Capítulo 6 Transformação de tensões e critérios de falhas

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Capítulo 6 Transformação de tensões e critérios de falhas"

Transcrição

1 Capítulo 6 Transformação de tensões e critérios de falhas

2 6.1 Tensões principais no plano- O estado geral de tensão em um ponto é caracterizado por seis componentes independentes da tensão normal e de cisalhamento. O estado de tensão (a) não é encontrado com frequência na prática da engenharia. Aproximações ou simplificações das cargas sobre o corpo, a fim de que a tensão produzida em um sistema estrutural ou mecânico seja analisado em um único plano. Quando isso ocorre, o material está sujeito a tensões no plano.

3

4 Exemplo 1- A viga mostrada está sujeita ao carregamento distribuído w = 120 kn/m. Determine o estado de tensões na viga no ponto P, que se encontra na parte superior da alma. I=67,4(10-6) m 4

5 O equilíbrio da viga selecionada é mostrado onde V 84 kn M 30,6 knm No ponto P, 3 My 30,6 10 Nm0,1m 45,4 MPa 6 4 I 67,4 10 m 3 VQ 84 0,1075 0,175 0,015 m 35,2 MPa It 67,4 10 m 0,01 m 6 4 Portanto, o resultado é o seguinte:

6 A figura abaixo, mostra as relações de tensões para dois pontos da viga em balanço abaixo:

7

8 DEC DMF

9 Entre as cargas os pontos estão submetidos somente ao momento fletor. Já entre o apoio e o carregamento os pontos estão submetidos a combinação do momento fletor e do esforço cortante.

10 Ponto b Ponto a Tensões no sistema xy Tensões principais Tensões no sistema xy Tensões principais Ponto c Ponto d Tensões no sistema xy Tensões principais Tensões no sistema xy Tensões principais

11 Evolução da fissuração de uma viga T, para vários estágios do carregamento.

12 Componentes de tensão podem se transformar em um elemento caso tenha uma orientação diferente.

13 6.2 Equações gerais de transformação de tensão no plano A tensão normal positiva age para fora de todas as faces e a tensão de cisalhamento positiva age para cima na face direita do elemento. x y x y x ' cos2 xysen2 2 2 (1) x y x ' y' sen2 xy cos2 2 (2) Para determinar na equação (1) y', basta substituir θ por θ+90 x y x y y' cos2 xysen2 (3) 2 2

14 Convenção de sinais: Sentido anti-horário

15 Exemplo 2- O estado plano de tensão em um ponto é representado pelo elemento mostrado na figura. Determine o estado de tensão no ponto em outro elemento orientado a 30 no sentido horário em relação à posição mostrada.

16 Pela convenção de sinal, temos 80 MPa 50 MPa x xy 25 MPa 30 y Para obter as componentes de tensão no plano CD, x y x y x ' cos2 xysen cos2( 30 ) ( 25)sen2( 30 ) x ' 25,8 MPa 2 2 x y x ' y' sen2 xy cos sen2( 30 ) ( 25)cos2( 30 ) x' y' 68,8 MPa 2

17 Para obter os componentes de tensão no plano BC, x y x y y' cos2 xysen cos2( 30 ) ( 25)sen2( 30 ) 2 2 y' 4,15 MPa Os resultados são mostrados na figura:

18 Exercício de fixação- 1)O estado plano de tensão equivalente em um elemento, se ele estiver orientado a 30 em sentido anti-horário em relação ao elemento mostrado. Respostas:

19 Exercício de fixação- 2)O As fibras de uma barra de madeira formam um ângulo de 15 com a vertical. Determine para os estados de tensões indicados abaixo (a) a tensão de cisalhamento paralela às fibras, (b) a tensão normal às fibras. Respostas: (a) x' y' 0,6 MPa (b) x' 3,84MPa

20 6.3- Tensões principais e tensões de cisalhamento máximo Tensões principais no plano Tensões principais ocorrem nos planos de tensão principais com tensão de cisalhamento igual a zero x y x ' y' sen2 xy cos2 =0 (2) 2 tg2 p 2 x xy y / 1,2 x 2 y x 2 y 2 2 xy onde 1 2

21 Tensão de cisalhamento máxima no plano A orientação de um elemento irá determinar a máxima e a mínima da tensão de cisalhamento. tg2 s x xy y / 2 Nós temos tensão de cisalhamento máxima no plano e a tensão normal média. máx noplano x 2 y 2 2 xy méd x 2 y

22 Exercício de fixação- 3)O estado plano de tensão em um ponto sobre um corpo é representado no elemento mostrado na figura abaixo. (a) Represente esse estado de tensão em termos das tensões principais (b) Represente esse estado de tensão como a tensão de cisalhamento máxima no plano e a tensão normal média associada.

23 Respostas: (a) (b)

24 Exercício de fixação- 4)O estado de tensão em um ponto é mostrado no elemento. Determine (a) as tensões principais e (b) a tensão de cisalhamento máxima no plano e a tensão normal média no ponto. Especifique a orientação do elemento em cada caso.

25 6.4- Círculo de Mohr Tensão no plano A transformação da tensão no plano tem uma solução gráfica que é fácil de lembrar, desenvolvida por Christian Otto Mohr (1835).

26 Construção: 1)Defina um sistema de coordenadas tal que a abcissa represente a tensão normal σ como positiva para a direita e a ordenada represente a tensão de cisalhamento τ como positiva para baixo.

27 2)Usando a convenção de sinais, marque o centro do círculo C, que está localizado no eixo σ a uma distância de σ méd =(σ x + σ y )/2 da origem. 3)Marque o ponto de referência A cujas coordenadas são A(σ x,τ xy ). 4)Ligue o ponto A ao centro C e determine CA por trigonometria. Essa distância representa o raio R do círculo. 5)Desenhe o círculo.

28 6) As tensões principais σ 1 e σ 2 (σ 1 maior ou igual a σ 2 ) são apresentadas pelos dois pontos B e D onde o círculo intercepta o eixo σ, isto é, onde τ=0. 7)As tensões principais agem nos planos definidos por 2θ p1 (sentido anti-horário neste caso) da linha CA até a linha do CB. e 2θ p2

29 8) As componentes de tensão de cisalhamento máxima e de tensão normal média são determinados pelo círculo como as coordenadas do ponto E e F. 9) O ângulo 2 θ s1 é determinado por trigonometria. Aqui a rotação é em sentido horário. 10) As tensões em um ponto P arbitrário também podem ser conhecidas, assim como o θ (de CA até CP).

30 Exemplo 1- Para a viga mostrada no exemplo 1, determine as tensões principais na viga no ponto P. O centro do círculo é 45,4 0 22,7 e o 2 ponto A é ( 45,4, 35,2). Portanto, o raio é 41, ,7 19,2 MPa 22,7 41,9 64,6 MPa 41,9 O ângulo em sentido anti-horário é 2 2 p2 p 57,2 28, 6

31 Exercício de fixação- 5)O estado plano de tensão em um ponto é mostrado no elemento na figura abaixo. Determine (a) as tensões principais e a orientação do elemento sobre o qual elas agem e (b) a tensão de cisalhamento máxima no plano e a orientação do elemento sobre a qual ela age.

32 Exercício de fixação- 6)O estado plano de tensão em um ponto é mostrado no elemento na figura abaixo. Determine a tensão de cisalhamento máxima no plano e as tensões principais e a orientação do elemento sobre o qual elas agem.

33 Exercício de fixação- 7)Resolva o exercício de fixação 3 usando o Círculo de Mohr.

34 6.5- Critério de falha Falha de um elemento submetido a um estado plano de tensão não pode ser diretamente previsto a partir de um ensaio uniaxial. É conveniente determinar as tensões principais e basear os critérios de falha a partir do estado de tensão biaxial do elemento. Critérios de falha existentes são baseados nos mecanismo de falha existentes. Eles permitem a comparação das condições de falha de um ensaio de tensão uniaxial e um carregamento biaxial. Falha para material dúctil falha pelo escoamento, ao passo que se for frágil isso ocorrerá pela ruptura.

35 Discutiremos teorias frequentemente utilizadas na prática da engenharia para prever a falha de uma material sujeito a um estado multiaxial. Estas teorias são utilizadas para determinar as tensões admissíveis informadas em muitos manuais, normas e códigos de projetos.

36 Critério de escoamento de Tresca Teoria da Tensão de Cisalhamento Máxima ou critério de escoamento de Tresca (Henri Tresca, 1868) é usada para prever a tensão de falha de um material dúctil sujeito a qualquer tipo de carga. Em referência a tensão do plano, a teoria da tensão de cisalhamento máxima para tensão do plano podem ser expressadas pelas duas tensões principais.

37 Critério de von Mises Teoria de energia de distorção máxima ou critério de von Mises é usada para prever a tensão de falha de um material dúctil.

38 Critério de Coulomb Teoria da tensão normal máxima ou critério de Coulomb (Charles Augustin de Coulomb, ) afirma que materiais frágeis tendem a falhar repentinamente por ruptura, quando ocorre a tensão de tração máxima. Material com diagramas tensão-deformação similares para tração e compressão.

39 Critério de Falha de Mohr Se um material frágil tiver diagramas tensão-deformação diferentes sob tração e sob compressão, então se aplica o critério de falha de Mohr.

40 Exercício de fixação: 8) O eixo maciço mostrado na figura abaixo tem raio de 0.5 cm e é feito de aço com tensão de escoamento de σ e = 360 MPa. Determine se as cargas provocam a falha do eixo de acordo com o critério de Tresca e von Mises. Respostas: (a) falha (b) não falha

41 9) Um componente de máquina construído em aço, está submetido ao estado de tensões indicado. O aço utilizado tem σ e = 331 MPa. Determine se vai ocorrer escoamento de acordo com o critério de Tresca. (a) considerar σ o = 210 MPa (b) considerar σ o = 294 MPa. Respostas: (a) não falha (b) falha

42 10) O eixo maciço de ferro fundido está sujeito ao torque T=400lb ft. Determinar o menor raio de modo que não ocorra falha, de acordo com a teoria da tensão normal máxima. Um corpo de prova de ferro fundido, testado sob tração, tem limite de resistência (σ r ) t = 20ksi. Resposta: r=0,535in

Capítulo 8 Dimensionamento de vigas

Capítulo 8 Dimensionamento de vigas Capítulo 8 Dimensionamento de vigas 8.1 Vigas prismáticas Nossa principal discussão será a de projetar vigas. Como escolher o material e as dimensões da seção transversal de uma dada viga, de modo que

Leia mais

Introdução: momento fletor.

Introdução: momento fletor. Flexão em Vigas e Projeto de Vigas APOSTILA Mecânica dos Sólidos II Introdução: As vigas certamente podem ser consideradas entre os mais importantes de todos os elementos estruturais. Citamos como exemplo

Leia mais

PROVAESCRITA CARGO: ENGENHARIA CIVIL I

PROVAESCRITA CARGO: ENGENHARIA CIVIL I MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO SUL DE MINAS GERAIS CONCURSO PÚBLICO DE DOCENTES DO QUADRO EFETIVO EDITAL

Leia mais

Critérios de Resistência

Critérios de Resistência Critérios de Resistência Coeficiente de segurança ensão uivalente Seja um ponto qualquer, pertencente a um corpo em uilíbrio, submetido a um estado de tensões cujas tensões principais estão representadas

Leia mais

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais II Estruturas III. Capítulo 5 Flambagem

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais II Estruturas III. Capítulo 5 Flambagem Capítulo 5 Flambagem 5.1 Experiências para entender a flambagem 1) Pegue uma régua escolar de plástico e pressione-a entre dois pontos bem próximos, um a cinco centímetros do outro. Você está simulando

Leia mais

140 Nm 140 Nm 25. Linha Neutra

140 Nm 140 Nm 25. Linha Neutra Engenharia ecânica LISTA 2 1)Uma barra de aço tem seção retangular de x60 mm e fica submetida à ação de dois conjugados iguais e de sentido contrário que agem em um plano vertical de simetria da barra,

Leia mais

Introdução A tensão plana existe praticamente em todas as estruturas comuns, incluindo prédios máquinas, veículos e aeronaves.

Introdução A tensão plana existe praticamente em todas as estruturas comuns, incluindo prédios máquinas, veículos e aeronaves. - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Vasos de Pressão Introdução

Leia mais

5ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO FLEXÃO

5ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO FLEXÃO Universidade Federal da Bahia Escola Politécnica Departamento de Construção e Estruturas Professor: Armando Sá Ribeiro Jr. Disciplina: ENG285 - Resistência dos Materiais I-A www.resmat.ufba.br 5ª LISTA

Leia mais

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais II Estruturas III. Capítulo 2 Torção

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais II Estruturas III. Capítulo 2 Torção Capítulo 2 Torção 2.1 Revisão Torque é um momento que tende a torcer um elemento em torno de seu eixo longitudinal. Se o ângulo de rotação for pequeno, o comprimento e o raio do eixo permanecerão inalterados.

Leia mais

Forças internas. Objetivos da aula: Mostrar como usar o método de seções para determinar as cargas internas em um membro.

Forças internas. Objetivos da aula: Mostrar como usar o método de seções para determinar as cargas internas em um membro. Forças internas Objetivos da aula: Mostrar como usar o método de seções para determinar as cargas internas em um membro. Generalizar esse procedimento formulando equações que podem ser representadas de

Leia mais

Terceira Lista de Exercícios

Terceira Lista de Exercícios Universidade Católica de Petrópolis Disciplina: Resitência dos Materiais I Prof.: Paulo César Ferreira Terceira Lista de Exercícios 1. Calcular o diâmetro de uma barra de aço sujeita a ação de uma carga

Leia mais

APOSTILA RESISTÊNCIA DOS MATERIAIS XI

APOSTILA RESISTÊNCIA DOS MATERIAIS XI FACUDADE DE TECNOLOGIA APOSTILA RESISTÊNCIA DOS MATERIAIS XI Elaborado: Alvaro Henrique Pereira DME Data: 7/05/007 Revisão: 0 Contato: tel: 4-3354094 - e-mail: alvarohp@fat.uerj.br - TENSÕES COMBINADAS

Leia mais

CORPOS RÍGIDOS: As forças que actuam num corpo rígido podem ser divididas em dois grupos:

CORPOS RÍGIDOS: As forças que actuam num corpo rígido podem ser divididas em dois grupos: CORPOS RÍGIDOS: As forças que actuam num corpo rígido podem ser divididas em dois grupos: 1. Forças externas (que representam as acções externas sobre o corpo rígido) 2. Forças internas (que representam

Leia mais

Critérios de falha. - determinam a segurança do componente; - coeficientes de segurança arbitrários não garantem um projeto seguro;

Critérios de falha. - determinam a segurança do componente; - coeficientes de segurança arbitrários não garantem um projeto seguro; Critérios de falha - determinam a segurança do componente; - coeficientes de segurança arbitrários não garantem um projeto seguro; - compreensão clara do(s) mecanismo(s) de falha (modos de falha); -aspectos

Leia mais

CISALHAMENTO EM VIGAS CAPÍTULO 13 CISALHAMENTO EM VIGAS

CISALHAMENTO EM VIGAS CAPÍTULO 13 CISALHAMENTO EM VIGAS CISALHAMENTO EM VIGAS CAPÍTULO 13 Libânio M. Pinheiro, Cassiane D. Muzardo, Sandro P. Santos 25 ago 2010 CISALHAMENTO EM VIGAS Nas vigas, em geral, as solicitações predominantes são o momento fletor e

Leia mais

Coordenadas Polares. Prof. Márcio Nascimento. marcio@matematicauva.org

Coordenadas Polares. Prof. Márcio Nascimento. marcio@matematicauva.org Coordenadas Polares Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Matemática

Leia mais

1. Definição dos Elementos Estruturais

1. Definição dos Elementos Estruturais A Engenharia e a Arquitetura não devem ser vistas como duas profissões distintas, separadas, independentes uma da outra. Na verdade elas devem trabalhar como uma coisa única. Um Sistema Estrutural definido

Leia mais

Lista de exercícios sobre barras submetidas a força normal

Lista de exercícios sobre barras submetidas a força normal RESISTÊNCIA DOS MATERIAIS I Lista de exercícios sobre barras submetidas a força normal 1) O cabo e a barra formam a estrutura ABC (ver a figura), que suporta uma carga vertical P= 12 kn. O cabo tem a área

Leia mais

Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA

Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Carga Elétrica e Lei de Coulomb 1. Consideremos o ponto P no centro de um quadrado

Leia mais

TECNOLOGIA MECÂNICA. Aula 04. Carregamento Axial Tensão Normal

TECNOLOGIA MECÂNICA. Aula 04. Carregamento Axial Tensão Normal FACULDADE DE TECNOLOGIA SHUNJI NISHIMURA POMPÉIA TECNOLOGIA MECÂNICA Aula 04 Carregamento Axial Tensão Normal Prof. Me. Dario de Almeida Jané Mecânica dos Sólidos - Revisão do conceito de Tensão - Carregamento

Leia mais

Flambagem de Colunas Introdução

Flambagem de Colunas Introdução - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Flambagem de Colunas Introdução Os sistemas

Leia mais

Conceito de Tensão. Índice

Conceito de Tensão. Índice Conceito de Tensão Índice Breve Revisão dos Métodos da Estática 1 Tensões em Elementos Estruturais 2 nálise e Dimensionamento 3 Esforço xial; Tensão Normal 4 rincípio de Saint-Venant 5 Tensão Tangencial

Leia mais

Bacharelado Engenharia Civil

Bacharelado Engenharia Civil Bacharelado Engenharia Civil Disciplina: Física Geral e Experimental I Força e Movimento- Leis de Newton Prof.a: Msd. Érica Muniz Forças são as causas das modificações no movimento. Seu conhecimento permite

Leia mais

3 Dimensionamento Clássico de Cordões de Solda

3 Dimensionamento Clássico de Cordões de Solda 3 Dimensionamento Clássico de Cordões de Solda A união de placas em uma estrutura é conhecida como junta. Uma junta pode ser obtida utilizando-se os mais variados elementos de fixação: parafusos, rebites,

Leia mais

Vibrações Mecânicas. Vibração Livre Sistemas com 1 GL. Ramiro Brito Willmersdorf ramiro@willmersdorf.net

Vibrações Mecânicas. Vibração Livre Sistemas com 1 GL. Ramiro Brito Willmersdorf ramiro@willmersdorf.net Vibrações Mecânicas Vibração Livre Sistemas com 1 GL Ramiro Brito Willmersdorf ramiro@willmersdorf.net Departamento de Engenharia Mecânica Universidade Federal de Pernambuco 2015.1 Introdução Modelo 1

Leia mais

"SISTEMAS DE COTAGEM"

SISTEMAS DE COTAGEM AULA 6T "SISTEMAS DE COTAGEM" Embora não existam regras fixas de cotagem, a escolha da maneira de dispor as cotas no desenho técnico depende de alguns critérios. A cotagem do desenho técnico deve tornar

Leia mais

Resistência dos Materiais

Resistência dos Materiais Aula 5 Carga Axial e Princípio de Saint-Venant Carga Axial A tubulação de perfuração de petróleo suspensa no guindaste da perfuratriz está submetida a cargas e deformações axiais extremamente grandes,

Leia mais

Fichas de sistemas de partículas

Fichas de sistemas de partículas Capítulo 3 Fichas de sistemas de partículas 1. (Alonso, pg 247) Um tubo de secção transversal a lança um fluxo de gás contra uma parede com uma velocidade v muito maior que a agitação térmica das moléculas.

Leia mais

FLAMBAGEM DE BARRAS UNIVERSIDADE ESTADUAL DE CAMPINAS PROF DR. NILSON TADEU MASCIA

FLAMBAGEM DE BARRAS UNIVERSIDADE ESTADUAL DE CAMPINAS PROF DR. NILSON TADEU MASCIA 1 UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA CIVIL,ARQUITETURA E URBANISMO Departamento de Estruturas FLAMBAGEM DE BARRAS PROF DR. NILSON TADEU MASCIA JUNHO DE 006 1 - Introdução...3 - Conceito

Leia mais

Consolos Curtos Notas de aula Parte 1

Consolos Curtos Notas de aula Parte 1 Prof. Eduardo C. S. Thomaz 1 / 13 CONSOLOS CURTOS 1-SUMÁRIO Um consolo curto geralmente é definido geometricamente como sendo uma viga em balanço na qual a relação entre o comprimento ( a ) e a altura

Leia mais

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20.

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20. 11 FÍSICA Um bloco de granito com formato de um paralelepípedo retângulo, com altura de 30 cm e base de 20 cm de largura por 50 cm de comprimento, encontra-se em repouso sobre uma superfície plana horizontal.

Leia mais

UNIDADE 2 DIMENSIONAMENTO DE ESTRUTURAS DE CONCRETO ARMADO

UNIDADE 2 DIMENSIONAMENTO DE ESTRUTURAS DE CONCRETO ARMADO Universidade Federal de Pelotas Centro de Engenharias Curso de Engenharia Civil e Engenharia Agrícola UNIDADE 2 DIMENSIONAMENTO DE ESTRUTURAS DE CONCRETO ARMADO (AULA 3 HIPÓTESES DE CÁLCULO) Prof. Estela

Leia mais

TEORIA DAS TENSÕES UNIVERSIDADE ESTADUAL DE CAMPINAS PROF DR. NILSON TADEU MASCIA

TEORIA DAS TENSÕES UNIVERSIDADE ESTADUAL DE CAMPINAS PROF DR. NILSON TADEU MASCIA UNIVERSIDADE ESTADUAL DE AMPINAS FAULDADE DE ENGENHARIA IVIL,ARQUITETURA E URBANISMO Departamento de Estruturas TEORIA DAS TENSÕES PROF DR. NILSON TADEU MASIA AMPINAS, JANEIRO DE 006 Índice 1. Introdução...

Leia mais

Resistência dos Materiais IV Lista de Exercícios Capítulo 2 Critérios de Resistência

Resistência dos Materiais IV Lista de Exercícios Capítulo 2 Critérios de Resistência Lista de Execícios Capítulo Citéios de Resistência 0.7 A tensão de escoamento de um mateial plástico é y 0 MPa. Se esse mateial é submetido a um estado plano de tensões ocoe uma falha elástica quando uma

Leia mais

Universidade Federal de Santa Catarina Departamento de Engenharia Mecânica Grupo de Análise e Projeto Mecânico

Universidade Federal de Santa Catarina Departamento de Engenharia Mecânica Grupo de Análise e Projeto Mecânico Universidade Federal de Santa Catarina Departamento de Engenharia Mecânica Grupo de nálise e Projeto Mecânico CURSO DE MECÂNIC DOS SÓLIDOS Prof. José Carlos Pereira gosto de 00 SUMÁRIO 1 CÁLCULO DS REÇÕES...

Leia mais

2 a Prova de EDI-49 Concreto Estrutural II Prof. Flávio Mendes Junho de 2012 Duração prevista: até 4 horas.

2 a Prova de EDI-49 Concreto Estrutural II Prof. Flávio Mendes Junho de 2012 Duração prevista: até 4 horas. 2 a Prova de EDI-49 Concreto Estrutural II Prof. Flávio Mendes Junho de 212 Duração prevista: até 4 horas. Esta prova tem oito (8) questões e três (3) laudas. Consulta permitida somente ao formulário básico.

Leia mais

Ensaio de impacto. Os veículos brasileiros têm, em geral, suspensão

Ensaio de impacto. Os veículos brasileiros têm, em geral, suspensão A UU L AL A Ensaio de impacto Os veículos brasileiros têm, em geral, suspensão mais reforçada do que a dos similares europeus. Não é à toa. As condições de nossas estradas e ruas requerem esse reforço,

Leia mais

PPMEC UNIVERSIDADE FEDERAL DE SÃO JOÃO DEL REI PROCESSO SELETIVO DO SEGUNDO SEMESTRE DE 2014

PPMEC UNIVERSIDADE FEDERAL DE SÃO JOÃO DEL REI PROCESSO SELETIVO DO SEGUNDO SEMESTRE DE 2014 UNIVERSIDADE FEDERAL DE SÃO JOÃO DEL REI PPMEC PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA PROCESSO SELETIVO DO SEGUNDO SEMESTRE DE 2014 PROVA DE SIMULAÇÃO NUMÉRICA DO COMPORTAMENTO DOS MATERIAIS

Leia mais

Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5

Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5 Cálculo em Computadores - 2007 - trajectórias Trajectórias Planas Índice Trajectórias. exercícios............................................... 2 2 Velocidade, pontos regulares e singulares 2 2. exercícios...............................................

Leia mais

Prof. Rossini Bezerra Faculdade Boa Viagem

Prof. Rossini Bezerra Faculdade Boa Viagem Sistemas de Coordenadas Polares Prof. Rossini Bezerra Faculdade Boa Viagem Coordenadas Polares Dado um ponto P do plano, utilizando coordenadas cartesianas (retangulares), descrevemos sua localização no

Leia mais

Esforços axiais e tensões normais

Esforços axiais e tensões normais Esforços axiais e tensões normais (Ref.: Beer & Johnston, Resistência dos Materiais, ª ed., Makron) Considere a estrutura abaixo, construída em barras de aço AB e BC, unidas por ligações articuladas nas

Leia mais

MATEMÁTICA GEOMETRIA ANALÍTICA I PROF. Diomedes. E2) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B.

MATEMÁTICA GEOMETRIA ANALÍTICA I PROF. Diomedes. E2) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B. I- CONCEITOS INICIAIS - Distância entre dois pontos na reta E) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B. d(a,b) = b a E: Dados os pontos A e B de coordenadas

Leia mais

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais I Estruturas II. Capítulo 5 Torção

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais I Estruturas II. Capítulo 5 Torção Capítulo 5 Torção 5.1 Deformação por torção de um eixo circular Torque é um momento que tende a torcer um elemento em torno de seu eixo longitudinal. Se o ângulo de rotação for pequeno, o comprimento e

Leia mais

3.0 Resistência ao Cisalhamento dos Solos

3.0 Resistência ao Cisalhamento dos Solos 3.0 Resistência ao Cisalhamento dos Solos 3.1 INTRODUÇÃO Vários materiais sólidos empregados em construção normalmente resistem bem as tensões de compressão, porém têm uma capacidade bastante limitada

Leia mais

4 Verificação dos modelos constitutivos

4 Verificação dos modelos constitutivos 69 4 Verificação dos modelos constitutivos Neste capitulo são apresentadas algumas simulações numéricas de ensaios triaxiais convencionais (CTC) com a finalidade de verificar as implementações computacionais

Leia mais

Curso de Engenharia Civil. Universidade Estadual de Maringá Centro de Tecnologia Departamento de Engenharia Civil CAPÍTULO 6: TORÇÃO

Curso de Engenharia Civil. Universidade Estadual de Maringá Centro de Tecnologia Departamento de Engenharia Civil CAPÍTULO 6: TORÇÃO Curso de Engenharia Civil Universidade Estadual de Maringá Centro de ecnologia Departamento de Engenharia Civil CPÍULO 6: ORÇÃO Revisão de Momento orçor Convenção de Sinais: : Revisão de Momento orçor

Leia mais

PROVA G1 FIS 1033 23/08/2011 MECÅNICA NEWTONIANA

PROVA G1 FIS 1033 23/08/2011 MECÅNICA NEWTONIANA PROVA G1 FIS 1033 23/08/2011 MECÅNICA NEWTONIANA NOME LEGÇVEL: Gabarito TURMA: ASSINATURA: MATRÇCULA N o : QUESTÉO VALOR GRAU REVISÉO 1 1,0 2 1,0 3 4,0 4 4,0 TOTAL 10,0 Dados: r/ t = (v + v 0 )/2; v v

Leia mais

Coordenadas Polares Mauri C. Nascimento Dep. De Matemática FC Unesp/Bauru

Coordenadas Polares Mauri C. Nascimento Dep. De Matemática FC Unesp/Bauru Coordenadas Polares Mauri C. Nascimento Dep. De Matemática FC Unesp/Bauru Dado um ponto P do plano, utilizando coordenadas cartesianas (retangulares), descrevemos sua localização no plano escrevendo P

Leia mais

TÉCNICAS DE CAD PARA ENGENHARIA CIVIL AULA 11. 1.1. Visualização do Sistema de Coordenadas Corrente

TÉCNICAS DE CAD PARA ENGENHARIA CIVIL AULA 11. 1.1. Visualização do Sistema de Coordenadas Corrente TÉCNICAS DE CAD PARA ENGENHARIA CIVIL AULA 11 1. SISTEMA DE COORDENADAS DO USUÁRIO 1.1. Visualização do Sistema de Coordenadas Corrente 1.2. Controle da posição e da visibilidade do ícone UCS 1.3. Criação

Leia mais

B. Descreva, de maneira similar ao texto acima, as outras forças que você indicou no diagrama.

B. Descreva, de maneira similar ao texto acima, as outras forças que você indicou no diagrama. FORÇAS I. Identificando forças Duas pessoas tentam mover um grande bloco. O bloco, contudo, não se move. Cristiano empurra o bloco. Márcia puxa uma corda que por sua vez está ligada ao bloco. esboço que

Leia mais

ELEMENTOS DE MÁQUINAS I

ELEMENTOS DE MÁQUINAS I UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA MECÂNICA ELEMENTOS DE MÁQUINAS I APOSTILA PARA O CURSO 2 o Semestre de 2001 Molas Helicoidais e Planas AUTOR: P ROF. DR. AUTELIANO A NTUNES DOS

Leia mais

Curvas em coordenadas polares

Curvas em coordenadas polares 1 Curvas em coordenadas polares As coordenadas polares nos dão uma maneira alternativa de localizar pontos no plano e são especialmente adequadas para expressar certas situações, como veremos a seguir.

Leia mais

Faculdade Sagrada Família

Faculdade Sagrada Família AULA 12 - AJUSTAMENTO DE CURVAS E O MÉTODO DOS MÍNIMOS QUADRADOS Ajustamento de Curvas Sempre que desejamos estudar determinada variável em função de outra, fazemos uma análise de regressão. Podemos dizer

Leia mais

7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares).

7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares). 1 LIVRO Curvas Polares 7 AULA META Estudar as curvas planas em coordenadas polares (Curvas Polares). OBJETIVOS Estudar movimentos de partículas no plano. Cálculos com curvas planas em coordenadas polares.

Leia mais

Resistência dos Materiais

Resistência dos Materiais Aula 6 Estudo de Torção, Transmissão de Potência e Torque Aula 6 Definição de Torque Torque é o momento que tende a torcer a peça em torno de seu eixo longitudinal. Seu efeito é de interesse principal

Leia mais

EM 421 - RESISTÊNCIA DOS MATERIAIS I 3. Prova Data: 06/12/96 Profs. Marco Lúcio Bittencourt e Euclides de Mesquita Neto GABARITO

EM 421 - RESISTÊNCIA DOS MATERIAIS I 3. Prova Data: 06/12/96 Profs. Marco Lúcio Bittencourt e Euclides de Mesquita Neto GABARITO EM 421 - RESISTÊNCIA DOS MATERIAIS I 3. Prova Data: 06/12/96 Profs. Marco Lúcio Bittencourt e Euclides de Mesquita Neto GABARITO 1. QUESTÃO (VALOR 6.0) A viga bi-engastada abaio mostrada deverá ser construída

Leia mais

LISTA DE EXERCÍCIOS RESISTÊNCIA DOS MATERIAIS 2

LISTA DE EXERCÍCIOS RESISTÊNCIA DOS MATERIAIS 2 LISTA DE EXERCÍCIOS RESISTÊNCIA DOS MATERIAIS 2 I) TRANSFORMAÇÃO DE TENSÕES 1) Uma única força horizontal P de intensidade de 670N é aplicada à extremidade D da alavanca ABD. Sabendo que a parte AB da

Leia mais

8º CONGRESSO IBEROAMERICANO DE ENGENHARIA MECANICA Cusco, 23 a 25 de Outubro de 2007

8º CONGRESSO IBEROAMERICANO DE ENGENHARIA MECANICA Cusco, 23 a 25 de Outubro de 2007 8º CONGRESSO IBEROAMERICANO DE ENGENHARIA MECANICA Cusco, 23 a 25 de Outubro de 27 DETERMINAÇÃO DAS CAUSAS DE FISSURAÇÃO EM VIGA DE CONCRETO PROTENDIDO USANDO SIMULAÇÃO NUMÉRICA Savaris, G.*, Garcia, S.

Leia mais

CAPÍTULO IX CISALHAMENTO CONVENCIONAL

CAPÍTULO IX CISALHAMENTO CONVENCIONAL I. ASECTOS GERAIS CAÍTULO IX CISALHAMENTO CONVENCIONAL O cisalhamento convencional é adotado em casos especiais, que é a ligação de peças de espessura pequena. Considera-se inicialmente um sistema formado

Leia mais

Fig. 4.2 - Exemplos de aumento de aderência decorrente de compressão transversal

Fig. 4.2 - Exemplos de aumento de aderência decorrente de compressão transversal aderência - 1 4. Aderência, ancoragem e emenda por traspasse 4.1. Aderência A solidariedade da barra de armadura com o concreto circundante, que impede o escorregamento relativo entre os dois materiais,

Leia mais

MECÂNICA GERAL PARA ENGENHEIROS

MECÂNICA GERAL PARA ENGENHEIROS MEÂNI GER R ENGENHEIRS apítulo rofª: cilayne Freitas de quino Forças no lano sobre um orpo Rígido R RGID Em mecânica elementar assumimos que a maior parte dos corpos são rígidos, isto é, as deformações

Leia mais

Cap. 7 - Fontes de Campo Magnético

Cap. 7 - Fontes de Campo Magnético Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 7 - Fontes de Campo Magnético Prof. Elvis Soares Nesse capítulo, exploramos a origem do campo magnético - cargas em movimento.

Leia mais

Torção Deformação por torção de um eixo circular

Torção Deformação por torção de um eixo circular Torção Deformação por torção de um eixo irular Torque é um momento que tende a torer um elemento em torno de seu eixo longitudinal. Se o ângulo de rotação for pequeno, o omprimento e o raio do eixo permaneerão

Leia mais

Disciplina: Resistência dos Materiais Unidade I - Tensão. Professor: Marcelino Vieira Lopes, Me.Eng. http://profmarcelino.webnode.

Disciplina: Resistência dos Materiais Unidade I - Tensão. Professor: Marcelino Vieira Lopes, Me.Eng. http://profmarcelino.webnode. Disciplina: Resistência dos Materiais Unidade I - Tensão Professor: Marcelino Vieira Lopes, Me.Eng. http://profmarcelino.webnode.com/blog/ Referência Bibliográfica Hibbeler, R. C. Resistência de materiais.

Leia mais

Análise estrutural. Objetivos da aula. Mostrar como determinar as forças nos membros de treliças usando o método dos nós e o método das seções.

Análise estrutural. Objetivos da aula. Mostrar como determinar as forças nos membros de treliças usando o método dos nós e o método das seções. Análise estrutural Objetivos da aula Mostrar como determinar as forças nos membros de treliças usando o método dos nós e o método das seções. slide 1 Treliças simples Treliça é uma estrutura de vigas conectadas

Leia mais

Propriedades Mecânicas. Prof. Hamilton M. Viana

Propriedades Mecânicas. Prof. Hamilton M. Viana Propriedades Mecânicas Prof. Hamilton M. Viana Propriedades Mecânicas Propriedades Mecânicas Definem a resposta do material à aplicação de forças (solicitação mecânica). Força (tensão) Deformação Principais

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

1 Propagação de Onda Livre ao Longo de um Guia de Ondas Estreito.

1 Propagação de Onda Livre ao Longo de um Guia de Ondas Estreito. 1 I-projeto do campus Programa Sobre Mecânica dos Fluidos Módulos Sobre Ondas em Fluidos T. R. Akylas & C. C. Mei CAPÍTULO SEIS ONDAS DISPERSIVAS FORÇADAS AO LONGO DE UM CANAL ESTREITO As ondas de gravidade

Leia mais

Prova Prática de Geometria Descritiva A

Prova Prática de Geometria Descritiva A EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n.º 74/2004, de 26 de Março Prova Prática de Geometria Descritiva A 11.º/ 12.º anos de Escolaridade Prova 708/2.ª Fase 5 Páginas Duração da Prova: 150 minutos.

Leia mais

Experimento 3 # Professor: Data: / / Nome: RA:

Experimento 3 # Professor: Data: / / Nome: RA: BC-0209 Fenômenos Eletromagnéticos Experimento 3 # Campo Magnético de Correntes Elétricas Professor: Data: / / Introdução e Objetivos Relatos históricos indicam que a bússola já era um instrumento utilizado

Leia mais

PARADOXO DA REALIZAÇÃO DE TRABALHO PELA FORÇA MAGNÉTICA

PARADOXO DA REALIZAÇÃO DE TRABALHO PELA FORÇA MAGNÉTICA PARADOXO DA REALIZAÇÃO DE TRABALHO PELA FORÇA MAGNÉTICA Marcelo da S. VIEIRA 1, Elder Eldervitch C. de OLIVEIRA 2, Pedro Carlos de Assis JÚNIOR 3,Christianne Vitor da SILVA 4, Félix Miguel de Oliveira

Leia mais

Atividade de Recuperação- Física

Atividade de Recuperação- Física Atividade de Recuperação- Física 3º Ano- 1º Trimestre Prof. Sérgio Faro Orientação: Refazer os exemplos seguintes e resolver os demais exercícios no caderno e anotar eventuais dúvidas para esclarecimento

Leia mais

FIS-14 Lista-02 Agosto/2012

FIS-14 Lista-02 Agosto/2012 FIS-14 Lista-02 Agosto/2012 1. Substitua o sistema de forças que age sobre a viga por uma força e um momento de binário equivalente no ponto B. 2. Substitua o sistema de forças por uma força e um momento

Leia mais

MATERIAIS METÁLICOS AULA 5

MATERIAIS METÁLICOS AULA 5 UNIVERSIDADE ESTADUAL DE FEIRA DE SANTANA CURSO DE ENGENHARIA CIVIL DEPARTAMENTO DE TECNOLOGIA MATERIAIS DE CONSTRUÇÃO I E (TEC 156) MATERIAIS METÁLICOS AULA 5 Profª. Cintia Maria Ariani Fontes 1 Ensaio

Leia mais

Facear Concreto Estrutural I

Facear Concreto Estrutural I 1. ASSUNTOS DA AULA a) Concreto: Definição e requisitos de norma b) Concreto: Massa específica, resistência a compressão, resistência a tração e módulo de elasticidade c) Coeficiente de Poisson d) Diagrama

Leia mais

Exercícios do item 1.6: 1) Calcule as reações nos apoios da viga abaixo.

Exercícios do item 1.6: 1) Calcule as reações nos apoios da viga abaixo. Exercícios do item 1.5: 1) Calcule a força de tração nas duas barras da estrutura abaixo. tan θ 0 1 θ1 arc tan (0,75) θ1, 87 tan θ 0 θ arc tan (1,) θ 5, 1 o x 0 : 1 cos (,87 ) cos(5,1 ) 0 0, 0,8 1 0,8

Leia mais

Exercícios de Física Eletromagnetismo

Exercícios de Física Eletromagnetismo Exercícios de Física Eletromagnetismo 1-Considerando as propriedades dos ímãs, assinale a alternativa correta. a) Quando temos dois ímãs, podemos afirmar que seus pólos magnéticos de mesmo nome (norte

Leia mais

Exercícios de Física Eletromagnetismo

Exercícios de Física Eletromagnetismo Exercícios de Física Eletromagnetismo 1-Considerando as propriedades dos ímãs, assinale a alternativa correta. a) Quando temos dois ímãs, podemos afirmar que seus pólos magnéticos de mesmo nome (norte

Leia mais

Exercícios Eletromagnetismo

Exercícios Eletromagnetismo Exercícios Eletromagnetismo 1-Considerando as propriedades dos ímãs, assinale a alternativa correta. a) Quando temos dois ímãs, podemos afirmar que seus pólos magnéticos de mesmo nome (norte e norte, ou

Leia mais

Plano de Aula. 1 - Como abrir o programa KmPlot

Plano de Aula. 1 - Como abrir o programa KmPlot Plano de Aula Aluno(a):PIBID MATEMÁTICA Escola: Escola Estadual de Ensino Médio Mestre Santa Bárbara Disciplina: Matemática Conteúdo: Função quadrática Assunto: Gráficos, coeficientes da função Público

Leia mais

5 Discussão dos Resultados

5 Discussão dos Resultados 87 5 Discussão dos Resultados No procedimento de análises das imagens gráficas obtidas nas simulações pelo método de elementos finitos, comparou-se a distribuição das tensões nas restaurações com material

Leia mais

Disciplinas: Mecânica dos Materiais 2 6º Período E Dinâmica e Projeto de Máquinas 2-10º Período

Disciplinas: Mecânica dos Materiais 2 6º Período E Dinâmica e Projeto de Máquinas 2-10º Período UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO INSTITUTO POLITÉCNICO Graduação em Engenharia Mecânica Disciplinas: Mecânica dos Materiais 2 6º Período E Dinâmica e Projeto de Máquinas 2-10º Período Professor:

Leia mais

MATEMÁTICA. y Q. (a,b)

MATEMÁTICA. y Q. (a,b) MATEMÁTICA 1. Sejam (a, b), com a e b positivos, as coordenadas de um ponto no plano cartesiano, e r a reta com inclinação m

Leia mais

PROCESSO SELETIVO DO PRIMEIRO SEMESTRE DE 2015 PROVA DE PROCESSOS DE TRANSFORMAÇÃO METAL-MECÂNICA

PROCESSO SELETIVO DO PRIMEIRO SEMESTRE DE 2015 PROVA DE PROCESSOS DE TRANSFORMAÇÃO METAL-MECÂNICA PROVA DE PROCESSOS DE TRANSFORMAÇÃO METAL-MECÂNICA Um metal deforma-se plasticamente segundo a curva Y = 400 + 700 e 0,4. Deseja-se trefilar um fio circular deste metal do diâmetro inicial 8 mm, promovendo

Leia mais

Dinâmica de um Sistema de Partículas Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Dinâmica de um Sistema de Partículas Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Dinâmica de um Sistema de Partículas Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Profa. Dra. Diana Andrade & Prof. Dr. Sergio Pilling Parte 1 - Movimento Retilíneo Coordenada de posição, trajetória,

Leia mais

Professor Mário Henrique Farias Santos dee2mhfs@joinville.udesc.br

Professor Mário Henrique Farias Santos dee2mhfs@joinville.udesc.br Professor Mário Henrique Farias Santos dee2mhfs@joinville.udesc.br Conceitos preliminares Introdução às máquinas CA e CC Força Magnetomotriz (FMM) de enrolamentos concentrados e de enrolamentos distribuídos

Leia mais

a) Uma gota de orvalho sobre uma superfície encerada (pode ser a de um automóvel). As moléculas da água aderem fracamente à cera e fortemente entre

a) Uma gota de orvalho sobre uma superfície encerada (pode ser a de um automóvel). As moléculas da água aderem fracamente à cera e fortemente entre Tensão superficial a) Uma gota de orvalho sobre uma superfície encerada (pode ser a de um automóvel). As moléculas da água aderem fracamente à cera e fortemente entre si, então a água se junta. A tensão

Leia mais

Relações entre tensões e deformações

Relações entre tensões e deformações 3 de dezembro de 0 As relações entre tensões e deformações são estabelecidas a partir de ensaios experimentais simples que envolvem apenas uma componente do tensor de tensões. Ensaios complexos com tensões

Leia mais

Lista de Exercícios-PRA - Estática R. C. Hibbeler I - Adição de forças vetoriais

Lista de Exercícios-PRA - Estática R. C. Hibbeler I - Adição de forças vetoriais Lista de Exercícios-PRA - Estática R. C. Hibbeler I - Adição de forças vetoriais Forças são grandezas vetoriais, portanto são manipuladas através das regras da geometria analítica. Duas leis são válidas

Leia mais

LISTA 3 EXERCÍCIOS SOBRE ENSAIOS DE COMPRESSÃO, CISALHAMENTO, DOBRAMENTO, FLEXÃO E TORÇÃO

LISTA 3 EXERCÍCIOS SOBRE ENSAIOS DE COMPRESSÃO, CISALHAMENTO, DOBRAMENTO, FLEXÃO E TORÇÃO LISTA 3 EXERCÍCIOS SOBRE ENSAIOS DE COMPRESSÃO, CISALHAMENTO, DOBRAMENTO, FLEXÃO E TORÇÃO 1. Uma mola, com comprimento de repouso (inicial) igual a 30 mm, foi submetida a um ensaio de compressão. Sabe-se

Leia mais

Introdução ao Estudo da Corrente Eléctrica

Introdução ao Estudo da Corrente Eléctrica Introdução ao Estudo da Corrente Eléctrica Num metal os electrões de condução estão dissociados dos seus átomos de origem passando a ser partilhados por todos os iões positivos do sólido, e constituem

Leia mais

3.6.1. Carga concentrada indireta (Apoio indireto de viga secundária)

3.6.1. Carga concentrada indireta (Apoio indireto de viga secundária) cisalhamento - ELU 22 3.6. rmadura de suspensão para cargas indiretas 3.6.1. Carga concentrada indireta (poio indireto de viga secundária) ( b w2 x h 2 ) V 1 ( b w1 x h 1 ) V d1 - viga com apoio ndireto

Leia mais

ENGENHARIA CIVIL. Questão nº 1. Padrão de Resposta Esperado: a) Solução ideal

ENGENHARIA CIVIL. Questão nº 1. Padrão de Resposta Esperado: a) Solução ideal Questão nº 1 a) Solução ideal Aceita-se que a armadura longitudinal seja colocada pelo lado de fora das armaduras. Caso o graduando apresente o detalhe das armaduras, a resposta será: Solução para as hipóteses

Leia mais

e-mail: ederaldoazevedo@yahoo.com.br

e-mail: ederaldoazevedo@yahoo.com.br Centro de Ensino Superior do Amapá-CEAP Curso: Arquitetura e Urbanismo Disciplina: Sistemas Estruturais em Concreto Armado Disciplina: Sistemas Estruturais em Concreto Armado Assunto: Dimensionamento de

Leia mais

Desenho de máquinas. Aula 3

Desenho de máquinas. Aula 3 Desenho de máquinas Aula 3 Cotagem A cotagem e a escolhas das vistas que irão compor um desenho, são os dois itens que mais exigem conhecimentos e experiência do engenheiro mecânico na área do Desenho

Leia mais

APOSTILA TECNOLOGIA MECANICA

APOSTILA TECNOLOGIA MECANICA FACULDADE DE TECNOLOGIA DE POMPEIA CURSO TECNOLOGIA EM MECANIZAÇÃO EM AGRICULTURA DE PRECISÃO APOSTILA TECNOLOGIA MECANICA Autor: Carlos Safreire Daniel Ramos Leandro Ferneta Lorival Panuto Patrícia de

Leia mais

Texto 07 - Sistemas de Partículas. A figura ao lado mostra uma bola lançada por um malabarista, descrevendo uma trajetória parabólica.

Texto 07 - Sistemas de Partículas. A figura ao lado mostra uma bola lançada por um malabarista, descrevendo uma trajetória parabólica. Texto 07 - Sistemas de Partículas Um ponto especial A figura ao lado mostra uma bola lançada por um malabarista, descrevendo uma trajetória parabólica. Porém objetos que apresentam uma geometria, diferenciada,

Leia mais

FACULDADE DE CIÊNCIA E TECNOLOGIA. Cursos de Engenharia. Prof. Álvaro Fernandes Serafim

FACULDADE DE CIÊNCIA E TECNOLOGIA. Cursos de Engenharia. Prof. Álvaro Fernandes Serafim FACULDADE DE CIÊNCIA E TECNOLOGIA Cursos de Engenharia Prof. Álvaro Fernandes Serafim Última atualização: //7. Esta apostila de Álgebra Linear foi elaborada pela Professora Ilka Rebouças Freire. A formatação

Leia mais

Estruturas Mistas de Aço e Concreto

Estruturas Mistas de Aço e Concreto Universidade Federal do Espírito Santo Estruturas Mistas de Aço e Concreto Prof. Fernanda Calenzani Programa Detalhado Estruturas Mistas Aço e Concreto 1. Informações Básicas 1.1 Materiais 1.2 Propriedades

Leia mais

Evocar os conceitos do MRUV (movimento retilíneo uniformemente variado), do MRU (movimento retilíneo uniforme) e a decomposição de forças.

Evocar os conceitos do MRUV (movimento retilíneo uniformemente variado), do MRU (movimento retilíneo uniforme) e a decomposição de forças. 14 Curso Básico de Mecânica dos Fluidos Objetivos da segunda aula da unidade 1: Evocar os conceitos do MRUV (movimento retilíneo uniformemente variado), do MRU (movimento retilíneo uniforme) e a decomposição

Leia mais