Trabalho Computacional II

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Trabalho Computacional II"

Transcrição

1 Matemática Experimental 1 Licenciatura em Matemática Aplicada e Computação, 1 ō ano 2008/09 Departamento de Matemática Instituto Superior Técnico Lisboa Trabalho Computacional II Data limite de entrega: 5 de Dezembro de 2008 Observações: O relatório do trabalho computacional (sob a forma de notebook) deve ser enviado por para A primeira célula do notebook deve conter a identificação completa dos autores e número de grupo. Antes de enviar o notebook, apague todos os gráficos e output (utilize os menus Cell Delete All Output), deixando apenas o input, texto e comentários que julgue necessários. O trabalho deverá ser enviado em attachment usando nomes do tipo TC2Gry.nb onde y representa o número do grupo. Trabalhos recebidos fora do prazo estabelecido não serão corrigidos. 1. Considere a função real de variável real [4.0] f(x) = x 2 + (x + 1) 2/3 Pretende-se determinar os pontos de máximo e mínimo da função no intervalo I = [ 3, 3]. Para o efeito comece por determinar os pontos críticos da função, isto é, os valores x ( 3,3) tais que f (x) = 0, bem como os valores x ( 3,3) onde f (x) não exista. a) A função f está definida em R. No entanto se usar a rotina Plot no intervalo I não obtém o gráfico de f. Porquê? Note que se reescrever a expressão (x + 1) 2/3 na forma equivalente ((x + 1) 2 ) (1/3) a dificuldade desaparece. b) A partir da expressão da função f obtenha aproximações dos pontos críticos de f (com erro não superior a 10 6 ). Sugestão: para determinar os pontos que anulam f utilize convenientemente o comando Together, e para obter os pontos onde a derivada não existe recorra ao comando Denominator. Interprete o resultado da instrução Solve[Numerator[Together[f [x]]] == 0,x]//N 1 mgraca.

2 ME 2008/ c) Classifique os pontos de extremo da função f, isto é, os pontos (x,y), com x I, onde y é máximo ou mínimo (local ou global). Conclua se os seus resultados estão ou não de acordo com o que observa graficamente. d) Considere agora o intervalo [ 10,10]. Complete a seguinte tabela: f x 4 + (x + 1) 4/3 x 8 + (x + 1) 8/3 extremos/classificação Confirme os seus resultados através das rotinas FindMaximum e Find- Minimum. 2. Dados os vértices de um triângulo, A = (x A,y A ), B = (x B,y B ) e C = [5.0] (x C,y C ), ordenados por ordem crescente das respectivas abcissas, pretende-se desenhar as alturas do triângulo. Representamos essas alturas por meio de determinados segmentos de recta, conforme é ilustrado nos exemplos a seguir. Exemplo 1 Na Figura 1 está desenhado a fundo negro um triângulo de vértices A = (1, 4), B = (10,3) e C = (20, 2). O pé de cada uma das alturas está assinalado através de um ponto a cor azul, e as alturas a cor vermelha. Figura 1: Todas as alturas localizadas sobre o triângulo. Exemplo 2 Neste caso (Figura 2) duas das alturas estão traçadas no exterior do triângulo. a) Dados os vértices de um triângulo, deduza fórmulas que lhe permitam calcular os pontos do plano representando os pés das alturas do triângulo.

3 ME 2008/ Figura 2: Duas alturas localizadas no exterior do triângulo. b) Escreva um programa Mathematica que tenha para dados uma lista contendo os vértices de um triângulo, e que dê como resultado uma figura contendo peças gráficas análogas às dos exemplos anteriormente apresentados. Explique o funcionamento do seu programa. c) As coordenadas dos vértices de um certo conjunto de triângulos são dadas pelas instruções: dados = T able[seedrandom[k]; RandomInteger[{ 20, 20}, {3, 2}], {k, 200, 205}] Ordene convenientemente os vértices de cada triângulo da lista dados e depois utilize o programa que denvolveu na alínea anterior para desenhar as respectivas figuras. Alguma das Figuras 1 ou 2 faz parte dos resultados que obteve? Nota Poderá ser útil levar em consideração os seguintes resultados: Dados os vértices A, B, C de um triângulo qualquer, um critério para decidir se um ponto P = (x P,y P ) é exterior ao triângulo ABC é o seguinte: área(pab) + área(pbc) + área(pac) > área(abc) A área de um triângulo ABC pode ser calculada mediante a fórmula área(abc) = 1 x A x B x C valor absoluto (Det 2 y A y B y C ) 3. Uma estimativa do número N de civilizações extraterrestres pode ser rea- [5.0] lizada através de uma equação famosa, da autoria do astrónomo Frank Drake (1960). Essa equação é conhecida por equação de Frank Drake.

4 ME 2008/ a) Informe-se a respeito dessa equação. Use o sistema Mathematica para apresentar o resultado das estimativas de N apresentadas pelo astrónomo Carl Sagan no vídeo intitulado Carl Sagan on Drake Equation, que encontra no You Tube. Note que essas estimativas variam muito em resultado do valor atribuído a um certo parâmetro representando a fracção de tempo de sobrevivência de uma civilização que disponha de tecnologias de destruição maciça, parâmetro esse que C. Sagan designou pelo símbolo f L. b) Aplique as estruturas Manipulate e Module num programa para estudar a equação de Drake, usando nessa equação os valores que C. Sagan utilizou no referido vídeo. Faça variar f L no intervalo desde f Lmin = 1/10 6 a f Lmax = 1/10 3, com decréscimos que considere apropriados 2. Apresente o resultado num painel onde apareça o número N estimado para cada valor de f L considerado, bem como o valor da respectiva média geométrica quando f L varia no referido intervalo, desde f Lmin ao valor actual de f L. Qual é o número de civilizações extraterrestres que se podem prever na nossa galáxia quando f L se encontra no ponto médio do intervalo em causa? c) Reutilize os valores de C. Sagan para a equação de Drake, mas considerando f L como variável. Existe algum valor de f L para o qual N = 1? Se assim for, escolha um intervalo de variação para f L no qual N assuma o valor 1. Modifique o código do programa da alínea anterior de modo que quando N = 1 apenas apareça no respectivo painel a figura do famoso extra-terrestre E.T. (poderá obter esta figura no site Wikipedia, no texto intitulado E.T. the Extra-Terrestrial ). 4. Responda apenas a um dos problemas A ou B propostos a seguir. A) (Problema 4 das folhas Laboratório IV) [5.0] Muitos primos consecutivos aparecem em pares que diferem de k = 2 unidades, e por isso se dizem primos gémeos. Por exemplo, os números 3,5 5,7 11,13 17,19 29,31 41,43,... são primos gémeos. A experimentação numérica diz-nos que parece existir uma infinidade de primos gémeos, mas esta conjectura ainda não foi provada. a) Sendo dados n > 2 e k 2, utilize a rotina Prime e/ou NextPrime, de modo a determinar todos os números primos consecutivos menores ou iguais a n, que diferem entre si de k unidades. b) Verifique se é verdade existirem 35 pares de primos gémeos para n = 1000, e 205 para n = c) Para n desde 7 a 1000 conclua se existem ou não pares de primos diferindo de k = 4 unidades e, existindo, calcule quantos e que pares são esses. 2 Se preferir, pode utilizar um outro intervalo que considere mais conveniente. Nesse caso deverá justificar a escolha que fizer.

5 ME 2008/ d) Conjectura-se que, para valores grandes de n, o número de primos gémeos menores ou iguais a n pode estimar-se mediante o produto a seguir designado por c n : c n = f(n), onde f(n) = n 2 dx (ln x) 2 O integral anterior pode ser calculado recorrendo às rotinas Integrate ou N Integrate. Irá no entanto aproximar esse integral usando um método numérico conhecido pela designação de Regra de Simpson 3 : Dada uma função g, definida no intervalo [a,b], para calcular o integral definido I = b a g(x)dx, divida o intervalo [a,b] em 2N (N 1) subintervalos de comprimento h = (b a)/(2n), e considere os pontos desse intervalo x 0 = a, x 1 = a + h, x 2 = a + 2h,...,x 2 N = b. Um valor aproximado de I é calculado mediante a expressão Ĩ = h 3 [y 0 + y 2 N + 2(y 2 + y y 2N 2 ) + 4(y 1 + y y 2 N 1 )], onde y i = g(x i ). Teste a conjectura referida para n desde 2000 a 10000, com incrementos de 500 unidades. Apresente os resultados numa tabela, comparando o número de primos gémeos obtido mediante aplicação do código que desenvolveu nas alíneas anteriores, com o número estimado através de c n. Comente. e) Segundo informação que se encontra no site MathWorld, 4 da autoria de Eric W. Weisstein, em 2004 a conjectura dos primos gémeos quase que deixava de o ser. Porquê? B) Pretende-se estudar a evolução de uma doença numa determinada floresta. [6.0] As árvores estão alinhadas segundo filas paralelas, de tal modo que formam m linhas e n colunas. Cada árvore pode estar em um de três estados: sã, infectada ou doente. Eis regras de evolução para o estado de cada árvore: (i) De ano para ano, uma árvore sã torna-se infectada se o número de árvores vizinhas infectadas for superior a 2. Para cada árvore não localizada na periferia da floresta, são consideradas como árvores vizinhas as 4 árvores que se localizem, respectivamente a Norte, Sul, Este e Oeste da árvore considerada. No caso das árvores localizadas na periferia, ou seja, na primeira linha (coluna), ou na última linha (coluna), o número de árvores vizinhas é menor; (ii) Uma árvore infectada torna-se doente dois anos depois de ter sido contaminada; (iii) Uma árvore doente recupera a saúde dois anos depois de ter contraído a doença. 3 Ver, por exemplo, Kendall E. Atkinson, An Introduction to Numerical Analysis, John Wiley & Sons, New York, 1989, página

6 ME 2008/ Por exemplo, considere uma floresta constituída por 4 filas de 5 árvores. Represente-se uma árvore sã pelo número 0, uma infectada por 1, e uma doente por 2. Admita que o estado inicial da floresta é dado pelo seguinte esquema, onde se reconhecem 11 árvores infectadas, 8 sãs e 1 doente: (iv) Suponha ainda que todas as árvores que estejam infectadas, no ano anterior estavam sãs, e que todas as árvores doentes, no ano anterior estavam infectadas. De acordo com as regras enunciadas, a evolução da floresta nos dois anos seguintes traduz-se da seguinte forma: (12 árvores infectadas, 1 doente, e 7 sãs); (2 árvores infectadas, 11 doentes e 7 sãs). a) Tomando para dados de entrada o estado de uma floresta (representado por um esquema semelhante ao primeiro do exemplo), e um número inteiro k (k 1), escreva um algoritmo para simular a evolução da floresta. À saída deverá obter o estado da floresta decorridos k anos. (Sugestão: escreva separadamente uma função que, dado o estado da floresta e as coordenadas de uma árvore, calcule o número de árvores infectadas vizinhas dessa árvore). b) Observe se é ou não verdade que o estado da floresta do exemplo considerado se mantém inalterado decorridos um certo número de anos. c) Simule uma floresta de 15 filas de 10 árvores, cuja evolução está sujeita às regras anteriormente enunciadas. A configuração inicial é tal que 30% das suas árvores estão contaminadas, 20% estão doentes e as restantes estão sãs. A localização das árvores de cada tipo será aleatória. Para esse efeito, recorra ao gerador de números pseudoaleatórios do sistema Mathematica, começando por fixar a semente SeedRandom[2008]. Calcule o estado da floresta decorridos 7 anos. Represente graficamente a floresta (mediante um processo que entenda apropriado) no estado inicial e no estado final. Observe os estados intermédios e diga a que conclusões chegou.

Análise de Arredondamento em Ponto Flutuante

Análise de Arredondamento em Ponto Flutuante Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto

Leia mais

2ª fase. 19 de Julho de 2010

2ª fase. 19 de Julho de 2010 Proposta de resolução da Prova de Matemática A (código 635) ª fase 19 de Julho de 010 Grupo I 1. Como só existem bolas de dois tipos na caixa e a probabilidade de sair bola azul é 1, existem tantas bolas

Leia mais

Trabalho Computacional. A(h) = V h + 2 V π h, (1)

Trabalho Computacional. A(h) = V h + 2 V π h, (1) Unidade de Ensino de Matemática Aplicada e Análise Numérica Departamento de Matemática/Instituto Superior Técnico Matemática Computacional (Mestrado em Engenharia Física Tecnológica) 2014/2015 Trabalho

Leia mais

Matemática A. Fevereiro de 2010

Matemática A. Fevereiro de 2010 Matemática A Fevereiro de 2010 Matemática A Itens 10.º Ano de Escolaridade No Teste intermédio, que se irá realizar no dia 5 de Maio de 2010, os itens de grau de dificuldade mais elevado poderão ser adaptações

Leia mais

FICHA DE TRABALHO DERIVADAS I PARTE. 1. Uma função f tem derivadas finitas à direita e à esquerda de x = 0. Então:

FICHA DE TRABALHO DERIVADAS I PARTE. 1. Uma função f tem derivadas finitas à direita e à esquerda de x = 0. Então: FICHA DE TRABALHO DERIVADAS I PARTE. Uma função f tem derivadas finitas à direita e à esquerda de = 0. Então: (A) f tem necessariamente derivada finita em = 0; (B) f não tem com certeza derivada finita

Leia mais

FUNÇÃO. Exemplo: Dado os conjuntos A = { -2, -1, 0, 1, 2} e B = {0, 1, 2, 3, 4, 5} São funções de A em B as relações a) R 1 = {(x,y) AXB/ y = x + 2}

FUNÇÃO. Exemplo: Dado os conjuntos A = { -2, -1, 0, 1, 2} e B = {0, 1, 2, 3, 4, 5} São funções de A em B as relações a) R 1 = {(x,y) AXB/ y = x + 2} Sistemas de Informação e Tecnologia em Proc. de Dados Matemática Ms. Carlos Roberto da Silva/ Ms. Lourival Pereira Martins FUNÇÃO Definição: Dados dois conjuntos e define-se como função de em a toda relação

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL PROGRAMA DE PÓS-GRADUAÇÃO EM EDUCAÇÃO MATEMÁTICA. Seleção 2009. Prova Escrita 06/02/2009

UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL PROGRAMA DE PÓS-GRADUAÇÃO EM EDUCAÇÃO MATEMÁTICA. Seleção 2009. Prova Escrita 06/02/2009 UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL PROGRAMA DE PÓS-GRADUAÇÃO EM EDUCAÇÃO MATEMÁTICA Seleção 2009 Prova Escrita 06/02/2009 Número de inscrição: Esta prova é composta de três partes: Parte A: conteúdos

Leia mais

I. Cálculo Diferencial em R n

I. Cálculo Diferencial em R n Análise Matemática II Mestrado Integrado em Engenharia Electrotécnica e de Computadores Ano Lectivo 2010/2011 2 o Semestre Exercícios propostos para as aulas práticas I. Cálculo Diferencial em R n Departamento

Leia mais

CI202 - Métodos Numéricos

CI202 - Métodos Numéricos CI202 - Métodos Numéricos Lista de Exercícios 2 Zeros de Funções Obs.: as funções sen(x) e cos(x) devem ser calculadas em radianos. 1. Em geral, os métodos numéricos para encontrar zeros de funções possuem

Leia mais

Fractais com o Mathematica

Fractais com o Mathematica Fractais com o Mathematica E. Marques de Sá DMUC, 2009 Dou alguns exemplos de fractais e respectivas imagens que podem facilmente obter-se usando o programa Mathematica. O texto explica brevemente a parte

Leia mais

INSTITUTO TECNOLÓGICO

INSTITUTO TECNOLÓGICO PAC - PROGRAMA DE APRIMORAMENTO DE CONTEÚDOS. ATIVIDADES DE NIVELAMENTO BÁSICO. DISCIPLINAS: MATEMÁTICA & ESTATÍSTICA. PROFº.: PROF. DR. AUSTER RUZANTE 1ª SEMANA DE ATIVIDADES DOS CURSOS DE TECNOLOGIA

Leia mais

Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5

Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5 Cálculo em Computadores - 2007 - trajectórias Trajectórias Planas Índice Trajectórias. exercícios............................................... 2 2 Velocidade, pontos regulares e singulares 2 2. exercícios...............................................

Leia mais

Não é permitido o uso de corrector. Em caso de engano, deve riscar, de forma inequívoca, aquilo que pretende que não seja classificado.

Não é permitido o uso de corrector. Em caso de engano, deve riscar, de forma inequívoca, aquilo que pretende que não seja classificado. Teste Intermédio de Matemática B 2010 Teste Intermédio Matemática B Duração do Teste: 90 minutos 13.04.2010 10.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Utilize apenas caneta ou esferográfica

Leia mais

A aposentadoria do serralheiro

A aposentadoria do serralheiro A aposentadoria do serralheiro Roberto Ribeiro Paterlini 1 1 Introdução Há algum tempo estava em casa lendo prazerosamente Um Poeta, um Matemático e um Físico, quando alguém bateu à porta Era o Sr Alcides

Leia mais

FACULDADE CAMPO LIMPO PAULISTA MESTRADO EM CIÊNCIA DA COMPUTAÇÃO. Projeto e Análise de Algoritmos II Lista de Exercícios 2

FACULDADE CAMPO LIMPO PAULISTA MESTRADO EM CIÊNCIA DA COMPUTAÇÃO. Projeto e Análise de Algoritmos II Lista de Exercícios 2 FACULDADE CAMPO LIMPO PAULISTA MESTRADO EM CIÊNCIA DA COMPUTAÇÃO Projeto e Análise de Algoritmos II Lista de Exercícios 2 Prof. Osvaldo. 1. Desenvolva algoritmos para as operações abaixo e calcule a complexidade

Leia mais

Variáveis, Expressões, Atribuição, Matrizes, Comandos de Desvio

Variáveis, Expressões, Atribuição, Matrizes, Comandos de Desvio Programação de Computadores I UFOP DECOM 2013 2 Exercícios de Revisão Variáveis, Expressões, Atribuição, Matrizes, Comandos de Desvio Sumário 1 Testes de Compreensão 1 2 Variáveis, Expressões, Atribuição,

Leia mais

Esse produto é um produto composto e tem subprodutos

Esse produto é um produto composto e tem subprodutos Indústria - Cadastro de produtos O módulo indústria permite controlar a produção dos produtos fabricados pela empresa. É possível criar um produto final e definir as matérias-primas que fazem parte de

Leia mais

Lista de Exercícios sobre trabalho, teorema de Green, parametrizações de superfícies, integral de superfícies : MAT 1153-2006.1

Lista de Exercícios sobre trabalho, teorema de Green, parametrizações de superfícies, integral de superfícies : MAT 1153-2006.1 Lista de Exercícios sobre trabalho, teorema de Green, parametrizações de superfícies, integral de superfícies : MAT 1153-2006.1 1. Fazer exercícios 1, 4, 5, 7, 8, 9 da seção 8.4.4 pgs 186, 187 do livro

Leia mais

Um estudo sobre funções contínuas que não são diferenciáveis em nenhum ponto

Um estudo sobre funções contínuas que não são diferenciáveis em nenhum ponto Um estudo sobre funções contínuas que não são diferenciáveis em nenhum ponto Maria Angélica Araújo Universidade Federal de Uberlândia - Faculdade de Matemática Graduanda em Matemática - Programa de Educação

Leia mais

Caderno 2: 60 minutos. Tolerância: 20 minutos. (não é permitido o uso de calculadora)

Caderno 2: 60 minutos. Tolerância: 20 minutos. (não é permitido o uso de calculadora) Prova Final de Matemática 2.º Ciclo do Ensino Básico Prova 62/2.ª Fase/2015 Decreto-Lei n.º 139/2012, de 5 de julho A PREENCHER PELO ALUNO Nome completo Documento de identificação Assinatura do Aluno CC

Leia mais

1)Faça a representação gráfica das seguintes funções do primeiro grau: a)y = - x + 3 b)f(x) = - 3x + 5 c)y = x + 2 d)y = x + 3

1)Faça a representação gráfica das seguintes funções do primeiro grau: a)y = - x + 3 b)f(x) = - 3x + 5 c)y = x + 2 d)y = x + 3 Função do Primeiro Grau 1)Faça a representação gráfica das seguintes funções do primeiro grau: a)y = - x + 3 b)f(x) = - 3x + 5 c)y = x + 2 d)y = x + 3 2)Uma função polinomial do 1 o grau y = f(x) é tal

Leia mais

(A) é Alberto. (B) é Bruno. (C) é Carlos. (D) é Diego. (E) não pode ser determinado apenas com essa informação.

(A) é Alberto. (B) é Bruno. (C) é Carlos. (D) é Diego. (E) não pode ser determinado apenas com essa informação. 1. Alberto, Bruno, Carlos e Diego beberam muita limonada e agora estão apertados fazendo fila no banheiro. Eles são os únicos na fila, e sabe se que quem está imediatamente antes de Carlos bebeu menos

Leia mais

Trabalho 7 Fila de prioridade usando heap para simulação de atendimento

Trabalho 7 Fila de prioridade usando heap para simulação de atendimento Trabalho 7 Fila de prioridade usando heap para simulação de atendimento Data: 21/10/2013 até meia-noite Dúvidas até: 09/10/2013 Faq disponível em: http://www2.icmc.usp.br/~mello/trabalho07.html A estrutura

Leia mais

Atividades. Padrões em Porcentagem 2. Formas de Frações 6. Comparando Custos 11. Taquigrafia Numérica 15. Procedimentos Correlatos 20.

Atividades. Padrões em Porcentagem 2. Formas de Frações 6. Comparando Custos 11. Taquigrafia Numérica 15. Procedimentos Correlatos 20. Atividades Padrões em Porcentagem 2 Formas de Frações 6 Comparando Custos 11 Taquigrafia Numérica 15 Procedimentos Correlatos 20 No Intervalo 24 A Importância do Valor Posicional 29 Qual o Problema? 34

Leia mais

Faculdade Sagrada Família

Faculdade Sagrada Família AULA 12 - AJUSTAMENTO DE CURVAS E O MÉTODO DOS MÍNIMOS QUADRADOS Ajustamento de Curvas Sempre que desejamos estudar determinada variável em função de outra, fazemos uma análise de regressão. Podemos dizer

Leia mais

Álgebra Linear. André Arbex Hallack Frederico Sercio Feitosa

Álgebra Linear. André Arbex Hallack Frederico Sercio Feitosa Álgebra Linear André Arbex Hallack Frederico Sercio Feitosa Janeiro/2006 Índice 1 Sistemas Lineares 1 11 Corpos 1 12 Sistemas de Equações Lineares 3 13 Sistemas equivalentes 4 14 Operações elementares

Leia mais

(Exames Nacionais 2000)

(Exames Nacionais 2000) (Eames Nacionais 000) 1.a) Seja [ABC] um triângulo O ângulo, assinalado na figura, tem o seu vértice no centro isósceles em que BA = BC. Seja α da Terra; o seu lado origem passa no perigeu, o seu lado

Leia mais

UFV Universidade Federal de Viçosa DMA Departamento de Matemática MAT 138 Noções de Álgebra Linear

UFV Universidade Federal de Viçosa DMA Departamento de Matemática MAT 138 Noções de Álgebra Linear UFV Universidade Federal de Viçosa DMA Departamento de Matemática MAT 138 Noções de Álgebra Linear 1 2 a LISTA DE EERCÍCIOS - 2005/I 1. Resolva os sistemas abaixo e classifique-os quanto ao número de soluções:

Leia mais

Introdução aos Modelos Biomatemáticos - aulas

Introdução aos Modelos Biomatemáticos - aulas Introdução aos Modelos Biomatemáticos - aulas Teórico-Práticas Mestrado em BBC, 2008/2009 1 Capítulo 1 Nos exercícios 1) e 2) suponha que o crescimento é exponencial. 1. Entre 1700 e 1800 a população humana

Leia mais

Círculo de Estudos ccpfc/acc 19941/00. Eduardo Cunha. www.educunha.net. Escola Secundária de Barcelos 2000/2001. T I 83 - Plus

Círculo de Estudos ccpfc/acc 19941/00. Eduardo Cunha. www.educunha.net. Escola Secundária de Barcelos 2000/2001. T I 83 - Plus Investigação e Modelação na aula de Matemática Círculo de Estudos ccpfc/acc 19941/00 Eduardo Cunha www.educunha.net Escola Secundária de Barcelos 2000/2001 Módulo 2: Estudo de Funções - calculadora gráfica.

Leia mais

(Testes intermédios e exames 2005/2006)

(Testes intermédios e exames 2005/2006) 158. Indique o conjunto dos números reais que são soluções da inequação log 3 (1 ) 1 (A) [,1[ (B) [ 1,[ (C) ], ] (D) [, [ 159. Na figura abaio estão representadas, em referencial o. n. Oy: parte do gráfico

Leia mais

Matemática A. Versão 2. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.

Matemática A. Versão 2. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A. Teste Intermédio de Matemática Versão 2 Teste Intermédio Matemática Versão 2 Duração do Teste: 90 minutos 06.05.2011 10.º no de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Na sua folha de respostas,

Leia mais

Raciocínio Matemático RESOLUÇÃO

Raciocínio Matemático RESOLUÇÃO ESCOLA DE ECONOMIA DE SÃO PAULO FUNDAÇÃO GETÚLIO VARGAS PROCESSO SELETIVO 2007/1.º SEMESTRE CADERNO 1 Respostas da 2. a Fase Raciocínio Matemático RESOLUÇÃO 17.12.2006 RACIOCÍNIO MATEMÁTICO 01. Em uma

Leia mais

Universidade Federal de São Carlos Departamento de Matemática 083020 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/04/2008

Universidade Federal de São Carlos Departamento de Matemática 083020 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/04/2008 Universidade Federal de São Carlos Departamento de Matemática 08300 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/0/008 1. (0 pts.) Considere o sistema de ponto flutuante normalizado

Leia mais

7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares).

7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares). 1 LIVRO Curvas Polares 7 AULA META Estudar as curvas planas em coordenadas polares (Curvas Polares). OBJETIVOS Estudar movimentos de partículas no plano. Cálculos com curvas planas em coordenadas polares.

Leia mais

Lista 1 para a P2. Operações com subespaços

Lista 1 para a P2. Operações com subespaços Lista 1 para a P2 Observação 1: Estes exercícios são um complemento àqueles apresentados no livro. Eles foram elaborados com o objetivo de oferecer aos alunos exercícios de cunho mais teórico. Nós sugerimos

Leia mais

MATEMÁTICA I ECONOMIA (5598) Ficha de exercícios 1 (2012/2013)

MATEMÁTICA I ECONOMIA (5598) Ficha de exercícios 1 (2012/2013) Universidade da Beira Interior - Departamento de Matemática MATEMÁTICA I ECONOMIA (5598) Ficha de eercícios (0/03). Determine o conjunto dos pontos interiores, eteriores e fronteiros dos seguintes conjuntos:

Leia mais

TRABALHO 1 - ESTUDO DE CIRCUITOS RC e RLC

TRABALHO 1 - ESTUDO DE CIRCUITOS RC e RLC TRABALHO - ESTUDO DE CIRCUITOS RC e RLC Objectivo - Verificar o comportamento em frequência de circuitos RC e RLC. A função de transferência e o seu significado na análise de sistemas Lineares e Invariantes

Leia mais

Capítulo 3 Modelos Estatísticos

Capítulo 3 Modelos Estatísticos Capítulo 3 Modelos Estatísticos Slide 1 Resenha Variáveis Aleatórias Distribuição Binomial Distribuição de Poisson Distribuição Normal Distribuição t de Student Distribuição Qui-quadrado Resenha Slide

Leia mais

Ensinar o conceito de regressão linear com o Geogebra

Ensinar o conceito de regressão linear com o Geogebra Ensinar o conceito de regressão linear com o Geogebra Versão 1.0, Dezembro de 2009 Objectivo Esta actividade é orientada para o professor que pretenda criar actividades para os alunos sobre regressão linear,

Leia mais

Curvas de nível homotópicas a um ponto

Curvas de nível homotópicas a um ponto Curvas de nível homotópicas a um ponto Praciano-Pereira, T Sobral Matemática 6 de agosto de 2011 tarcisio@member.ams.org pré-prints da Sobral Matemática no. 2011.03 Editor Tarcisio Praciano-Pereira, tarcisio@member.ams.org

Leia mais

Matemáticas Gerais. (Licenciatura em Geologia) Caderno de exercícios (exercícios propostos e tabelas) Armando Gonçalves e Maria João Rodrigues

Matemáticas Gerais. (Licenciatura em Geologia) Caderno de exercícios (exercícios propostos e tabelas) Armando Gonçalves e Maria João Rodrigues Matemáticas Gerais (Licenciatura em Geologia Caderno de eercícios (eercícios propostos e tabelas Armando Gonçalves e Maria João Rodrigues Departamento de Matemática Faculdade de Ciências e Tecnologia da

Leia mais

b) a 0 e 0 d) a 0 e 0

b) a 0 e 0 d) a 0 e 0 IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA FUNÇÃO DO º GRAU 1. Um grupo de pessoas gastou R$ 10,00 em uma lanchonete. Quando foram pagar a conta,

Leia mais

Exercícios de Filas de Espera Enunciados

Exercícios de Filas de Espera Enunciados Capítulo 8 Exercícios de Filas de Espera Enunciados Enunciados 124 Problema 1 Os autocarros de uma empresa chegam para limpeza à garagem central em grupos de cinco por. Os autocarros são atendidos em ordem

Leia mais

Exercícios Adicionais

Exercícios Adicionais Exercícios Adicionais Observação: Estes exercícios são um complemento àqueles apresentados no livro. Eles foram elaborados com o objetivo de oferecer aos alunos exercícios de cunho mais teórico. Nós recomendamos

Leia mais

Teste Intermédio de Matemática A Matemática A Versão 2 10.º Ano de Escolaridade

Teste Intermédio de Matemática A Matemática A Versão 2 10.º Ano de Escolaridade Teste Intermédio de Matemática A Versão 2 Teste Intermédio Matemática A Versão 2 Duração do Teste: 90 minutos 06.05.2009 10.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Na sua folha de

Leia mais

Trabalho de Desenvolvimento de Sistemas de Software GereComSaber 2ª Fase

Trabalho de Desenvolvimento de Sistemas de Software GereComSaber 2ª Fase Universidade do Minho Departamento de Informática Desenvolvimento de Sistemas de Software Trabalho de Desenvolvimento de Sistemas de Software GereComSaber 2ª Fase Luana Georgia Lopes Telha nº 49379 Luís

Leia mais

(Testes intermédios e exames 2010/2011)

(Testes intermédios e exames 2010/2011) (Testes intermédios e eames 00/0) 57. Na Figura, está parte da representação gráfica da função f, de domínio +, definida por f() = log 9 () Em qual das opções seguintes está definida uma função g, de domínio,

Leia mais

Prova Escrita de Matemática Aplicada às Ciências Sociais

Prova Escrita de Matemática Aplicada às Ciências Sociais Exame Final Nacional do Ensino Secundário Prova Escrita de Matemática Aplicada às Ciências Sociais 11.º Ano de Escolaridade Decreto-Lei n.º 139/2012, de 5 de julho Prova 835/2.ª Fase 15 Páginas Duração

Leia mais

Faculdade de Economia Universidade Nova de Lisboa TÓPICOS DE CORRECÇÃO DO EXAME DE CÁLCULO I. Ano Lectivo 2007-08 - 1 o Semestre

Faculdade de Economia Universidade Nova de Lisboa TÓPICOS DE CORRECÇÃO DO EXAME DE CÁLCULO I. Ano Lectivo 2007-08 - 1 o Semestre Faculdade de Economia Universidade Nova de Lisboa TÓPICOS DE COECÇÃO DO EXAME DE CÁLCULO I Ano Lectivo 7-8 - o Semestre Exame Final em 7 de Janeiro de 8 Versão B Duração: horas e 3 minutos Não é permitido

Leia mais

Como produzir um texto no computador.

Como produzir um texto no computador. Como produzir um texto no computador. Antes de aprender como produzir um texto no computador e algumas das funcionalidades básicas que o processador de texto oferece, deve ler os seguintes tutoriais: Conhecer

Leia mais

Universidade da Beira Interior Departamento de Informática (6619, 11543, 11552) Programação I

Universidade da Beira Interior Departamento de Informática (6619, 11543, 11552) Programação I Universidade da Beira Interior Departamento de Informática (6619, 11543, 11552) Programação I Ficha prática 4 Ano letivo 2014-15 Exercícios 1. Escreva um programa que mostre no ecrã a parte da tabela ASCII

Leia mais

Universidade Federal do Rio Grande do Norte. Centro De Ciências Exatas e da Terra. Departamento de Física Teórica e Experimental

Universidade Federal do Rio Grande do Norte. Centro De Ciências Exatas e da Terra. Departamento de Física Teórica e Experimental Universidade Federal do Rio Grande do Norte Centro De Ciências Exatas e da Terra Departamento de Física Teórica e Experimental Programa de Educação Tutorial Curso de Nivelamento: Pré-Cálculo PET DE FÍSICA:

Leia mais

ficha 3 espaços lineares

ficha 3 espaços lineares Exercícios de Álgebra Linear ficha 3 espaços lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2011/12 3 Notação Sendo

Leia mais

ANÁLISE NUMÉRICA DEC - 1996/97

ANÁLISE NUMÉRICA DEC - 1996/97 ANÁLISE NUMÉRICA DEC - 996/97 Teoria de Erros A Teoria de Erros fornece técnicas para quantificar erros nos dados e nos resultados de cálculos com números aproximados. Nos cálculos aproximados deve-se

Leia mais

Centro de Formação de Associação de Escolas de. Paços de Ferreira, Paredes e Penafiel. Acção de Formação

Centro de Formação de Associação de Escolas de. Paços de Ferreira, Paredes e Penafiel. Acção de Formação Centro de Formação de Associação de Escolas de Paços de Ferreira, Paredes e Penafiel Acção de Formação Geogebra - Uma visita aos programas de Matemática dos 2º e 3º Ciclos Relatório final Pedro José Marques

Leia mais

Olimpíadas Portuguesas de Matemática

Olimpíadas Portuguesas de Matemática XXV OPM Final o dia 7 Categoria A Justifica convenientemente as tuas respostas e indica os principais cálculos Não é permitido o uso de calculadoras http://wwwpt/~opm Duração: horas Questão : 6 pontos

Leia mais

Refração da Luz Prismas

Refração da Luz Prismas Refração da Luz Prismas 1. (Fuvest 014) Um prisma triangular desvia um feixe de luz verde de um ângulo θ A, em relação à direção de incidência, como ilustra a figura A, abaixo. Se uma placa plana, do mesmo

Leia mais

EXPERIÊNCIA Nº 4 ESTUDO DE UM TROCADOR DE CALOR DE FLUXO CRUZADO

EXPERIÊNCIA Nº 4 ESTUDO DE UM TROCADOR DE CALOR DE FLUXO CRUZADO EXPERIÊNCIA Nº 4 ESTUDO DE UM TROCADOR DE CALOR DE FLUXO CRUZADO 1. CONCEITOS ENVOLVIDOS Convecção de calor em escoamento externo; Transferência de calor em escoamento cruzado; Camada limite térmica; Escoamento

Leia mais

SIMULADO DO TESTE DE RESOLUÇÃO DE PROBLEMAS

SIMULADO DO TESTE DE RESOLUÇÃO DE PROBLEMAS SIMULADO DO TESTE DE RESOLUÇÃO DE PROBLEMAS PROPOSTA Este simulado é um material de apoio para você se preparar para o Teste de Resolução de Problemas, com o objetivo de: 1. Compartilhar dicas e normas

Leia mais

CALIBRAÇÃO DE UM ESPECTROSCÓPIO DE PRISMA

CALIBRAÇÃO DE UM ESPECTROSCÓPIO DE PRISMA TRABALHO PRÁTICO CALIBRAÇÃO DE UM ESPECTROSCÓPIO DE PRISMA Objectivo: Neste trabalho prático pretende-se: na 1ª parte, determinar o índice de refracção de um poliedro de vidro; na 2ª parte, proceder à

Leia mais

(Exames Nacionais 2002)

(Exames Nacionais 2002) (Exames Nacionais 2002) 105. Na figura estão representadas, num referencial o.n. xoy: parte do gráfico de uma função f, de domínio R +, definida por f(x)=1+2lnx; a recta r, tangente ao gráfico de f no

Leia mais

Matemática Computacional - Exercícios

Matemática Computacional - Exercícios Matemática Computacional - Exercícios 1 o semestre de 2009/2010 - LEMat e MEQ Teoria de erros e Representação de números no computador Nos exercícios deste capítulo os números são representados em base

Leia mais

Desenhando perspectiva isométrica

Desenhando perspectiva isométrica Desenhando perspectiva isométrica A UU L AL A Quando olhamos para um objeto, temos a sensação de profundidade e relevo. As partes que estão mais próximas de nós parecem maiores e as partes mais distantes

Leia mais

P r o g r a m a ç ã o d e C o m p u t a d o r e s 1 o S e m - 2 0 1 3 P r o f. A n d r é A m a r a n t e L u i z L A B 5 tag %2d while printf PE1:

P r o g r a m a ç ã o d e C o m p u t a d o r e s 1 o S e m - 2 0 1 3 P r o f. A n d r é A m a r a n t e L u i z L A B 5 tag %2d while printf PE1: Inteligência É a faculdade de criar objetos artificiais, especialmente ferramentas para fazer ferramentas. Henri Bergson. WHILE Além dos comandos if-else e switch, o controle de fluxo de um programa pode

Leia mais

EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1

EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1 EXAME NACIONAL DO ENSINO SECUNDÁRIO 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais e Cursos Tecnológicos PROVA 435/9 Págs. Duração da prova: 120 minutos 2005 1.ª FASE

Leia mais

Exercícios Teóricos Resolvidos

Exercícios Teóricos Resolvidos Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar

Leia mais

Faculdade de Computação

Faculdade de Computação UNIVERSIDADE FEDERAL DE UBERLÂNDIA Faculdade de Computação Disciplina : Teoria da Computação Professora : Sandra Aparecida de Amo Lista de Exercícios n o 2 Exercícios sobre Modelos de Máquinas de Turing

Leia mais

(S.I.) = 10 + 6 3) (FP) O

(S.I.) = 10 + 6 3) (FP) O Lista Cinemática 1) (FP) Um motorista pretende realizar uma viagem com velocidade média de 90 km/h. A primeira terça parte do percurso é realizada à 50km/h e os próximos 3/5 do restante é realizado à 80

Leia mais

O mercado de bens CAPÍTULO 3. Olivier Blanchard Pearson Education. 2006 Pearson Education Macroeconomia, 4/e Olivier Blanchard

O mercado de bens CAPÍTULO 3. Olivier Blanchard Pearson Education. 2006 Pearson Education Macroeconomia, 4/e Olivier Blanchard O mercado de bens Olivier Blanchard Pearson Education CAPÍTULO 3 3.1 A composição do PIB A composição do PIB Consumo (C) são os bens e serviços adquiridos pelos consumidores. Investimento (I), às vezes

Leia mais

Manual para criar actividades com o Jclic. Versão 1.0. Manual de Luís Vives Traduzido e adaptado por. Milena Jorge

Manual para criar actividades com o Jclic. Versão 1.0. Manual de Luís Vives Traduzido e adaptado por. Milena Jorge Versão 1.0 Manual de Luís Vives Traduzido e adaptado por milena_jorge@cap-alda-guerreiro.rcts.pt 1 PROJECTO N.º 2 Criação de uma sopa de letras com conteúdo associado........ 4 Actividade proposta n.º

Leia mais

Aumentar o nível de acessibilidade nos PDFs existentes

Aumentar o nível de acessibilidade nos PDFs existentes Aumentar o nível de acessibilidade nos PDFs existentes Recorrendo ao Adobe Acrobat Professional, vamos explorar um conjunto de técnicas que possibilitam uma melhoria na acessibilidade de documentos PDF

Leia mais

LISTA DE EXERCÍCIOS 3

LISTA DE EXERCÍCIOS 3 DISCIPLINA: CÁLCULO DAS PROBABILIDADES E ESTATÍSTICA I PERÍODO: 2013.2 LISTA DE EXERCÍCIOS 3 1) Uma empresa fabricante de pastilhas para freio efetua um teste para controle de qualidade de seus produtos.

Leia mais

Notas sobre a Fórmula de Taylor e o estudo de extremos

Notas sobre a Fórmula de Taylor e o estudo de extremos Notas sobre a Fórmula de Taylor e o estudo de etremos O Teorema de Taylor estabelece que sob certas condições) uma função pode ser aproimada na proimidade de algum ponto dado) por um polinómio, de modo

Leia mais

Índice. Índice... 1. Apresentando o Nextsite... 3. Recursos... 4. Recursos Opcionais... 6. Componentes externos... 7. Gerenciando sua conta...

Índice. Índice... 1. Apresentando o Nextsite... 3. Recursos... 4. Recursos Opcionais... 6. Componentes externos... 7. Gerenciando sua conta... Índice Índice... 1 Apresentando o Nextsite... 3 Recursos... 4 Recursos Opcionais... 6 Componentes externos... 7 Gerenciando sua conta... 8 Visualização Geral... 9 Central de mensagens... 12 Minha conta...

Leia mais

MATEMÁTICA GEOMETRIA ANALÍTICA I PROF. Diomedes. E2) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B.

MATEMÁTICA GEOMETRIA ANALÍTICA I PROF. Diomedes. E2) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B. I- CONCEITOS INICIAIS - Distância entre dois pontos na reta E) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B. d(a,b) = b a E: Dados os pontos A e B de coordenadas

Leia mais

Calculando distâncias sem medir

Calculando distâncias sem medir alculando distâncias sem medir UUL L No campo ocorrem freqüentemente problemas com medidas que não podemos resolver diretamente com ajuda da trena. Por exemplo: em uma fazenda, como podemos calcular a

Leia mais

Matemática Básica - 08. Função Logarítmica

Matemática Básica - 08. Função Logarítmica Matemática Básica Função Logarítmica 08 Versão: Provisória 0. Introdução Quando calculamos as equações exponenciais, o método usado consistia em reduzirmos os dois termos da equação à mesma base, como

Leia mais

COMO PROGRAMAR SEU TIME

COMO PROGRAMAR SEU TIME COMO PROGRAMAR SEU TIME 1) INSTALAÇÃO: Instale o simulador da categoria SIMUROSOT da FIRA. O simulador é gratuito e está disponível para download no site da FIRA (www.fira.net) ou no site da competição

Leia mais

LÓGICA DE PROGRAMAÇÃO. Vitor Valerio de Souza Campos

LÓGICA DE PROGRAMAÇÃO. Vitor Valerio de Souza Campos LÓGICA DE PROGRAMAÇÃO Vitor Valerio de Souza Campos Exemplos de algoritmos Faça um algoritmo para mostrar o resultado da multiplicação de dois números. Algoritmo em descrição narrativa Passo 1 Receber

Leia mais

Instituto Superior Técnico Departamento de Matemática Última actualização: 11/Dez/2003 ÁLGEBRA LINEAR A

Instituto Superior Técnico Departamento de Matemática Última actualização: 11/Dez/2003 ÁLGEBRA LINEAR A Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 11/Dez/2003 ÁLGEBRA LINEAR A FICHA 8 APLICAÇÕES E COMPLEMENTOS Sistemas Dinâmicos Discretos (1) (Problema

Leia mais

Lista de Exercícios 3 Estruturas de Controle Profa Susana M Iglesias

Lista de Exercícios 3 Estruturas de Controle Profa Susana M Iglesias Lista de Exercícios 3 Estruturas de Controle Profa Susana M Iglesias 1. Tendo em vista o alto preço da gasolina, os motoristas estão preocupados com a quilometragem percorrida por seus automóveis. Um motorista

Leia mais

6. Pronunciamento Técnico CPC 23 Políticas Contábeis, Mudança de Estimativa e Retificação de Erro

6. Pronunciamento Técnico CPC 23 Políticas Contábeis, Mudança de Estimativa e Retificação de Erro TÍTULO : PLANO CONTÁBIL DAS INSTITUIÇÕES DO SISTEMA FINANCEIRO NACIONAL - COSIF 1 6. Pronunciamento Técnico CPC 23 Políticas Contábeis, Mudança de Estimativa e Retificação de Erro 1. Aplicação 1- As instituições

Leia mais

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA O 9 Ọ ANO EM 2014. Disciplina: MaTeMÁTiCa

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA O 9 Ọ ANO EM 2014. Disciplina: MaTeMÁTiCa Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO EM 04 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 A soma das medidas dos catetos de um triângulo retângulo é 8cm

Leia mais

Numa turma de 26 alunos, o número de raparigas excede em 4 o número de rapazes. Quantos rapazes há nesta turma?

Numa turma de 26 alunos, o número de raparigas excede em 4 o número de rapazes. Quantos rapazes há nesta turma? GUIÃO REVISÕES Equações e Inequações Equações Numa turma de 6 alunos, o número de raparigas ecede em 4 o número de rapazes. Quantos rapazes há nesta turma? O objectivo do problema é determinar o número

Leia mais

Corte total. Qualquer pessoa que já tenha visto um regis- A U L A

Corte total. Qualquer pessoa que já tenha visto um regis- A U L A A U L A 11 11 Corte total Introdução Qualquer pessoa que já tenha visto um regis- tro de gaveta, como o que é mostrado a seguir, sabe que se trata de uma peça complexa, com muitos elementos internos. Se

Leia mais

Exercícios resolvidos sobre Função de probabilidade e densidade de probabilidade

Exercícios resolvidos sobre Função de probabilidade e densidade de probabilidade Exercícios resolvidos sobre Função de probabilidade e densidade de probabilidade Você aprendeu o que é função probabilidade e função densidade de probabilidade e viu como esses conceitos são importantes

Leia mais

29/Abril/2015 Aula 17

29/Abril/2015 Aula 17 4/Abril/015 Aula 16 Princípio de Incerteza de Heisenberg. Probabilidade de encontrar uma partícula numa certa região. Posição média de uma partícula. Partícula numa caixa de potencial: funções de onda

Leia mais

Material Teórico - Módulo de Métodos sofisticados de contagem. Princípio das Casas dos Pombos. Segundo Ano do Ensino Médio

Material Teórico - Módulo de Métodos sofisticados de contagem. Princípio das Casas dos Pombos. Segundo Ano do Ensino Médio Material Teórico - Módulo de Métodos sofisticados de contagem Princípio das Casas dos Pombos Segundo Ano do Ensino Médio Prof. Cícero Thiago Bernardino Magalhães Prof. Antonio Caminha Muniz Neto Em Combinatória,

Leia mais

Representação de números em máquinas

Representação de números em máquinas Capítulo 1 Representação de números em máquinas 1.1. Sistema de numeração Um sistema de numeração é formado por uma coleção de símbolos e regras para representar conjuntos de números de maneira consistente.

Leia mais

MINISTÉRIO DA EDUCAÇÃO DEPARTAMENTO DO ENSINO SECUNDÁRIO MATEMÁTICA B 12º ANO

MINISTÉRIO DA EDUCAÇÃO DEPARTAMENTO DO ENSINO SECUNDÁRIO MATEMÁTICA B 12º ANO MINISTÉRIO DA EDUCAÇÃO DEPARTAMENTO DO ENSINO SECUNDÁRIO MATEMÁTICA B 12º ANO Curso Científico-Humanístico de Artes Visuais 1 Cursos Tecnológicos de Construção Civil e Edificações, de Electrotecnia e Electrónica,

Leia mais

A 'BC' e, com uma régua, obteve estas medidas: = h = 3,6. Portanto a área do triângulo ABC vale = 7,56cm

A 'BC' e, com uma régua, obteve estas medidas: = h = 3,6. Portanto a área do triângulo ABC vale = 7,56cm 1 Um estudante tinha de calcular a área do triângulo C, mas um pedaço da folha do caderno rasgou-se. Ele, então, traçou o segmento 'C' paralelo a C, a altura C' H do triângulo 'C' e, com uma régua, obteve

Leia mais

A trigonometria do triângulo retângulo

A trigonometria do triângulo retângulo A UA UL LA A trigonometria do triângulo retângulo Introdução Hoje vamos voltar a estudar os triângulos retângulos. Você já sabe que triângulo retângulo é qualquer triângulo que possua um ângulo reto e

Leia mais

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010. Matemática Essencial Extremos de funções reais Departamento de Matemática - UEL - 2010 Conteúdo Ulysses Sodré http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Leia mais

Instruções para a Prova de MATEMÁTICA APLICADA:

Instruções para a Prova de MATEMÁTICA APLICADA: Instruções para a Prova de : Confira se seu nome e RG estão corretos. Não se esqueça de assinar a capa deste caderno, no local indicado, com caneta azul ou preta. A duração total do Módulo Discursivo é

Leia mais

UNIVERSIDADE FEDERAL DE ALAGOAS Pró-Reitoria de Pesquisa e Pós-Graduação - PROPEP COORDENADORIA INSTITUCIONAL DE EDUCAÇÃO A DISTÂNCIA - CIED

UNIVERSIDADE FEDERAL DE ALAGOAS Pró-Reitoria de Pesquisa e Pós-Graduação - PROPEP COORDENADORIA INSTITUCIONAL DE EDUCAÇÃO A DISTÂNCIA - CIED UNIVERSIDADE FEDERAL DE ALAGOAS Pró-Reitoria de Pesquisa e Pós-Graduação - PROPEP COORDENADORIA INSTITUCIONAL DE EDUCAÇÃO A DISTÂNCIA - CIED PROCESSO SELETIVO DE TUTORES 2012 PROVA TIPO 2 Tutor do Curso

Leia mais

5 Um simulador estocástico para o fluxo de caixa

5 Um simulador estocástico para o fluxo de caixa 5 Um simulador estocástico para o fluxo de caixa O objetivo desse capítulo é o de apresentar um simulador estocástico para o fluxo de caixa de um plano de previdência do tipo PGBL de um único indivíduo.

Leia mais

Prova Escrita de Matemática Aplicada às Ciências Sociais

Prova Escrita de Matemática Aplicada às Ciências Sociais EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n.º 74/2004, de 26 de março Prova Escrita de Matemática Aplicada às Ciências Sociais 10.º e 11.º Anos de Escolaridade Prova 835/1.ª Fase 13 Páginas Duração

Leia mais

Lista n 0 1 de Exercícios de Teoria da Computação

Lista n 0 1 de Exercícios de Teoria da Computação Lista n 0 1 de Exercícios de Teoria da Computação UFU-Curso de Bacharelado em Ciência da Computação - 7 0 período Profa. Sandra de Amo Exercícios de Revisão : Autômatos e Gramáticas 1. Mostre que a linguagem

Leia mais