DERROTAS 33.1 INTRODUÇÃO. REVISÃO DE CONCEITOS

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "DERROTAS 33.1 INTRODUÇÃO. REVISÃO DE CONCEITOS"

Transcrição

1 33 DEOTAS 33.1 INTODUÇÃO. EVISÃO DE ONEITOS Um navio ou embarcação navega sempre por rumos. O rumo ou loxodromia, conforme visto no apítulo 1 (Volume I), é a linha que, na Terra, corta todos os meridianos segundo um ângulo constante. Na superfície da Terra, a loxodromia, curva que forma o mesmo ângulo com todos os meridianos, apresenta-se como uma espiral que tende para o ólo (figura 33.1). Nas figuras 33.1(a) e (b) está traçado o arco de loxodromia que une os pontos 1 e 2. Esta linha corta todos os meridianos segundo ângulos iguais. Assim, os ângulos 1A, AB, B e 2 são todos iguais e qualquer um deles pode ser tomado como o rumo entre os pontos 1 e 2. A loxodromia na Esfera Terrestre tem a forma de uma espiral que tende para o ólo, como mostrado na figura 33.1(c). A figura 33.2 mostra que, partindo das proximidades do Equador no rumo 060º, o navegante percorrerá a curva loxodrômica mostrada, formando com todos os meridianos o mesmo ângulo (igual ao rumo 060º) e convergindo em espiral para o ólo. Na rojeção de Mercator, entretanto, a linha de rumo ou loxodromia entre dois pontos é representada, como vimos no apítulo 2 (Volume I), por uma reta, formando com as transformadas de todos os meridianos um ângulo constante e igual ao rumo entre os dois pontos. Esta é a maior vantagem da rojeção de Mercator para uso em artografia Náutica. Na figura 33.3, por exemplo, o rumo, ou arco de loxodromia, entre os pontos A e 1157

2 B é traçado, em uma arta de Mercator, como uma linha reta unindo os dois pontos, cortando todos os meridianos segundo o mesmo ângulo, igual ao valor do rumo, que pode ser medido diretamente na carta. Figura 33.1 Linha de umo ou Loxodromia na Esfera Terrestre ' (a) (c) (b) Figura 33.2 Loxodromia (umo) de 060º na Superfície da Terra 60º 60º 60º 60º 60º 60º 60º 1158

3 Figura 33.3 Loxodromia (Linha de umo) na arta de Mercator 50ºN 68ºW 67ºW 66ºW 65ºW 64ºW 63ºW 62ºW 61ºW 60ºW 59ºW 58ºW 57ºW 56ºW 50ºN 49ºN 49ºN 48ºN 48ºN 47ºN 47ºN 46ºN 46ºN 45ºN 45ºN 44ºN 44ºN 68ºW 67ºW 66ºW 65ºW 64ºW 63ºW 62ºW 61ºW 60ºW 59ºW 58ºW 57ºW 56ºW ontudo, a menor distância entre dois pontos na superfície da Esfera Terrestre é o arco de círculo máximo que passa por estes dois pontos. Tal linha é denominada ortodromia. Na figura 33.4 está mostrada a ortodromia (arco de círculo máximo) entre os pontos A e B na superfície da Terra. Esta linha representa a menor distância entre os referidos pontos e não corta todos os meridianos sob o mesmo ângulo. Figura 33.4 Ortodromia (Arco de írculo Máximo) na Esfera Terrestre n Dl OTODOMIA B jb EQUADO A ja la lb ME. GEENWIH s 1159

4 A figura 33.5 apresenta a ortodromia e a loxodromia traçadas na Esfera Terrestre entre os pontos 1 e 2. A ortodromia (círculo máximo) representa a menor distância entre os referidos pontos, mas faz com os sucessivos meridianos ângulos diferentes (A ^ ¹ B ^ ¹ ^ ¹ D), ^ enquanto que a loxodromia, embora não seja a menor distância entre os pontos, corta todos os meridianos segundo um mesmo ângulo, igual ao rumo entre os pontos 1 e 2. Além disso, na rojeção de Mercator, utilizada na maioria das artas Náuticas, a ortodromia é representada por uma linha curva (figura 33.6). Figura 33.5 Loxodromia e Ortodromia (írculo Máximo) na Esfera Terrestre n A B IULO MÁXIMO D E' LOXODOMIA E s Figura 33.6 Ortodromia na arta de Mercator 50ºN 68ºW 67ºW 66ºW 65ºW 64ºW 63ºW 62ºW 61ºW 60ºW 59ºW 58ºW 57ºW 56ºW 50ºN 49ºN B 49ºN 48ºN 48ºN 47ºN 47ºN 46ºN 46ºN 45ºN 45ºN 44ºN A 44ºN 68ºW 67ºW 66ºW 65ºW 64ºW 63ºW 62ºW 61ºW 60ºW 59ºW 58ºW 57ºW 56ºW 1160

5 Desta forma, para manter-se sobre a ortodromia entre dois pontos, o navegante deveria variar o rumo constantemente, para navegar sobre o arco de círculo máximo entre os referidos pontos. omo não se pode mudar o rumo a cada instante, navega-se sempre em arcos de loxodromia, ou linha de rumo. ara pequenas distâncias, a loxodromia e a ortodromia praticamente se confundem. Assim, para uma pernada de 750 milhas na Latitude média de 40º, por exemplo, a diferença entre a ortodromia e a loxodromia é de apenas 1,5'. Entretanto, para grandes travessias, principalmente em Latitudes elevadas, a diferença entre a derrota ortodrômica e a derrota loxodrômica pode ser significativa. A distância ortodrômica de Valparaíso, hile (Latitude 33º 02,0' S, Longitude 071º 40,0' W) para Sydney, Austrália (Latitude 33º 53,0' S, Longitude 151º 10,0' E) é de 6.115,0 milhas, enquanto que a distância loxodrômica é 6.899,6 milhas, o que corresponde a uma diferença de 784,6 milhas. or isso, para grandes travessias deverá ser considerado o uso de derrota ortodrômica (decomposta em arcos de loxodromia) ou de uma derrota mista (derrota composta), como veremos adiante, neste mesmo capítulo DEOTA LOXODÔMIA A loxodromia, linha de rumo, ou simplesmente rumo entre dois pontos, é a linha que une estes dois pontos cortando todos os meridianos segundo um mesmo ângulo. ara navegar na loxodromia entre os dois pontos bastará que o navio governe em uma direção constante, tal que sua proa forme com os meridianos um ângulo igual ao rumo (contado a partir do Norte, no sentido horário). Figura 33.7 ortodromia loxodromia F paralelo equador ' T meridiano 90º 90º Quando o rumo é 090º ou 270º, a loxodromia é um arco de paralelo ou um arco do Equador (que é um círculo máximo). Quando o rumo é 000º ou 180º, a loxodromia coincide com um meridiano, que, também, é um círculo máximo (figura 33.7). Entre dois pontos na superfície da Terra há duas loxodromias; considera-se, entretanto, apenas a menor, que corresponde também ao menor caminho em Longitude. Assim, de ecife a Lisboa pode-se fazer passar duas loxodromias, uma para Oeste, no rumo aproximado 279º, e outra para Leste, no rumo 027º, mas se utilizará sempre a linha de rumo 027º, por ser a menor das duas. Os problemas de navegação loxodrômica podem se apresentar segundo duas formas: a. onhecem-se as coordenadas geográficas do ponto de partida e do destino e deseja-se obter o rumo da derrota loxodrômica e a distância a ser navegada; ou b. conhecem-se as coordenadas do ponto de partida, o rumo e a distância a ser navegada e deseja-se obter as coordenadas do ponto de chegada. 1161

6 Ambos os casos estão ilustrados na figura No primeiro, conhecem-se as coordenadas dos pontos A e B e deseja-se obter o umo e a Distância entre eles. No segundo, são conhecidas as coordenadas do ponto de partida A (j A, l A ), o rumo e a distância a ser navegada e deseja-se determinar as coordenadas do ponto de chegada B (j B, l B ). Figura 33.8 O roblema da Navegação Loxodrômica B j B G N A DISTÂNIA ap j B j A MEIDIANO DE GEENWIH EQUADO j A Dl l A l A l B l B ara solução de quaisquer das duas formas de problemas, é necessário empregar os conceitos de apartamento (ap), Latitude intermediária (ji) e Latitude média (jm) entre dois pontos. ara determinar o rumo e a distância de uma loxodromia, é preciso conhecer a distância ao longo de um paralelo entre os dois pontos dados, pois as fórmulas da derrota loxodrômica são deduzidas considerando um grande número de triângulos retângulos, cada um dos quais tem um lado situado sobre um paralelo de Latitude (figura 33.9). Figura 33.9 T f a b F A B ' 1162

7 Na figura (a), FT é um arco de paralelo, cujo comprimento deseja-se determinar. ortanto, FT é a distância ao longo do paralelo, entre os meridianos que passam por F e por T. AB é a distância ao longo do Equador entre os mesmos meridianos, ou seja, AB é a diferença de Longitude (Dl) entre os pontos F e T. Quanto mais próximo do pólo estiver o paralelo, isto é, quanto mais alta for a Latitude, mais curto torna-se o arco FT, porém a diferença de Longitude entre os dois meridianos que limitam o arco de paralelo não se altera. Assim, FT deve guardar alguma relação com AB, dependendo da Latitude. Figura Diatância ao Longo de um aralelo D D F j F T j A A B ' ' (a) (b) ara determinar esta relação, considerem-se as seções DFT e AB, que são paralelas e eqüiangulares. FT DF Então: = AB A Mas no triângulo DF, na figura 33.10(b): DF = F. cos (Lat) DF = A. cos (Lat) orque F = A, sendo ambos um raio da Terra (). Então: FT AB = A. os (Lat) A Ou seja: FT = AB. cos (Lat) FT = Dl. cos (Lat) ortanto, a distância ao longo de um paralelo, em milhas náuticas, é igual à diferença de Longitude, expressa em minutos de arco, multiplicada pelo cosseno da Latitude. 1163

8 Suponhamos, por exemplo, que a Latitude é de 45º S e que as Longitudes de F e de T são, respectivamente, 015º W e 060º W. Então: Dl = 045º = 2.700'; cos j = 0, Assim: FT = 2.700' x 0,707 = 1.909,2 milhas Se a Latitude fosse 60º S, teríamos: FT = 2.700'. cos 60º = 2.700'. 0,5 = milhas ou seja, na Latitude de 60º, o comprimento do arco de paralelo, em milhas náuticas, é metade da diferença de Longitude correspondente, expressa em minutos de arco. Se os pontos considerados estiverem sobre o Equador (j = 0º), o comprimento do arco, em milhas náuticas, é igual à diferença de Longitude correspondente, expressa em minutos de arco; no pólo (j = 90º), o comprimento será nulo. A distância ao longo de um paralelo é um caso particular do que se denomina apartamento (ap). Apartamento (ap) é a distância percorrida em uma direção Leste Oeste (E W) quando se navega de um ponto a outro ao longo de uma linha de rumo, ou loxodromia. Suponhamos que um navegante se desloca de F para T na figura A distância percorrida na direção E W será menor que FT'(distância ao longo do paralelo de F), porque os dois meridianos FF' e T'T convergem para o Norte de FT'. ela mesma razão, a distância percorrida na direção E W será maior que F'T. Figura T F' N ap M W T' F E ' Assim, a distância percorrida na direção E W quando o navegante desloca-se de F para T será igual à distância ao longo de um determinado paralelo MN, situado entre os paralelos de F e de T. 1164

9 A Latitude deste paralelo MN é denominada Latitude intermediária ( middle latitude ) entre F e T, sendo abreviadamente designada ji. Então, pela fórmula demonstrada para cálculo da distância ao longo de um paralelo, tem-se: ap = Dl. cos ji or trigonometria esférica, demonstra-se que: sec ji = Dl Entretanto, exceto quando a diferença de Latitude for muito grande, ou quando as Latitudes envolvidas forem, elas mesmas, muito altas, a Latitude intermediária (ji) pode ser considerada, sem erro apreciável, como a média aritmética entre as duas Latitudes, ou seja, como a Latitude média ( mean latitude ) entre os pontos, abreviadamente designada jm. Então, a fórmula precisa, ap = Dl. cos ji, é substituída pela fórmula aproximada, usada na prática da navegação: ap = Dl. cos jm ou: Dl = ap. sec jm Em geral, o uso da Latitude média (jm), em vez da Latitude intermediária (ji) é aceitável até distâncias da ordem de 600 milhas, ou quando a Latitude média não exceder 55º e a diferença de Latitudes for inferior a 15º. onhecidos os conceitos de apartamento (ap) e Latitude média (jm), podem-se resolver quaisquer dos dois tipos de problemas de derrotas loxodrômicas. omo vimos, para demonstração das fórmulas da navegação loxodrômica, o arco de loxodromia é dividido em inúmeros pequenos triângulos retângulos, cada um dos quais tem um lado situado sobre um paralelo de Latitude (ver a figura 33.9). Em cada um destes triângulos (figura 33.12): Figura n D ap D dist = D dist. cos e Dap = D dist. sen ou dj = d dist. cos e d ap = d dist. sen s 1165

10 Sendo a navegação loxodrômica, o rumo entre e será constante. Então, integrando dj e d ap, teremos: dj = d dist. cos ; d ap = d dist. sen ; ou: = dist. cos e: ap = dist. sen Dividindo-se a fórmula de baixo pela de cima, obtém-se: tg = ap ou: = arc tg ap Além disso, da figura conclui-se que: 2 2 dist + ap = Estas são as fórmulas que permitem resolver os dois casos que podem ocorrer na navegação loxodrômica, ilustrados nas figuras e Tais fórmulas são adequadas para solucionar problemas de derrotas loxodrômicas até cerca de 600 milhas de extensão, pois nada mais são do que as equações que relacionam os elementos de um triângulo retângulo plano, cuja hipotenusa é a distância navegada, o cateto adjacente é a diferença da Latitude (), o ângulo agudo de interesse é o umo (quadrantal) e o cateto oposto é o apartamento (ap). As fórmulas mostradas, portanto, consideram a Terra como uma superfície plana. Os problemas de derrotas loxodrômicas podem ser resolvidos analiticamente ou com o auxílio das Tábuas do onto, incluídas na publicação DN 6-1, Tábuas para Navegação Estimada, editada pela Diretoria de Hidrografia e Navegação, e reproduzidas no final do volume III deste Manual. 1166

11 Figura Derrota Loxodrômica (1º caso) N B ap B DIST jb A DIST ja A ap = DIST. sen EQUADO Dl = DIST. cos Dl = ap sec jm 1. ONHEIDOS: ja, la; jb, lb 2. A DETEMINA: Distância (AB); umo (AB) 3. FÓMULAS: a) AATAMENTO: ap = Dl cos jm b) UMO: = arc tg ap c) DISTÂNIA: Dist. = ap Figura Derrota Loxodrômica (2º caso) N B ap B A DIST jb DIST ja A ap = DIST. sen EQUADO Dl = DIST. cos Dl = ap sec jm 1. ONHEIDOS: ja, la; umo e Distância Navegada 2. A DETEMINA: jb, lb 3. FÓMULAS: a) = Dist. cos ; jb = ja + b) ap = Dist. sen c) Dl = ap sec jm ; lb = la + Dl 1167

12 A Tábua do onto propriamente dita (Tábua III da publicação DN 6-1) fornece a diferença de Latitude (d Lat na Tábua) e o apartamento (ap), tendo como argumentos de entrada o rumo (ângulo) e a distância navegada, resolvendo as seguintes fórmulas: = dist. cos ; ap = dist. sen Assim, conhecidas as coordenadas do ponto de partida, o rumo seguido e a distância navegada, a Tábua do onto informará a diferença de Latitude e o apartamento. Transforma-se, então, o apartamento em diferença de Longitude, obtendo-se, desta forma, as coordenadas geográficas do ponto de destino. Quando os rumos são menores que 045º, entra-se na tábua por cima; quando maiores, por baixo; a redução ao primeiro quadrante é facilitada pelos valores incluídos dentro dos parênteses. A coluna das distâncias é sempre a mesma; porém, a das diferenças de Latitude e dos apartamentos são trocadas quando o rumo excede 045º, conforme indicado na tábua. Assim, para um rumo compreendido entre 000º e 045º, tira-se a diferença de Latitude e o apartamento por cima, nas respectivas colunas; quando o rumo está compreendido entre 045º e 090º, tira-se a diferença de Latitude e o apartamento por baixo, nas respectivas colunas. O rumo de entrada na Tábua do onto é, na realidade, um umo Quadrantal, definido como o menor ângulo entre o meridiano e a proa do navio, contado a partir do Norte, ou a partir do Sul, para Leste ou para Oeste, conforme o caso. or exemplo, se o umo Verdadeiro do navio é 100º, o umo Quadrantal será 80º (SE). Este será o valor de entrada na Tábua do onto. Ademais, o umo Verdadeiro definirá, também, o sentido da diferença de Latitude e do apartamento fornecidos pela Tábua do onto. Assim, um navio governando em um rumo entre 000º e 090º está se movendo para o Norte e para Leste. Então, será Norte (N) e ap será Leste (E). Quando se navega em um rumo entre 090º e 180º, movese para o Sul e para Leste. Desta forma, será S e ap permanece E. Do mesmo modo, para rumos entre 180º e 270º, será S e ap será W. Entre 270º e 000º, será N e ap será W. Estes fatos mostram que, antes de usar a Tábua do onto, o rumo deve ser convenientemente expresso em termos quadrantais, em relação aos pontos cardeais apropriados. EXEMLOS: 1. Sendo o umo Verdadeiro 026º e a distância navegada 30 milhas, determinar a diferença de Latitude e o apartamento. a. = 026º Þ umo Quadrantal: qd = 26º NE; b. omo qd = 26º é menor que 45º, entra-se na Tábua do onto por cima, obtendo (ver a figura 33.15): d Lat (diferença de Latitude): = 27,0' N apartamento: ap = 13,2' E 1168

13 Figura TÁBUA III TÁBUA DO ONTO dist dlat ap ap = DIST. sen 30 27,0 13,2 = DIST. cos 40 36,0 17,5 1169

14 2. Sendo o umo Verdadeiro 296º e a distância navegada 40 milhas, determinar a diferença de Latitude e o apartamento. a. = 296º Þ qd = 64º NW; b. omo qd = 64º é maior que 45º, entra-se na Tábua do onto por baixo, obtendo (ver a figura 33.15): d Lat (diferença de Latitude): = 17,5' N apartamento: ap = 36,0' W A Tábua IV da publicação DN 6-1 onversão de Apartamento em Diferença de Longitude resolve a fórmula: Dl = ap. sec jm Entrando-se com a Latitude média entre dois pontos e o apartamento, obtém-se a diferença de Longitude correspondente. EXEMLOS: 1. Sendo a Latitude média 26º S e o apartamento 48,0' E, determinar a diferença de Longitude. a. Entrando na Tábua IV com jm = 26º como argumento horizontal, na linha superior, e ap = 48' como argumento vertical, na coluna da esquerda, obtém-se: Dl = 53,4' (ver a figura 33.16); b. omo o apartamento é E, tem-se: Dl = 53,4' E 2. Sendo a Latitude média 25º N e o apartamento 300,0' W, determinar a diferença de Longitude. a. 300' = 5º = 5 x 60' b. jm = 25º ap = 60' c. Então: } Dl = 66,2' (ver a figura 33.16); jm = 25º Dl = 5 x 66,2' = 331,0' ap = 300' Dl = 5º 31,0' d. omo o apartamento é W, tem-se: Dl = 5º 31,0' W 1170

15 Figura TÁBUA IV ONVESÃO DE AATAMENTO EM DIFEENÇA DE LONGITUDE 1171

16 NOTA: A conversão de apartamento em diferença de Longitude, ou vice-versa, também pode ser feita pela Tábua do onto (Tábua III da publicação DN6-1). Ou seja, a Tábua do onto também pode ser usada para resolver as equações: Dl = ap. sec jm ou ap = Dl. cos jm ara converter Dl em apartamento, use a Latitude média (jm) como se fosse o umo e a diferença de Longitude (Dl) como se fosse a distância navegada (dist), lendo o apartamento (ap) na coluna correspondente à diferença de Latitude (). EXEMLOS: 1. Sendo jm = 26º S e Dl = 53,4 E, determinar o apartamento (ap) pela Tábua do onto. a. Entra-se na Tábua do onto com jm = 26º como se fosse umo e Dl = 53,4' como se fosse dist, obtendo, na coluna de diferença de Latitude (d Lat), por interpolação, ap = 48,0' (ver a figura 33.15); b. omo Dl é E, tem-se: ap = 48,0' E 2. Sendo a Latitude média 25º N e a diferença de Longitude 5º 31,0' W, determinar o apartamento pela Tábua do onto. a. Entra-se na Tábua do onto (ver a figura 33.15) com jm = 25º como se fosse umo e Dl = 331,0' como se fosse dist, obtendo, na coluna de diferença de Latitude (d Lat), por interpolação, ap = 300,0'. b. omo Dl é W, tem-se: ap = 300,0' W ara converter apartamento em Dl pela Tábua do onto, use jm como se fosse umo e procure na coluna de diferença de Latitude (d Lat) o valor conhecido do apartamento, obtendo, na coluna de distância (dist) a diferença de Longitude (Dl) correspondente. EXEMLOS: 1. Sendo jm = 25º S e ap = 58,0' W, determinar Dl pela Tábua do onto: a. Entra-se na Tábua do onto (ver a figura 33.15) com jm = 25º como se fosse umo e ap = 58,0' como se fosse diferença de Latitude (d Lat), obtendo, na coluna de distância (dist), o valor da diferença de Longitude: Dl = 64,0'= 1º 04,0'. 1172

17 b. omo o apartamento é W, tem-se: Dl = 1º 04,0' W 2. Sendo jm = 26º N e ap = 719,0' E, determinar Dl pela Tábua do onto: a. Entra-se na Tábua do onto com jm = 26º como se fosse umo e ap = 719,0' como se fosse diferença de Latitude (d Lat). Obtém-se, na coluna de distância (dist): Dl = 800,0' (ver a figura 33.15). b. Dl = 800,0' E = 13º 20,0' E É de boa prática utilizar a Tábua do onto para conversão do apartamento em diferença de Longitude, ou vice-versa, em vez de usar a Tábua IV, pois a facilidade e rapidez de emprego dessa importante Tábua só pode ser adquirida pelo seu uso constante EXEÍIOS SOBE DEOTA LOXODÔMIA 1. Um navio partiu do ponto de coordenadas Latitude 10º 17,0' S, Longitude 035º 13,0' W e navegou no umo Verdadeiro 145º, por uma distância de 98,0 milhas náuticas. Determinar as coordenadas do ponto de chegada. a. Fórmulas a serem usadas: = dist. cos ; jb = ja + ap = dist. sen Dl = ap. sec jm ; lb = la + Dl b. Neste caso, pelas fórmulas ou pela Tábua do onto (entrando com o qd = 35º SE): = 80,3' S = 01º 20,3' S ja = = jb = 10º 17,0' S 01º 20,3' S 11º 37,3' S ap = 56,2' E jm= 10º 57,15' S Dl = 57,2' E la = 035º 13,0' W Dl = 57,2' E lb = 034º 15,8' W 1173

18 2. Um navio deve partir do ponto de coordenadas Latitude 23º 10,0' S, Longitude 042º 01,0' W, cerca de 10 milhas ao Sul do abo Frio, demandando um ponto de coordenadas Latitude 20º 32,5' S, Longitude 029º 46,0' W, nas proximidades da Ilha da Trindade. Determinar o umo Verdadeiro e a distância a ser navegada na derrota loxodrômica entre os dois pontos. a. Fórmulas a serem usadas: ap = Dl. cos jm = arc tg ap 2 2 dist + ap = (ou dist =. sec ) b. Neste caso: ja = 23º 10,0' S jb = 20º 32,5' S = 02º 37,5' N = 157,5' N la = 042º 01,0' W lb = 029º 46,0' W Dl = 12º 15,0' E = 735,0' E jm = ja + jb = 21º 51,3' S 2 c. ap = 682,2' E 682,2 = arc tg 157,5 = 77,0º = 077º d = 157, ,2 2 = 700,1 milhas NOTA: ara resolver este problema pela Tábua do onto, entra-se com a Latitude média (jm = 21º 51,3'), aproximada ao grau inteiro, como se fosse umo e com a diferença de Longitude (Dl = 735,0') como se fosse distância (dist), obtendo, na coluna d Lat, por interpolação, o valor do apartamento ap = 681,4' E. Entra-se novamente na Tábua do onto, com o apartamento (ap = 681,4') e a diferença de Latitude (d Lat = 157,5'), e corre-se toda a tábua, até encontrar os 2 valores em linha, obtendo o valor da distância e do umo Quadrantal. Neste caso, como ap > d Lat, entra-se na tábua por baixo, obtendo-se: dist = 700,0 milhas ; qd = 077º NE, ou seja, = 077º. Verificase que estes valores são praticamente idênticos aos obtidos pelo cálculo. 1174

19 3. Um navio parte do ponto de coordenadas Latitude 30º 10,0' S, Longitude 000º 16,0' E e navega no rumo 240º, por uma distância de 106,0 milhas. Determinar as coordenadas do ponto de chegada. a. Fórmulas a serem usadas: = dist. cos ; jb = ja + ap = dist. sen Dl = ap. sec jm ; lb = la + Dl b. Neste caso: = ap = 53,0' S 91,8' W jm = 30º 36,5' S Dl = 106,7' W = 01º 46,7' W c. Então: ja = 30º 10,0' S la = 000º 16,0' E = 53,0' S Dl = 01º 46,7' W jb = 31º 03,0' S lb = 001º 30,7' W 4. Um navio deve partir do ponto Latitude 23º 05,0' S, Longitude 043º 10,0' W, nas proximidades da Baía de Guanabara, J, demandando um ponto de coordenadas geográficas Latitude 28º 13,0' S, Longitude 048º 38,0' W, na entrada do orto de Imbituba, S. Determinar o umo Verdadeiro e a distância a ser navegada na derrota loxodrômica entre os dois pontos. a. Fórmulas a serem usadas: ap = Dl. cos jm = arc tg ap 2 2 dist + ap = (ou dist =. sec ) b. Neste caso: la = 043º 10,0' W lb = 048º 38,0' W Dl = 05º 28,0' W = 328,0' W 1175

20 ja jb = 23º 05,0' S = 28º 13,0' S = 05º 08,0' S = 308,0' S jm = 25º 39,0' S ap = 295,7' W = 43,8º SW = 224º Dist = 427,0' 33.4 DEOTA ESTIMADA OMOSTA A derrota estimada composta é aquela em que o navio navega diversos rumos, ou seja, diversos arcos de loxodromia. Fica formada uma linha poligonal, conforme mostrado na figura Figura Derrota Estimada omposta 21,9' 69,3' 120º 80' 40' 56,9' 021º 61' 26,4' 140º 41' ATIDA 230º 48' 30,9' 31,4' 36,8' HEGADA 1176

21 onhecendo-se os diversos rumos e distâncias navegadas, além das coordenadas geográficas do ponto de partida, procede-se da seguinte maneira: a. onstrói-se um quadro como o da figura 33.18; Figura Quadro para esolução da Derrota Estimada omposta umo d Ap N S E W = ap = b. com a Tábua do onto (ou pelo cálculo), para cada rumo e distância navegados, preenchem-se os valores das diferenças de Latitude e do apartamento, com a correspondente designação: se N ou S ; se E ou W; c. somam-se as colunas e determinam-se os valores finais de e ap; d. aplica-se o encontrado à Latitude de partida, encontrando-se a Latitude do ponto de chegada. alcula-se, então, a Latitude média; e. com a Latitude média e o valor final do apartamento, determina-se, pela Tábua do onto, ou pelo cálculo, a diferença de Longitude; e f. aplica-se a diferença de Longitude à Longitude de partida, determinando-se, assim, a Longitude do ponto de chegada. EXEMLO: om os rumos e distâncias navegados mostrados na figura e sabendo-se que as coordenadas do ponto de partida são Latitude 29º 37,3' S, Longitude 044º 13,0' W, determinar as coordenadas do ponto de chegada. a. Os rumos e distâncias navegados são, respectivamente: ENADA UMO DISTÂNIA NAVEGADA 1 021º 61,0' 2 120º 80,0' 3 140º 41,0' 4 230º 48,0' 1177

Conhecendo-se os diversos rumos e distâncias navegadas, além das coordenadas geográficas do ponto de partida, procede-se da seguinte maneira:

Conhecendo-se os diversos rumos e distâncias navegadas, além das coordenadas geográficas do ponto de partida, procede-se da seguinte maneira: Conhecendo-se os diversos rumos e distâncias navegadas, além das coordenadas geográficas do ponto de partida, procede-se da seguinte maneira: a. Constrói-se um quadro como o da figura 33.18; Figura 33.18

Leia mais

SISTEMAS DE 18 COORDENADAS UTILIZADOS EM ASTRONOMIA NÁUTICA E NAVEGAÇÃO ASTRONÔMICA

SISTEMAS DE 18 COORDENADAS UTILIZADOS EM ASTRONOMIA NÁUTICA E NAVEGAÇÃO ASTRONÔMICA SISTEMAS DE 18 COORDENADAS UTILIZADOS EM ASTRONOMIA NÁUTICA E NAVEGAÇÃO ASTRONÔMICA 18.1 CONCEITOS FUNDAMENTAIS Conforme visto no capítulo anterior, para determinar a posição de qualquer ponto na superfície

Leia mais

Retas e Planos. Equação Paramétrica da Reta no Espaço

Retas e Planos. Equação Paramétrica da Reta no Espaço Retas e lanos Equações de Retas Equação aramétrica da Reta no Espaço Considere o espaço ambiente como o espaço tridimensional Um vetor v = (a, b, c) determina uma direção no espaço Dado um ponto 0 = (x

Leia mais

17º Congresso de Iniciação Científica O CONHECIMENTO GEOMÉTRICO EM PORTUGAL NO SÉCULO XVI E SUAS APLICAÇÕES NA CARTOGRAFIA MARÍTIMA

17º Congresso de Iniciação Científica O CONHECIMENTO GEOMÉTRICO EM PORTUGAL NO SÉCULO XVI E SUAS APLICAÇÕES NA CARTOGRAFIA MARÍTIMA 17º Congresso de Iniciação Científica O CONHECIMENTO GEOMÉTRICO EM PORTUGAL NO SÉCULO XVI E SUAS APLICAÇÕES NA CARTOGRAFIA MARÍTIMA Autor(es) FLÁVIA DE ALMEIDA LUCATTI Orientador(es) JOANA DARC DA SILVA

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

APOSTILA TECNOLOGIA MECANICA

APOSTILA TECNOLOGIA MECANICA FACULDADE DE TECNOLOGIA DE POMPEIA CURSO TECNOLOGIA EM MECANIZAÇÃO EM AGRICULTURA DE PRECISÃO APOSTILA TECNOLOGIA MECANICA Autor: Carlos Safreire Daniel Ramos Leandro Ferneta Lorival Panuto Patrícia de

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ CENTRO DE GEOCIÊNCIAS DEPARTAMENTO DE GEOLOGIA DISCIPLINA: GEOLOGIA ESTRUTURAL GEOLOGIA ESTRUTURAL - PRÁTICA

UNIVERSIDADE FEDERAL DO PARÁ CENTRO DE GEOCIÊNCIAS DEPARTAMENTO DE GEOLOGIA DISCIPLINA: GEOLOGIA ESTRUTURAL GEOLOGIA ESTRUTURAL - PRÁTICA 1 UNIVERSIDADE FEDERAL DO PARÁ CENTRO DE GEOCIÊNCIAS DEPARTAMENTO DE GEOLOGIA DISCIPLINA: GEOLOGIA ESTRUTURAL Cap. 01 - Mapas e Seções Geológicas GEOLOGIA ESTRUTURAL - PRÁTICA Antes que se comece a estudar

Leia mais

Topografia. Conceitos Básicos. Prof.: Alexandre Villaça Diniz - 2004-

Topografia. Conceitos Básicos. Prof.: Alexandre Villaça Diniz - 2004- Topografia Conceitos Básicos Prof.: Alexandre Villaça Diniz - 2004- 1 ÍNDICE ÍNDICE...1 CAPÍTULO 1 - Conceitos Básicos...2 1. Definição...2 1.1 - A Planta Topográfica...2 1.2 - A Locação da Obra...4 2.

Leia mais

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 9

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 9 RACIOCÍNIO LÓGICO AULA 9 TRIGONOMETRIA TRIÂNGULO RETÂNGULO Considere um triângulo ABC, retângulo em  ( = 90 ), onde a é a medida da hipotenusa, b e c, são as medidas dos catetos e a, β são os ângulos

Leia mais

COMBINAÇÃO DOS SISTEMAS DE COORDENADAS UTILIZADOS EM NAVEGAÇÃO ASTRONÔMICA. O TRIÂNGULO ASTRONÔMICO OU TRIÂNGULO DE POSIÇÃO

COMBINAÇÃO DOS SISTEMAS DE COORDENADAS UTILIZADOS EM NAVEGAÇÃO ASTRONÔMICA. O TRIÂNGULO ASTRONÔMICO OU TRIÂNGULO DE POSIÇÃO COMBINAÇÃO DOS SISTEMAS DE COORDENADAS UTILIZADOS EM NAVEGAÇÃO ASTRONÔMICA. O TRIÂNGULO ASTRONÔMICO OU TRIÂNGULO DE POSIÇÃO 20 20.1 PROCESSO DE OBTENÇÃO DE LINHAS DE POSIÇÃO (LDP) E DE UMA POSIÇÃO ASTRONÔMICA

Leia mais

Introdução À Astronomia e Astrofísica 2010

Introdução À Astronomia e Astrofísica 2010 CAPÍTULO 1 ESFERA CELESTE E O SISTEMA DE COORDENADAS Esfera Celeste. Sistema de Coordenadas. Coordenadas Astronómicas. Sistema Horizontal. Sistema Equatorial Celeste. Sistema Equatorial Horário. Tempo

Leia mais

NASCER E PÔR-DO-SOL E DA LUA. CREPÚSCULOS

NASCER E PÔR-DO-SOL E DA LUA. CREPÚSCULOS 24 NASCER E PÔR-DO-SOL E DA LUA. CREPÚSCULOS 24.1 IMPORTÂNCIA DO CONHECIMENTO DOS INSTANTES DO NASCER E DO PÔR-DO-SOL E DA LUA, E DA DURAÇÃO DOS CREPÚSCULOS Em Navegação Astronômica, é importante conhecer

Leia mais

PROJEÇÕES CARTOGRÁFICAS; A CARTA NÁUTICA

PROJEÇÕES CARTOGRÁFICAS; A CARTA NÁUTICA 2 PROJEÇÕES CARTOGRÁFICAS; A CARTA NÁUTICA 2.1 MAPAS E CARTAS; O PROBLEMA DA REPRESENTAÇÃO DA TERRA SOBRE UMA SUPERFÍCIE PLANA Embora a distinção seja um tanto convencional, é oportuno iniciar este Capítulo

Leia mais

EMPREGO DE LINHAS DE POSIÇÃO DE SEGURANÇA

EMPREGO DE LINHAS DE POSIÇÃO DE SEGURANÇA 7 Emprego de linhas de posição de segurança EMPREGO DE LINHAS DE POSIÇÃO DE SEGURANÇA 7.1 CONCEITO DE NAVEGAÇÃO DE SEGURANÇA O emprego de linhas de posição (LDP) como limite de segurança é comum em navegação

Leia mais

3)Seno de alguns arcos importantes

3)Seno de alguns arcos importantes Aula 4-A -Funções trigonométricas no ciclo trigonométrico ) Função seno (definição) )Gráfico da função seno )Seno de alguns arcos imortantes 4) Equações e inequações 5) Resolução de exercícios ) Função

Leia mais

MATEMÁTICA - 1 o ANO MÓDULO 42 TRIGONOMETRIA: CÍRCULOS E LINHAS TRIGONOMÉTRICAS

MATEMÁTICA - 1 o ANO MÓDULO 42 TRIGONOMETRIA: CÍRCULOS E LINHAS TRIGONOMÉTRICAS MATEMÁTICA - 1 o ANO MÓDULO 42 TRIGONOMETRIA: CÍRCULOS E LINHAS TRIGONOMÉTRICAS O R I y 90º 180º II Q I Q + 0º/360º III Q IV Q - 270º 1290º 210 360º 3 Como pode cair no enem (ENEM) As cidades de Quito

Leia mais

Aula 5 NOÇÕES BÁSICAS DE GEODÉSIA E ASTRONOMIA DE POSIÇÃO. Antônio Carlos Campos

Aula 5 NOÇÕES BÁSICAS DE GEODÉSIA E ASTRONOMIA DE POSIÇÃO. Antônio Carlos Campos Aula 5 NOÇÕES BÁSICAS DE GEODÉSIA E ASTRONOMIA DE POSIÇÃO META Mostrar as normas básicas de posicionamento e direção terrestre e apresentar formas de orientação que auxiliam na localização. OBJETIVOS Ao

Leia mais

Sistemas de Coordenadas:

Sistemas de Coordenadas: Necessários para expressar a posição de pontos sobre a superfície (elipsóide, esfera, plano). Î Para o Elipsóide, empregamos o Sistema de Coordenadas Cartesiano e Curvilíneo: PARALELOS E MERIDIANOS. Î

Leia mais

Sistemas de coordenadas e tempo. 1 Sistema de coordenadas horizontal local

Sistemas de coordenadas e tempo. 1 Sistema de coordenadas horizontal local José Laurindo Sobrinho Grupo de Astronomia da Universidade da Madeira Fevereiro 2014 Sistemas de coordenadas e tempo 1 Sistema de coordenadas horizontal local O sistema de coordenadas horizontal local

Leia mais

Aula 9 ESCALA GRÁFICA. Antônio Carlos Campos

Aula 9 ESCALA GRÁFICA. Antônio Carlos Campos Aula 9 ESCALA GRÁFICA META Apresentar as formas de medição da proporcionalidade entre o mundo real e os mapas através das escalas gráficas. OBJETIVOS Ao final desta aula, o aluno deverá: estabelecer formas

Leia mais

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL PARTE FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL.1 Funções Vetoriais de Uma Variável Real Vamos agora tratar de um caso particular de funções vetoriais F : Dom(f R n R m, que são as funções vetoriais de uma

Leia mais

Exercícios de Física Eletromagnetismo

Exercícios de Física Eletromagnetismo Exercícios de Física Eletromagnetismo 1-Considerando as propriedades dos ímãs, assinale a alternativa correta. a) Quando temos dois ímãs, podemos afirmar que seus pólos magnéticos de mesmo nome (norte

Leia mais

Exercícios de Física Eletromagnetismo

Exercícios de Física Eletromagnetismo Exercícios de Física Eletromagnetismo 1-Considerando as propriedades dos ímãs, assinale a alternativa correta. a) Quando temos dois ímãs, podemos afirmar que seus pólos magnéticos de mesmo nome (norte

Leia mais

Exercícios Eletromagnetismo

Exercícios Eletromagnetismo Exercícios Eletromagnetismo 1-Considerando as propriedades dos ímãs, assinale a alternativa correta. a) Quando temos dois ímãs, podemos afirmar que seus pólos magnéticos de mesmo nome (norte e norte, ou

Leia mais

Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5

Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5 Cálculo em Computadores - 2007 - trajectórias Trajectórias Planas Índice Trajectórias. exercícios............................................... 2 2 Velocidade, pontos regulares e singulares 2 2. exercícios...............................................

Leia mais

DETERMINAÇÃO DO DESVIO DA AGULHA PELOS AZIMUTES DOS ASTROS

DETERMINAÇÃO DO DESVIO DA AGULHA PELOS AZIMUTES DOS ASTROS 31 DETERMINAÇÃO DO DESVIO DA AGULHA PELOS AZIMUTES DOS ASTROS 31.1 INTRODUÇÃO. REVISÃO DE CONCEITOS Conforme vimos no Volume I (Capítulo 3), em navegação as direções (rumos e marcações) são determinadas

Leia mais

Aula 17 GRANDEZAS ESCALARES E VETORIAIS. META Apresentar as grandezas vetoriais e seu signifi cado

Aula 17 GRANDEZAS ESCALARES E VETORIAIS. META Apresentar as grandezas vetoriais e seu signifi cado GRANDEZAS ESCALARES E VETORIAIS META Apresentar as grandezas vetoriais e seu signifi cado OBJETIVOS Ao fi nal desta aula, o aluno deverá: Diferenciar grandezas escalares e vetoriais; compreender a notação

Leia mais

Breve Introdução à Informação Geográfica. João Carreiras Geo-DES jmbcarreiras@iict.pt

Breve Introdução à Informação Geográfica. João Carreiras Geo-DES jmbcarreiras@iict.pt Breve Introdução à Informação Geográfica João Carreiras Geo-DES jmbcarreiras@iict.pt Resumo 1 Informação Geográfica 2 Características da Informação Geográfica 3 Conceito de Escala 4 Coordenadas, Projecções

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA - UFBA

UNIVERSIDADE FEDERAL DA BAHIA - UFBA UNIVERSIDADE FEDERAL DA BAHIA - UFBA Instituto de Ciências Ambientais e Desenvolvimento Sustentável Cartografia Sistemática e Temática (IAD319) Prof. pablosantos@ufba.br 07 a Aula CARTA INTERNACIONAL DO

Leia mais

GEOMETRIA ESFÉRICA, GEOGRAFIA E FORMAÇÃO CONTINUADA DE PROFESSORES: UMA INTERCONEXÃO POSSÍVEL 1

GEOMETRIA ESFÉRICA, GEOGRAFIA E FORMAÇÃO CONTINUADA DE PROFESSORES: UMA INTERCONEXÃO POSSÍVEL 1 GEOMETRIA ESFÉRICA, GEOGRAFIA E FORMAÇÃO CONTINUADA DE PROFESSORES: UMA INTERCONEXÃO POSSÍVEL 1 Irene Pataki Pontifícia Universidade Católica de São Paulo irene.pataki@terra.com.br Pretende-se, com esse

Leia mais

Palavras-Chave: Sistema de Posicionamento Global. Sistemas de Localização Espacial. Equação de Superfícies Esféricas.

Palavras-Chave: Sistema de Posicionamento Global. Sistemas de Localização Espacial. Equação de Superfícies Esféricas. METODOS MATEMÁTICOS PARA DEFINIÇÃO DE POSICIONAMENTO Alberto Moi 1 Rodrigo Couto Moreira¹ Resumo Marina Geremia¹ O GPS é uma tecnologia cada vez mais presente em nossas vidas, sendo que são inúmeras as

Leia mais

A Escola e o Relógio de Sol Resumo

A Escola e o Relógio de Sol Resumo Universidade Federal de São Carlos Centro de Ciências Exatas e de Tecnologia Departamento de Matemática A Escola e o Relógio de Sol Resumo Autora: Raquel Duarte de Souza Orientador: Prof. Dr. José Antônio

Leia mais

A Topografia no Sistema CR - Campeiro 7.0

A Topografia no Sistema CR - Campeiro 7.0 A Topografia no Sistema CR - Campeiro 7.0 Introdução a Topografia Enio Giotto Professor Titular da UFSM Elódio Sebem Professor Associado da UFSM SUMÁRIO 1 A TOPOGRAFIA E SEU CAMPO DE ATUAÇÃO 2 DIVISÃO

Leia mais

Projeções cartográficas

Projeções cartográficas Projeções cartográficas - Não há como transformar uma superfície esférica em um mapa plano sem que ocorram distorções. - Cada projeção é adequada a um tipo de aplicação -Na impossibilidade de se desenvolver

Leia mais

NIVELAMENTO 2007/1 MATEMÁTICA BÁSICA. Núcleo Básico da Primeira Fase

NIVELAMENTO 2007/1 MATEMÁTICA BÁSICA. Núcleo Básico da Primeira Fase NIVELAMENTO 00/ MATEMÁTICA BÁSICA Núcleo Básico da Primeira Fase Instituto Superior Tupy Nivelamento de Matemática Básica ÍNDICE. Regras dos Sinais.... Operações com frações.... Adição e Subtração....

Leia mais

EXERCÍCIOS 2ª SÉRIE - LANÇAMENTOS

EXERCÍCIOS 2ª SÉRIE - LANÇAMENTOS EXERCÍCIOS ª SÉRIE - LANÇAMENTOS 1. (Unifesp 01) Em uma manhã de calmaria, um Veículo Lançador de Satélite (VLS) é lançado verticalmente do solo e, após um período de aceleração, ao atingir a altura de

Leia mais

O PROBLEMA GERAL DA NAVEGAÇÃO

O PROBLEMA GERAL DA NAVEGAÇÃO 1 O PROBLEMA GERAL DA NAVEGAÇÃO 1.1 DEFINIÇÃO; FORMAS; SEQÜÊNCIA BÁSICA DAS ATIVIDADES Entre as várias definições de navegação, uma que apresenta com precisão os principais aspectos envolvidos na questão

Leia mais

+ Do que xxx e escadas

+ Do que xxx e escadas Reforço escolar M ate mática + Do que xxx e escadas Dinâmica 6 1º Série 2º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática Ensino Médio 1ª Campo Geométrico DINÂMICA + Do que xxx e escadas Razões trigonométricas

Leia mais

1 ELEMENTOS DA CIRCUNFERÊNCIA

1 ELEMENTOS DA CIRCUNFERÊNCIA Matemática 2 Pedro Paulo GEOMETRIA PLANA II 1 ELEMENTOS DA CIRCUNFERÊNCIA Circunferência é o conjunto de pontos que está a uma mesma distância (chamaremos essa distância de raio) de um ponto fixo (chamaremos

Leia mais

- 106 - - TRANSFORMADOR MONOFÁSICO CONSIDERAÇÕES INICIAIS: NOÇÕES DE ELETROMAGNETISMO PRINCIPAIS LEIS:

- 106 - - TRANSFORMADOR MONOFÁSICO CONSIDERAÇÕES INICIAIS: NOÇÕES DE ELETROMAGNETISMO PRINCIPAIS LEIS: - 6 - CAÍTULO X - TRAFORMADOR MOOFÁICO COIDERAÇÕE IICIAI: OÇÕE DE ELETROMAGETIMO RICIAI LEI: a) LEI DE BIOT - AVART : "Uma corrente elétrica percorrendo um condutor, cria em torno deste condutor um campo

Leia mais

Coordenadas Geográficas

Coordenadas Geográficas Orientação A rosa-dos-ventos possibilita encontrar a direção de qualquer ponto da linha do horizonte. Por convenção internacional, a língua inglesa é utilizada como padrão, portanto o Leste muitas vezes

Leia mais

2. (UFRN) Analise a figura abaixo e assinale a opção que corresponde, respectivamente, às coordenadas geográficas dos pontos X e Z.

2. (UFRN) Analise a figura abaixo e assinale a opção que corresponde, respectivamente, às coordenadas geográficas dos pontos X e Z. Lista de exercícios de Coordenadas Geográficas Professor: Jair Henrique 1.Examine atentamente as sentenças a seguir e assinale o grupo das que lhe parecerem corretas. 1 - Paralelamente ao Equador ficam

Leia mais

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFBA VESTIBULAR a Fase Profa. Maria Antônia Gouveia. Questão. Considerando-se as funções f: R R e g: R R definidas por f(x) = x e g(x) = log(x² + ), é correto afirmar: () A função

Leia mais

Introdução à Topografia

Introdução à Topografia Topografia Introdução à Topografia Etimologicamente a palavra TOPOS, em grego, significa lugar e GRAPHEN descrição, assim, de uma forma bastante simples, Topografia significa descrição do lugar. O termo

Leia mais

M2 - Trigonometria nos Triângulos

M2 - Trigonometria nos Triângulos M - Trigonometria nos Triângulos (Vunesp-S) Um pequeno avião deveria partir de uma cidade rumo a uma cidade ao Norte, distante 60 quilômetros de. or um problema de orientação, o piloto seguiu erradamente

Leia mais

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS DA NATUREZA CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS DA NATUREZA CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS DA NATUREZA CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO (Aprovados em Conselho Pedagógico de 27 de outubro de 2015) AGRUPAMENTO DE CLARA DE RESENDE CÓD. 152 870 No caso específico

Leia mais

UNIDADE II Processos de medição de ângulos e distâncias.

UNIDADE II Processos de medição de ângulos e distâncias. FUNDAÇÃO EDUCACIONAL SERRA DOS ÓRGÃOS - FESO CENTRO UNIVERSITÁRIO SERRA DOS ÓRGÃOS UNIFESO CENTRO DE CIÊNCIAS E TECNOLOGIA CCT CURSO DE ENGENHARIA AMBIENTAL Profª Drª Verônica Rocha Bonfim Engª Florestal

Leia mais

Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta

Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta Classificação dos movimentos Introdução Velocidade Média

Leia mais

Aula 12 O SISTEMA UTM, A CARTA INTERNACIONAL AO MILIONÉSIMO E O DESDOBRAMENTO DAS FOLHAS TOPOGRÁFICAS

Aula 12 O SISTEMA UTM, A CARTA INTERNACIONAL AO MILIONÉSIMO E O DESDOBRAMENTO DAS FOLHAS TOPOGRÁFICAS Aula 12 O SISTEMA UTM, A CARTA INTERNACIONAL AO MILIONÉSIMO E O DESDOBRAMENTO DAS FOLHAS TOPOGRÁFICAS META Apresentar o sistema UTM como forma de localização dos elementos terrestres e a composição das

Leia mais

Coordenadas Geográficas e Projeções Cartográficas. Prof. Bruno

Coordenadas Geográficas e Projeções Cartográficas. Prof. Bruno Coordenadas Geográficas e Projeções Cartográficas Prof. Bruno Paralelos Linhas Imaginárias que cortam o mundo no sentido horizontal Latitude É a medida do ângulo dos Paralelos. Varia de 0 a 90 graus, de

Leia mais

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980 Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva nos pontos onde e Vamos determinar a reta tangente à curva nos pontos de abscissas

Leia mais

Aula 2 LOCALIZAÇÃO, ORIENTAÇÃO E REPRESENTAÇÃO CARTOGRÁFICA

Aula 2 LOCALIZAÇÃO, ORIENTAÇÃO E REPRESENTAÇÃO CARTOGRÁFICA Aula 2 LOCALIZAÇÃO, ORIENTAÇÃO E REPRESENTAÇÃO CARTOGRÁFICA Orientação pelo Sol Leste = Nascente / Oeste = Poente Orientação por instrumentos (bússola) Consiste em uma agulha imantada que gira sobre um

Leia mais

Relações Métricas nos. Dimas Crescencio. Triângulos

Relações Métricas nos. Dimas Crescencio. Triângulos Relações Métricas nos Dimas Crescencio Triângulos Trigonometria A palavra trigonometria é de origem grega, onde: Trigonos = Triângulo Metrein = Mensuração - Relação entre ângulos e distâncias; - Origem

Leia mais

3) Uma mola de constante elástica k = 400 N/m é comprimida de 5 cm. Determinar a sua energia potencial elástica.

3) Uma mola de constante elástica k = 400 N/m é comprimida de 5 cm. Determinar a sua energia potencial elástica. Lista para a Terceira U.L. Trabalho e Energia 1) Um corpo de massa 4 kg encontra-se a uma altura de 16 m do solo. Admitindo o solo como nível de referência e supondo g = 10 m/s 2, calcular sua energia

Leia mais

Assunto: Razões Trigonométricas no Triângulo Retângulo. 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras:

Assunto: Razões Trigonométricas no Triângulo Retângulo. 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras: Assunto: Razões Trigonométricas no Triângulo Retângulo 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras: b) 15 5 α α 1 resp: sen α =/5 cos α = /5 tgα=/ resp: sen α = 17 cos α

Leia mais

FATEC Faculdade de Tecnologia de São Paulo Movimento de Terra e Pavimentação ETE II Estudo de traçado de Estradas - II

FATEC Faculdade de Tecnologia de São Paulo Movimento de Terra e Pavimentação ETE II Estudo de traçado de Estradas - II 1 COORDEADAS, AZIMUTES E ÂGULOS DE DEFLEXÃO estas notas de aula pretende-se apresentar as formas de cálculos de obtenção dos valores de azimutes de trechos de tangentes de rodovias e também os cálculos

Leia mais

FONTES DE CAMPO MAGNÉTICO. Caracterizar e mostrar o campo magnético produzido por uma carga a velocidade constante.

FONTES DE CAMPO MAGNÉTICO. Caracterizar e mostrar o campo magnético produzido por uma carga a velocidade constante. FONTES DE CAMPO MAGNÉTICO META Aula 8 Caracterizar e mostrar o campo magnético produzido por uma carga a velocidade constante. Mostrar a lei da circulação de Ampère-Laplace e a lei de Biot-Savart. Estudar

Leia mais

Simulado ENEM: Matemática

Simulado ENEM: Matemática Simulado ENEM: Matemática Questão 1 Cinco diretores de uma grande companhia, doutores Arnaldo, Bernardo, Cristiano, Denis e Eduardo, estão sentados em uma mesa redonda, em sentido horário, para uma reunião

Leia mais

Seja D R. Uma função vetorial r(t) com domínio D é uma correspondência que associa a cada número t em D exatamente um vetor r(t) em R 3

Seja D R. Uma função vetorial r(t) com domínio D é uma correspondência que associa a cada número t em D exatamente um vetor r(t) em R 3 1 Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire Cálculo Vetorial Texto 01: Funções Vetoriais Até agora nos cursos de Cálculo só tratamos de funções cujas imagens

Leia mais

RESUMO O trabalho apresenta resultados de um estudo sobre o texto A Geometria do Globo Terrestre

RESUMO O trabalho apresenta resultados de um estudo sobre o texto A Geometria do Globo Terrestre Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 22 a 25 de outubro, 2012 43 O ÂNGULO DE ELEVAÇÃO DO SOL E A ENERGIA SOLAR Antonio da Silva Gomes Júnior 1, José Paulo Rodrigues da Silveira,

Leia mais

RODOLFO MOREIRA DE CASTRO JUNIOR TOPOGRAFIA CURSO DE ENGENHARIA CIVIL

RODOLFO MOREIRA DE CASTRO JUNIOR TOPOGRAFIA CURSO DE ENGENHARIA CIVIL RODOLFO MOREIRA DE CASTRO JUNIOR TOPOGRAFIA CURSO DE ENGENHARIA CIVIL UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO Centro Tecnológico Laboratório de Topografia e Cartografia LTC - CTUFES Recolhido, Montado e

Leia mais

7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares).

7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares). 1 LIVRO Curvas Polares 7 AULA META Estudar as curvas planas em coordenadas polares (Curvas Polares). OBJETIVOS Estudar movimentos de partículas no plano. Cálculos com curvas planas em coordenadas polares.

Leia mais

O DIA DA NAVEGAÇÃO ASTRONÔMICA

O DIA DA NAVEGAÇÃO ASTRONÔMICA 32 O DIA DA NAVEGAÇÃO ASTRONÔMICA 32.1 PROVIDÊNCIAS PRELIMINARES E DE CARÁTER GERAL A Navegação Astronômica é um método de determinação da posição do navio e de controle de seus movimentos, normalmente

Leia mais

Capítulo 3 A Mecânica Clássica

Capítulo 3 A Mecânica Clássica Capítulo 3 A Mecânica Clássica AMecânica Clássica é formalmente descrita pelo físico, matemático e filósofo Isaac Newton no século XVII. Segundo ele, todos os eventos no universo são resultados de forças.

Leia mais

Levantamento. Levantamento altimétrico:

Levantamento. Levantamento altimétrico: Levantamento planimétrico trico: projeção plana que não traz informações acerca do relevo do terreno levantado; somente acerca de informações relativas à medições feitas na horizontal. Levantamento altimétrico:

Leia mais

Coordenadas Polares. Prof. Márcio Nascimento. marcio@matematicauva.org

Coordenadas Polares. Prof. Márcio Nascimento. marcio@matematicauva.org Coordenadas Polares Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Matemática

Leia mais

muito como cartas náuticas faça para o watercraft, ou o a mapa rodoviário para excitadores. Usando estas cartas e outras ferramentas pilotos possa

muito como cartas náuticas faça para o watercraft, ou o a mapa rodoviário para excitadores. Usando estas cartas e outras ferramentas pilotos possa Carta Aeronáutica é a mapa projetou ajudar dentro navegação de avião, muito como cartas náuticas faça para o watercraft, ou o a mapa rodoviário para excitadores. Usando estas cartas e outras ferramentas

Leia mais

Matemática. Euclides Roxo. David Hilbert. George F. B. Riemann. George Boole. Niels Henrik Abel. Karl Friedrich Gauss.

Matemática. Euclides Roxo. David Hilbert. George F. B. Riemann. George Boole. Niels Henrik Abel. Karl Friedrich Gauss. Matemática Jacob Palis Álgebra 1 Euclides Roxo David Hilbert George F. B. Riemann George Boole Niels Henrik Abel Karl Friedrich Gauss René Descartes Gottfried Wilhelm von Leibniz Nicolaus Bernoulli II

Leia mais

PERSPECTIVA LINEAR DEFINIÇÕES E TEOREMAS

PERSPECTIVA LINEAR DEFINIÇÕES E TEOREMAS Figura 64. Tapeçaria da sala de actos do Governo Civil de Bragança (800 cm x 800 cm). Luís Canotilho 2000. A geometria é também aplicada ao simbolismo humano. No presente caso as formas geométricas identificam

Leia mais

v m = = v(c) = s (c).

v m = = v(c) = s (c). Capítulo 17 Teorema do Valor Médio 17.1 Introdução Vimos no Cap. 16 como podemos utilizar a derivada para traçar gráficos de funções. Muito embora o apelo gráfico apresentado naquele capítulo relacionando

Leia mais

Lista de Geografia I Data da entrega: 21/03/2016

Lista de Geografia I Data da entrega: 21/03/2016 Lista de Geografia I Data da entrega: 21/03/2016 Questão 01) Aparecida de Goiânia, / /2016. Aluno(a): 1ª série Professor: Edu Marinho Considerando a posição geográfica do território brasileiro ilustrada

Leia mais

LISTA 10 INDUÇÃO ELETROMAGNÉTICA

LISTA 10 INDUÇÃO ELETROMAGNÉTICA 1. (Ufmg 95) Esta figura mostra uma espira retangular, de lados a = 0,20 m e b = 0,50 m, sendo empurrada, com velocidade constante v = 0,50 m/s, para uma região onde existe um campo magnético uniforme

Leia mais

Cap. 7 - Fontes de Campo Magnético

Cap. 7 - Fontes de Campo Magnético Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 7 - Fontes de Campo Magnético Prof. Elvis Soares Nesse capítulo, exploramos a origem do campo magnético - cargas em movimento.

Leia mais

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar GAAL - 201/1 - Simulado - 1 Vetores e Produto Escalar SOLUÇÕES Exercício 1: Determinar os três vértices de um triângulo sabendo que os pontos médios de seus lados são M = (5, 0, 2), N = (, 1, ) e P = (4,

Leia mais

TEXTO DE REVISÃO: Uso da calculadora científica e potências de 10.

TEXTO DE REVISÃO: Uso da calculadora científica e potências de 10. TEXTO DE REVISÃO: Uso da calculadora científica e potências de 10. Caro aluno (a): No livro texto (Halliday) cap.01 - Medidas alguns conceitos muito importantes são apresentados. Por exemplo, é muito importante

Leia mais

Estudos Ambientais. Aula 4 - Cartografia

Estudos Ambientais. Aula 4 - Cartografia Estudos Ambientais Aula 4 - Cartografia Objetivos da aula Importância da cartografia; Conceitos cartográficos. O que é cartografia Organização, apresentação, comunicação e utilização da geoinformação nas

Leia mais

LISTA DE EXERCÍCIOS CAMPO MAGNÉTICO

LISTA DE EXERCÍCIOS CAMPO MAGNÉTICO 1. (Fuvest 96) A figura esquematiza um ímã permanente, em forma de cruz de pequena espessura, e oito pequenas bússolas, colocadas sobre uma mesa. As letras N e S representam, respectivamente, pólos norte

Leia mais

PROVA G1 FIS 1033 23/08/2011 MECÅNICA NEWTONIANA

PROVA G1 FIS 1033 23/08/2011 MECÅNICA NEWTONIANA PROVA G1 FIS 1033 23/08/2011 MECÅNICA NEWTONIANA NOME LEGÇVEL: Gabarito TURMA: ASSINATURA: MATRÇCULA N o : QUESTÉO VALOR GRAU REVISÉO 1 1,0 2 1,0 3 4,0 4 4,0 TOTAL 10,0 Dados: r/ t = (v + v 0 )/2; v v

Leia mais

Lista de Exercícios de Topografia Planimetria

Lista de Exercícios de Topografia Planimetria Lista de Exercícios de Topografia Planimetria 1. Cite 3 métodos de levantamento topográfico e uma situação prática onde cada um poderia ser empregado. 2. Verifique se existe erro de fechamento angular

Leia mais

Faculdade Sagrada Família

Faculdade Sagrada Família AULA 12 - AJUSTAMENTO DE CURVAS E O MÉTODO DOS MÍNIMOS QUADRADOS Ajustamento de Curvas Sempre que desejamos estudar determinada variável em função de outra, fazemos uma análise de regressão. Podemos dizer

Leia mais

ICARO SISTEMA DE ENSINO MATEMÁTICA APLICADA. www.portalicaro.com.br atendimento@portalicaro.com.br

ICARO SISTEMA DE ENSINO MATEMÁTICA APLICADA. www.portalicaro.com.br atendimento@portalicaro.com.br MATEMÁTICA APLICADA Disciplina: Matemática Aplicada Trigonometria e aplicações Introduzimos aqui alguns conceitos relacionados com a Trigonometria no triângulo retângulo, assunto comum na oitava série

Leia mais

PROVA COMENTADA GEOGRAFIA/ ÍRIS TIPO B

PROVA COMENTADA GEOGRAFIA/ ÍRIS TIPO B PROVA COMENTADA GEOGRAFIA/ ÍRIS TIPO B Questão 1 A partir de seus conhecimentos sobre projeções cartográficas e analisando a que foi utilizada no mapa a seguir, você pode inferir que se trata da projeção:

Leia mais

Exercícios Teóricos Resolvidos

Exercícios Teóricos Resolvidos Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar

Leia mais

ROTEIRO DE RECUPERAÇÃO ANUAL DE FÍSICA 2 a SÉRIE

ROTEIRO DE RECUPERAÇÃO ANUAL DE FÍSICA 2 a SÉRIE ROTEIRO DE RECUPERAÇÃO ANUAL DE FÍSICA 2 a SÉRIE Nome: Nº Série: 2º EM Data: / /2015 Professores Gladstone e Gromov Assuntos a serem estudados - Movimento Uniforme. Movimento Uniformemente Variado. Leis

Leia mais

3º Ano do Ensino Médio. Aula nº10 Prof. Daniel Szente

3º Ano do Ensino Médio. Aula nº10 Prof. Daniel Szente Nome: Ano: º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº10 Prof. Daniel Szente Assunto: Função exponencial e logarítmica 1. Potenciação e suas propriedades Definição: Potenciação é a operação

Leia mais

Força Magnética (Força de Lorentz) sobre Carga Lançada em Campo Magnético

Força Magnética (Força de Lorentz) sobre Carga Lançada em Campo Magnético PROESSOR Edney Melo ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: orça Magnética (orça de Lorentz) sobre Carga Lançada em Campo Magnético magnética, a força magnética tem o sentido de um tapa dado com

Leia mais

IFSP - EAD - GEOMETRIA TRIÂNGULO RETÂNGULO CONCEITUAÇÃO :

IFSP - EAD - GEOMETRIA TRIÂNGULO RETÂNGULO CONCEITUAÇÃO : IFSP - EAD - GEOMETRIA TRIÂNGULO RETÂNGULO CONCEITUAÇÃO : Como já sabemos, todo polígono que possui três lados é chamado triângulo. Assim, ele também possui três vértices e três ângulos internos cuja soma

Leia mais

2. Noções de Matemática Elementar

2. Noções de Matemática Elementar 2. Noções de Matemática Elementar 1 Notação cientíca Para escrever números muito grandes ou muito pequenos é mais cómodo usar a notação cientíca, que consiste em escrever um número na forma n é o expoente

Leia mais

O Q U E É U M REL Ó G I O DE S O L? Relógio de Sol é um instrumento que determina as divisões. do dia através do movimento da sombra de um objecto, o

O Q U E É U M REL Ó G I O DE S O L? Relógio de Sol é um instrumento que determina as divisões. do dia através do movimento da sombra de um objecto, o O Q U E É U M REL Ó G I O DE S O L? Relógio de Sol é um instrumento que determina as divisões do dia através do movimento da sombra de um objecto, o gnómon, sobre o qual incidem os raios solares e que

Leia mais

Triângulo Retângulo. Exemplo: O ângulo do vértice em. é a hipotenusa. Os lados e são os catetos. O lado é oposto ao ângulo, e é adjacente ao ângulo.

Triângulo Retângulo. Exemplo: O ângulo do vértice em. é a hipotenusa. Os lados e são os catetos. O lado é oposto ao ângulo, e é adjacente ao ângulo. Triângulo Retângulo São triângulos nos quais algum dos ângulos internos é reto. O maior dos lados de um triângulo retângulo é oposto ao vértice onde se encontra o ângulo reto e á chamado de hipotenusa.

Leia mais

Geografia/15 6º ano Turma: 1º trimestre Nome: Data: / / RECUPERAÇÃO FINAL 2015 GEOGRAFIA 6º ano

Geografia/15 6º ano Turma: 1º trimestre Nome: Data: / / RECUPERAÇÃO FINAL 2015 GEOGRAFIA 6º ano Geografia/15 6º ano Turma: 1º trimestre Nome: Data: / / 6ºgeo301r RECUPERAÇÃO FINAL 2015 GEOGRAFIA 6º ano Querido(a) Aluno(a) No primeiro trimestre buscamos entender o surgimento da Geografia, sua contribuição

Leia mais

Encontrando o seu lugar na Terra

Encontrando o seu lugar na Terra Encontrando o seu lugar na Terra A UU L AL A Nesta aula vamos aprender que a Terra tem a forma de uma esfera, e que é possível indicar e localizar qualquer lugar em sua superfície utilizando suas coordenadas

Leia mais

EXERCÍCIOS DE APOIO ÀS AULAS PRÁTICAS DE TOPOGRAFIA ENGENHARIA CIVIL

EXERCÍCIOS DE APOIO ÀS AULAS PRÁTICAS DE TOPOGRAFIA ENGENHARIA CIVIL EXERCÍCIOS DE APOIO ÀS AULAS PRÁTICAS DE TOPOGRAFIA ENGENHARIA CIVIL INSTITUTO SUPERIOR TÉCNICO DEPARTAMENTO DE ENGENHARIA CIVIL E ARQUITECTURA DOCENTES (2009/2010) 2009/2010 Ana Paula Falcão Flôr Ricardo

Leia mais

5. DESENHO GEOMÉTRICO

5. DESENHO GEOMÉTRICO 5. DESENHO GEOMÉTRICO 5.1. Retas Paralelas e Perpendiculares No traçado de retas paralelas ou perpendiculares é indispensável o manejo adequado dos esquadros. Na construção das retas perpendiculares e

Leia mais

TOPOGRAFIA - Planimetria. Alex Mota dos Santos

TOPOGRAFIA - Planimetria. Alex Mota dos Santos TOPOGRAFIA - Planimetria Alex Mota dos Santos Unidades de Medida Linear polegada = 2,75 cm = 0,0275 m polegada inglesa = 2,54 cm = 0,0254 m pé = 30,48cm = 0,3048 m jarda = 91,44cm = 0,9144m milha brasileira

Leia mais

1 a QUESTÃO: (1,5 ponto) Avaliador Revisor

1 a QUESTÃO: (1,5 ponto) Avaliador Revisor 1 a QUESTÃO: (1,5 ponto) Avaliador Revisor Um mol de um gás ideal é levado do estado A para o estado B, de acordo com o processo representado no diagrama pressão versus volume conforme figura abaixo: a)

Leia mais

A figura da Terra. Da esfera ao Geóide (passando pelo elipsóide)

A figura da Terra. Da esfera ao Geóide (passando pelo elipsóide) A figura da Terra Da esfera ao Geóide (passando pelo elipsóide) Uma primeira aproximação: a Terra esférica Esfera: Superfície curva fechada cujos pontos se encontram todos a igual distância, R, de um ponto

Leia mais

Unidade III: Movimento Uniformemente Variado (M.U.V.)

Unidade III: Movimento Uniformemente Variado (M.U.V.) Colégio Santa Catarina Unidade III: Movimento Uniformemente Variado (M.U.V.) 17 Unidade III: Movimento Uniformemente Variado (M.U.V.) 3.1- Aceleração Escalar (a): Em movimentos nos quais as velocidades

Leia mais