Matemática Básica ÍNDICE. Regras dos Sinais.... Operações com frações.... Adição e Subtração....

Leia mais

Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA

Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Carga Elétrica e Lei de Coulomb 1. Consideremos o ponto P no centro de um quadrado

Leia mais

Construção dos números racionais, Números fracionários e operações com frações

Construção dos números racionais, Números fracionários e operações com frações Construção dos números racionais, Números fracionários e operações com frações O número racional pode ser definido a partir da aritmética fechamento da operação de divisão entre inteiros ou partir da geometria

Leia mais

FATEC Faculdade de Tecnologia de São Paulo Movimento de Terra e Pavimentação ETE II Estudo de traçado de Estradas - II

FATEC Faculdade de Tecnologia de São Paulo Movimento de Terra e Pavimentação ETE II Estudo de traçado de Estradas - II 1 COORDEADAS, AZIMUTES E ÂGULOS DE DEFLEXÃO estas notas de aula pretende-se apresentar as formas de cálculos de obtenção dos valores de azimutes de trechos de tangentes de rodovias e também os cálculos

Leia mais

A Escola e o Relógio de Sol Resumo

A Escola e o Relógio de Sol Resumo Universidade Federal de São Carlos Centro de Ciências Exatas e de Tecnologia Departamento de Matemática A Escola e o Relógio de Sol Resumo Autora: Raquel Duarte de Souza Orientador: Prof. Dr. José Antônio

Leia mais

PROVA COMENTADA GEOGRAFIA/ ÍRIS TIPO B

PROVA COMENTADA GEOGRAFIA/ ÍRIS TIPO B PROVA COMENTADA GEOGRAFIA/ ÍRIS TIPO B Questão 1 A partir de seus conhecimentos sobre projeções cartográficas e analisando a que foi utilizada no mapa a seguir, você pode inferir que se trata da projeção:

Leia mais

[ \ x Recordemos o caso mais simples de um VLVWHPD de duas HTXDo}HVOLQHDUHV nas duas LQFyJQLWDV [ e \.

[ \ x Recordemos o caso mais simples de um VLVWHPD de duas HTXDo}HVOLQHDUHV nas duas LQFyJQLWDV [ e \. &DStWXOR±6LVWHPDVGH(TXDo}HV/LQHDUHV1 &DStWXOR±6LVWHPDVGH(TXDo}HV/LQHDUHV Å 1Ro}HV *HUDLV Recordemos o caso mais simples de um VLVWHPD de duas HTXDo}HVOLQHDUHV nas duas LQFyJQLWDV [ e \. [\ [\ É fácil verificar

Leia mais

MATEMÁTICA GEOMETRIA ANALÍTICA I PROF. Diomedes. E2) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B.

MATEMÁTICA GEOMETRIA ANALÍTICA I PROF. Diomedes. E2) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B. I- CONCEITOS INICIAIS - Distância entre dois pontos na reta E) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B. d(a,b) = b a E: Dados os pontos A e B de coordenadas

Leia mais

7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares).

7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares). 1 LIVRO Curvas Polares 7 AULA META Estudar as curvas planas em coordenadas polares (Curvas Polares). OBJETIVOS Estudar movimentos de partículas no plano. Cálculos com curvas planas em coordenadas polares.

Leia mais

Matemática. Euclides Roxo. David Hilbert. George F. B. Riemann. George Boole. Niels Henrik Abel. Karl Friedrich Gauss.

Matemática. Euclides Roxo. David Hilbert. George F. B. Riemann. George Boole. Niels Henrik Abel. Karl Friedrich Gauss. Matemática Jacob Palis Álgebra 1 Euclides Roxo David Hilbert George F. B. Riemann George Boole Niels Henrik Abel Karl Friedrich Gauss René Descartes Gottfried Wilhelm von Leibniz Nicolaus Bernoulli II

Leia mais

Coordenadas Polares. Prof. Márcio Nascimento. marcio@matematicauva.org

Coordenadas Polares. Prof. Márcio Nascimento. marcio@matematicauva.org Coordenadas Polares Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Matemática

Leia mais

MAGNETISMO - ELETROMAGNETISMO

MAGNETISMO - ELETROMAGNETISMO MAGNETISMO - ELETROMAGNETISMO MAGNETISMO Estuda os corpos que apresentam a propriedade de atrair o ferro. Estes corpos são denominados imãs ou magnetos. Quando suspendemos um imã deixando que ele gire

Leia mais

"SISTEMAS DE COTAGEM"

SISTEMAS DE COTAGEM AULA 6T "SISTEMAS DE COTAGEM" Embora não existam regras fixas de cotagem, a escolha da maneira de dispor as cotas no desenho técnico depende de alguns critérios. A cotagem do desenho técnico deve tornar

Leia mais

3 - CONJUNTO DOS NÚMEROS RACIONAIS

3 - CONJUNTO DOS NÚMEROS RACIONAIS 3 - CONJUNTO DOS NÚMEROS RACIONAIS Introdução É o conjunto de todos os números que estão ou podem ser colocados em forma de fração. Fração Quando dividimos um todo em partes iguais e queremos representar

Leia mais

INSTITUTO TECNOLÓGICO

INSTITUTO TECNOLÓGICO PAC - PROGRAMA DE APRIMORAMENTO DE CONTEÚDOS. ATIVIDADES DE NIVELAMENTO BÁSICO. DISCIPLINAS: MATEMÁTICA & ESTATÍSTICA. PROFº.: PROF. DR. AUSTER RUZANTE 1ª SEMANA DE ATIVIDADES DOS CURSOS DE TECNOLOGIA

Leia mais

Coordenadas Polares Mauri C. Nascimento Dep. De Matemática FC Unesp/Bauru

Coordenadas Polares Mauri C. Nascimento Dep. De Matemática FC Unesp/Bauru Coordenadas Polares Mauri C. Nascimento Dep. De Matemática FC Unesp/Bauru Dado um ponto P do plano, utilizando coordenadas cartesianas (retangulares), descrevemos sua localização no plano escrevendo P

Leia mais

DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 06

DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 06 DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 06 Este é o 6º artigo da série de dicas para facilitar / agilizar os cálculos matemáticos envolvidos em questões de Raciocínio Lógico, Matemática, Matemática Financeira

Leia mais

TONALIDADE X FREQUÊNICA

TONALIDADE X FREQUÊNICA Som, notas e tons TONALIDADE X FREQUÊNICA O violão é um instrumento musical e o seu objetivo é fazer música. Música é a organização de sons em padrões que o cérebro humano acha agradável (ou pelo menos

Leia mais

CINEMÁTICA VETORIAL. Observe a trajetória a seguir com origem O.Pode-se considerar P a posição de certo ponto material, em um instante t.

CINEMÁTICA VETORIAL. Observe a trajetória a seguir com origem O.Pode-se considerar P a posição de certo ponto material, em um instante t. CINEMÁTICA VETORIAL Na cinemática escalar, estudamos a descrição de um movimento através de grandezas escalares. Agora, veremos como obter e correlacionar as grandezas vetoriais descritivas de um movimento,

Leia mais

Ambos têm os algarismos 7854 seguidos, a potência de dez apenas moverá a vírgula, que não afeta a quantidade de algarismos significativos.

Ambos têm os algarismos 7854 seguidos, a potência de dez apenas moverá a vírgula, que não afeta a quantidade de algarismos significativos. ALGARISMOS SIGNIFICATIVOS Os algarismos significativos são os algarismos que têm importância na exatidão de um número, por exemplo, o número 2,67 tem três algarismos significativos. Se expressarmos o número

Leia mais

Frações. Números Racionais

Frações. Números Racionais Frações Números Racionais Consideremos a operação 4:5 =? onde o dividendo não é múltiplo do divisor. Vemos que não é possível determinar o quociente dessa divisão no conjunto dos números porque não há

Leia mais

ROTEIRO DE RECUPERAÇÃO ANUAL DE FÍSICA 2 a SÉRIE

ROTEIRO DE RECUPERAÇÃO ANUAL DE FÍSICA 2 a SÉRIE ROTEIRO DE RECUPERAÇÃO ANUAL DE FÍSICA 2 a SÉRIE Nome: Nº Série: 2º EM Data: / /2015 Professores Gladstone e Gromov Assuntos a serem estudados - Movimento Uniforme. Movimento Uniformemente Variado. Leis

Leia mais

A trigonometria do triângulo retângulo

A trigonometria do triângulo retângulo A UA UL LA A trigonometria do triângulo retângulo Introdução Hoje vamos voltar a estudar os triângulos retângulos. Você já sabe que triângulo retângulo é qualquer triângulo que possua um ângulo reto e

Leia mais

A Equação de Bernoulli

A Equação de Bernoulli Aula 4 A equação de Bernoulli Objetivos O aluno deverá ser capaz de: Descrever a dinâmica de escoamento de um fluido. Deduzir a Equação de Bernoulli. Aplicar a Equação de Bernoulli e a Equação da Continuidade

Leia mais

N1Q1 Solução. a) Há várias formas de se cobrir o tabuleiro usando somente peças do tipo A; a figura mostra duas delas.

N1Q1 Solução. a) Há várias formas de se cobrir o tabuleiro usando somente peças do tipo A; a figura mostra duas delas. 1 N1Q1 Solução a) Há várias formas de se cobrir o tabuleiro usando somente peças do tipo A; a figura mostra duas delas. b) Há várias formas de se cobrir o tabuleiro com peças dos tipos A e B, com pelo

Leia mais

24/Abril/2013 Aula 19. Equação de Schrödinger. Aplicações: 1º partícula numa caixa de potencial. 22/Abr/2013 Aula 18

24/Abril/2013 Aula 19. Equação de Schrödinger. Aplicações: 1º partícula numa caixa de potencial. 22/Abr/2013 Aula 18 /Abr/013 Aula 18 Princípio de Incerteza de Heisenberg. Probabilidade de encontrar uma partícula numa certa região. Posição média de uma partícula. Partícula numa caixa de potencial: funções de onda e níveis

Leia mais

COLÉGIO JOÃO PAULO I GEOGRAFIA - EXERCÍCIOS 1ª PARCIAL 1ª SÉRIE. Professor(a): Richard

COLÉGIO JOÃO PAULO I GEOGRAFIA - EXERCÍCIOS 1ª PARCIAL 1ª SÉRIE. Professor(a): Richard COLÉGIO JOÃO PAULO I GEOGRAFIA - EXERCÍCIOS 1ª PARCIAL 1ª SÉRIE Professor(a): Richard 1) Sabendo-se que as coordenadas geográficas correspondem a um dos elementos básicos das representações cartográficas,

Leia mais

Relações Métricas nos. Dimas Crescencio. Triângulos

Relações Métricas nos. Dimas Crescencio. Triângulos Relações Métricas nos Dimas Crescencio Triângulos Trigonometria A palavra trigonometria é de origem grega, onde: Trigonos = Triângulo Metrein = Mensuração - Relação entre ângulos e distâncias; - Origem

Leia mais

Resolução de sistemas lineares

Resolução de sistemas lineares Resolução de sistemas lineares J M Martínez A Friedlander 1 Alguns exemplos Comecemos mostrando alguns exemplos de sistemas lineares: 3x + 2y = 5 x 2y = 1 (1) 045x 1 2x 2 + 6x 3 x 4 = 10 x 2 x 5 = 0 (2)

Leia mais

Notas sobre a Fórmula de Taylor e o estudo de extremos

Notas sobre a Fórmula de Taylor e o estudo de extremos Notas sobre a Fórmula de Taylor e o estudo de etremos O Teorema de Taylor estabelece que sob certas condições) uma função pode ser aproimada na proimidade de algum ponto dado) por um polinómio, de modo

Leia mais

Eventos independentes

Eventos independentes Eventos independentes Adaptado do artigo de Flávio Wagner Rodrigues Neste artigo são discutidos alguns aspectos ligados à noção de independência de dois eventos na Teoria das Probabilidades. Os objetivos

Leia mais

Universidade de São Paulo Departamento de Geografia FLG 0253 - Climatologia I. Pressão Atmosférica

Universidade de São Paulo Departamento de Geografia FLG 0253 - Climatologia I. Pressão Atmosférica Universidade de São Paulo Departamento de Geografia FLG 0253 - Climatologia I Pressão Atmosférica Prof. Dr. Emerson Galvani Laboratório de Climatologia e Biogeografia LCB Questão motivadora: Observamos

Leia mais

CAPÍTULO 2. Grafos e Redes

CAPÍTULO 2. Grafos e Redes CAPÍTULO 2 1. Introdução Um grafo é uma representação visual de um determinado conjunto de dados e da ligação existente entre alguns dos elementos desse conjunto. Desta forma, em muitos dos problemas que

Leia mais

A otimização é o processo de

A otimização é o processo de A otimização é o processo de encontrar a melhor solução (ou solução ótima) para um problema. Eiste um conjunto particular de problemas nos quais é decisivo a aplicação de um procedimento de otimização.

Leia mais

Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M.

Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M. Módulo de Geometria Anaĺıtica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano a série EM Geometria Analítica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano 1 Exercícios

Leia mais

Aula 12 O SISTEMA UTM, A CARTA INTERNACIONAL AO MILIONÉSIMO E O DESDOBRAMENTO DAS FOLHAS TOPOGRÁFICAS

Aula 12 O SISTEMA UTM, A CARTA INTERNACIONAL AO MILIONÉSIMO E O DESDOBRAMENTO DAS FOLHAS TOPOGRÁFICAS Aula 12 O SISTEMA UTM, A CARTA INTERNACIONAL AO MILIONÉSIMO E O DESDOBRAMENTO DAS FOLHAS TOPOGRÁFICAS META Apresentar o sistema UTM como forma de localização dos elementos terrestres e a composição das

Leia mais

29/Abril/2015 Aula 17

29/Abril/2015 Aula 17 4/Abril/015 Aula 16 Princípio de Incerteza de Heisenberg. Probabilidade de encontrar uma partícula numa certa região. Posição média de uma partícula. Partícula numa caixa de potencial: funções de onda

Leia mais

Como representar uma lente convergente e uma lente divergente.

Como representar uma lente convergente e uma lente divergente. Lentes Esféricas Lente é todo meio transparente limitado por duas superfícies curvas ou uma curva e uma plana. São encontradas em lupas, microscópios, telescópios, máquinas fotográficas, projetores, filmadoras,

Leia mais

Capítulo 3 A Mecânica Clássica

Capítulo 3 A Mecânica Clássica Capítulo 3 A Mecânica Clássica AMecânica Clássica é formalmente descrita pelo físico, matemático e filósofo Isaac Newton no século XVII. Segundo ele, todos os eventos no universo são resultados de forças.

Leia mais