Levantamento. Levantamento altimétrico:

Tamanho: px
Começar a partir da página:

Download "Levantamento. Levantamento altimétrico:"

Transcrição

1 Levantamento planimétrico trico: projeção plana que não traz informações acerca do relevo do terreno levantado; somente acerca de informações relativas à medições feitas na horizontal. Levantamento altimétrico: trico: projeção plana que traz informações acerca do relevo do terreno levantado.

2 Altimetria Operação no terreno, que nos fornece os dados necessários à representação, em um plano horizontal do relevo da superfície terrestre, objeto de levantamento.

3 Levantamentos Altimétricos (Nivelamentos) é a operação que determina as diferenças de nível ou distâncias verticais entre pontos do terreno, incluindo também, o transporte da cota ou altitude de um ponto conhecido (RN Referência de Nível) para os pontos nivelados.

4 Nivelamento É o conjunto de operações realizadas com o objetivo de determinar a altura de um ponto em relação a um Plano de Referência.

5 Cota (Cota Relativa) é definida como a distância vertical de um ponto na superfície da Terra à uma superfície qualquer de referência (Superfície de Nível Aparente), podendo estar situada abaixo ou acima da superfície geoidal ou elipsoidal.

6 Altitude (Cotas Absolutas) é definida como a distância vertical de um ponto na superfície da Terra à superfície geoidal ou elipsoidal (Superfície de Nível Real ou Matemática).

7 Referências níveis RN Podem ser encontrados nas estações de estradas de ferro, nas praças centrais de cidades, nos reservatórios de água, etc. RN deverá ser materializado no terreno por um marco facilmente visado e que não sofra alterações com o tempo.

8 DIFERENÇA A DE NÍVELN Diferença a de Nível N é a distância vertical que separa os pontos topográficos considerados.

9 Diferença a de níveln DN Altitude

10 Diferença de nível l 1 l 2 Diferença de nível DN = l 2 l 1

11 Diferença de nível É dada pela diferença de leituras nas mira DN=1420 mm

12 Altitude É a distância vertical entre este ponto e a superfície de nível correspondente ao nível médio do mar. Altitude NMM

13 Declividade Refere-se à inclinação do relevo em relação ao horizonte. É medida da inclinação da reta que une dois pontos em do terreno em relação ao plano horizontal e pode ser obtida em termos percentuais pela relação entre a distância vertical e a distância horizontal entre dois pontos.

14 Declividade É o quociente ou a relação entre a distância vertical e a distância horizontal. d = DN DH

15 Declividade É geralmente expressa em % ou pode ser apresentada em ângulo de inclinação (α). DN= 1120mm d = 1, * d = 1,87% DH= 60,00m

16 Declividade (d) B A θ DH DN δ =Tg θ = DN = oposto DH hipotenusa

17 Declividade (d) B A θ DH δ = DN. 100 % DH δ = tan θ graus δ = DN + Aclive -Declive

18 Métodos de Nivelamento Nivelamento Barométrico Nivelamento Trigonométrico Nivelamento Taqueométrico Nivelamento Geométrico

19 Nivelamento Barométrico: Baseia-se na diferença de pressão com a altitude, tendo como princípio que, para um determinado ponto da superfície terrestre, o valor da altitude é inversamente proporcional ao valor da pressão atmosférica. Este método, em função dos equipamentos que utiliza, permite obter valores em campo que estão diretamente relacionados ao nível verdadeiro Altitude = Pr 1 essão

20 Nivelamento Barométrico: Instrumentos Analógicos Digitais

21 Nivelamento Barométrico: Fórmulas Barométricas Temperaturas não Lidas: DN AB = log P A 760 log P B 760 Temperaturas Lidas: DN AB = T m 273. log P P Do ponto mais baixo para o ponto mais alto A B

22 Nivelamento Barométrico: Lembrando Temperatura Altitude Pr essão Temperatura Altitude Pr essão

23 Nivelamento Trigonométrico DN = DH. tg( α ) = DH.cot g( Z AB AB m AB m ) O método baseia-se na resolução de triângulo retângulo do qual se conhece um dos catetos (distancia horizontal) e se procura determinar o outro cateto (diferença de nível) e para tal mede-se o ângulo entre ambos.

24

25 Nivelamento Taqueométrico sen2. α DN = 100. H. m + 2 i

26 Nivelamento Geométrico Simples Composto Está baseado na leitura de réguas ou miras graduadas, não envolvendo ângulos.

27 Nivelamento Geométrico: Instrumentos Nível de Precisão e Mira

28 Nivelamento Geométrico: Simples Este processo é utilizado quando não há mudança de estação, ou seja, quando uma estação é suficiente para visar todos os pontos desejados para o projeto a ser executado. Por diferença de leituras da mira, obtém-se as diferenças de nível entre os pontos visados. (PR) C B C A SNC

29 Nivelamento geométrico Simples PR lr lv DN C B RN C A PR = plano de referência DN = diferença de nível C A = cota do ponto A C B = cota do ponto B lv = leitura a vante lr = leitura a ré

30 A leitura de ré corresponde àquela feita em um ponto de cota conhecida ou arbitrada. A leitura de vante é aquela realizada num ponto onde se deseja determinar a sua cota ou altitude.

31 A diferença de nível entre os pontos A e B é dada por: DN = lr - lv PR = C A + lr C B = PR - lv

32 Nivelamento Geométrico: Simples Estação Ré PR Vante Cota A 3, , ,000 B 2, ,000 PR Cota Ré + Leitura Ré Cota PR Leitura = Vante Vante = (PR) C B C A SNC

33 Nivelamento geométrico Simples PR lv d lr lv b lv c C D C C C A C B RN

34 Nivelamento geométrico Simples PR 2,345 1,756 1,478 0,389 C D C C C A C B RN

35 Nivelamento geométrico Simples Estaca Ré PR Vante Cotas A 2,345? 100,000 B 1,756? C 1,478? D 0,389?

36 Nivelamento geométrico Simples Estaca Ré PR Vante Cotas A 2, , ,000 B 1, ,589 C 1, ,867 D 0, ,956

37 Nivelamento Geométrico: Composto

38 Na verdade um nivelamento geométrico composto é a união de dois ou mais nivelamentos geométricos simples. Assim sendo, valem todas as definições e formulações anteriores.

39 A diferença principal reside no fato que SEMPRE haverá um ponto de ligação entre dois nivelamentos simples, o chamado ponto de mudança, a leitura a vante realizada nesse ponto, será chamada de vante de mudança e para que haja a ligação entre este nivelamento simples e o próximo, a leitura a ré do próximo nivelamento SEMPRE deverá ser feita no mesmo ponto onde foi realizada a leitura da vante de mudança.

40 Nivelamento geométrico Composto PR2 PR1 lr c lv d lr a lv b lv c C D C C C A C B RN

41 1,231 0,267 2,587 B 2,396 C 2,433 D A Estação Ré Vante PR Cota A B C D 1231? 500,000 2,587 0,267? 2,396? 2,433??

42 1,231 0,267 2,587 B 2,396 C 2,433 D A Estação Ré Vante PR Cota A B C D 1, , ,000 2,587 0, , ,964 2, ,155 2, ,118

43 Nivelamento Geométrico: Composto Estação Ré PR PI PM Cota P1 1,500? 100,000 P2 3,200? 1,000? P3 1,800? P4 0,500? PR Cota Ré + Leitura Ré Cota PR Leitura = Vante Vante =

44 Nivelamento Geométrico: Composto Estação Ré PR PI PM Cota P1 1, , ,000 P2 3, ,700 1, ,500 P3 1, ,900 P4 0, ,200 PR Cota Ré + Leitura Ré Cota PR Leitura = Vante Vante Verificação Ré dos PM = Cálculos : = Cota final Cota inicial

45 Nivelamento Geométrico: Composto (Polígono) Estação Ré PR PI PM Cota P1 2,300? 35,000 P2 0,150? 0,800? P3 3,100? 3,950? P4 1,900? P1 0,500? PR Cota Ré + Leitura Ré Cota PR Leitura = Vante Vante =

46 Nivelamento Geométrico: Composto (Polígono) Estação Ré PR PI PM Cota P1 2,300 37,300 35,000 P2 0,150 36,650 0,800 36,500 P3 3,100 35,800 3,950 32,700 P4 1,900 33,900 P1 0,500 35,300 PR Cota Ré + Leitura Ré Cota PR Leitura = Vante Vante Erro( e) = C final Cinicial e = 35,300 35,000 = 0, 300m =

47 Nivelamento Geométrico: Composto (Polígono) Estação Ré PR PI PM Cota P1 2,300 37,300 35,000 P2 0,150 36,650 0,800 36,500 P3 3,100 35,800 3,950 32,700 P4 1,900 33,900 P1 0,500 35,300 PR Cota Ré + Leitura Ré Cota PR Leitura = Vante Vante = Compensação : c = n o e Rés

48 Nivelamento Geométrico: Composto (Polígono) Estação Ré PR PI PM Cota P1 2,200 37,200 35,000 P2 0,050 36,450 0,800 36,400 P3 3,000 35,500 3,950 32,500 P4 1,900 33,600 P1 0,500 35,000 PR Cota Ré + Leitura Ré Cota PR Leitura = Vante Vante Compensação : c = n o e = Rés

49 Precisão do Nivelamento geométrico No caso de poligonais fechadas, o erro é dado pela diferença entre as cotas inicial e final do ponto de origem. Na maioria dos nivelamentos as poligonal é aberta. Pelo método das observações duplas, faz-se o nivelamento do trecho num sentido e realiza o caminho de volta por outro trecho e se possível por outro operador. O processo das duplas-medições é conhecido como contra-nivelamento.

50 CÁLCULO DO NIVELAMENTO GEOMÉTRICO PR = altura conhecida + visada de rér Altura a determinar = PR - visada de vante

51

52 Verificação dos cálculosc Altitude de chegada - Altitude de partida = Σ visadas ré - Σ visadas mudança Erro cometido εc = Altitude de chegada - Altitude de partida Correção c = εc /nºpr

53 Verificação dos cálculosc 110, ,328 = 12,100-12,094 0,006 = 0,006 OK Erro cometido εc = 110, ,328 = +0,006 Correção c = 0,006/6 = -0,001 (Quando o erro cometido for positivo adotar sinal negativo e vice-versa)

54

55

56 NIVELAMENTO

57 CONTRA-NIVELAMENTO

58 PV PR RÉ VANTE A B 51,820 1,820 3,725 C 3,749 COTA PROVISÓRIA CORREÇÃO COTA DEFINITIVA 50,000 48,095 48,071 C D E F G 48,904 0,833 2,501 2,034 3,686 3,990 46,403 46,870 45,218 44,914

59 PV PR RÉ VANTE COTA PROVISÓRIA CORREÇÃO COTA DEFINITIVA G C C A 48,372 50,938 3,458 2,867 0,301 0,934 48,071 50,004

60 Verificação dos cálculosc Cota de chegada - Cota de partida = Σ visadas ré - Σ visadas mudança Erro cometido εc = Cota de chegada - Cota de partida Correção c = εc /nºpr

61 1. VERIFICAÇÃO DOS CÁLCULOSC Σ RÉS - Σ VANTE MUD = COTA F -COTA I 8,978-8,974 = 50,004-50,000 0,004 m = 0,004m ok! 2. ERRO COMETIDO εc = 50,004-50,000 = 0,0004m 3. CORREÇÃO CORREÇÃO = ERRO/Nº PR s = 0,004/4 = 0,001m (p/ cada cota, por PR, acumulativamente)

62 PV PR RÉ VANTE A B 51,820 1,820 3,725 COTA PROVISÓRIA CORREÇÃO COTA DEFINITIVA 50,000 48,095-0,001 C 3,749 48,071-0,001 48,094 48,070 C 48,904 0,833 D 2,501 46,403-0,002 46,401 E 2,034 46,870-0,002 46,868 F 3,686 45,218-0,002 45,216 G 3,990 44,914-0,002 44,912

63 PV PR RÉ VANTE COTA PROVISÓRIA CORREÇÃO COTA DEFINITIVA G C C A 48,372 50,938 3,458 2,867 0,301 0,934 48,071 50,004

64 Nivelamento Geométrico: Classificação conforme a Precisão Alta Precisão: o erro médio admitido é de ±1,5mm/km Primeira ordem: o erro médio admitido é de ±2,5mm/km Segunda ordem: o erro médio admitido é de 1,0cm/km Terceira ordem: o erro médio admitido é de 3,0cm/km Quarta ordem: o erro médio admitido é de 10,0cm/km

65 Representação da superfície topográfica Curvas de nível: interseções da superfície topográfica com os planos de nível dispostos a intervalos regulares. planos em nível curvas de nível

66

67 Pontos Cotados e Curvas de Nível

68 Pontos Cotados e Curvas de Nível

69 Pontos Cotados e Curvas de Nível

70 Graduar a projeção de uma reta qualquer,desenhada na escala 1/100, uma vez conhecidos dois de seus pontos, B(11) A(6) 1 cm o desenho é uma projeção da reta, feita no plano do papel. o número entre parênteses, que segue ao nome do ponto, indica a cota deste, ou seja, a altura do ponto em relação ao plano do desenho. h = 11-6 = 5 d é medido diretamente em escala. no caso, d=5 cm intervalo I = d/h = 5/(11-6) = 1 cm h a 90º Â d

71 Graduar a projeção de uma reta qualquer,desenhada na escala 1/100, uma vez conhecidos dois de seus pontos. 0,55 cm 1,11 cm 1,11 cm 1,11 cm 1,11 cm A(6,5) B(11) Neste caso, o primeiro intervalo da esquerda é diferente dos demais, por se tratar de um intervalo que comportará a metade das unidades dos outros. De 6,5 a 7 teremos 5 mm, enquanto nos outros intervalos teremos 10 mm. Mede-se a projeção da reta = 5 cm. Depois calcula-se a declividade dela. decl=(11-6,5)/5 = 90% Para o primeiro intervalo, se decl=0,9 e h=0,5 (altura entre 6,5 e 7 cm), podemos fazer uma regra de 3:se a declividade é de 90 cm para cada 100 cm, será de quanto para 0,5 cm? Resposta: 0,55 cm, Este é o primeiro intervalo. Para os demais intervalos, nova regra de 3: se a declividade é de 90 cm para cada 100 cm, será de quanto para 1 cm? Resposta: 1,11 cm. h 90º d a Â

72 Interpolação B(108,96) C(?) A(103,35)

73 Interpolação B(108,96) C(?) DN A(103,35) DH

74 Interpolação B(108,96) C(?) DN A(103,35) DH AC =120,12 m DH AC DH=200,27 m

75 A(103,35) C(?) x Interpolação B(108,96) DN= 5,61 m DH=200,27 DN x AB DH DH AB AC CC = C A + DN AC = 103,35 + 3,36 = 106, 71 m x = DN AC = 3,36m

76 Interpolação A(103,35) C(106,00) x DN AC =2,65 m DH=200,27 B(108,96) DN= 5,61 m DN DN AB AC x = DH DH AC AB x = 94,60m

77 Interpolação A(103,35) C(106,00) DH=200,27 B(108,96) x DN BC =2,96 m DN= 5,61 m DN DN x = AB BC DH DH x BC AB = 105,67 m

78 Perfis

79 Perfis * Sejam dados a planta altimétrica e o plano vertical que a seccionará * Puxar linhas auxiliares de interseção entre o plano vertical e as curvas de nível * Desenhar linhas horizontais que representam os planos horizontais referentes às curvas de nível, na mesma escala da planta topográfica * Identificar as interseções entre as linhas auxiliares e os planos horizontais * Traçar a linha que une as interseções identificadas anteriormente PLANO VERTICAL

80 Perfil a partir de Curvas de Nível

81 Perfis do Nivelamento Perfil Transversal: Em direção Transversa ao Caminhamento Perfil Longitudinal: Ao longo do Caminhamento

82 Perfis do Nivelamento Perfil Longitudinal: - Ao longo do Caminhamento Perfil Transversal: - Em direção Transversa ao Caminhamento

83 Cortes offset offset pé plataforma pé Aterros plataforma talude offset offset

84 Seção mista offset corte ponto de passagem aterro offset

85 Greides Greide é a linha gráfica que acompanha o perfil do terreno, sendo dotada de uma certa inclinação, e que indica quando do solo deve ser cortado ao aterrado.

86 Greides, Cortes e Aterros Greide ou Grade é a linha que une dois a dois, um certo número de pontos dados num perfil

87 Greides, Cortes e Aterros COTA VERMELHA distância vertical entre um ponto do greide e o ponto correspondente no terreno.

88 Greides, Cortes e Aterros COTA VERMELHA POSITIVA (+) - é quando o ponto do greide estiver acima do ponto correspondente no terreno. Equivale a um Aterro.

89 Greides, Cortes e Aterros COTA VERMELHA NEGATIVA (-) é quando o ponto do greide estiver abaixo do ponto correspondente no terreno. Equivale a um Corte.

90 Greides, Cortes e Aterros PONTO DE PASSAGEM é o ponto de transição entre corte e aterro. O ponto do greide coincide com o ponto do terreno. Não há corte nem aterro, tendo portanto cota vermelha nula.

91

NIVELAMENTO GEOMÉTRICO

NIVELAMENTO GEOMÉTRICO UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE GEOCIÊNCIAS DEPARTAMENTO DE GEODÉSIA TOPOGRAFIA I NIVELAMENTO GEOMÉTRICO PROFESSOR JORGE LUIZ BARBOSA DA SILVA JUNHO/2003 MONITORES: VIVIAN, RODRIGO

Leia mais

EXERCÍCIOS DE TOPOGRAFIA

EXERCÍCIOS DE TOPOGRAFIA UNIVERSIDADE DE SÃO PAULO Escola Superior de Agricultura "Luiz de Queiroz" DEPARTAMENTO DE ENGENHARIA RURAL Área de Topografia e Geoprocessamento 1 EXERCÍCIOS DE TOPOGRAFIA Professores: Rubens Angulo Filho

Leia mais

08-LEVANTAMENTO TOPOGRÁFICO PLANIMETRIA pg 98

08-LEVANTAMENTO TOPOGRÁFICO PLANIMETRIA pg 98 TOPOGRAFIA 08-LEVANTAMENTO TOPOGRÁFICO PLANIMETRIA pg 98 levantamento pontos planimétricos, altimétricos ou planialtimétricos pontos de apoio (partir destes ) Projeção ΔX = D. sen Az ΔY = D. cos Az TÉCNICAS

Leia mais

Aula 8 : Desenho Topográfico

Aula 8 : Desenho Topográfico Aula 8 : Desenho Topográfico Topografia, do grego topos (lugar) e graphein (descrever), é a ciência aplicada que representa, no papel, a configuração (contorno,dimensão e posição relativa) de um porção

Leia mais

DEPARTAMENTO DE ENGENHARIA DE BIOSSISTEMAS - ESALQ / USP LEB 340 - Topografia e Geoprocessamento I Prof. Rubens Angulo Filho 1º Semestre de 2015

DEPARTAMENTO DE ENGENHARIA DE BIOSSISTEMAS - ESALQ / USP LEB 340 - Topografia e Geoprocessamento I Prof. Rubens Angulo Filho 1º Semestre de 2015 Trabalho prático nº 01: Levantamento à Trena 1) Material: a) trena de 20,0m; b) 3 balizas; c) 4 fichas; d) GPS de navegação 2) Método: A medição dos alinhamentos, no campo, será executada por 3 balizeiros

Leia mais

-ESTRUTURA VIÁRIA TT048 CURVAS VERTICAIS

-ESTRUTURA VIÁRIA TT048 CURVAS VERTICAIS INFRAINFRA -ESTRUTURA VIÁRIA TT048 CURVAS VERTICAIS Prof. Djalma Pereira Prof. Eduardo Ratton Profa. Gilza Fernandes Blasi Profa. Márcia de Andrade Pereira Um fator importante para a segurança e eficiência

Leia mais

Topografia Aplicada à Engenharia Civil. Aula 09 Altimetria e Fotogrametria. Laboratório de Cartografia Digital - CTUFES

Topografia Aplicada à Engenharia Civil. Aula 09 Altimetria e Fotogrametria. Laboratório de Cartografia Digital - CTUFES Topografia Geomática Aplicada à Engenharia Civil Aula 09 Altimetria e Fotogrametria Laboratório de Cartografia Digital - CTUFES 2 Altimetria Operação no terreno, que nos fornece os dados necessários à

Leia mais

TOPOGRAFIA. Nivelamento

TOPOGRAFIA. Nivelamento TOPOGRAFIA Nivelamento Altimetria: parte da topografia que tem por objectivo, por meio de métodos e instrumentos adequados, atribuir uma cota altimétrica a cada ponto, de forma a poder determinar a diferença

Leia mais

Prof. Vinícius C. Patrizzi ESTRADAS E AEROPORTOS

Prof. Vinícius C. Patrizzi ESTRADAS E AEROPORTOS Prof. Vinícius C. Patrizzi ESTRADAS E AEROPORTOS Elementos geométricos de uma estrada (Fonte: PONTES FILHO, 1998) GEOMETRIA DE VIAS 1. INTRODUÇÃO: A geometria de uma estrada é definida pelo traçado do

Leia mais

Capítulo IV TAQUEOMETRIA

Capítulo IV TAQUEOMETRIA 62 Capítulo IV TAQUEOMETRIA 1. Princípios Gerais A taqueometria, do grego takhys (rápido), metren (medição), compreende uma série de operações que constituem um processo rápido e econômico para a obtenção

Leia mais

Capítulo 6 ELEMENTOS GEOMÉTRICOS DAS ESTRADAS DE RODAGEM

Capítulo 6 ELEMENTOS GEOMÉTRICOS DAS ESTRADAS DE RODAGEM Capítulo 6 ELEMENTOS GEOMÉTRICOS DAS ESTRADAS DE RODAGEM 6.1. INTRODUÇÃO A geometria de uma estrada é definida pelo traçado do seu eixo em planta e pelos perfis longitudinal e transversal. A Fig. 6.1 apresentada

Leia mais

Topografia TRABALHOS DE CAMPO NIVELAMENTO GEOMETRICO LEVANTAMENTO TAQUEOMETRICO LEVANTAMENTO E CALCULO DE UMA POLIGONAL

Topografia TRABALHOS DE CAMPO NIVELAMENTO GEOMETRICO LEVANTAMENTO TAQUEOMETRICO LEVANTAMENTO E CALCULO DE UMA POLIGONAL Licenciatura em Engenharia Civil 1º Ano 2º Semestre Topografia Ano Lectivo 2004/2005 TRABALHOS DE CAMPO NIVELAMENTO GEOMETRICO LEVANTAMENTO TAQUEOMETRICO LEVANTAMENTO E CALCULO DE UMA POLIGONAL Trabalho

Leia mais

Nivelamento geométrico

Nivelamento geométrico UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS DA TERRA DEPARTAMENTO DE GEOMÁTICA Nivelamento geométrico DR. CARLOS AURÉLIO NADAL PROFESSOR TITULAR Tipos de Nivelamento: 1. GEOMÉTRICO: mais preciso dos

Leia mais

Disciplina: Topografia II

Disciplina: Topografia II Curso de Graduação em Engenharia Civil Prof. Guilherme Dantas Fevereiro/2014 Disciplina: Topografia II O relevo da superfície terrestre é uma feição contínua e tridimensional. Existem diversas maneiras

Leia mais

(a) nivelamento geométrico; e (b) nivelamento trigonométrico.

(a) nivelamento geométrico; e (b) nivelamento trigonométrico. 45 Capítulo III ALTIMETRIA 1. Introdução A altimetria ou nivelamento tem por finalidade determinar a distância vertical ou diferença de nível entre diversos pontos. A diferença de altura entre dois pontos

Leia mais

AQUISIÇÃO DE DADOS. Topografia. Prof. Luciene Delazari Grupo de Pesquisa em Cartografia e SIG da UFPR SIG aplicado ao Meio Ambiente 2011

AQUISIÇÃO DE DADOS. Topografia. Prof. Luciene Delazari Grupo de Pesquisa em Cartografia e SIG da UFPR SIG aplicado ao Meio Ambiente 2011 AQUISIÇÃO DE DADOS Prof. Luciene Delazari Grupo de Pesquisa em Cartografia e SIG da UFPR SIG aplicado ao Meio Ambiente 2011 Topografia 1.1. Conceitos 1.2. Elementos da Planta Topográfica 1.3. Estudo das

Leia mais

LEB 340 Topografia e Geoprocessamento I. Prof. Rubens Angulo Filho

LEB 340 Topografia e Geoprocessamento I. Prof. Rubens Angulo Filho LEB 340 Topografia e Geoprocessamento I Tópicos Abordados 7. Levantamento por caminhamento ou poligonação 7.1 Introdução 7.2 Planejamento, seleção de métodos e aparelhagem 7.3 Apoio topográfico planimétrico

Leia mais

SENAI SERVIÇO NACIONAL DE APRENDIZAGEM INDUSTRIAL/SE

SENAI SERVIÇO NACIONAL DE APRENDIZAGEM INDUSTRIAL/SE SENAI SERVIÇO NACIONAL DE APRENDIZAGEM INDUSTRIAL/SE CURSO: HABILITAÇÃO PROFISSIONAL TÉCNICA DE NÍVEL MEDIO DA CONSTRUÇÃO CIVIL, COM ÊNFASE EM CANTEIRO DE OBRAS 2ª parte: Altimetria e Planialtimetria (APLICÁVEL

Leia mais

Exercícios de Altimetria

Exercícios de Altimetria UNICAP Universidade Católica de Pernambuco Exercícios de Altimetria Nivelamento Geométrico e Trigonométrico Autores: Prof. Fernando José de Lima Botelho Prof. Eduardo Oliveira Barros Prof. Glauber Carvalho

Leia mais

Noções de Topografia Para Projetos Rodoviarios

Noções de Topografia Para Projetos Rodoviarios Página 1 de 9 Noções de Topografia Para Projetos Rodoviarios Capitulos 01 - Requisitos 02 - Etaqpas 03 - Traçado 04 - Trafego e Clssificação 05 - Geometria 06 - Caracteristicas Técnicas 07 - Distancia

Leia mais

ALTIMETRIA. É a parte da topografia que trata dos métodos e instrumentos empregados no estudo e representação do relevo da Terra.

ALTIMETRIA. É a parte da topografia que trata dos métodos e instrumentos empregados no estudo e representação do relevo da Terra. ALTIMETRIA É a parte da topografia que trata dos métodos e instrumentos empregados no estudo e representação do relevo da Terra. Sheila 1 LEVANTAMENTOS ALTIMÉTRICOS Ou simplesmente nivelamento: é a operação

Leia mais

Introdução à Topografia

Introdução à Topografia Topografia Introdução à Topografia Etimologicamente a palavra TOPOS, em grego, significa lugar e GRAPHEN descrição, assim, de uma forma bastante simples, Topografia significa descrição do lugar. O termo

Leia mais

TOPOGRAFIA II ALTIMETRIA

TOPOGRAFIA II ALTIMETRIA DISCIPLINA - TOPOGRAFIA PROFESSOR : MARCO ANTONIO VIEIRA TOPOGRAFIA II ALTIMETRIA Altitude, Cota e Diferença de Nível A partir da definição de superfícies de referência de nível, designa-se por: a) Altitude

Leia mais

Lista de exercícios sobre barras submetidas a força normal

Lista de exercícios sobre barras submetidas a força normal RESISTÊNCIA DOS MATERIAIS I Lista de exercícios sobre barras submetidas a força normal 1) O cabo e a barra formam a estrutura ABC (ver a figura), que suporta uma carga vertical P= 12 kn. O cabo tem a área

Leia mais

Lista de Exercícios de Topografia Planimetria

Lista de Exercícios de Topografia Planimetria Lista de Exercícios de Topografia Planimetria 1. Cite 3 métodos de levantamento topográfico e uma situação prática onde cada um poderia ser empregado. 2. Verifique se existe erro de fechamento angular

Leia mais

EXERCÍCIOS DE APOIO ÀS AULAS PRÁTICAS DE TOPOGRAFIA ENGENHARIA CIVIL

EXERCÍCIOS DE APOIO ÀS AULAS PRÁTICAS DE TOPOGRAFIA ENGENHARIA CIVIL EXERCÍCIOS DE APOIO ÀS AULAS PRÁTICAS DE TOPOGRAFIA ENGENHARIA CIVIL INSTITUTO SUPERIOR TÉCNICO DEPARTAMENTO DE ENGENHARIA CIVIL E ARQUITECTURA DOCENTES (2009/2010) 2009/2010 Ana Paula Falcão Flôr Ricardo

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

Topografia Aula 2 Unidades Usuais e Revisão de Trigonometria

Topografia Aula 2 Unidades Usuais e Revisão de Trigonometria Topografia Aula 2 Unidades Usuais e Revisão de Trigonometria Agronomia / Arquitetura e Urbanismo / Engenharia Civil Prof. Luiz Miguel de Barros luizmiguel.barros@yahoo.com.br Revisão Aula 1 O que é topografia?

Leia mais

Terceira Lista de Exercícios

Terceira Lista de Exercícios Universidade Católica de Petrópolis Disciplina: Resitência dos Materiais I Prof.: Paulo César Ferreira Terceira Lista de Exercícios 1. Calcular o diâmetro de uma barra de aço sujeita a ação de uma carga

Leia mais

Os conceitos mais básicos dessa matéria são: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo.

Os conceitos mais básicos dessa matéria são: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo. Os conceitos mais básicos dessa matéria são: Cinemática Básica: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo. Velocidade: Consiste na taxa de variação dessa distância

Leia mais

PLANIMETRIA. Laboratório de Topografia e Cartografia - CTUFES

PLANIMETRIA. Laboratório de Topografia e Cartografia - CTUFES PLANIMETRIA Medidas Lineares DV DH Distância Horizontal (DH): é a distância medida entre dois pontos, no plano horizontal. Este plano pode, conforme indicado na figura, passar tanto pelo ponto A, quanto

Leia mais

FACULDADE SUDOESTE PAULISTA CURSO - ENGENHARIA CIVIL DISCIPLINA- TOPOGRAFIA

FACULDADE SUDOESTE PAULISTA CURSO - ENGENHARIA CIVIL DISCIPLINA- TOPOGRAFIA FACULDADE SUDOESTE PAULISTA CURSO - ENGENHARIA CIVIL DISCIPLINA- TOPOGRAFIA EXERCÍCIO DE REVISÃO 1. Com base nos seus conhecimentos, complete a lacuna com a alternativa abaixo que preencha corretamente

Leia mais

RODOLFO MOREIRA DE CASTRO JUNIOR TOPOGRAFIA CURSO DE ENGENHARIA CIVIL

RODOLFO MOREIRA DE CASTRO JUNIOR TOPOGRAFIA CURSO DE ENGENHARIA CIVIL RODOLFO MOREIRA DE CASTRO JUNIOR TOPOGRAFIA CURSO DE ENGENHARIA CIVIL UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO Centro Tecnológico Laboratório de Topografia e Cartografia LTC - CTUFES Recolhido, Montado e

Leia mais

MANUAL TÉCNICO PARA LEVANTAMENTO E DESENHO TOPOGRÁFICO Apresentação

MANUAL TÉCNICO PARA LEVANTAMENTO E DESENHO TOPOGRÁFICO Apresentação MANUAL TÉCNICO PARA LEVANTAMENTO E DESENHO TOPOGRÁFICO Apresentação A planilha de Melhor Caminho GPS serve para projetar e desenhar Planta Baixa, Perfil Longitudinal e Seções Transversais do Projeto, bem

Leia mais

Prof. Vinícius C. Patrizzi ESTRADAS E AEROPORTOS

Prof. Vinícius C. Patrizzi ESTRADAS E AEROPORTOS Prof. Vinícius C. Patrizzi ESTRADAS E AEROPORTOS GEOMETRIA DE VIAS Elementos geométricos de uma estrada (Fonte: PONTES FILHO, 1998) 1. INTRODUÇÃO: Após traçados o perfil longitudinal e transversal, já

Leia mais

Aula 18 PERFIL TOPOGRÁFICO: TIPOS DE RELEVO. Antônio Carlos Campos

Aula 18 PERFIL TOPOGRÁFICO: TIPOS DE RELEVO. Antônio Carlos Campos Aula 18 PERFIL TOPOGRÁFICO: TIPOS DE RELEVO META Apresentar perfis topográficos, mostrando as principais formas geomorfológicas. OBJETIVOS Ao final desta aula, o aluno deverá: identificar os principais

Leia mais

APONTAMENTOS DAS AULAS DE Topografia e Geoprocessamento I LER 340

APONTAMENTOS DAS AULAS DE Topografia e Geoprocessamento I LER 340 UNIVERSIDADE DE SÃO PAULO Escola Superior de Agricultura "Luiz de Queiroz" DEPARTAMENTO DE ENGENHARIA RURAL Área de Topografia e Geoprocessamento APONTAMENTOS DAS AULAS DE Topografia e Geoprocessamento

Leia mais

Topografia. Conceitos Básicos. Prof.: Alexandre Villaça Diniz - 2004-

Topografia. Conceitos Básicos. Prof.: Alexandre Villaça Diniz - 2004- Topografia Conceitos Básicos Prof.: Alexandre Villaça Diniz - 2004- 1 ÍNDICE ÍNDICE...1 CAPÍTULO 1 - Conceitos Básicos...2 1. Definição...2 1.1 - A Planta Topográfica...2 1.2 - A Locação da Obra...4 2.

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva nos pontos onde e Vamos determinar a reta tangente à curva nos pontos de abscissas

Leia mais

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFBA VESTIBULAR a Fase Profa. Maria Antônia Gouveia. Questão. Considerando-se as funções f: R R e g: R R definidas por f(x) = x e g(x) = log(x² + ), é correto afirmar: () A função

Leia mais

Engenharia Civil. Alexandre Souza Eng. Agrimensor MSc. alexandre0363@gmail.com

Engenharia Civil. Alexandre Souza Eng. Agrimensor MSc. alexandre0363@gmail.com Engenharia Civil Alexandre Souza Eng. Agrimensor MSc. alexandre0363@gmail.com Levantamento topográfico -Planimetria Em um levantamento topográfico, normalmente são determinados pontos de apoio ao levantamento

Leia mais

Norma Técnica Interna SABESP NTS 114

Norma Técnica Interna SABESP NTS 114 Norma Técnica Interna SABESP NTS 114 LOCAÇÃO E LEVANTAMENTO PLANIALTIMÉTRICO DE SEÇÕES TOPOGRÁFICAS Especificação Agosto - 2000 NTS 114: 2000 Norma Técnica Interna SABESP S U M Á R I O 1. OBJETIVO...1

Leia mais

LEVANTAMENTOS TOPOGRÁFICOS II GA108

LEVANTAMENTOS TOPOGRÁFICOS II GA108 LEVANTAMENTOS TOPOGRÁFICOS II GA108 Universidade Federal do Paraná Setor de Ciências da Terra Departamento de Geomática Profa. Dra. Regiane Dalazoana LEVANTAMENTOS TOPOGRÁFICOS II GA108 a) Cálculo de Volumes

Leia mais

FSP FACULDADE SUDOESTE PAULISTA. Curso: Engenharia Civil. Prof.ª Amansleone da S. Temóteo APONTAMENTO DE AULA

FSP FACULDADE SUDOESTE PAULISTA. Curso: Engenharia Civil. Prof.ª Amansleone da S. Temóteo APONTAMENTO DE AULA FSP FACULDADE SUDOESTE PAULISTA Curso: Engenharia Civil Prof.ª Amansleone da S. Temóteo APONTAMENTO DE AULA 1. INSTRUMENTOS DE TOPOGRAFIA Instrumentos de topografia se referem aos equipamentos necessários

Leia mais

Sistema topograph 98. Tutorial Módulo Projetos

Sistema topograph 98. Tutorial Módulo Projetos Sistema topograph 98 Tutorial Módulo Projetos Como abrir um projeto existente _ 1. Na área de trabalho do Windows, procure o ícone do topograph e dê um duplo clique sobre ele para carregar o programa.

Leia mais

MATEMÁTICA 3. Resposta: 29

MATEMÁTICA 3. Resposta: 29 MATEMÁTICA 3 17. Uma ponte deve ser construída sobre um rio, unindo os pontos A e, como ilustrado na figura abaixo. Para calcular o comprimento A, escolhe-se um ponto C, na mesma margem em que está, e

Leia mais

Protocolo de Instalação de Parcelas Terrestres

Protocolo de Instalação de Parcelas Terrestres MATERIAL NECESSÁRIO GPS Clinômetro Barbante plástico Vara para suporte do clinômetro e vara alvo (Figura 1) Cano para apoiar bússola Jogo de marcador alfa-numérico Trena de 10 metros Tubos de PVC ½ marrom

Leia mais

ANÁLISE COMPARATIVA DO LEVANTAMENTO PLANIALTIMÉTRICO EXECUTADO COM LEVANTAMENTO GNSS NO MODO RTK E TOPOGRAFIA CONVENCIONAL USADO COMO REFERÊNCIA

ANÁLISE COMPARATIVA DO LEVANTAMENTO PLANIALTIMÉTRICO EXECUTADO COM LEVANTAMENTO GNSS NO MODO RTK E TOPOGRAFIA CONVENCIONAL USADO COMO REFERÊNCIA ANÁLISE COMPARATIVA DO LEVANTAMENTO PLANIALTIMÉTRICO EXECUTADO COM LEVANTAMENTO GNSS NO MODO RTK E TOPOGRAFIA CONVENCIONAL USADO COMO REFERÊNCIA Aluno: Miguel Gustavo Gomes de Lima Orientador: Prof. MSc.

Leia mais

PROVA DE CONHECIMENTOS ESPECÍFICOS

PROVA DE CONHECIMENTOS ESPECÍFICOS 10 PROVA DE CONHECIMENTOS ESPECÍFICOS QUESTÃO 31 As projeções do lado do polígono, com rumo no 4 o quadrante, sobre os eixos x e y são, respectivamente: a) positiva e positiva b) positiva e negativa c)

Leia mais

Resistência dos Materiais

Resistência dos Materiais Aula 5 Carga Axial e Princípio de Saint-Venant Carga Axial A tubulação de perfuração de petróleo suspensa no guindaste da perfuratriz está submetida a cargas e deformações axiais extremamente grandes,

Leia mais

NIVELAMENTO 2007/1 MATEMÁTICA BÁSICA. Núcleo Básico da Primeira Fase

NIVELAMENTO 2007/1 MATEMÁTICA BÁSICA. Núcleo Básico da Primeira Fase NIVELAMENTO 00/ MATEMÁTICA BÁSICA Núcleo Básico da Primeira Fase Instituto Superior Tupy Nivelamento de Matemática Básica ÍNDICE. Regras dos Sinais.... Operações com frações.... Adição e Subtração....

Leia mais

DATAGEOSIS EDUCACIONAL 2005

DATAGEOSIS EDUCACIONAL 2005 DATAGEOSIS EDUCACIONAL 2005 GUIA DE USO Aula 2 1. Abra o aplicativo clicando no atalho na área de trabalho. 2. Clique no botão Novo projeto ou clique o comando - (ctrl + N). 3. NA janela DADOS DO PROJETO,

Leia mais

FÍSICA. Professor Felippe Maciel Grupo ALUB

FÍSICA. Professor Felippe Maciel Grupo ALUB Revisão para o PSC (UFAM) 2ª Etapa Nas questões em que for necessário, adote a conversão: 1 cal = 4,2 J Questão 1 Noções de Ondulatória. (PSC 2011) Ondas ultra-sônicas são usadas para vários propósitos

Leia mais

Topografia Aplicada à Engenharia Civil AULA 01

Topografia Aplicada à Engenharia Civil AULA 01 Topografia Geomática Aplicada à Engenharia Civil AULA 01 Apresentação da Disciplina e Conceitos Iniciais Profº Rodolfo Moreira de Castro JúniorJ Graduação: Engº Cartógrafo Mestrado: Informática Geoprocessamento

Leia mais

AULA III MEDIDA DE DISTÂNCIA

AULA III MEDIDA DE DISTÂNCIA AULA III MEDIDA DE DISTÂNCIA 1. Introdução. 2. Medida Direta de Distâncias. 2.1. Equipamentos utilizados na Medida Direta de Distâncias. 2.2. Cuidados na Medida Direta de Distâncias. 2.3. Método na Medida

Leia mais

Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ

Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ º Exame de Qualificação 011 Questão 6 Vestibular 011 No interior de um avião que se desloca horizontalmente em relação ao

Leia mais

ESTUDO GRÁFICO DOS MOVIMENTOS. Gráfico posição x tempo (x x t)

ESTUDO GRÁFICO DOS MOVIMENTOS. Gráfico posição x tempo (x x t) ESTUDO GRÁFICO DOS MOVIMENTOS No estudo do movimento é bastante útil o emprego de gráficos. A descrição de um movimento a partir da utilização dos gráficos (posição x tempo; velocidade x tempo e aceleração

Leia mais

Levantamento topográfico

Levantamento topográfico MA092 - Geometria plana e analítica - Segundo projeto Levantamento topográfico Francisco A. M. Gomes Outubro de 2014 1 Descrição do projeto Nessa atividade, vamos usar a lei dos senos e a lei dos cossenos

Leia mais

Dupla Projeção Ortogonal / Método de Monge

Dupla Projeção Ortogonal / Método de Monge Provas Especialmente Adequadas Destinadas a Avaliar a Capacidade Para a Frequência do Ensino Superior dos Maiores de 23 Anos 2015 Prova de Desenho e Geometria Descritiva - Módulo de Geometria Descritiva

Leia mais

Bacharelado Engenharia Civil

Bacharelado Engenharia Civil Bacharelado Engenharia Civil Disciplina: Física Geral e Experimental I Força e Movimento- Leis de Newton Prof.a: Msd. Érica Muniz Forças são as causas das modificações no movimento. Seu conhecimento permite

Leia mais

TIPO-A FÍSICA. x v média. t t. x x

TIPO-A FÍSICA. x v média. t t. x x 12 FÍSICA Aceleração da gravidade, g = 10 m/s 2 Constante gravitacional, G = 7 x 10-11 N.m 2 /kg 2 Massa da Terra, M = 6 x 10 24 kg Velocidade da luz no vácuo, c = 300.000 km/s 01. Em 2013, os experimentos

Leia mais

Sistemas de coordenadas e tempo. 1 Sistema de coordenadas horizontal local

Sistemas de coordenadas e tempo. 1 Sistema de coordenadas horizontal local José Laurindo Sobrinho Grupo de Astronomia da Universidade da Madeira Fevereiro 2014 Sistemas de coordenadas e tempo 1 Sistema de coordenadas horizontal local O sistema de coordenadas horizontal local

Leia mais

A Topografia no Sistema CR - Campeiro 7.0

A Topografia no Sistema CR - Campeiro 7.0 A Topografia no Sistema CR - Campeiro 7.0 Introdução a Topografia Enio Giotto Professor Titular da UFSM Elódio Sebem Professor Associado da UFSM SUMÁRIO 1 A TOPOGRAFIA E SEU CAMPO DE ATUAÇÃO 2 DIVISÃO

Leia mais

Matemática Aplicada II

Matemática Aplicada II Matemática Aplicada II 010G Cópia não autorizada. Reservados todos os MATEMÁTICA direitos APLICADA autorais. II 5E Editora Aline Palhares Desenvolvimento de conteúdo, mediação pedagógica e design gráfico

Leia mais

DN = Se DN+ então o terreno está em aclive (de ré para vante). Se DN- então o terreno está em declive (de ré para a vante).

DN = Se DN+ então o terreno está em aclive (de ré para vante). Se DN- então o terreno está em declive (de ré para a vante). 1 - Nivelamento Geométrico Simples Neste método, indicado pela figura abaixo (DOMINGUES, 1979), instala-se o nível uma única vez em ponto estratégico, situado ou não sobre a linha a nivelar e eqüidistante

Leia mais

Óptica Geométrica. Universidade do Estado do Rio Grande do Norte. Dr. Edalmy Oliveira de Almeida

Óptica Geométrica. Universidade do Estado do Rio Grande do Norte. Dr. Edalmy Oliveira de Almeida Universidade do Estado do Rio Grande do Norte Rua Almino Afonso, 478 - Centro Mossoró / RN CEP: 59.610-210 www.uern.br email: reitoria@uern.br ou Fone: (84) 3315-2145 3342-4802 Óptica Geométrica Dr. Edalmy

Leia mais

UNICAP Universidade Católica de Pernambuco Laboratório de Topografia de UNICAP - LABTOP Topografia 2. Métodos de Aquisição de dados Planialtimétricos

UNICAP Universidade Católica de Pernambuco Laboratório de Topografia de UNICAP - LABTOP Topografia 2. Métodos de Aquisição de dados Planialtimétricos UNICAP Universidade Católica de Pernambuco Laboratório de Topografia de UNICAP - LABTOP Topografia 2 Métodos de Aquisição de dados Planialtimétricos Recife, 2014 Métodos de Aquisição dos Dados O cuidado

Leia mais

UNIDADE II Processos de medição de ângulos e distâncias.

UNIDADE II Processos de medição de ângulos e distâncias. FUNDAÇÃO EDUCACIONAL SERRA DOS ÓRGÃOS - FESO CENTRO UNIVERSITÁRIO SERRA DOS ÓRGÃOS UNIFESO CENTRO DE CIÊNCIAS E TECNOLOGIA CCT CURSO DE ENGENHARIA AMBIENTAL Profª Drª Verônica Rocha Bonfim Engª Florestal

Leia mais

Faculdades Anhanguera

Faculdades Anhanguera 2º Aula de Física 2.1 Posição A posição de uma partícula sobre um eixo x localiza a partícula em relação á origem, ou ponto zero do eixo. A posição é positiva ou negativa, dependendo do lado da origem

Leia mais

Refração da Luz Prismas

Refração da Luz Prismas Refração da Luz Prismas 1. (Fuvest 014) Um prisma triangular desvia um feixe de luz verde de um ângulo θ A, em relação à direção de incidência, como ilustra a figura A, abaixo. Se uma placa plana, do mesmo

Leia mais

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) Num triângulo retângulo, definimos o cosseno de seus ângulos agudos O triângulo retângulo da figura

Leia mais

Resolução Vamos, inicialmente, calcular a aceleração escalar γ. Da figura dada tiramos: para t 0

Resolução Vamos, inicialmente, calcular a aceleração escalar γ. Da figura dada tiramos: para t 0 46 a FÍSICA Um automóvel desloca-se a partir do repouso num trecho retilíneo de uma estrada. A aceleração do veículo é constante e algumas posições por ele assumidas, bem como os respectivos instantes,

Leia mais

TOPOGRAFIA - Planimetria. Alex Mota dos Santos

TOPOGRAFIA - Planimetria. Alex Mota dos Santos TOPOGRAFIA - Planimetria Alex Mota dos Santos Unidades de Medida Linear polegada = 2,75 cm = 0,0275 m polegada inglesa = 2,54 cm = 0,0254 m pé = 30,48cm = 0,3048 m jarda = 91,44cm = 0,9144m milha brasileira

Leia mais

ALGUNS TERMOS TÉCNICOS IMPORTANTES

ALGUNS TERMOS TÉCNICOS IMPORTANTES Topografia Medições de Distâncias ALGUNS TERMOS TÉCNICOS IMPORTANTES Ponto topográfico: É todo e qualquer ponto do terreno, que seja importante e levado em conta na medição da área. Ao final de cada alinhamento

Leia mais

FICHA DE TRABALHO DERIVADAS I PARTE. 1. Uma função f tem derivadas finitas à direita e à esquerda de x = 0. Então:

FICHA DE TRABALHO DERIVADAS I PARTE. 1. Uma função f tem derivadas finitas à direita e à esquerda de x = 0. Então: FICHA DE TRABALHO DERIVADAS I PARTE. Uma função f tem derivadas finitas à direita e à esquerda de = 0. Então: (A) f tem necessariamente derivada finita em = 0; (B) f não tem com certeza derivada finita

Leia mais

ESCOLA SECUNDÁRIA DE CASQUILHOS

ESCOLA SECUNDÁRIA DE CASQUILHOS ESCOLA SECUNDÁRIA DE CASQUILHOS FQA Ficha 3 - Forças fundamentais, leis de Newton e Lei da gravitação universal 11.º Ano Turma A e B 1 outubro 2014 NOME Nº Turma 1. Associe um número da coluna 1 a uma

Leia mais

IFSP - EAD - GEOMETRIA TRIÂNGULO RETÂNGULO CONCEITUAÇÃO :

IFSP - EAD - GEOMETRIA TRIÂNGULO RETÂNGULO CONCEITUAÇÃO : IFSP - EAD - GEOMETRIA TRIÂNGULO RETÂNGULO CONCEITUAÇÃO : Como já sabemos, todo polígono que possui três lados é chamado triângulo. Assim, ele também possui três vértices e três ângulos internos cuja soma

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ CENTRO DE GEOCIÊNCIAS DEPARTAMENTO DE GEOLOGIA DISCIPLINA: GEOLOGIA ESTRUTURAL GEOLOGIA ESTRUTURAL - PRÁTICA

UNIVERSIDADE FEDERAL DO PARÁ CENTRO DE GEOCIÊNCIAS DEPARTAMENTO DE GEOLOGIA DISCIPLINA: GEOLOGIA ESTRUTURAL GEOLOGIA ESTRUTURAL - PRÁTICA 1 UNIVERSIDADE FEDERAL DO PARÁ CENTRO DE GEOCIÊNCIAS DEPARTAMENTO DE GEOLOGIA DISCIPLINA: GEOLOGIA ESTRUTURAL Cap. 01 - Mapas e Seções Geológicas GEOLOGIA ESTRUTURAL - PRÁTICA Antes que se comece a estudar

Leia mais

Por que os cartógrafos e os geógrafos têm necessidade de conhecer topografia? Os levantamentos de base não existem em todos os lugares;

Por que os cartógrafos e os geógrafos têm necessidade de conhecer topografia? Os levantamentos de base não existem em todos os lugares; 1 - ELEMENTOS DE TOPOGRAFIA Definição: É o conjunto de técnicas aplicadas ao terreno, cujo objeto é o estabelecimento das cartas e das plantas. Conforme a etimologia da palavra, topografia é a arte de

Leia mais

Capítulo IV. Dispositivos de proteção Parte II. Proteção e seletividade. 26 O Setor Elétrico / Abril de 2010. Relé direcional de potência

Capítulo IV. Dispositivos de proteção Parte II. Proteção e seletividade. 26 O Setor Elétrico / Abril de 2010. Relé direcional de potência 26 Capítulo IV Dispositivos de proteção Parte II Por Cláudio Mardegan* Relé direcional de potência Quando instalado na interconexão com Em concepção, os relés direcionais de potência são relés que operam

Leia mais

Unidade III: Movimento Uniformemente Variado (M.U.V.)

Unidade III: Movimento Uniformemente Variado (M.U.V.) Colégio Santa Catarina Unidade III: Movimento Uniformemente Variado (M.U.V.) 17 Unidade III: Movimento Uniformemente Variado (M.U.V.) 3.1- Aceleração Escalar (a): Em movimentos nos quais as velocidades

Leia mais

DISCIPLINA TOPOGRAFIA B NIVELAMENTO TRIGONOMÉTRICO

DISCIPLINA TOPOGRAFIA B NIVELAMENTO TRIGONOMÉTRICO UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS DA TERRA DEPARTAMENTO DE GEOMÁTICA DISCIPLINA TOPOGRAFIA B NIVELAMENTO TRIGONOMÉTRICO DR. CARLOS AURÉLIO NADAL PROFESSOR TITULAR Equipe do USGS - 1902 Equipe

Leia mais

TOPOGRAFIA {ALTIMETRIA} DICAS

TOPOGRAFIA {ALTIMETRIA} DICAS TOPOGRAFIA {ALTIMETRIA} DICAS 1. MIRAS DE NIVELAMENTO A mira constitui parte integrante do instrumento usado em nivelamento de precisão. Existem dois tipos de miras; a denominada mira falante e a mira

Leia mais

COMPLETA AUTOMAÇÃO PARA

COMPLETA AUTOMAÇÃO PARA COMPLETA AUTOMAÇÃO PARA TOPOGRAFIA E GEODÉSIA Algumas Novidades da Versão Office: Reformulação das Planilhas de Cálculos; GeraçãodeLayoutsdeImpressão; Inserção e Georreferenciamento de Imagens Raster;

Leia mais

2. (G1 - ifsp 2012) Em um trecho retilíneo de estrada, dois veículos, A e B, mantêm velocidades constantes. 54 km/h

2. (G1 - ifsp 2012) Em um trecho retilíneo de estrada, dois veículos, A e B, mantêm velocidades constantes. 54 km/h MU 1. (Uerj 2013) Um motorista dirige um automóvel em um trecho plano de um viaduto. O movimento é retilíneo e uniforme. A intervalos regulares de 9 segundos, o motorista percebe a passagem do automóvel

Leia mais

Concurso Público Federal Edital 06/2015

Concurso Público Federal Edital 06/2015 PROVA Concurso Público Federal Edital 06/2015 Área: Topografia e Desenho Técnico QUESTÕES OBJETIVAS Conhecimentos Específicos 01 a 30 Nome do candidato: Nº de Inscrição: INSTRUÇÕES 1º) Verifique se este

Leia mais

Esforços axiais e tensões normais

Esforços axiais e tensões normais Esforços axiais e tensões normais (Ref.: Beer & Johnston, Resistência dos Materiais, ª ed., Makron) Considere a estrutura abaixo, construída em barras de aço AB e BC, unidas por ligações articuladas nas

Leia mais

12) A círculo = π r 2. 13) A lateral cone = π.r.g. 16) V esfera = 18) A lateral pirâmide = 19) (y y 0 ) = m(x x 0 ) 20) T p+1 = a

12) A círculo = π r 2. 13) A lateral cone = π.r.g. 16) V esfera = 18) A lateral pirâmide = 19) (y y 0 ) = m(x x 0 ) 20) T p+1 = a MATEMÁTICA FORMULÁRIO 0 o 45 o 60 o sen cos tg base altura ) A triângulo = ) A círculo = π r x y ) A triângulo = D, onde D = x y x y ) A lateral cone = π.r.g ) sen (x)+ cos (x)= 4) A retângulo = base altura

Leia mais

Compreendendo o espaço

Compreendendo o espaço Módulo 1 Unidade 2 Compreendendo o espaço Para início de conversa... A forma como você se locomove na cidade para ir de um lugar a outro tem a ver com as direções que você toma e com o sentido para o qual

Leia mais

Estrada de Rodagem Terraplanagem

Estrada de Rodagem Terraplanagem Estrada de Rodagem Terraplanagem Prof. Dr. Rodrigo de Alvarenga Rosa rodrigoalvarengarosa@gmail.com (27) 9941-3300 1 O motivo para realizar terraplenagem é que o terreno natural não é adequado ao tráfego

Leia mais

FATEC Faculdade de Tecnologia de São Paulo Movimento de Terra e Pavimentação ETE II Estudo de traçado de Estradas - II

FATEC Faculdade de Tecnologia de São Paulo Movimento de Terra e Pavimentação ETE II Estudo de traçado de Estradas - II 1 COORDEADAS, AZIMUTES E ÂGULOS DE DEFLEXÃO estas notas de aula pretende-se apresentar as formas de cálculos de obtenção dos valores de azimutes de trechos de tangentes de rodovias e também os cálculos

Leia mais

No sub menu de perfil temos algumas opções a trabalhar. Vejamos cada uma

No sub menu de perfil temos algumas opções a trabalhar. Vejamos cada uma Módulo de Topografia Avançada Perfil. Esta ferramenta gera uma representação em corte longitudinal da superfície física do terreno. O acesso a este recurso está no menu suspenso Posição, Perfil: delas.

Leia mais

TOPOGRAFIA O LEVANTAMENTO TOPOGRÁFICO

TOPOGRAFIA O LEVANTAMENTO TOPOGRÁFICO 200784 Topografia I TOPOGRAFIA O LEVANTAMENTO TOPOGRÁFICO Prof. Carlos Eduardo Troccoli Pastana pastana@projeta.com.br (14) 3422-4244 AULA 2 1. AS GRANDEZAS MEDIDAS Lineares 200784 Topografia I 2 1. AS

Leia mais

TOPOGRAFIA E GEODÉSIA II

TOPOGRAFIA E GEODÉSIA II [ 2012-1] TOPOGRAFIA E GEODÉSIA II [MATERIAL DE APOIO] Prof. Sebastião Jarbas Pinheiro [FEV/2012] ALTIMETRIA Conceito: É a parte da Topografia que determina as cotas ou distâncias verticais de um certo

Leia mais

4.1 MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES

4.1 MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES CAPÍTULO 4 67 4. MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES Consideremos um bloco em contato com uma superfície horizontal, conforme mostra a figura 4.. Vamos determinar o trabalho efetuado por uma

Leia mais

GRADUAÇÃO FGV 2005 PROVA DISCURSIVA DE MATEMÁTICA

GRADUAÇÃO FGV 2005 PROVA DISCURSIVA DE MATEMÁTICA GRADUAÇÃO FGV 005 PROVA DISCURSIVA DE MATEMÁTICA PREENCHA AS QUADRÍCULAS ABAIXO: NOME DO CANDIDATO: NÚMERO DE INSCRIÇÃO: Assinatura 1 Você receberá do fiscal este caderno com o enunciado de 10 questões,

Leia mais

Topografia Aplicada a Terraplenagem

Topografia Aplicada a Terraplenagem Topografia Aplicada a Terraplenagem ALTIMETRIA Nivelamento Geométrico Método das Visadas Extremas PLANIMETRIA Malha Regular PLANIMETRIA IMPLANTAÇÃO DA MALHA REGULAR Equipamentos: 1 Teodolito (Utilizado

Leia mais

TOPOGRAFIA ALTIMETRIA: LEVANTAMENTO TAQUEOMÉTRICO. Prof. Dr. Daniel Caetano

TOPOGRAFIA ALTIMETRIA: LEVANTAMENTO TAQUEOMÉTRICO. Prof. Dr. Daniel Caetano TOPOGRAFIA ALTIMETRIA: LEVANTAMENTO TAQUEOMÉTRICO Prof. Dr. Daniel Caetano 2013-1 Objetivos Levantamento taqueométrico Perfil LEVANTAMENTO TAQUEOMÉTRICO Levantamento Taqueométrico Processo para obter rapidamente:

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA UFPB CENTRO DE CIÊNCIAS AGRÁRIAS - CCA Departamento de Solos e Engenharia Rural - DSER. Prof. Dr. Guttemberg Silvino

UNIVERSIDADE FEDERAL DA PARAÍBA UFPB CENTRO DE CIÊNCIAS AGRÁRIAS - CCA Departamento de Solos e Engenharia Rural - DSER. Prof. Dr. Guttemberg Silvino UNIVERSIDADE FEDERAL DA PARAÍBA UFPB CENTRO DE CIÊNCIAS AGRÁRIAS - CCA Departamento de Solos e Engenharia Rural - DSER Prof. Dr. Guttemberg Silvino Considerações Iniciais Todo mapa/carta/planta é uma representação

Leia mais