ENERGIA SISTEMAS CONSERVATIVOS

Tamanho: px
Começar a partir da página:

Download "ENERGIA SISTEMAS CONSERVATIVOS"

Transcrição

1 ENERGIA SISTEMAS CONSERVATIVOS TEXTO PARA A PRÓXIMA QUESTÃO (Ufpe 2007) Constantes físicas necessárias para a solução dos problemas: aceleração da gravidade: 10 m/s constante de Planck: 6,6 x 10 J.s 1. Uma bolinha de massa m = 200 g é largada do repouso de uma altura h, acima de uma mola ideal, de constante elástica k = 1240 N/m, que está fixada no piso (ver figura). Ela colide com a mola comprimindo-a por Ðx = 10 cm. Calcule, em metros, a altura inicial h. Despreze a resistência do ar. TEXTO PARA AS PRÓXIMAS 2 QUESTÕES. (G1 - cftce 2006) SE NECESSÁRIO, ADOTE g = 10 m/s. 2. Um projétil de 2 kg de massa é lançado obliquamente em relação a um plano horizontal, formando um ângulo de 45 com o mesmo, e gasta 10 s para atingir o ponto mais alto de sua trajetória. Determine: a) a energia cinética do projétil no instante do lançamento. b) a energia potencial no ponto mais alto da trajetória.

2 3. O bloco de massa m, da figura, desliza sem atrito com velocidade mínima necessária para subir a rampa de altura h igual a 2,45m. Determine esta velocidade. (Despreze os atritos e considere g = 10 m/s ) 4. (Fuvest 98) Um brinquedo é constituído por um cano (tubo) em forma de 3/4 de arco de circunferência, de raio médio R, posicionado num plano vertical, como mostra a figura. O desafio é fazer com que a bola 1, ao ser abandonada de uma certa altura H acima da extremidade B, entre pelo cano em A, bata na bola 2 que se encontra parada em B, ficando nela grudada, e ambas atinjam juntas a extremidade A. As massas das bolas 1 e 2 são M e M, respectivamente. Despreze os efeitos do ar e das forças de atrito. a) Determine a velocidade v com que as duas bolas grudadas devem sair da extremidade B do tubo para atingir a extremidade A. b) Determine o valor de H para que o desafio seja vencido.

3 5. (Unesp 94) No esporte conhecido como "ioiô humano", o praticante, preso à extremidade de uma corda elástica, cai da beira de uma plataforma para as águas de um rio. Sua queda é interrompida, a poucos metros da superfície da água, pela ação da corda elástica, que tem a outra extremidade firmemente presa à beira da plataforma. Suponha que, nas condições citadas acima, a distensão máxima sofrida pela corda, quando usado por um atleta de peso 750 N, é de 10 metros, e que seu comprimento, quando não distendida, é de 30 metros. Nestas condições: a) A que distância da plataforma está o atleta, quando chega ao ponto mais próximo da água? b) Qual o valor da constante elástica da corda? (Despreze o atrito com o ar e a massa da corda, e considere igual a zero o valor da velocidade do atleta no início da queda.) 6. (Fuvest 92) Adote: g = 10 m/s Uma mola pendurada num suporte apresenta comprimento igual a 20 cm. Na sua extremidade livre dependura-se um balde vazio, cuja massa é 0,50 kg. Em seguida, coloca-se água no balde até que o comprimento da mola atinja 40 cm. O gráfico a seguir ilustra a força que a mola exerce sobre o balde, em função do seu comprimento. Pede-se: a) a massa de água colocada no balde; b) a energia potencial elástica acumulada na mola no final do processo.

4 7. (G1 - cftce 2005) Uma esfera de massa 1,2 kg, presa a uma mola de 1,0 m de comprimento e constante elástica 25N/m, descreve uma trajetória circular num plano horizontal sobre uma mesa perfeitamente polida, como mostra a figura. Determine a energia mecânica, em relação à mesa, associada ao sistema massa-mola nas condições citadas. 8. (G1) Como pode haver aumento de velocidade, se o aumento de velocidade significa aumento de energia cinética, e a energia não aumenta pois se conserva? 9. (Unicamp 94) Uma bola metálica cai da altura de 1,0 m sobre um chão duro. A bola repica no chão várias vezes, conforme a figura adiante. Em cada colisão, a bola perde 20% de sua energia. Despreze a resistência do ar (g = 10 m/s ). a) Qual é a altura máxima que a bola atinge após duas colisões (ponto A)? b) Qual é a velocidade com que a bola atinge o chão na terceira colisão?

5 10. (Unesp 95) Um bloco de madeira, de massa 0,40 kg, mantido em repouso sobre uma superfície plana, horizontal e perfeitamente lisa, está comprimindo uma mola contra uma parede rígida, como mostra a figura a seguir. Quando o sistema é liberado, a mola se distende, impulsiona o bloco e este adquire, ao abandoná-la, uma velocidade final de 2,0 m/s. Determine o trabalho da força exercida pela mola, ao se distender completamente: a) sobre o bloco e b) sobre a parede. 11. (Fuvest 95) A figura adiante representa um plano inclinado CD. Um pequeno corpo é abandonado em C, desliza sem atrito pelo plano e cai livremente a partir de D, atingindo finalmente o solo. Desprezando a resistência do ar, determine: a) O módulo da aceleração 'a' do corpo, no trecho CD, em m/s. Use para a aceleração da gravidade o valor g = 10 m/s. b) O valor do módulo da velocidade do corpo, imediatamente antes dele atingir o solo, em m/s. c) O valor da componente horizontal da velocidade do corpo, imediatamente antes dele atingir o solo, em m/s.

6 12. (Unicamp 95) Numa câmara frigorífica, um bloco de gelo de massa m = 8,0 kg desliza sobre a rampa de madeira da figura a seguir, partindo do repouso, de uma altura h = 1,8 m. a) Se o atrito entre o gelo e a madeira fosse desprezível, qual seria o valor da velocidade do bloco ao atingir o solo (ponto A da figura)? b) Entretanto, apesar de pequeno, o atrito entre o gelo e a madeira não é desprezível, de modo que o bloco de gelo e chega à base da rampa com velocidade de 4,0 m/s. Qual foi a energia dissipada pelo atrito? c) Qual a massa de gelo (a 0 C) que seria fundida com esta energia? Considere o calor latente de fusão do gelo L = 80 cal/g e, para simplificar, adote 1 cal = 4,0 J. 13. (Unitau 95) No sistema indicado na figura a seguir, a mola ideal está com seu comprimento natural. Numa primeira experiência, o apoio é baixado muito lentamente até abandonar o bloco. Numa segunda experiência o apoio é subitamente retirado. Qual a razão entre as distensões máximas sofridas pela mola nas duas experiências?

7 14. (Fuvest 92) O gráfico de velocidade de um corpo de 2 kg de massa em função do tempo é dado a seguir. Durante todo intervalo de tempo indicado, a energia mecânica do corpo é conservada e nos instantes t = 0 e t = 25 s ela vale 100 J. Pede-se: a) o valor mínimo de energia potencial durante o movimento; b) o gráfico da força resultante que atua sobre o corpo, em função do tempo. 15. (Unicamp 92) Um carrinho de massa m = 300 kg percorre uma montanha russa cujo trecho BCD é um arco de circunferência de raio R = 5,4 m, conforme a figura adiante. A velocidade do carrinho no ponto A é vû = 12 m/s. Considerando g = 10 m/s e desprezando o atrito, calcule; a) a velocidade do carrinho no ponto C; b) a aceleração do carrinho no ponto C; c) a força feita pelos trilhos sobre o carrinho no ponto C.

8 16. (Fuvest-gv 91) Na figura a seguir, tem-se uma mola de massa desprezível e constante elástica 200 N/m, comprimida de 20 cm entre uma parede e um carrinho de 2,0 kg. Quando o carrinho é solto, toda a energia mecânica da mola é transferida ao mesmo. Desprezando-se o atrito, pede-se: a) nas condições indicadas na figura, o valor da força que a mola exerce na parede. b) a velocidade com que o carrinho se desloca, quando se desprende da mola. 17. (Fuvest 96) Um carro alegórico do bloco carnavalesco "Os Filhos do Nicolau" possui um plano inclinado e se move com velocidade horizontal U constante em relação à pista. Albert, o filho mais moço, escorrega desde o alto da rampa sem atrito. É observado por Galileu, o mais velho, sentado no carro, e por Isaac, parado na pista. Quando Albert chega ao fim da rampa, Isaac observa que a componente horizontal da velocidade de Albert é nula. Suponha que o movimento de Albert não altera a velocidade do carro, muito mais pesado do que ele. São dados: H = 5,0 m, š = 30. Adote g = 10 m/s a) Quais os valores das componentes horizontal Vh e vertical Vv da velocidade de Albert no fim da rampa, observados por Galileu? b) Quanto vale U? c) Qual o valor da componente vertical Vv da velocidade de Albert no fim da rampa, observado por Isaac?

9 18. (Unesp 90) Um pássaro de massa igual a 1,0 kg, inicialmente em repouso no solo, alça vôo numa atmosfera isotrópica. Sempre batendo asas, ele mantém velocidade escalar constante de 10 m/s e atinge 20 m de altura, consumindo 75,0 calorias com os movimentos de seus músculos. Determine a energia dissipada pela resistência do ar. Considere: 1 cal 4 J e g = 10 m/s. 19. (Ufpe 96) Uma balança usada para a pesagem de alimentos tem em sua base uma mola vertical de constante elástica 50 N/m. Qual o valor, em Joules, da energia elástica armazenada na mola ao se pesar um prato com uma massa total de 3,0 kg, depois que a mola atinge a posição de equilíbrio e permanece estacionária? 20. (Ufrj 96) Uma pequena esfera de aço está em repouso, presa por um fio ideal de 1,6 m de comprimento a um suporte fixo. Num determinado instante, dá-se um impulso à esfera, de modo que ela adquira uma velocidade horizontal ³, como ilustra a figura. Despreze a resistência do ar e considere g = 10 m/s. Calcule o módulo de ³ para que, no ponto mais alto da trajetória, o módulo da tensão no fio seja igual à metade do peso da esfera. 21. (G1) Qual é a função de uma caixa acústica? 22. (G1) Explique, em termos energéticos, o funcionamento de: a) um escorregador b) um sistema arco-flecha c) uma usina hidrelétrica 23. (G1) Enuncie o princípio da conservação da Energia. 24. (G1) Uma montanha russa tem altura de 20 m. Considerando um carrinho de massa 100 kg, colocado inicialmente no topo, calcule a Energia Potencial nesse momento, em relação ao solo. 25. (G1) Um carro de fórmula 1 chega a pesar 900 kg e encontra-se com velocidade x. Determine essa velocidade, sabendo-se que sua Energia Cinética é de J. 26. (G1) Explique o que é Energia Potencial Elétrica e Energia Potencial Química.

10 27. (G1) Explique o funcionamento de um telefone. 28. (G1) Uma bala de revólver de massa 0,02 kg tem uma velocidade de 100 m/s. Determine sua Energia Cinética. 29. (G1) Quais são as transformações de energia que acontecem desde o instante em que você solta um tomate maduro até o momento em que ele se espatifa no chão? 30. (G1) O que acontece com a energia elétrica consumida por um chuveiro elétrico? 31. (G1) Se você soltar uma bola de borracha de uma certa altura em relação ao solo verá que a bola atinge uma altura MENOR após a colisão com o chão. Por que isso acontece? 32. (G1) O que afirma a lei da conservação da energia? 33. (G1) Quando um taco de golfe atinge uma bola o que acontece em termos de transferência de energia? 34. (G1) A figura a seguir mostra de forma esquemática a órbita do cometa Halley ao redor do Sol. Do ponto de vista energético, como se pode explicar que o cometa aumenta de velocidade ao ir de A para P e diminui de velocidade ao ir de P para A? 35. (G1) Uma usina hidrelétrica é mostrada esquematicamente a seguir.

11 Quais são as transformações de energia que nela ocorrem?

12 36. (G1) Em um dado ponto de um sistema um corpo possui 200 J de energia cinética e 500 J de energia potencial. Qual o valor da energia mecânica desse corpo? 37. (G1) Em um dado ponto de um sistema um corpo possui 200 J de energia cinética e 500 J de energia potencial. Se o valor da energia potencial passa para 400 J, qual o novo valor da energia cinética desse corpo? 38. (G1) Em um dado ponto de um sistema um corpo possui 500 J de energia cinética e 800 J de energia potencial. Qual o valor da energia mecânica desse corpo, se a energia cinética passar a ser 100 J? 39. (Unesp 97) Um carrinho de 2,0 kg, que dispõe de um gancho, movimenta-se sobre um plano horizontal, com velocidade constante de 1,0 m/s, em direção à argola presa na extremidade do fio mostrado na figura 1. A outra extremidade do fio está presa a um bloco, de peso 5,0 N, que se encontra em repouso sobre uma prateleira. Enganchando-se na argola, o carrinho puxa o fio e eleva o bloco, parando momentaneamente quando o bloco atinge a altura máxima h acima da prateleira como mostra a figura 2. Nestas condições determine: a) a energia cinética inicial do carrinho; b) a altura h, supondo que ocorra perda de 20% da energia cinética inicial do carrinho quando o gancho se prende na argola. (Despreze quaisquer atritos e as massas das polias.)

13 40. (Unesp 97) Um carrinho, A, de massa m, e outro, B, de massa 2 m, mantidos em repouso sobre uma superfície plana e horizontal, estão comprimindo uma mola, de massa desprezível, como mostra a figura a seguir. Quando os carrinhos são liberados simultaneamente, a mola se distende, impulsionando-os, e B adquire, depois que a mola estiver totalmente distendida, uma velocidade de 1,0 m/s. a) Nessas condições, determine a velocidade adquirida por A. b) Denominando hû e h½ as alturas máximas alcançadas, respectivamente, pelos carrinhos A e B, ao subirem as rampas mostradas na figura, determine a razão hû/h½. 41. (Ufrj 97) A figura mostra o perfil JKLM de um tobogã, cujo trecho KLM é circular de centro em C e raio R=5,4m. Uma criança de 15kg inicia sua descida, a partir do repouso, de uma altura h=7,2m acima do plano horizontal que contém o centro C do trecho circular. Considere os atritos desprezíveis e g=10m/s. a) Calcule a velocidade com que a criança passa pelo ponto L. b) Determine a direção e o sentido da força exercida pelo tobogã sobre a criança no instante em que ela passa pelo ponto L e calcule seu módulo.

14 42. (Ufrj 98) Uma pequena esfera metálica, suspensa por um fio ideal de comprimento Ø a um suporte, está oscilando num plano vertical, com atritos desprezíveis, entre as posições extremas, A e B, localizadas a uma altura h = Ø/2 acima do ponto mais baixo C de sua trajetória, como ilustra a figura a seguir. Considere g = 10m/s. a) Calcule o módulo da aceleração da esfera nos instantes em que ela passa pelos pontos A e B. b) Calcule o módulo da aceleração da esfera nos instantes em que ela passa pelo ponto C. 43. (Uerj 97) Um corpo de massa 2,0kg é lançado do ponto A, conforme indicado na figura, sobre um plano horizontal, com uma velocidade de 20m/s. A seguir, sobre uma rampa até atingir uma altura máxima de 2,0m, no ponto B. Sabe-se que o calor gerado no processo foi todo absorvido pelo corpo e que um termômetro sensível, ligado ao corpo, acusa uma variação de temperatura de 1 C. a) Determine o calor específico médio do material que constitui o corpo, em J/kg C b) Indique se a altura máxima atingida pelo corpo, caso não houvesse dissipação de energia, seria maior, menor ou igual a 2,0 m. Justifique sua resposta.

15 44. (Ufv 99) Uma esfera de massa "m", amarrada na extremidade de um cordão de comprimento "L", é lançada de uma altura "h" com velocidade inicial, perpendicular ao cordão, de módulo "v³", conforme ilustra a figura a seguir. Caso v³=ë2gh, onde "g" é o módulo da aceleração da gravidade local, determine a altura máxima "H" atingida pela esfera na inexistência de perdas de energia mecânica. 45. (Ufrj 2000) A figura mostra o perfil de um trilho vertical JKLM cujo trecho KLM é circular de centro em C e raio R. Um bloco de pequenas dimensões é abandonado a uma altura h=r/2 acima do plano horizontal que contém o centro C e passa a deslizar sobre o trilho com atrito desprezível. a) Determine a direção e o sentido da velocidade «do bloco no instante em que ele passa pelo ponto L e calcule seu módulo em função de R e da aceleração da gravidade g. b) Determine a direção e o sentido da resultante ù das forças que atuam sobre o bloco no instante em que ele passa pelo ponto L (informando o ângulo que ela forma com a horizontal) e calcule seu módulo em função da massa m do bloco e da aceleração da gravidade g.

16 46. (Ufg 2000) A energia potencial de um carrinho em uma montanha russa varia, como mostra a figura a seguir: Sabe-se que em x=2m, a energia cinética é igual a 2J, e que não há atrito, sobre o carrinho, entre as posições x=0 e x=7m. Desprezando a resistência do ar, determine: a) a energia mecânica total do carrinho; b) a energia cinética e potencial do carrinho na posição x=7m; c) a força de atrito que deve atuar no carrinho, a partir da posição x=7m, para levá-lo ao repouso em 5m. 47. (Unicamp 2001) Que altura é possível atingir em um salto com vara? Essa pergunta retorna sempre que ocorre um grande evento esportivo como os jogos olímpicos do ano passado em Sydney. No salto com vara, um atleta converte sua energia cinética obtida na corrida em energia potencial elástica (flexão da vara), que por sua vez se converte em energia potencial gravitacional. Imagine um atleta com massa de 80kg que atinge uma velocidade horizontal de 10m/s no instante em que a vara começa a ser flexionada para o salto. a) Qual é a máxima variação possível da altura do centro de massa do atleta, supondo que, ao transpor a barra, sua velocidade é praticamente nula? b) Considerando que o atleta inicia o salto em pé e ultrapassa a barra com o corpo na horizontal, devemos somar a altura do centro de massa do atleta à altura obtida no item anterior para obtermos o limite de altura de um salto. Faça uma estimativa desse limite para um atleta de 2,0m de altura. c) Um atleta com os mesmos 2,0m de altura e massa de 60kg poderia saltar mais alto? Justifique sua resposta.

17 48. (Ita 2002) Uma massa é liberada a partir do repouso de uma altura h acima do nível do solo e desliza sem atrito em uma pista que termina em um "loop" de raio r, conforme indicado na figura. Determine o ângulo š relativo à vertical e ao ponto em que a massa perde o contato com a pista. Expresse sua resposta como função da altura h, do raio r e da aceleração da gravidade g. 49. (Uerj 2002) A mãe, para abrir uma janela tipo guilhotina, levanta totalmente um dos painéis dessa janela, prendendo-o, então, por meio de uma trava de segurança. Os painéis são idênticos, medem 60cm de altura e têm massa de 3kg cada. Após um certo tempo, a trava se rompe e o painel cai sobre o peitoril da janela. Desprezando atritos e a resistência do ar, calcule: a) a energia mínima necessária para levantar totalmente o painel a partir do peitoril; b) a velocidade com que o painel atinge o peitoril após o rompimento da trava de segurança.

18 50. (Unesp 2002) Um praticante de esporte radical, amarrado a uma corda elástica, cai de uma plataforma, a partir do repouso, seguindo uma trajetória vertical. A outra extremidade da corda está presa na plataforma. A figura mostra dois gráficos que foram traçados desprezando-se o atrito do ar em toda a trajetória. O primeiro é o da energia potencial gravitacional, U (gravitacional), do praticante em função da distância y entre ele e a plataforma, onde o potencial zero foi escolhido em y = 30m. Nesta posição, o praticante atinge o maior afastamento da plataforma, quando sua velocidade se reduz, momentaneamente, a zero. O segundo é o gráfico da energia armazenada na corda, U (elástica), em função da distância entre suas extremidades. Determine: a) o peso P do praticante e o comprimento L³ da corda, quando não está esticada, e b) a constante elástica k da corda.

19 51. (Ufv 2001) Um corpo 1, de massa m, parte do repouso de uma altura H e desliza sobre uma rampa até atingir outro corpo 2, de massa m, que se encontra em repouso, conforme ilustrado na figura a seguir. Após a colisão, os dois corpos, unidos um ao outro, movem-se até atingir um outra altura h. Desprezando-se as dimensões dos corpos e efeitos de atrito de qualquer natureza, e denominando como g a aceleração gravitacional local, expresse, em termos das constantes citadas: a) A velocidade do corpo 1 imediatamente antes da colisão. b) A velocidade dos dois corpos imediatamente após a colisão. c) A altura h atingida pelos corpos. 52. (Ufg 2001) A figura mostra um pessoa com massa de 60kg que desliza, sem atrito, do alto de um tobogã de 7,2m de altura (ponto A), acoplando-se a um carrinho com massa de 120kg, que se encontra em repouso no ponto B. A partir desse instante, a pessoa e o carrinho movem-se juntos na água, até parar. Considere que a força de atrito entre o carrinho e a água é constante, e o coeficiente de atrito dinâmico é 0,10. A aceleração gravitacional local é 10m/s. a) Calcule a velocidade do conjunto pessoa-carrinho, imediatamente após o acoplamento. b) Calcule a distância percorrida na água pelo conjunto pessoa-carrinho, até parar.

20 53. (Uerj 2001) Um trapezista, de 70 kg, se solta do ponto de maior amplitude do movimento do trapézio, caindo verticalmente de uma altura de 9,0 m na direção de uma rede de segurança. A rede se distende em 1,8 m e lança-o de volta ao ar. Supondo que nenhuma energia foi dissipada por forças não-conservativas, calcule a energia potencial da rede totalmente distendida. 54. (Uerj 2001) Considere que fosse utilizada uma rampa de lançamento inclinada para impulsionar o macaquinho. Uma mola ideal, de coeficiente k e comprimento س=2Ë2m, é inicialmente comprimida até que o macaquinho fique a uma altura h do solo. O macaquinho se desprende da rampa no momento em que a mola volta à sua posição inicial de relaxamento, a uma altura h³=4h/3 do solo. Desprezando as forças não-conservativas e ÐE(gravitacional), determine o valor de k, de modo que o módulo da velocidade inicial de lançamento seja igual a 20m/s. Dado: massa do macaquinho = 40 kg 55. (Unicamp 2003) Um cartaz de uma campanha de segurança nas estradas apresenta um carro acidentado com a legenda "de 100 km/h a 0 km/h em 1 segundo", como forma de alertar os motoristas para o risco de acidentes. a) Qual é a razão entre a desaceleração média e a aceleração da gravidade, aý/g? b) De que altura o carro deveria cair para provocar uma variação de energia potencial igual à sua variação de energia cinética no acidente? c) A propaganda de um carro recentemente lançado no mercado apregoa uma "aceleração de 0 km/h a 100 km/h em 14 segundos". Qual é a potência mecânica necessária para isso, considerando que essa aceleração seja constante? Despreze as perdas por atrito e considere a massa do carro igual a 1000 kg.

21 56. (Ufpe 2003) Um garoto desliza sobre um escorregador, sem atrito, de 5,0 m de altura. O garoto é lançado em uma piscina e entra em contato com a água a uma distância horizontal de 2,0 m, em relação à borda. Calcule a distância vertical h, entre a superfície da água e a borda da piscina. Dê sua resposta em cm. 57. (Ufpe 2003) Em um dos esportes radicais da atualidade, uma pessoa de 70 kg pula de uma ponte de altura H=50 m em relação ao nível do rio, amarrada à cintura por um elástico. O elástico, cujo comprimento livre é L=10 m, se comporta como uma mola de constante elástica k. No primeiro movimento para baixo, a pessoa fica no limiar de tocar a água e depois de várias oscilações fica em repouso a uma altura h, em relação à superfície do rio. Calcule h, em m.

22 58. (Ufpe 2004) Um bloco de massa m = 0,1 kg comprime uma mola ideal, de constante elástica k = 100 N/m, de 0,2 m (ver figura). Quando a mola é liberada, o bloco é lançado ao longo de uma pista lisa. Calcule a velocidade do bloco, em m/s, quando ele atinge a altura h = 1,2 m. 59. (Unesp 2004) O gráfico da figura representa a velocidade em função do tempo de um veículo de massa 1,2 x 10 kg, ao se afastar de uma zona urbana. a) Determine a variação da energia cinética do veículo no intervalo de 0 a 12 segundos. b) Determine o trabalho da força resultante atuando no veículo em cada um dos seguintes intervalos: de 0 a 7 segundos e de 7 a 12 segundos.

23 60. (Ufu 2004) João, em um ato de gentileza, empurra uma poltrona para Maria, que a espera em repouso num segundo plano horizontal (0,8 m abaixo do plano de João). A poltrona tem uma massa de 10 kg e Maria tem uma massa de 50 kg. O chão é tão liso que todos os atritos podem ser desprezados, conforme figura 1. A poltrona é empurrada de A até B, partindo do repouso em A. João exerce uma força constante igual a 25 N, na direção horizontal. Em B a poltrona é solta, descendo a pequena rampa de 0,8 m de altura. Quando a poltrona chega com uma certa velocidade (v) em Maria, ela senta-se rapidamente na poltrona, sem exercer qualquer força horizontal sobre ela, e o sistema poltrona + Maria escorrega no segundo plano horizontal, conforme figura 2. Considerando a aceleração da gravidade como 10 m/s, calcule: a) o trabalho realizado por João no percurso AB. b) a velocidade (v) da poltrona ao chegar em Maria. c) a velocidade do sistema poltrona + Maria, após Maria sentar-se na poltrona. 61. (Ufrj 2005) Dois jovens, cada um com 50 kg de massa, sobem quatro andares de um edifício. A primeira jovem, Heloísa, sobe de elevador, enquanto o segundo, Abelardo, vai pela escada, que tem dois lances por andar, cada um com 2,0 m de altura. a) Denotando por W(A) o trabalho realizado pelo peso de Abelardo e por W(H) o trabalho realizado pelo peso de Heloísa, determine a razão W(A) / W(H). b) Supondo que são nulas suas velocidades inicial e final, calcule a variação de energia mecânica de cada jovem ao realizar o deslocamento indicado.

24 62. (Unicamp 2005) Num conjunto arco e flecha, a energia potencial elástica é transformada em energia cinética da flecha durante o lançamento. A força da corda sobre a flecha é proporcional ao deslocamento x, como ilustrado na figura. a) Quando a corda é solta, o deslocamento é x = 0,6 m e a força é de 300 N. Qual a energia potencial elástica nesse instante? b) Qual será a velocidade da flecha ao abandonar a corda? A massa da flecha é de 50 g. Despreze a resistência do ar e a massa da corda.

25 63. (Ufscar 2005) Quino, criador da personagem Mafalda, é também conhecido por seus quadrinhos repletos de humor chocante. Aqui, o executivo do alto escalão está prestes a cair em uma armadilha fatal. Considere que: - o centro de massa do tubo suspenso, relativamente à parte inferior do tubo, está localizado a uma distância igual à altura da cartola do executivo; - a distância do centro de massa do tubo até o topo da cartola é 3,2 m; - a vertical que passa pelo centro de massa do tubo passa também pela cabeça do executivo; - o tubo tem massa de 450 kg e, durante uma queda, não sofreria ação significativa da resistência do ar, descendo com aceleração de 10 m/s ; - comparativamente à massa do tubo, a corda tem massa que se pode considerar desprezível. a) Após esmagar a cartola, sem resistência significativa, com que velocidade, em m/s, o tubo atingiria a cabeça do executivo? b) Para preparar a armadilha, o tubo foi içado a 5,5 m do chão pela própria corda que posteriormente o sustentou. Determine o trabalho, em J, realizado pela força peso na ascensão do tubo.

26 64. (Ufg 2006) Um bloco de massa igual a 0,5 kg é abandonado, em repouso, 2 m acima de uma mola vertical de comprimento 0,8 m e constante elástica igual a 100 N/m, conforme o diagrama. Calcule o menor comprimento que a mola atingirá. Considere g = 10 m/s. 65. (Ufpe 2006) Um pequeno bloco, de massa m = 0,5 kg, inicialmente em repouso no ponto A, é largado de uma altura h = 1,6 m. O bloco desliza, sem atrito, ao longo de uma superfície e colide, no ponto B, com uma mola de constante elástica k=100 N/m (veja a figura a seguir). Determine a compressão máxima da mola, em cm.

27 66. (Ufpe 2006) Um pequeno bloco, de massa m = 0,5 kg, inicialmente em repouso no ponto A, é largado de uma altura h = 0,8 m. O bloco desliza ao longo de uma superfície sem atrito e colide com um outro bloco, de mesma massa, inicialmente em repouso no ponto B (veja a figura a seguir). Determine a velocidade do segundo bloco após a colisão, em m/s, considerando-a perfeitamente elástica. 67. (Ufpe 2006) Um pequeno projétil, de massa m = 60 g, é lançado da Terra com velocidade de módulo V³ = 100 m/s, formando um ângulo de 30 com a horizontal. Considere apenas o movimento ascendente do projétil, ou seja, desde o instante do seu lançamento até o instante no qual ele atinge a altura máxima. Calcule o trabalho, em joules, realizado pela gravidade terrestre (força peso) sobre o projétil durante este intervalo de tempo. Despreze a resistência do ar ao longo da trajetória do projétil.

28 68. (Ufpe 2006) Uma bolinha presa a um fio de comprimento L = 1,6 m que está fixado no teto, é liberada na posição indicada na figura (ponto A). Ao passar pela posição vertical, o fio encontra um pino horizontal fixado a uma distância h = 1,25 m (ver figura). Calcule o módulo da velocidade da bolinha, em m/s, no instante em que a bolinha passa na altura do pino (ponto B). 69. (Ufpe 2006) Um pequeno bloco, de massa m = 0,5 kg, inicialmente em repouso no ponto A, é largado de uma altura h = 0,8 m. O bloco desliza, sem atrito, ao longo de uma superfície e colide com um outro bloco, de mesma massa, inicialmente em repouso no ponto B (veja a figura a seguir). Determine a velocidade dos blocos após a colisão, em m/s, considerando-a perfeitamente inelástica. 70. (G1 - cftce 2004) Um atleta de esportes radicais, que pesa 800 N, pratica "bungee jumping" (salto com elástico), saltando de uma ponte a 40 m de altura. O elástico usado tem 16 metros de comprimento e constante elástica K. Partindo do repouso, o atleta cai, atingindo uma altura mínima de 8 m em relação ao solo. Determine o

29 valor da constante elástica K do elástico. 71. (Ufg 2007) Uma bolinha de massa m é lançada, por uma mola horizontal de constante elástica k, em uma rampa lisa de ângulo de inclinação š com a horizontal que possui no topo uma curva de raio R, conforme figura adiante. A bolinha move-se rente a uma parede lisa perpendicular à rampa e, ao fazer a curva, passa por P, que se encontra a uma altura H da base do plano, atingindo o ponto Q a uma distância D da vertical que passa por P. Nessas condições, calcule: a) A deformação da mola. b) A força que a parede exerce sobre a bolinha no ponto mais alto da trajetória.

30 72. (Ufu 2007) O bloco 1 da figura a seguir possui massa m = 90Ë3 g e encontra-se conectado a duas molas idênticas, podendo realizar um movimento oscilatório vertical, governado por um trilho vertical sem atrito. O bloco 2 encontra-se preso a uma haste de massa desprezível, que pode girar em torno do ponto P da figura, e está inicialmente em repouso na posição horizontal (posição C da figura). a) O bloco 1 encontra-se, inicialmente, em equilíbrio na posição A, com as molas formando um ângulo š = 30 com a direção vertical, conforme a figura apresentada. Nessa situação, cada mola distendeu 10 cm em relação ao seu comprimento natural. Considerando g = 10 m/s, determine, nessas condições: a constante elástica de cada mola. b) Posteriormente, o bloco 1 é puxado para baixo e abandonado, adquirindo um movimento de encontro ao bloco 2. Imediatamente antes de colidir (elasticamente) com o bloco 2, o bloco 1 possui uma velocidade igual a 2Ë3 m/s, entrando em repouso imediatamente após a colisão. Nessas condições, determine: B1 - a máxima altura que o bloco 2 irá atingir até parar (posição D na figura), sabendo-se que o ângulo que a haste forma com a horizontal nessa situação vale = 30. B2 - a aceleração angular do bloco 2 no instante em que pára (posição D na figura).

31 73. (G1 - cftce 2007) Uma esquiadora, de massa 50 kg, percorre as trajetórias I, II e III, partindo do repouso e do mesmo ponto. Despreze os atritos, a resistência do ar e adote g = 10 m/s. a) Qual o trabalho realizado pela força peso da esquiadora em cada trajeto? b) Compare a potência desenvolvida pela esquiadora, ao passar pelos pontos A, B e C, sabendo que, nesses pontos, sua velocidade tem a mesma direção. 74. (Ufc 2008) A figura a seguir descreve a situação inicial de um sistema onde duas molas estão comprimidas por uma massa M, com seus comprimentos somados resultando L. As molas têm constantes elásticas k e k, sendo que k = 2k, seus comprimentos sem deformação somados resultam 2 L, e as molas possuem massas desprezíveis. Posteriormente, o sistema é liberado, e a massa M é lançada. Desconsidere atritos. a) Calcule a energia armazenada no sistema na situação inicial. b) Determine a velocidade da massa M quando ela perde o contato com o sistema de molas, em termos das

32 grandezas L, M, e k (ou k ). 75. (Uepg 2008) Com base na figura a seguir, calcule a menor velocidade com que o corpo deve passar pelo ponto A para ser capaz de atingir o ponto B. Despreze o atrito e considere g = 10 m/s. 76. (G1) Definindo numa só palavra, energia cinética é energia de _, enquanto que energia potencial é energia. 77. (G1) Dê um exemplo de uma situação em que a energia potencial elástica se transforma em energia cinética ou vice-versa. 78. (G1) Nas antigas locomotivas queimava-se carvão para obter a energia necessária para movê-las. Antes de ser energia cinética da locomotiva, onde estava a energia? Que tipo de energia era?

33 79. (Ufpe 2004) Um bloco de massa m = 100 g comprime uma mola de constante elástica k = 360 N/m, por uma distância x = 10,0 cm, como mostra a figura. Em um dado instante, esse bloco é liberado, vindo a colidir em seguida com um outro bloco de massa m = 200 g, inicialmente em repouso. Despreze o atrito entre os blocos e o piso. Considerando a colisão perfeitamente inelástica, determine a velocidade final dos blocos, em m/s.

3) Uma mola de constante elástica k = 400 N/m é comprimida de 5 cm. Determinar a sua energia potencial elástica.

3) Uma mola de constante elástica k = 400 N/m é comprimida de 5 cm. Determinar a sua energia potencial elástica. Lista para a Terceira U.L. Trabalho e Energia 1) Um corpo de massa 4 kg encontra-se a uma altura de 16 m do solo. Admitindo o solo como nível de referência e supondo g = 10 m/s 2, calcular sua energia

Leia mais

ROTEIRO DE RECUPERAÇÃO ANUAL DE FÍSICA 2 a SÉRIE

ROTEIRO DE RECUPERAÇÃO ANUAL DE FÍSICA 2 a SÉRIE ROTEIRO DE RECUPERAÇÃO ANUAL DE FÍSICA 2 a SÉRIE Nome: Nº Série: 2º EM Data: / /2015 Professores Gladstone e Gromov Assuntos a serem estudados - Movimento Uniforme. Movimento Uniformemente Variado. Leis

Leia mais

horizontal, se choca frontalmente contra a extremidade de uma mola ideal, cuja extremidade oposta está presa a uma parede vertical rígida.

horizontal, se choca frontalmente contra a extremidade de uma mola ideal, cuja extremidade oposta está presa a uma parede vertical rígida. Exercícios: Energia 01. (UEPI) Assinale a alternativa que preenche corretamente as lacunas das frases abaixo. O trabalho realizado por uma força conservativa, ao deslocar um corpo entre dois pontos é da

Leia mais

sendo as componentes dadas em unidades arbitrárias. Determine: a) o vetor vetores, b) o produto escalar e c) o produto vetorial.

sendo as componentes dadas em unidades arbitrárias. Determine: a) o vetor vetores, b) o produto escalar e c) o produto vetorial. INSTITUTO DE FÍSICA DA UFRGS 1 a Lista de FIS01038 Prof. Thomas Braun Vetores 1. Três vetores coplanares são expressos, em relação a um sistema de referência ortogonal, como: sendo as componentes dadas

Leia mais

Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) Prof.: João Arruda e Henriette Righi. Atenção: Semana de prova S1 15/06 até 30/06

Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) Prof.: João Arruda e Henriette Righi. Atenção: Semana de prova S1 15/06 até 30/06 Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) Prof.: João Arruda e Henriette Righi Maio/2015 Atenção: Semana de prova S1 15/06 até 30/06 LISTA DE EXERCÍCIOS # 2 1) Um corpo de 2,5 kg está

Leia mais

UNIVERSIDADE CATÓLICA DE GOIÁS Departamento de Matemática e Física Coordenador da Área de Física LISTA 03. Capítulo 07

UNIVERSIDADE CATÓLICA DE GOIÁS Departamento de Matemática e Física Coordenador da Área de Física LISTA 03. Capítulo 07 01 UNIVERSIDADE CATÓLICA DE GOIÁS Departamento de Matemática e Física Coordenador da Área de Física Disciplina: Física Geral e Experimental I (MAF 2201) LISTA 03 Capítulo 07 1. (Pergunta 01) Classifique

Leia mais

A figura a seguir representa um atleta durante um salto com vara, em três instantes distintos

A figura a seguir representa um atleta durante um salto com vara, em três instantes distintos Energia 1-Uma pequena bola de borracha, de massa 50g, é abandonada de um ponto A situado a uma altura de 5,0m e, depois de chocar-se com o solo, eleva-se verticalmente até um ponto B, situado a 3,6m. Considere

Leia mais

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20.

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20. 11 FÍSICA Um bloco de granito com formato de um paralelepípedo retângulo, com altura de 30 cm e base de 20 cm de largura por 50 cm de comprimento, encontra-se em repouso sobre uma superfície plana horizontal.

Leia mais

FÍSICA - 1 o ANO MÓDULO 17 LANÇAMENTO VERTICAL E QUEDA LIVRE

FÍSICA - 1 o ANO MÓDULO 17 LANÇAMENTO VERTICAL E QUEDA LIVRE FÍSICA - 1 o ANO MÓDULO 17 LANÇAMENTO VERTICAL E QUEDA LIVRE Como pode cair no enem? celeração de 5 g (ou 50 m/s²), ocorrendo o enrijecimento dos músculos devido a força que o sangue exerce na volta

Leia mais

1 a QUESTÃO Valor 1,0

1 a QUESTÃO Valor 1,0 1 a QUESTÃO Valor 1,0 Um esquimó aguarda a passagem de um peixe sob um platô de gelo, como mostra a figura abaixo. Ao avistá-lo, ele dispara sua lança, que viaja com uma velocidade constante de 50 m/s,

Leia mais

Trabalho e potência. 1º caso: a força F não é paralela a d. 2º caso: a força F é paralela a d. 3º caso: a força F é perpendicular a d

Trabalho e potência. 1º caso: a força F não é paralela a d. 2º caso: a força F é paralela a d. 3º caso: a força F é perpendicular a d Trabalho e potência Trabalho mecânico Realizar trabalho, em Física, implica a transferência de energia de um sistema para outro e, para que isso ocorra, são necessários uma força e um deslocamento adequados.

Leia mais

Intensivo 2015.2. Trabalho, potência e Energia mecânica. Obs: cada andar do edifício tem aproximadamente 2,5m.

Intensivo 2015.2. Trabalho, potência e Energia mecânica. Obs: cada andar do edifício tem aproximadamente 2,5m. Intensivo 2015.2 Trabalho, potência e Energia mecânica 01 - (PUC PR) Uma motocicleta de massa 100kg se desloca a uma velocidade constante de 10m/s. A energia cinética desse veículo é equivalente ao trabalho

Leia mais

3a. prova Simulado 5 Dissertativo 27.09.06 FÍSICA INSTRUÇÕES PARA REALIZAÇÃO DO SIMULADO

3a. prova Simulado 5 Dissertativo 27.09.06 FÍSICA INSTRUÇÕES PARA REALIZAÇÃO DO SIMULADO Simulado 5 Padrão FUVEST Aluno: N o do Cursinho: Sala: FÍSICA INSTRUÇÕES PARA REALIZAÇÃO DO SIMULADO 1. Aguarde a autorização do fiscal para abrir o caderno de questões e iniciar a prova. 2. Duração da

Leia mais

Física. Pré Vestibular / / Aluno: Nº: Turma: ENSINO MÉDIO

Física. Pré Vestibular / / Aluno: Nº: Turma: ENSINO MÉDIO Pré Vestibular ísica / / luno: Nº: Turma: LEIS DE NEWTON 01. (TEC daptada) Dois blocos e de massas 10 kg e 20 kg, respectivamente, unidos por um fio de massa desprezível, estão em repouso sobre um plano

Leia mais

FUVEST 2000-2 a Fase - Física - 06/01/2000 ATENÇÃO

FUVEST 2000-2 a Fase - Física - 06/01/2000 ATENÇÃO ATENÇÃO VERIFIQUE SE ESTÃO IMPRESSOS EIXOS DE GRÁFICOS OU ESQUEMAS, NAS FOLHAS DE RESPOSTAS DAS QUESTÕES 1, 2, 4, 9 e 10. Se notar a falta de uma delas, peça ao fiscal de sua sala a substituição da folha.

Leia mais

Código: FISAP Disciplina: Física Aplicada Preceptores: Marisa Sayuri e Rodrigo Godoi Semana: 05/11/2015 14/11/2015

Código: FISAP Disciplina: Física Aplicada Preceptores: Marisa Sayuri e Rodrigo Godoi Semana: 05/11/2015 14/11/2015 Código: FISAP Disciplina: Física Aplicada Preceptores: Marisa Sayuri e Rodrigo Godoi Semana: 05/11/2015 14/11/2015 1) Certo dia, uma escaladora de montanhas de 75 kg sobe do nível de 1500 m de um rochedo

Leia mais

Lista de Exercícios para Recuperação Final. Nome: Nº 1 º ano / Ensino Médio Turma: A e B Disciplina(s): Física LISTA DE EXERCÍCIOS RECUPERAÇÃO - I

Lista de Exercícios para Recuperação Final. Nome: Nº 1 º ano / Ensino Médio Turma: A e B Disciplina(s): Física LISTA DE EXERCÍCIOS RECUPERAÇÃO - I Lista de Exercícios para Recuperação Final Nome: Nº 1 º ano / Ensino Médio Turma: A e B Disciplina(s): Física Data: 04/12/2014 Professor(a): SANDRA HELENA LISTA DE EXERCÍCIOS RECUPERAÇÃO - I 1. Dois móveis

Leia mais

Lançamento Horizontal

Lançamento Horizontal Lançamento Horizontal 1. (Ufsm 2013) Um trem de passageiros passa em frente a uma estação, com velocidade constante em relação a um referencial fixo no solo. Nesse instante, um passageiro deixa cair sua

Leia mais

DATA: 17/12/2015 VALOR: 20,0 NOTA: NOME COMPLETO:

DATA: 17/12/2015 VALOR: 20,0 NOTA: NOME COMPLETO: DISCIPLINA: FÍSICA PROFESSORES: Erich/ André NOME COMPLETO: I N S T R U Ç Õ E S DATA: 17/12/2015 VALOR: 20,0 NOTA: ASSUNTO: TRABALHO DE RECUPERAÇÃO FINAL SÉRIE: 1 a EM Circule a sua turma: Funcionários:

Leia mais

EXERCÍCIOS 2ª SÉRIE - LANÇAMENTOS

EXERCÍCIOS 2ª SÉRIE - LANÇAMENTOS EXERCÍCIOS ª SÉRIE - LANÇAMENTOS 1. (Unifesp 01) Em uma manhã de calmaria, um Veículo Lançador de Satélite (VLS) é lançado verticalmente do solo e, após um período de aceleração, ao atingir a altura de

Leia mais

Questões do capítulo oito que nenhum aluno pode ficar sem fazer

Questões do capítulo oito que nenhum aluno pode ficar sem fazer Questões do capítulo oito que nenhum aluno pode ficar sem fazer 1) A bola de 2,0 kg é arremessada de A com velocidade inicial de 10 m/s, subindo pelo plano inclinado. Determine a distância do ponto D até

Leia mais

Dinâmica do movimento de Rotação

Dinâmica do movimento de Rotação Dinâmica do movimento de Rotação Disciplina: Mecânica Básica Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: O que significa o torque produzido por uma força;

Leia mais

Questão 01 O dono do circo anuncia o início do espetáculo usando uma sirene.

Questão 01 O dono do circo anuncia o início do espetáculo usando uma sirene. As questões apresentadas nesta prova relacionam-se ao ambiente e às situações encontradas em um circo. Sempre que necessário, utilize, em seus cálculos, g = 10 m/s 2. Questão 01 O dono do circo anuncia

Leia mais

Trabalho Mecânico. A força F 2 varia de acordo com o gráfico a seguir: Dados sem 30º = cos = 60º = 1/2

Trabalho Mecânico. A força F 2 varia de acordo com o gráfico a seguir: Dados sem 30º = cos = 60º = 1/2 Trabalho Mecânico 1. (G1 - ifce 2012) Uma pessoa sobe um lance de escada, com velocidade constante, em 1,0 min. Se a mesma pessoa subisse o mesmo lance, também com velocidade constante em 2,0 min, ela

Leia mais

1 a QUESTÃO: (1,5 ponto) Avaliador Revisor

1 a QUESTÃO: (1,5 ponto) Avaliador Revisor 1 a QUESTÃO: (1,5 ponto) Avaliador Revisor Um mol de um gás ideal é levado do estado A para o estado B, de acordo com o processo representado no diagrama pressão versus volume conforme figura abaixo: a)

Leia mais

Energia potencial e Conservação da Energia

Energia potencial e Conservação da Energia Energia potencial e Conservação da Energia Disciplina: Física Geral e Experimental Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: Como usar o conceito de energia

Leia mais

Lista de Exercícios - Unidade 8 Eu tenho a força!

Lista de Exercícios - Unidade 8 Eu tenho a força! Lista de Exercícios - Unidade 8 Eu tenho a força! Forças 1. (UFSM 2013) O uso de hélices para propulsão de aviões ainda é muito frequente. Quando em movimento, essas hélices empurram o ar para trás; por

Leia mais

FÍSICA. Valores de algumas grandezas físicas:

FÍSICA. Valores de algumas grandezas físicas: Valores de algumas grandezas físicas: Aceleração da gravidade: 10 m/s Velocidade da luz no vácuo: 3,0 x 10 8 m/s. Velocidade do som no ar: 330 m/s Calor latente de fusão do gelo: 80 cal/g Calor específico

Leia mais

(a) a aceleração do sistema. (b) as tensões T 1 e T 2 nos fios ligados a m 1 e m 2. Dado: momento de inércia da polia I = MR / 2

(a) a aceleração do sistema. (b) as tensões T 1 e T 2 nos fios ligados a m 1 e m 2. Dado: momento de inércia da polia I = MR / 2 F128-Lista 11 1) Como parte de uma inspeção de manutenção, a turbina de um motor a jato é posta a girar de acordo com o gráfico mostrado na Fig. 15. Quantas revoluções esta turbina realizou durante o teste?

Leia mais

QUESTÃO 01. a) Qual a temperatura do forno? b) Qual a variação de energia interna do bloco do latão. QUESTÃO 02

QUESTÃO 01. a) Qual a temperatura do forno? b) Qual a variação de energia interna do bloco do latão. QUESTÃO 02 Quando necessário considere: g = 10 m/s 2, densidade da água = 1 g/cm 3, 1 atm = 10 5 N/m 2, c água = 1 cal/g. 0 C, R = 8,31 J/mol.K, velocidade do som no ar = 340 m/s e na água = 1500 m/s, calor específico

Leia mais

Exercícios: Lançamento Vertical e Queda Livre

Exercícios: Lançamento Vertical e Queda Livre Exercícios: Lançamento Vertical e Queda Livre Cursinho da ETEC Prof. Fernando Buglia 1. (Unifesp) Em uma manhã de calmaria, um Veículo Lançador de Satélite (VLS) é lançado verticalmente do solo e, após

Leia mais

PROCESSO SELETIVO TURMA DE 2010 FASE 1 PROVA DE FÍSICA E SEU ENSINO

PROCESSO SELETIVO TURMA DE 2010 FASE 1 PROVA DE FÍSICA E SEU ENSINO PROCESSO SELETIVO TURM DE 2010 FSE 1 PROV DE FÍSIC E SEU ENSINO Caro professor, esta prova tem 4 (quatro) questões, com valores diferentes indicados nas próprias questões. Duas das questões são objetivas,

Leia mais

Lista de Exercícios - Unidade 6 Aprendendo sobre energia

Lista de Exercícios - Unidade 6 Aprendendo sobre energia Lista de Exercícios - Unidade 6 Aprendendo sobre energia Energia Cinética e Potencial 1. (UEM 01) Sobre a energia mecânica e a conservação de energia, assinale o que for correto. (01) Denomina-se energia

Leia mais

Energia potencial e Conservação da Energia

Energia potencial e Conservação da Energia Energia potencial e Conservação da Energia Disciplina: Física Geral I Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: Como usar o conceito de energia potencial

Leia mais

CONSERVAÇÃO DA ENERGIA

CONSERVAÇÃO DA ENERGIA CONSERVAÇÃO DA ENERGIA Introdução Quando um mergulhador pula de um trampolim para uma piscina, ele atinge a água com uma velocidade relativamente elevada, possuindo grande energia cinética. De onde vem

Leia mais

Capítulo 4 Trabalho e Energia

Capítulo 4 Trabalho e Energia Capítulo 4 Trabalho e Energia Este tema é, sem dúvidas, um dos mais importantes na Física. Na realidade, nos estudos mais avançados da Física, todo ou quase todos os problemas podem ser resolvidos através

Leia mais

Bacharelado Engenharia Civil

Bacharelado Engenharia Civil Bacharelado Engenharia Civil Disciplina: Física Geral e Experimental I Força e Movimento- Leis de Newton Prof.a: Msd. Érica Muniz Forças são as causas das modificações no movimento. Seu conhecimento permite

Leia mais

Mecânica 2007/2008. 3ª Série

Mecânica 2007/2008. 3ª Série Mecânica 2007/2008 3ª Série Questões: 1. Se o ouro fosse vendido a peso, preferia comprá-lo na serra da Estrela ou em Lisboa? Se fosse vendido pela massa em qual das duas localidades preferia comprá-lo?

Leia mais

www.enemdescomplicado.com.br

www.enemdescomplicado.com.br Exercícios de Física Gravitação Universal 1-A lei da gravitação universal de Newton diz que: a) os corpos se atraem na razão inversa de suas massas e na razão direta do quadrado de suas distâncias. b)

Leia mais

Resolução da Questão 1 Item I Texto definitivo

Resolução da Questão 1 Item I Texto definitivo Questão A seguir, é apresentada uma expressão referente à velocidade (v) de um ciclista, em km/min, em função do tempo t, computado em minutos. 0,t, se 0 t < 0,, se t < v ( t) = 0, + 0,t,

Leia mais

TIPO-A FÍSICA. x v média. t t. x x

TIPO-A FÍSICA. x v média. t t. x x 12 FÍSICA Aceleração da gravidade, g = 10 m/s 2 Constante gravitacional, G = 7 x 10-11 N.m 2 /kg 2 Massa da Terra, M = 6 x 10 24 kg Velocidade da luz no vácuo, c = 300.000 km/s 01. Em 2013, os experimentos

Leia mais

Trabalho. a) F; b) peso c) força normal; d) força de atrito; e) resultante das forças.

Trabalho. a) F; b) peso c) força normal; d) força de atrito; e) resultante das forças. Trabalho 1- Um corpo de massa igual 20Kg deslocava-se para a direita sobre um plano horizontal rugoso. Sobre o corpo é, então, aplicada uma força F, horizontal, constante de módulo igual a 100N. O módulo

Leia mais

Problemas de Mecânica e Ondas

Problemas de Mecânica e Ondas Problemas de Mecânica e Ondas (LEMat, LQ, MEiol, MEmbi, MEQ) Tópicos: olisões: onservação do momento linear total, conservação de energia cinética nas colisões elásticas. onservação do momento angular

Leia mais

FÍSICA. Questões de 01 a 04

FÍSICA. Questões de 01 a 04 GRUPO 1 TIPO A FÍS. 1 FÍSICA Questões de 01 a 04 01. Considere uma partícula presa a uma mola ideal de constante elástica k = 420 N / m e mergulhada em um reservatório térmico, isolado termicamente, com

Leia mais

FÍSICA CADERNO DE QUESTÕES

FÍSICA CADERNO DE QUESTÕES CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES 2015 1 a QUESTÃO Valor: 1,00 Uma mola comprimida por uma deformação x está em contato com um corpo de massa m, que se encontra

Leia mais

Estudaremos aqui como essa transformação pode ser entendida a partir do teorema do trabalho-energia.

Estudaremos aqui como essa transformação pode ser entendida a partir do teorema do trabalho-energia. ENERGIA POTENCIAL Uma outra forma comum de energia é a energia potencial U. Para falarmos de energia potencial, vamos pensar em dois exemplos: Um praticante de bungee-jump saltando de uma plataforma. O

Leia mais

Física 3. Capítulo 1. Energia, Impulso e Hidrostática

Física 3. Capítulo 1. Energia, Impulso e Hidrostática Física 3 Energia, Impulso e Hidrostática Capítulo 1 PV2D-07-FI-34 01. Um bloco desliza sobre um plano horizontal sob a ação das forças constantes especifi cadas na fi gura a seguir. No percurso AB, no

Leia mais

CINEMÁTICA SUPER-REVISÃO REVISÃO

CINEMÁTICA SUPER-REVISÃO REVISÃO Física Aula 10/10 Prof. Oromar Baglioli UMA PARCERIA Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM.BR Visite a loja virtual www.conquistadeconcurso.com.br MATERIAL DIDÁTICO EXCLUSIVO PARA

Leia mais

LISTA DE EXERCÍCIOS CAMPO MAGNÉTICO

LISTA DE EXERCÍCIOS CAMPO MAGNÉTICO 1. (Fuvest 96) A figura esquematiza um ímã permanente, em forma de cruz de pequena espessura, e oito pequenas bússolas, colocadas sobre uma mesa. As letras N e S representam, respectivamente, pólos norte

Leia mais

NOME: Nº. ASSUNTO: Recuperação Final - 1a.lista de exercícios VALOR: 13,0 NOTA:

NOME: Nº. ASSUNTO: Recuperação Final - 1a.lista de exercícios VALOR: 13,0 NOTA: NOME: Nº 1 o ano do Ensino Médio TURMA: Data: 11/ 12/ 12 DISCIPLINA: Física PROF. : Petrônio L. de Freitas ASSUNTO: Recuperação Final - 1a.lista de exercícios VALOR: 13,0 NOTA: INSTRUÇÕES (Leia com atenção!)

Leia mais

Vestibulando Web Page www.vestibulandoweb.com.br

Vestibulando Web Page www.vestibulandoweb.com.br 1. (Ufv 2000) Um aluno, sentado na carteira da sala, observa os colegas, também sentados nas respectivas carteiras, bem como um mosquito que voa perseguindo o professor que fiscaliza a prova da turma.

Leia mais

Uma gota de chuva cai verticalmente com velocidade constante igual a v. Um tubo

Uma gota de chuva cai verticalmente com velocidade constante igual a v. Um tubo 1 a Questão: Valor : 1,0 Uma gota de chuva cai verticalmente com velocidade constante igual a v. Um tubo retilíneo está animado de translaç ã o horizontal com velocidade constante. Determine o â ngulo,

Leia mais

UFMG - 2005 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

UFMG - 2005 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR UFMG - 2005 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Física Questão 01 Durante um voo, um avião lança uma caixa presa a um paraquedas. Após esse lançamento, o paraquedas abre-se e uma força F,

Leia mais

UNICAMP - 2006. 2ª Fase FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

UNICAMP - 2006. 2ª Fase FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR UNICAMP - 2006 2ª Fase FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Física Questão 01 Um corredor de 100 metros rasos percorre os 20 primeiros metros da corrida em 4,0 s com aceleração constante. A velocidade

Leia mais

ESCOLA SECUNDÁRIA DE CASQUILHOS

ESCOLA SECUNDÁRIA DE CASQUILHOS ESCOLA SECUNDÁRIA DE CASQUILHOS FQA Ficha 3 - Forças fundamentais, leis de Newton e Lei da gravitação universal 11.º Ano Turma A e B 1 outubro 2014 NOME Nº Turma 1. Associe um número da coluna 1 a uma

Leia mais

Prof. Rogério Porto. Assunto: Cinemática em uma Dimensão II

Prof. Rogério Porto. Assunto: Cinemática em uma Dimensão II Questões COVEST Física Mecânica Prof. Rogério Porto Assunto: Cinemática em uma Dimensão II 1. Um carro está viajando numa estrada retilínea com velocidade de 72 km/h. Vendo adiante um congestionamento

Leia mais

Resolução Vamos, inicialmente, calcular a aceleração escalar γ. Da figura dada tiramos: para t 0

Resolução Vamos, inicialmente, calcular a aceleração escalar γ. Da figura dada tiramos: para t 0 46 a FÍSICA Um automóvel desloca-se a partir do repouso num trecho retilíneo de uma estrada. A aceleração do veículo é constante e algumas posições por ele assumidas, bem como os respectivos instantes,

Leia mais

a) Um dos fatores que explicam esse fenômeno é a diferença da velocidade da água nos dois rios, cerca de vn

a) Um dos fatores que explicam esse fenômeno é a diferença da velocidade da água nos dois rios, cerca de vn 1. (Unicamp 014) Correr uma maratona requer preparo físico e determinação. A uma pessoa comum se recomenda, para o treino de um dia, repetir 8 vezes a seguinte sequência: correr a distância de 1 km à velocidade

Leia mais

4.1 MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES

4.1 MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES CAPÍTULO 4 67 4. MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES Consideremos um bloco em contato com uma superfície horizontal, conforme mostra a figura 4.. Vamos determinar o trabalho efetuado por uma

Leia mais

(Desconsidere a massa do fio). SISTEMAS DE BLOCOS E FIOS PROF. BIGA. a) 275. b) 285. c) 295. d) 305. e) 315.

(Desconsidere a massa do fio). SISTEMAS DE BLOCOS E FIOS PROF. BIGA. a) 275. b) 285. c) 295. d) 305. e) 315. SISTEMAS DE BLOCOS E FIOS PROF. BIGA 1. (G1 - cftmg 01) Na figura, os blocos A e B, com massas iguais a 5 e 0 kg, respectivamente, são ligados por meio de um cordão inextensível. Desprezando-se as massas

Leia mais

Olimpíada Brasileira de Física 2001 2ª Fase

Olimpíada Brasileira de Física 2001 2ª Fase Olimpíada Brasileira de Física 2001 2ª Fase Gabarito dos Exames para o 1º e 2º Anos 1ª QUESTÃO Movimento Retilíneo Uniforme Em um MRU a posição s(t) do móvel é dada por s(t) = s 0 + vt, onde s 0 é a posição

Leia mais

Série 1º ANO. Colégio da Polícia Militar de Goiás - Hugo. MAT Disciplina: FISICA Professor: JEFFERSON. Aluno (a): Nº

Série 1º ANO. Colégio da Polícia Militar de Goiás - Hugo. MAT Disciplina: FISICA Professor: JEFFERSON. Aluno (a): Nº Polícia Militar do Estado de Goiás CPMG Hugo de Carvalho Ramos Ano Letivo - 2015 Série 1º ANO Lista de Exercícios 4º Bim TURMA (S) ABC Valor da Lista R$ MAT Disciplina: FISICA Professor: JEFFERSON Data:

Leia mais

Física 1 ano Prof. Miranda. Lista de Exercícios II Unidade

Física 1 ano Prof. Miranda. Lista de Exercícios II Unidade Física 1 ano Prof. Miranda Lista de Exercícios II Unidade mirandawelber@gmail.com 01. O que é necessário para determinar (caracterizar) uma: a) grandeza escalar? b) grandeza vetorial? 02. Classifique os

Leia mais

Lista de Exercícios de: Trabalho de uma força paralela ao deslocamento

Lista de Exercícios de: Trabalho de uma força paralela ao deslocamento Lista de Exercícios de: Trabalho de uma força paralela ao deslocamento Quando aplicamos uma força sobre um corpo, provocando um deslocamento, estamos gastando energia, estamos realizando um trabalho. Ʈ

Leia mais

É usual dizer que as forças relacionadas pela terceira lei de Newton formam um par ação-reação.

É usual dizer que as forças relacionadas pela terceira lei de Newton formam um par ação-reação. Terceira Lei de Newton A terceira lei de Newton afirma que a interação entre dois corpos quaisquer A e B é representada por forças mútuas: uma força que o corpo A exerce sobre o corpo B e uma força que

Leia mais

Resolução Comentada UFTM - VESTIBULAR DE INVERNO 2013

Resolução Comentada UFTM - VESTIBULAR DE INVERNO 2013 Resolução Comentada UFTM - VESTIBULAR DE INVERNO 2013 01 - A figura mostra uma série de fotografias estroboscópicas de duas esferas, A e B, de massas diferentes. A esfera A foi abandonada em queda livre

Leia mais

LISTA 10 INDUÇÃO ELETROMAGNÉTICA

LISTA 10 INDUÇÃO ELETROMAGNÉTICA 1. (Ufmg 95) Esta figura mostra uma espira retangular, de lados a = 0,20 m e b = 0,50 m, sendo empurrada, com velocidade constante v = 0,50 m/s, para uma região onde existe um campo magnético uniforme

Leia mais

Ec = 3. 10 5 J. Ec = m v 2 /2

Ec = 3. 10 5 J. Ec = m v 2 /2 GOIÂNIA, / / 015 PROFESSOR: MARIO NETO DISCIPLINA:CIÊNCIA NATURAIS SÉRIE: 9º ALUNO(a): No Anhanguera você é + Enem Uma das formas de energia, que chamamos de energia mecânica, que pode ser das seguintes

Leia mais

9) (UFMG/Adap.) Nesta figura, está representado um bloco de peso 20 N sendo pressionado contra a parede por uma força F.

9) (UFMG/Adap.) Nesta figura, está representado um bloco de peso 20 N sendo pressionado contra a parede por uma força F. Exercícios - Aula 6 8) (UFMG) Considere as seguintes situações: I) Um carro, subindo uma rua de forte declive, em movimento retilíneo uniforme. II) Um carro, percorrendo uma praça circular, com movimento

Leia mais

Imagine que você esteja sustentando um livro de 4N em repouso sobre a palma de sua mão. Complete as seguintes sentenças:

Imagine que você esteja sustentando um livro de 4N em repouso sobre a palma de sua mão. Complete as seguintes sentenças: UNIVERSIDADE FEDERAL DE SANTA CATARINA-CFM DEPARTAMENTO DE FÍSICA FSC 5107 FÍSICA GERAL IA- Semestre 2012.2 LISTA DE EXERCÍCIOS 4 LEIS DE NEWTON (PARTE I) Imagine que você esteja sustentando um livro de

Leia mais

Escolha sua melhor opção e estude para concursos sem gastar nada

Escolha sua melhor opção e estude para concursos sem gastar nada Escolha sua melhor opção e estude para concursos sem gastar nada VALORES DE CONSTANTES E GRANDEZAS FÍSICAS - aceleração da gravidade g = 10 m/s 2 - calor específico da água c = 1,0 cal/(g o C) = 4,2 x

Leia mais

Prof. Rogério Porto. Assunto: Cinemática em uma Dimensão III

Prof. Rogério Porto. Assunto: Cinemática em uma Dimensão III Questões COVEST Física Mecânica Prof. Rogério Porto Assunto: Cinemática em uma Dimensão III 1. Um atleta salta por cima do obstáculo na figura e seu centro de gravidade atinge a altura de 2,2 m. Atrás

Leia mais

Exercício de Física para o 3º Bimestre - 2015 Série/Turma: 1º ano Professor (a): Marcos Leal NOME:

Exercício de Física para o 3º Bimestre - 2015 Série/Turma: 1º ano Professor (a): Marcos Leal NOME: Exercício de Física para o 3º Bimestre - 2015 Série/Turma: 1º ano Professor (a): Marcos Leal NOME: QUESTÃO 01 O chamado "pára-choque alicate" foi projetado e desenvolvido na Unicamp com o objetivo de minimizar

Leia mais

NTD DE FÍSICA 1 a SÉRIE ENSINO MÉDIO ALUNO(A): Nº TURMA: TURNO: DATA: / /

NTD DE FÍSICA 1 a SÉRIE ENSINO MÉDIO ALUNO(A): Nº TURMA: TURNO: DATA: / / NTD DE FÍSICA 1 a SÉRIE ENSINO MÉDIO Professor: Rodrigo Lins ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: 1) Na situação esquematizada na f igura, a mesa é plana, horizontal e perfeitamente polida. A

Leia mais

Exercícios sobre Movimentos Verticais

Exercícios sobre Movimentos Verticais Exercícios sobre Movimentos Verticais 1-Uma pedra, deixada cair do alto de um edifício, leva 4,0 s para atingir o solo. Desprezando a resistência do ar e considerando g = 10 m/s 2, escolha a opção que

Leia mais

FIS-14 Lista-09 Outubro/2013

FIS-14 Lista-09 Outubro/2013 FIS-14 Lista-09 Outubro/2013 1. Quando um projétil de 7,0 kg é disparado de um cano de canhão que tem um comprimento de 2,0 m, a força explosiva sobre o projétil, quando ele está no cano, varia da maneira

Leia mais

LISTA DE EXERCÍCIOS M.H.S. 3 ano FÍSICA Prof. Hernando

LISTA DE EXERCÍCIOS M.H.S. 3 ano FÍSICA Prof. Hernando LISTA DE EXERCÍCIOS M.H.S. 3 ano FÍSICA Prof. Hernando 1. (Ufg) O gráfico abaixo mostra a posição em função do tempo de uma partícula em movimento harmônico simples (MHS) no intervalo de tempo entre 0

Leia mais

O trabalho realizado por uma força gravitacional constante sobre uma partícula é representado em termos da energia potencial U = m.

O trabalho realizado por uma força gravitacional constante sobre uma partícula é representado em termos da energia potencial U = m. Referência: Sears e Zemansky Física I Mecânica Capítulo 7: Energia Potencial e Conservação da Energia Resumo: Profas. Bárbara Winiarski Diesel Novaes. INTRODUÇÃO Neste capítulo estudaremos o conceito de

Leia mais

PLANO INCLINADO AULA 4. Classe. www.cursoanglo.com.br. Forças aplicadas ao corpo apoiado sobre plano inclinado sem atrito

PLANO INCLINADO AULA 4. Classe. www.cursoanglo.com.br. Forças aplicadas ao corpo apoiado sobre plano inclinado sem atrito 009 www.cursoanglo.com.br Treinamento para Olimpíadas de Física 3 ª- s é r i e E M UL 4 PLNO INCLINDO Forças aplicadas ao corpo apoiado sobre plano inclinado sem atrito N P Forças aplicadas ao corpo apoiado

Leia mais

UNOCHAPECÓ Lista 03 de exercícios Mecânica (lançamento de projéteis) Prof: Visoli

UNOCHAPECÓ Lista 03 de exercícios Mecânica (lançamento de projéteis) Prof: Visoli UNOCHAPECÓ Lista 03 de exercícios Mecânica (lançamento de projéteis) Prof: Visoli 1. A figura abaixo mostra o mapa de uma cidade em que as ruas retilíneas se cruzam perpendicularmente e cada quarteirão

Leia mais

Física Aplicada PROF.: MIRANDA. 2ª Lista de Exercícios DINÂMICA. Física

Física Aplicada PROF.: MIRANDA. 2ª Lista de Exercícios DINÂMICA. Física PROF.: MIRANDA 2ª Lista de Exercícios DINÂMICA Física Aplicada Física 01. Uma mola possui constante elástica de 500 N/m. Ao aplicarmos sobre esta uma força de 125 Newtons, qual será a deformação da mola?

Leia mais

Estime, em MJ, a energia cinética do conjunto, no instante em que o navio se desloca com velocidade igual a 108 km h.

Estime, em MJ, a energia cinética do conjunto, no instante em que o navio se desloca com velocidade igual a 108 km h. 1. (Uerj 016) No solo da floresta amazônica, são encontradas partículas ricas em 1 fósforo, trazidas pelos ventos, com velocidade constante de 0,1m s, desde o deserto do Saara. Admita que uma das partículas

Leia mais

Física Fácil prof. Erval Oliveira. Aluno:

Física Fácil prof. Erval Oliveira. Aluno: Física Fácil prof. Erval Oliveira Aluno: O termo trabalho utilizado na Física difere em significado do mesmo termo usado no cotidiano. Fisicamente, um trabalho só é realizado por forças aplicadas em corpos

Leia mais

TC 2 UECE 2012 FASE 1 PROF. : Célio Normando

TC 2 UECE 2012 FASE 1 PROF. : Célio Normando TC UECE 01 FASE 1 PROF. : Célio Normando Conteúdo: Cinemática - MRUV 1. Um avião vai decolar em uma pista retilínea. Ele inicia seu movimento na cabeceira da pista com velocidade nula e corre por ela com

Leia mais

a 2,0 m / s, a pessoa observa que a balança indica o valor de

a 2,0 m / s, a pessoa observa que a balança indica o valor de 1. (Fuvest 015) Uma criança de 30 kg está em repouso no topo de um escorregador plano de,5 m,5 m de altura, inclinado 30 em relação ao chão horizontal. Num certo instante, ela começa a deslizar e percorre

Leia mais

SÉRIE DE EXERCÍCIOS DE FÍSICA CURSO DE ENSAIOS EM VOO (CEV)

SÉRIE DE EXERCÍCIOS DE FÍSICA CURSO DE ENSAIOS EM VOO (CEV) SÉRIE DE EXERCÍCIOS DE FÍSICA CURSO DE ENSAIOS EM VOO (CEV) 1) As vezes, um fator de conversão pode ser deduzido mediante o conhecimento de uma constante em dois sistemas diferentes. O peso de um pé cúbico

Leia mais

n 1 L 1 n 2 L 2 Supondo que as ondas emergentes podem interferir, é correto afirmar que

n 1 L 1 n 2 L 2 Supondo que as ondas emergentes podem interferir, é correto afirmar que QUESTÃO 29 QUESTÃO 27 Uma escada de massa m está em equilíbrio, encostada em uma parede vertical, como mostra a figura abaixo. Considere nulo o atrito entre a parede e a escada. Sejam µ e o coeficiente

Leia mais

Atividade extra. Fascículo 3 Física Unidade 6. Questão 1. Ciências da Natureza e suas Tecnologias Física

Atividade extra. Fascículo 3 Física Unidade 6. Questão 1. Ciências da Natureza e suas Tecnologias Física Atividade extra Fascículo 3 Física Unidade 6 Questão 1 Do ponto mais alto de uma rampa, um garoto solta sua bola de gude. Durante a descida, sua energia: a. cinética diminui; b. cinética aumenta; c. cinética

Leia mais

Interbits SuperPro Web Física XIII Paulo Bahiense, Naldo, Wilson e Ausgusto

Interbits SuperPro Web Física XIII Paulo Bahiense, Naldo, Wilson e Ausgusto 1. (Unesp 015) Em um experimento de eletrostática, um estudante dispunha de três esferas metálicas idênticas, A, B e C, eletrizadas, no ar, com cargas elétricas 5Q, 3Q e Q, respectivamente. Utilizando

Leia mais

Soluções das Questões de Física do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx

Soluções das Questões de Física do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx Soluções das Questões de Física do Processo Seletivo de dmissão à Escola Preparatória de Cadetes do Exército EsPCEx Questão Concurso 009 Uma partícula O descreve um movimento retilíneo uniforme e está

Leia mais

Energia Cinética e Trabalho

Energia Cinética e Trabalho Energia Cinética e Trabalho Disciplina: Física Geral I Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: O que significa uma força realizar um trabalho sobre

Leia mais

Questão 2 Uma esfera de cobre de raio R0 é abandonada em repouso sobre um plano inclinado de forma a rolar ladeira abaixo. No entanto, a esfera

Questão 2 Uma esfera de cobre de raio R0 é abandonada em repouso sobre um plano inclinado de forma a rolar ladeira abaixo. No entanto, a esfera Questão 1 Na figura abaixo, vê-se um trecho de uma linha de produção de esferas. Para testar a resistência das esferas a impacto, são impulsionadas a partir de uma esteira rolante, com velocidade horizontal

Leia mais

Professor(a): Série: 1ª EM. Turma: Bateria de Exercícios de Física

Professor(a): Série: 1ª EM. Turma: Bateria de Exercícios de Física Nome: nº Professor(a): Série: 1ª EM. Turma: Data: / /2013 Sem limite para crescer Bateria de Exercícios de Física 3º Trimestre 1- A casa de Dona Maria fica no alto de uma ladeira. O desnível entre sua

Leia mais

LISTA DE EXERCÍCIOS QUEDA LIVRE E MOV. VERTICAL

LISTA DE EXERCÍCIOS QUEDA LIVRE E MOV. VERTICAL GOVERNO DO ESTADO DE PERNAMBUCO Competência, ética e cidadania SECRETARIA DE EDUCAÇÃO LISTA DE EXERCÍCIOS QUEDA LIVRE E MOV. VERTICAL UPE Campus Mata Norte Aluno(a): nº 9º ano 01- (PUC-MG) Dois corpos

Leia mais

FÍSICA 3. k = 1/4πε 0 = 9,0 10 9 N.m 2 /c 2 1 atm = 1,0 x 10 5 N/m 2 tan 17 = 0,30. a (m/s 2 ) 30 20 10 1,0 2,0 3,0 4,0 5,0.

FÍSICA 3. k = 1/4πε 0 = 9,0 10 9 N.m 2 /c 2 1 atm = 1,0 x 10 5 N/m 2 tan 17 = 0,30. a (m/s 2 ) 30 20 10 1,0 2,0 3,0 4,0 5,0. FÍSIC 3 Valores de algumas grandezas físicas celeração da gravidade: 1 m/s Carga do elétron: 1,6 x 1-19 C Constante de Planck: 6,6 x 1-34 J Velocidade da luz: 3 x 1 8 m/s k = 1/4πε = 9, 1 9 N.m /c 1 atm

Leia mais

LISTA UERJ 1ª FASE LEIS DE NEWTON

LISTA UERJ 1ª FASE LEIS DE NEWTON 1. (Uerj 2013) Um bloco de madeira encontra-se em equilíbrio sobre um plano inclinado de 45º em relação ao solo. A intensidade da força que o bloco exerce perpendicularmente ao plano inclinado é igual

Leia mais

Fortaleza Ceará TD DE FÍSICA ENEM PROF. ADRIANO OLIVEIRA/DATA: 30/08/2014

Fortaleza Ceará TD DE FÍSICA ENEM PROF. ADRIANO OLIVEIRA/DATA: 30/08/2014 TD DE FÍSICA ENEM PROF. ADRIANO OLIVEIRA/DATA: 30/08/2014 1. Uma ave marinha costuma mergulhar de uma altura de 20 m para buscar alimento no mar. Suponha que um desses mergulhos tenha sido feito em sentido

Leia mais

Estrategia de resolução de problemas

Estrategia de resolução de problemas Estrategia de resolução de problemas Sistemas Isolados (p. 222) Muitos problemas na física podem ser resolvidos usando-se o princípio de conservação de energia para um sistema isolado. Deve ser utilizado

Leia mais

PROVA DE FÍSICA 3 o TRIMESTRE DE 2012

PROVA DE FÍSICA 3 o TRIMESTRE DE 2012 PROVA DE FÍSICA 3 o TRIMESTRE DE 2012 PROF. VIRGÍLIO NOME N o 8 o ANO Olá, caro(a) aluno(a). Segue abaixo uma série de exercícios que têm, como base, o que foi trabalhado em sala de aula durante todo o

Leia mais

DATA: / / 2014 VALOR: 20,0 pontos NOTA: ASSUNTO: Trabalho de Recuperação Final SÉRIE: 1ª série EM TURMA: NOME COMPLETO:

DATA: / / 2014 VALOR: 20,0 pontos NOTA: ASSUNTO: Trabalho de Recuperação Final SÉRIE: 1ª série EM TURMA: NOME COMPLETO: DISCIPLINA: Física PROFESSORES: Marcus Sant Ana / Fabiano Dias DATA: / / 2014 VALOR: 20,0 pontos NOTA: ASSUNTO: Trabalho de Recuperação Final SÉRIE: 1ª série EM TURMA: NOME COMPLETO: Nº: I N S T R U Ç

Leia mais