FATEC Faculdade de Tecnologia de São Paulo Movimento de Terra e Pavimentação ETE II Estudo de traçado de Estradas - II

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "FATEC Faculdade de Tecnologia de São Paulo Movimento de Terra e Pavimentação ETE II Estudo de traçado de Estradas - II"

Transcrição

1 1 COORDEADAS, AZIMUTES E ÂGULOS DE DEFLEXÃO estas notas de aula pretende-se apresentar as formas de cálculos de obtenção dos valores de azimutes de trechos de tangentes de rodovias e também os cálculos necessários para a obtenção dos valores das coordenadas das estacas de trechos em tangente e estacas de trechos em curva. 1- Locação do Projeto em Planta Como o traçado das estradas é uma poligonal aberta os projetos, (os desenhos) apresenta o desenvolvimento de seus traçados da esquerda para a direita. Assim faz-se necessário a adequação do da locação do projeto na folha. Por exemplo, um projeto de uma rodovia de Santos-SP a Bauru-SP, o trecho compreendido entre os pontos A e B, quando representados em planta, o ponto A estaria a esquerda e o ponto B à direita. Observe-se que a rosa dos ventos quando no mapa apresentava o norte sempre para cima (norma) e quando da representação do trecho em questão sofreu um giro de maneira a permitir a locação do trecho da esquerda para a direita. Planta Bauru B E A B A E Santos 2- Cálculo de Azimutes e Comprimentos de Alinhamento Pode-se calcular o azimute e o comprimento de um alinhamento a partir de suas coordenadas (, E), utilizando as equações 1, 2, 3, 4 e 5 abaixo.

2 2 i+1 Az i L P i+1 i P i E i+1 (Fig.1) E i E E Baseado na figura 01 pode-se definir as seguintes relações (0 o <Az i <90 o ) Az i = arctg ((E i+1 )-E i )/(( i+1 )- i ) (eq-1) 1Q. (90 o <Az i <180 o ) Az i = 180 o - arctg ((E i+1 )-E i )/(( i+1 )- i ) (eq-2) 2Q. (180 o <Az i <270 o ) Az i = 180 o + arctg ((E i+1 )-E i )/(( i+1 )- i ) (eq-3) 3Q. (270 o <Az i <360 o ) Az i = 360 o - arctg ((E i+1 )-E i )/(( i+1 )- i ) (eq-4) 4Q. L = ((E i+1 )-E i ) 2 + ( i+1 )- i ) 2 ) 1/2 = (( E) 2 + ( ) 2 ) 1/2 (eq-5) 3- Cálculo das Coordenadas Retangulares de uma Poligonal. Pode-se determinar os valores das coordenadas das estacas, tanto de trechos em tangentes como também de curvas. Conhecendo-se as coordenadas de um dado ponto o azimute e a distância à um segundo ponto, pode-se determinar as coordenadas ( ; E) desse segundo ponto através das equações 6 e 7. E B α 1 i+1 α o L o (Fig.2) Ai A L 1 C 0 E o E

3 3 Para a determinação das coordenadas ( e E) do ponto B da figura 02, tem-se: B = Ai + = L o cos α o B = Ai + L o cos α o (eq-6) E B = E Ai + E E = L o sen α o E B = E Ai + L o sen α o (eq-7) Observe-se que para a obtenção do incremento (azimute) na equação 6, utilizamos a função co-seno que corresponde ao eixo das coordenadas E e o incremento E (azimute) na equação utilizamos a função seno que corresponde ao eixo trigonométrico. Isso se deve ao fato de no círculo trigonométrico o sentido de utilização é anti-horário e no círculo de azimute o sentido é horário e eles estão defasados de 90º. 4- Localização do Quadrante em Função das Coordenadas, E Procedimento para a determinação do azimute α o da primeira tangente da Figura 2, partindo dos valores das coordenadas dos pontos A e B. E (-) E (+) W (+) (+) E (Fig. 3) E (-) (-) E (+) (-) S Para a determinação do rumo utiliza-se a equação 8 abaixo. O rumo que indica a direção do ponto A para o ponto B, é o arctg da diferença de coordenada E B E A dividido pela diferença da coordenada B A. Observe-se que, para a obtenção do rumo de A para B é a coordenada do ponto B menos a coordenada do ponto A.

4 O ângulo obtido é o rumo de A para B. 4 Rumo (E B E A ) = arctg (E+ ou E-) (eq-8) ( B A ) (+ ou -) Uma vez obtida a diferença de coordenadas E e deve-se observar o sinal e compara-lo com a fig 3 acima, donde se deduz o quadrante em que o rumo se encontra, em seguida transforma-se o rumo em azimute com auxílio da tabela 01, abaixo. TABELA 01 Valores de Azimute em Função do Rumo QUADRATE AZIMUTE E Az = Rumo SE Az = 180 o Rumo SW Az = 180 o + Rumo W Az = 360 o - Rumo 5 - Exemplo I Sabendo-se as coordenadas de três pontos Pi, A e B de maneira que os pontos A e B estão localizados sobre as tangentes 1 e 2 respectivamente, deseja-se locar uma curva com espirais de transição intercalada com uma secção de trecho circular, sabe-se que o projeto se desenvolverá no sentido de A para B, pede-se Os azimutes das duas tangentes; As coordenadas dos pontos notáveis Coordenadas de uma estaca locada dentro da primeira espiral ( ) Coordenada de uma estaca locada dentro do trecho circular ( ) Tabela de locação das estacas por deflexões (iº) Dados: -Estaca do Pi = ,51m -Superelevação máxima 9% (adotar valores inferiores - Método AASHTO) -Velocidade diretriz = 80km/h 6.1- Cálculo dos Azimutes Pontos Coordenadas (m) E Pi A B

5 Azimute da tangente 1 - (de A para Pi) 5 (+) Rumo (tangente 1) = arctg ((EPi EA)/(Pi A)) sinal (+) portanto quadrante (E) 1 o quadrante Azimute = Rumo Rumo= arctg (( )/( )) = 323 Rumo=arctg = arctg 0,8075 = 38,9208 o 400 portanto Az A PI (tangente1) = 38,9208 o Importante: o número de casas após a vírgula, principalmente em se tratando de ângulos, deve ser considerados várias casas (mínimo 4), quando se envolve esses valores em contas, para a obtenção de valores mais representativos. Entretanto, a representação, ou seja, a transcrição do valor, pode ser feita com 2, 3 ou mesmo 4 casas. Azimute da tangente 2 - (de Pi para B) (+) Rumo (tangente 2) = arctg ((EB EPi)/(B Pi)) sinal (-) portanto quadrante (SE) 2 o quadrante Azimute = 180 O - Rumo Rumo= arctg (( )/( )) = 575 Rumo=arctg = 415 arctg = 54,1805 o portanto Az (tangente2) = 180 O 54,1805 o = 125,8194 o 6.2- Cálculo do ângulo central ÂC = Az (tangente 2) Az (tangente 1) ÂC = 125,8194 o - 38,9208 o = 86,8985 o ÂC = 86,8985 o (ângulo plano decimal) ou 1,51667º (rd) Para transformação de ângulo plano em ângulo radiano, algumas calculadoras o fazem diretamente, entretanto, outras não, assim, deve-se multiplicar o ângulo plano por π e dividir por 180º. O inverso, transformar ângulo radiano em ângulo plano, multiplica-se o ângulo radiano por 180º e divide-se pó π.

6 Determinação dos pontos notáveis da curva de transição (TS, SC, CS e ST) Adotando-se uma superelevação de 7,4% para uma velocidade diretriz de 80 km/h com o método da AASHTO tem-se um Rc de 382m Dados Curva circular de Rc = 382m ÂC = 86,8985 o Posição do PI = ,51m Velocidade Diretriz = 80 km/h Resolução: Vd Ie min = 0,035 x Rc = 0,035 x = 46,91m Adotaremos Ie = 90m (Ie = 2 * Ie min. ) Elementos principais da curva I 2 90 θs = = = 0,11780 rd = o 2 Rc Ie 2 x 382 θs 2 0, Xs = Ie x ( ) = 90 x ( ) = 89,88m θs 0,11780 Ys = Ie x ( ) = 90 x ( ) = 3.53m 3 3 Elementos de posição de transição K = Xs - Rc senθs = 89, sen o = 45,02m Afastamento da curva p = Ys Rc x(1 - cosθs) = 3, x (1 - cos o ) = 0.88m Tangente total - TT TT = k + (Rc + p) x tg(âc/2) = TT = 45,02 + ( ,88) x tg(86,8985 o /2) =407,71m Desenvolvimento do trecho circular

7 7 D = Rc x (ÂC 2 x θs) = D = 382 x (1,51667rd 2 x 0,11780rd) = 489,37m Corda (c) c 2 = Xs 2 + Ys 2 = c = (89, ,53 2 ) 1/2 = 89,94m Deflexão is is = arctg Ys/Xs = artg(3,53 / 99,88) = 2,2491º Estacas dos pontos principais Estaca TS = estaca Pi TT = ( ,51m) 407,71= ,22 m Estaca SC = estaca TS + Ie = ( ,22m) + 90m = ,22 m Estaca CS = estaca.sc + D = ( ,22m)+489,37m = ,59 m Estaca SC = estaca CS + Ie = ( ,59m)+90m = ,59 m Calculo Das Coordenadas Dos Pontos otáveis Coordenada da estaca TS Figura 04 Azimute de PI para TS Observe o Azimute é de Pi para TS = Az TS PI = (38,9208 o o ) = 218,9208 o TS = Pi +TT cos Az PI TS = TS = ,71 cos 218,9208 o = ,80m E TS = E PI + TT sem Az PI TS = E TS = ,71 sem 218,9208 o = ,85m

8 8 Coordenada da estaca SC Figura 05 Azimute de TS para SC Observe o Azimute é de TS para SC = Az TS PI + isº = (38,9208 o + 2,2491 o ) = 41,1699 o SC = TS + c x cos (Az TS PI + is) = SC = ,80+ 89,84 x cos (41,1699 o ) = SC = ,50m E SC = E TS + c x sen (Az TS PI + is) = E SC = , ,94 x sen (41,1699 o ) = E SC = ,06m Cálculo da Coordenada CC

9 Figura 06 Azimute de SC para CC 9 Observe o Azimute é de SC para CC = Az TS PI + 90º + θs = (38,9208 o + 90 o o ) = 135,41468 o CC = SC + Rc x cos (Az TS PI + 90 o + θs) = CC = , x cos (135,41468 o ) = CC = ,25m E CC = E SC + Rc x sen (Az TS PI + 90 o + θs) = E CC = , x sen (135,41468 o ) = E CC = ,99m Cálculo da Coordenada ST Figura 07 Azimute de PI para ST Observe o Azimute que dá a direção de PI para ST já foi calculado anteriormente Az PI ST = 125,8194 o ST = Pi + TT cos Az PI ST = ST = ,71 cos 125,8194 o E ST = E Pi + TT sen Az PI ST = E ST = ,71 sen 125,8194 o = ,34 m = ,60m Cálculo da Coordenada CS

10 10 Figura 08 Azimute de ST para CS Observe o Azimute é de ST para CS = Az ST CS = Az PI ST + 180º isº = (125,8194 o o 2,2491º) = 303,5703 o CS = ST + c * cos (Az ST CS ) = CS = , ,94 * cos (303,5703º) = CS = ,08m E CS = E G + c * sen (Az ST CS ) = E CS = , ,94 * sen (303,5703º) = E CS = ,65m Tabela de coordenadas dos pontos notáveis Pontos Coordenadas (m) E TS , ,85 SC , ,06 CC , ,99 CS , ,65 ST , ,60 PI , ,00

11 LOCAÇÃO DE CURVA COM ESPIRAIS DE TRASIÇÃO COM COORDEADAS PI TS SC CS ST CC E

Coordenadas Polares. Prof. Márcio Nascimento. marcio@matematicauva.org

Coordenadas Polares. Prof. Márcio Nascimento. marcio@matematicauva.org Coordenadas Polares Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Matemática

Leia mais

UNICAP Universidade Católica de Pernambuco Prof. Glauber Carvalho Costa Estradas 1

UNICAP Universidade Católica de Pernambuco Prof. Glauber Carvalho Costa Estradas 1 1 a QUESTÃO Supondo que você é o engenheiro responsável pela elaboração do projeto geométrico do Arco Metropolitano do Recife, projeto que irá conectar o pólo de desenvolvimento industrial do litoral norte

Leia mais

Aula 8 : Desenho Topográfico

Aula 8 : Desenho Topográfico Aula 8 : Desenho Topográfico Topografia, do grego topos (lugar) e graphein (descrever), é a ciência aplicada que representa, no papel, a configuração (contorno,dimensão e posição relativa) de um porção

Leia mais

Início E. 2345+13,98. UNICAP Universidade Católica de Pernambuco Prof. Glauber Carvalho Costa Estradas 1. 1 a QUESTÃO

Início E. 2345+13,98. UNICAP Universidade Católica de Pernambuco Prof. Glauber Carvalho Costa Estradas 1. 1 a QUESTÃO 1 a QUESTÃO Supondo que você foi designado para desenvolver o projeto geométrico do Arco Metropolitano do Recife, que corresponderá a uma o obra rodoviária ligando a região norte do estado, próximo ao

Leia mais

CURVAS HORIZONTAIS COM TRANSIÇÃO

CURVAS HORIZONTAIS COM TRANSIÇÃO CURVAS HORIZONTAIS COM TRANSIÇÃO Introdução Trecho reto para uma curva circular: Variação instantânea do raio infinito para o raio finito da curva circular Surgimento brusco de uma força centrífuga Desconforto

Leia mais

FATEC Faculdade de Tecnologia de Pavimentação Departamento de Transportes e Obras de Terra - Prof. Edson 4- CURVAS HORIZONTAIS DE TRANSIÇÃO

FATEC Faculdade de Tecnologia de Pavimentação Departamento de Transportes e Obras de Terra - Prof. Edson 4- CURVAS HORIZONTAIS DE TRANSIÇÃO 4- CURVAS HORIZONTAIS DE TRANSIÇÃO 4.1 INTRODUÇÃO Quando um veículo passa pelo ponto PC ponto de começo da curva circular horizontal ou PT ponto de término da curva circular horizontal, dependendo do comprimento

Leia mais

-ESTRUTURA VIÁRIA TT048 CURVAS VERTICAIS

-ESTRUTURA VIÁRIA TT048 CURVAS VERTICAIS INFRAINFRA -ESTRUTURA VIÁRIA TT048 CURVAS VERTICAIS Prof. Djalma Pereira Prof. Eduardo Ratton Profa. Gilza Fernandes Blasi Profa. Márcia de Andrade Pereira Um fator importante para a segurança e eficiência

Leia mais

7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares).

7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares). 1 LIVRO Curvas Polares 7 AULA META Estudar as curvas planas em coordenadas polares (Curvas Polares). OBJETIVOS Estudar movimentos de partículas no plano. Cálculos com curvas planas em coordenadas polares.

Leia mais

Prof. Rossini Bezerra Faculdade Boa Viagem

Prof. Rossini Bezerra Faculdade Boa Viagem Sistemas de Coordenadas Polares Prof. Rossini Bezerra Faculdade Boa Viagem Coordenadas Polares Dado um ponto P do plano, utilizando coordenadas cartesianas (retangulares), descrevemos sua localização no

Leia mais

A definição do traçado de uma estrada por meio de linhas retas concordando diretamente com curvas circulares cria problema nos pontos de concordância.

A definição do traçado de uma estrada por meio de linhas retas concordando diretamente com curvas circulares cria problema nos pontos de concordância. 4.1.2 Curvas Horizontais com Transição A definição do traçado de uma estrada por meio de linhas retas concordando diretamente com curvas circulares cria problema nos pontos de concordância. Assim, é necessário

Leia mais

Comprimentos de Curvas e Coordenadas Polares Aula 38

Comprimentos de Curvas e Coordenadas Polares Aula 38 Comprimentos de Curvas e Coordenadas Polares Aula 38 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 12 de Junho de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia

Leia mais

Introdução à Topografia

Introdução à Topografia Topografia Introdução à Topografia Etimologicamente a palavra TOPOS, em grego, significa lugar e GRAPHEN descrição, assim, de uma forma bastante simples, Topografia significa descrição do lugar. O termo

Leia mais

Projeto Geométrico Horizontal

Projeto Geométrico Horizontal UNICAP Universidade Católica de Pernambuco Prof. Glauber Carvalho Costa Estrada 1 Projeto Geométrico Horizontal Aula 4 Recife, 2016 Elementos Planimétricos de uma Estrada Curvas de Concordância Horizontal

Leia mais

Lista de Exercícios de Topografia Planimetria

Lista de Exercícios de Topografia Planimetria Lista de Exercícios de Topografia Planimetria 1. Cite 3 métodos de levantamento topográfico e uma situação prática onde cada um poderia ser empregado. 2. Verifique se existe erro de fechamento angular

Leia mais

Noções de Topografia Para Projetos Rodoviarios

Noções de Topografia Para Projetos Rodoviarios Página 1 de 8 Noções de Topografia Para Projetos Rodoviarios Capitulos 01 - Requisitos 02 - Etaqpas 03 - Traçado 04 - Trafego e Clssificação 05 - Geometria 06 - Caracteristicas Técnicas 07 - Distancia

Leia mais

DEPARTAMENTO DE ENGENHARIA DE BIOSSISTEMAS - ESALQ / USP LEB 340 - Topografia e Geoprocessamento I Prof. Rubens Angulo Filho 1º Semestre de 2015

DEPARTAMENTO DE ENGENHARIA DE BIOSSISTEMAS - ESALQ / USP LEB 340 - Topografia e Geoprocessamento I Prof. Rubens Angulo Filho 1º Semestre de 2015 Trabalho prático nº 01: Levantamento à Trena 1) Material: a) trena de 20,0m; b) 3 balizas; c) 4 fichas; d) GPS de navegação 2) Método: A medição dos alinhamentos, no campo, será executada por 3 balizeiros

Leia mais

Engenharia Civil. Alexandre Souza Eng. Agrimensor MSc. alexandre0363@gmail.com

Engenharia Civil. Alexandre Souza Eng. Agrimensor MSc. alexandre0363@gmail.com Engenharia Civil Alexandre Souza Eng. Agrimensor MSc. alexandre0363@gmail.com Levantamento topográfico -Planimetria Em um levantamento topográfico, normalmente são determinados pontos de apoio ao levantamento

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva nos pontos onde e Vamos determinar a reta tangente à curva nos pontos de abscissas

Leia mais

EXERCÍCIOS DE TOPOGRAFIA

EXERCÍCIOS DE TOPOGRAFIA UNIVERSIDADE DE SÃO PAULO Escola Superior de Agricultura "Luiz de Queiroz" DEPARTAMENTO DE ENGENHARIA RURAL Área de Topografia e Geoprocessamento 1 EXERCÍCIOS DE TOPOGRAFIA Professores: Rubens Angulo Filho

Leia mais

3.4 Movimento ao longo de uma curva no espaço (terça parte)

3.4 Movimento ao longo de uma curva no espaço (terça parte) 3.4-41 3.4 Movimento ao longo de uma curva no espaço (terça parte) Antes de começar com a nova matéria, vamos considerar um problema sobre o material recentemente visto. Problema: (Projeção de uma trajetória

Leia mais

DIRETRIZES PARA DESENVOLVIMENTO DE UM SISTEMA AVANÇADO PARA ESTUDOS E PROJETOS VIÁRIOS: DEFINIÇÃO, REPRESENTAÇÃO E ANÁLISE DO EIXO PLANIMÉTRICO

DIRETRIZES PARA DESENVOLVIMENTO DE UM SISTEMA AVANÇADO PARA ESTUDOS E PROJETOS VIÁRIOS: DEFINIÇÃO, REPRESENTAÇÃO E ANÁLISE DO EIXO PLANIMÉTRICO UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA CIVIL Fernando Fraga de Freitas dos Santos DIRETRIZES PARA DESENVOLVIMENTO DE UM SISTEMA AVANÇADO PARA ESTUDOS

Leia mais

AMARELA EFOMM-2008 AMARELA

AMARELA EFOMM-2008 AMARELA PROVA DE MATEMÁTICA EFOMM-008 1ª Questão: A figura acima representa uma caixa de presente de papelão que mede 16 por 30 centímetros. Ao cortarmos fora os quadrados do mesmo tamanho dos quatro cantos e

Leia mais

Coordenadas Polares Mauri C. Nascimento Dep. De Matemática FC Unesp/Bauru

Coordenadas Polares Mauri C. Nascimento Dep. De Matemática FC Unesp/Bauru Coordenadas Polares Mauri C. Nascimento Dep. De Matemática FC Unesp/Bauru Dado um ponto P do plano, utilizando coordenadas cartesianas (retangulares), descrevemos sua localização no plano escrevendo P

Leia mais

Levantamento. Levantamento altimétrico:

Levantamento. Levantamento altimétrico: Levantamento planimétrico trico: projeção plana que não traz informações acerca do relevo do terreno levantado; somente acerca de informações relativas à medições feitas na horizontal. Levantamento altimétrico:

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ CENTRO DE GEOCIÊNCIAS DEPARTAMENTO DE GEOLOGIA DISCIPLINA: GEOLOGIA ESTRUTURAL GEOLOGIA ESTRUTURAL - PRÁTICA

UNIVERSIDADE FEDERAL DO PARÁ CENTRO DE GEOCIÊNCIAS DEPARTAMENTO DE GEOLOGIA DISCIPLINA: GEOLOGIA ESTRUTURAL GEOLOGIA ESTRUTURAL - PRÁTICA 1 UNIVERSIDADE FEDERAL DO PARÁ CENTRO DE GEOCIÊNCIAS DEPARTAMENTO DE GEOLOGIA DISCIPLINA: GEOLOGIA ESTRUTURAL Cap. 01 - Mapas e Seções Geológicas GEOLOGIA ESTRUTURAL - PRÁTICA Antes que se comece a estudar

Leia mais

08-LEVANTAMENTO TOPOGRÁFICO PLANIMETRIA pg 98

08-LEVANTAMENTO TOPOGRÁFICO PLANIMETRIA pg 98 TOPOGRAFIA 08-LEVANTAMENTO TOPOGRÁFICO PLANIMETRIA pg 98 levantamento pontos planimétricos, altimétricos ou planialtimétricos pontos de apoio (partir destes ) Projeção ΔX = D. sen Az ΔY = D. cos Az TÉCNICAS

Leia mais

= 30maneiras para sentar-se. Como são 20 filas, o número total de maneiras distintas que atende ao enunciado será:

= 30maneiras para sentar-se. Como são 20 filas, o número total de maneiras distintas que atende ao enunciado será: TEÁTIC 1ª QUESTÃO Um avião possui 10 poltronas de passageiros distribuídas em 0 filas. Cada fila tem poltronas do lado esquerdo (denotadas por, B, C) e do lado direito (denotadas por D, E, F), separadas

Leia mais

CAP. 3 - EXTENSÔMETROS - "STRAIN GAGES" Exemplo: extensômetro Huggenberger

CAP. 3 - EXTENSÔMETROS - STRAIN GAGES Exemplo: extensômetro Huggenberger CAP. 3 - EXTENSÔMETOS - "STAIN GAGES" 3. - Extensômetros Mecânicos Exemplo: extensômetro Huggenberger Baseia-se na multiplicação do deslocamento através de mecanismos de alavancas. Da figura: l' = (w /

Leia mais

Exercícios do item 1.6: 1) Calcule as reações nos apoios da viga abaixo.

Exercícios do item 1.6: 1) Calcule as reações nos apoios da viga abaixo. Exercícios do item 1.5: 1) Calcule a força de tração nas duas barras da estrutura abaixo. tan θ 0 1 θ1 arc tan (0,75) θ1, 87 tan θ 0 θ arc tan (1,) θ 5, 1 o x 0 : 1 cos (,87 ) cos(5,1 ) 0 0, 0,8 1 0,8

Leia mais

VESTIBULAR 2004 - MATEMÁTICA

VESTIBULAR 2004 - MATEMÁTICA 01. Dividir um número real não-nulo por 0,065 é equivalente a multiplicá-lo por: VESTIBULAR 004 - MATEMÁTICA a) 4 c) 16 e) 1 b) 8 d) 0. Se k é um número inteiro positivo, então o conjunto A formado pelos

Leia mais

LISTA 10 INDUÇÃO ELETROMAGNÉTICA

LISTA 10 INDUÇÃO ELETROMAGNÉTICA 1. (Ufmg 95) Esta figura mostra uma espira retangular, de lados a = 0,20 m e b = 0,50 m, sendo empurrada, com velocidade constante v = 0,50 m/s, para uma região onde existe um campo magnético uniforme

Leia mais

TOPOGRAFIA - Planimetria. Alex Mota dos Santos

TOPOGRAFIA - Planimetria. Alex Mota dos Santos TOPOGRAFIA - Planimetria Alex Mota dos Santos Unidades de Medida Linear polegada = 2,75 cm = 0,0275 m polegada inglesa = 2,54 cm = 0,0254 m pé = 30,48cm = 0,3048 m jarda = 91,44cm = 0,9144m milha brasileira

Leia mais

Topografia Aplicada à Engenharia Civil AULA 07

Topografia Aplicada à Engenharia Civil AULA 07 Topografia Geomática Aplicada à Engenharia Civil AULA 07 Poligonação Parte 1 Laboratório de Cartografia Digital - CTUFES Poligonação ou Caminhamento 2 A6 3 A6 Poligonação ou Caminhamento Este processo

Leia mais

Topografia. Conceitos Básicos. Prof.: Alexandre Villaça Diniz - 2004-

Topografia. Conceitos Básicos. Prof.: Alexandre Villaça Diniz - 2004- Topografia Conceitos Básicos Prof.: Alexandre Villaça Diniz - 2004- 1 ÍNDICE ÍNDICE...1 CAPÍTULO 1 - Conceitos Básicos...2 1. Definição...2 1.1 - A Planta Topográfica...2 1.2 - A Locação da Obra...4 2.

Leia mais

-ESTRUTURA VIÁRIA TT048 CURVAS HORIZONTAIS DE TRANSIÇÃO

-ESTRUTURA VIÁRIA TT048 CURVAS HORIZONTAIS DE TRANSIÇÃO INFRAINFRA -ESTRUTURA VIÁRIA TT048 CURVAS HORIZONTAIS DE TRANSIÇÃO Prof.Djalma Prof.Djalma Pereira Prof. Eduardo Ratton Profa. Profa.Gilza Fernandes Blasi Profa. Profa. Márcia de Andrade Pereira CURVAS

Leia mais

Refração da Luz Prismas

Refração da Luz Prismas Refração da Luz Prismas 1. (Fuvest 014) Um prisma triangular desvia um feixe de luz verde de um ângulo θ A, em relação à direção de incidência, como ilustra a figura A, abaixo. Se uma placa plana, do mesmo

Leia mais

PROGRAMA DE INTEGRAÇÃO E CAPACITAÇÃO DER/2008 TÓPICOS DE DE PROJETO GEOMÉTRICO RODOVIÁRIO. Lucas Bach Adada

PROGRAMA DE INTEGRAÇÃO E CAPACITAÇÃO DER/2008 TÓPICOS DE DE PROJETO GEOMÉTRICO RODOVIÁRIO. Lucas Bach Adada PROGRAMA DE INTEGRAÇÃO E CAPACITAÇÃO DER/2008 TÓPICOS DE DE PROJETO GEOMÉTRICO RODOVIÁRIO Lucas Bach Adada 1 Conteúdo Programático Definição de Projeto Geométrico; Classificação das Vias e Rodovias ; Critérios

Leia mais

Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5

Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5 Cálculo em Computadores - 2007 - trajectórias Trajectórias Planas Índice Trajectórias. exercícios............................................... 2 2 Velocidade, pontos regulares e singulares 2 2. exercícios...............................................

Leia mais

Manual de Laboratório Física Experimental I- Hatsumi Mukai e Paulo R.G. Fernandes

Manual de Laboratório Física Experimental I- Hatsumi Mukai e Paulo R.G. Fernandes Pêndulo Simples 6.1 Introdução: Capítulo 6 Um pêndulo simples se define como uma massa m suspensa por um fio inextensível, de comprimento com massa desprezível em relação ao valor de m. Se a massa se desloca

Leia mais

24/Abril/2013 Aula 19. Equação de Schrödinger. Aplicações: 1º partícula numa caixa de potencial. 22/Abr/2013 Aula 18

24/Abril/2013 Aula 19. Equação de Schrödinger. Aplicações: 1º partícula numa caixa de potencial. 22/Abr/2013 Aula 18 /Abr/013 Aula 18 Princípio de Incerteza de Heisenberg. Probabilidade de encontrar uma partícula numa certa região. Posição média de uma partícula. Partícula numa caixa de potencial: funções de onda e níveis

Leia mais

CURVAS HORIZONTAIS CIRCULARES

CURVAS HORIZONTAIS CIRCULARES CURVAS HORIZONTAIS CIRCULARES Introdução β1, β2, β3 são azimutes dos alinhamentos θ1, θ2 são ângulos de deflexão AA, DD, GG são tangentes (trechos retos entre curvas de concordância) Curvas horizontais

Leia mais

TEORIA UNIDIMENSIONAL DAS

TEORIA UNIDIMENSIONAL DAS Universidade Federal do Paraná Curso de Engenharia Industrial Madeireira MÁQUINAS HIDRÁULICAS AT-087 Dr. Alan Sulato de Andrade alansulato@ufpr.br INTRODUÇÃO: O conhecimento das velocidades do fluxo de

Leia mais

EXEMPLO NUMÉRICO DE LEVANTAMENTO PLANIMÉTRICO PELO MÉTODO DE CAMINHAMENTO (POLIGONAÇÃO)

EXEMPLO NUMÉRICO DE LEVANTAMENTO PLANIMÉTRICO PELO MÉTODO DE CAMINHAMENTO (POLIGONAÇÃO) EXEMPLO NUMÉRICO DE LEVANTAMENTO PLANIMÉTRICO PELO MÉTODO DE CAMINHAMENTO (POLIGONAÇÃO) Distâncias 1º etapa: leitura dos fios estadimétricos (fio superior - FS, fio médio - FM, fio inferior - FI) FIOS

Leia mais

CAPÍTULO VI TRANSPORTE DE COORDENADAS RETANGULARES POLIGONAIS FECHADAS

CAPÍTULO VI TRANSPORTE DE COORDENADAS RETANGULARES POLIGONAIS FECHADAS CAPÍTULO VI TRANSPORTE DE COORDENADAS RETANGULARES POLIGONAIS FECHADAS 1 o ) Durante o levantamento topográfico planimétrico foram medidos os seguintes valores angulares relativos a uma poligonal fechada:

Leia mais

Capítulo 2 CINEMÁTICA

Capítulo 2 CINEMÁTICA Capítulo CINEMÁTICA DISCIPLINA DE FÍSICA CAPÍTULO - CINEMÁTICA.1 Uma partícula com movimento rectilíneo desloca-se segundo a seguinte equação: x = 0,5 t.1.1 Desenhe o gráfico da função r(t), no intervalo

Leia mais

Sistema Internacional de unidades (SI). 22/06/1799 sistema métrico na França

Sistema Internacional de unidades (SI). 22/06/1799 sistema métrico na França CURSO DE ENGENHARIA CARTOGRÁFICA Carlos Aurélio Nadal Doutor em Ciências Geodésicas Professor Titular do Departamento de Geomática - Setor de Ciências da Terra Sistema Internacional de unidades (SI). 22/06/1799

Leia mais

EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1

EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1 EXAME NACIONAL DO ENSINO SECUNDÁRIO 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais e Cursos Tecnológicos PROVA 435/9 Págs. Duração da prova: 120 minutos 2005 1.ª FASE

Leia mais

Conceitos Básicos de Desenho Técnico

Conceitos Básicos de Desenho Técnico Conceitos Básicos de Desenho Técnico 1. Escalas Gráficas e Numéricas 1.1. Definição No desenho arquitetônico, a necessidade de representar espacialmente objetos e seus detalhes através de desenhos, fez

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Professor: Renato Medeiros EXERCÍCIOS NOTA DE AULA IV Goiânia - 2014 EXERCÍCIOS 1. Uma partícula eletrizada positivamente é

Leia mais

Mestrado Integrado em Engenharia Aeroespacial Aerodinâmica I. Fluido Perfeito

Mestrado Integrado em Engenharia Aeroespacial Aerodinâmica I. Fluido Perfeito Mestrado Integrado em Engenharia Aeroespacial Aerodinâmica I Fluido Perfeito 1. Considere o escoamento bidimensional, irrotacional e incompressível definido pelo potencial φ = a) Mostre que φ satisfaz

Leia mais

Root Locus (Método do Lugar das Raízes)

Root Locus (Método do Lugar das Raízes) Root Locus (Método do Lugar das Raízes) Ambos a estabilidade e o comportamento da resposta transitória em um sistema de controle em malha fechada estão diretamente relacionadas com a localização das raízes

Leia mais

Campos Vetoriais e Integrais de Linha

Campos Vetoriais e Integrais de Linha Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Campos Vetoriais e Integrais de Linha Um segundo objeto de interesse do Cálculo Vetorial são os campos de vetores, que surgem principalmente

Leia mais

Curvas em coordenadas polares

Curvas em coordenadas polares 1 Curvas em coordenadas polares As coordenadas polares nos dão uma maneira alternativa de localizar pontos no plano e são especialmente adequadas para expressar certas situações, como veremos a seguir.

Leia mais

Aluno (a): 1) O intervalo A de números reais é representado geometricamente da seguinte maneira:

Aluno (a): 1) O intervalo A de números reais é representado geometricamente da seguinte maneira: Educa teu filho no caminho que deve andar, e quando grande não se desviará dele Prov.22.6 Bateria de Exercícios Data: 24/03/2016 Turma: 1º Ano Área II Aluno (a): Prezado aluno caso prefira responder na

Leia mais

Faculdades Anhanguera

Faculdades Anhanguera 2º Aula de Física 2.1 Posição A posição de uma partícula sobre um eixo x localiza a partícula em relação á origem, ou ponto zero do eixo. A posição é positiva ou negativa, dependendo do lado da origem

Leia mais

Cálculo da carga aplicada

Cálculo da carga aplicada 508-BR O guia linear é capaz de receber cargas e momentos em todas as direções que sejam gerados em função da posição de montagem, do alinhamento, da posição do centro de gravidade de um objeto móvel,

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

6. Erosão. Início do transporte sólido por arrastamento

6. Erosão. Início do transporte sólido por arrastamento 6. Erosão. Início do transporte sólido por arrastamento 6.1. Introdução A erosão consiste na remoção do material do leito pelas forças de arrastamento que o escoamento provoca. O oposto designa-se por

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

FÍSICA - 3 o ANO MÓDULO 13 CINEMÁTICA VETORIAL E COMPOSIÇÃO DE MOVIMENTOS

FÍSICA - 3 o ANO MÓDULO 13 CINEMÁTICA VETORIAL E COMPOSIÇÃO DE MOVIMENTOS FÍSICA - 3 o ANO MÓDULO 13 CINEMÁTICA VETORIAL E COMPOSIÇÃO DE MOVIMENTOS Como pode cair no enem (UERJ) Pardal é a denominação popular do dispositivo óptico-eletrônico utilizado para fotografar veículos

Leia mais

Unidade III: Movimento Uniformemente Variado (M.U.V.)

Unidade III: Movimento Uniformemente Variado (M.U.V.) Colégio Santa Catarina Unidade III: Movimento Uniformemente Variado (M.U.V.) 17 Unidade III: Movimento Uniformemente Variado (M.U.V.) 3.1- Aceleração Escalar (a): Em movimentos nos quais as velocidades

Leia mais

CORTESIA Prof. Renato Brito www.vestseller.com.br Espaço

CORTESIA Prof. Renato Brito www.vestseller.com.br Espaço INSTITUTO TECNOLÓGICO DE AERONÁUTICA ESTIBULAR 983/984 PROA DE FÍSICA 0. (ITA-84) Colocou-se uma certa quantidade de bolinhas de chumbo numa seringa plástica e o volume lido na própria escala da seringa

Leia mais

(a) A latitude pode variar de e tem como origem o :

(a) A latitude pode variar de e tem como origem o : >> capítulo 1 >> Atividade 1: Assinale a alternativa correta. (a) A latitude pode variar de e tem como origem o : ( ) 0 o a 180 o para norte ou sul; Meridiano de Greenwich. ( ) 0 o a 180 o para leste ou

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Exercícios de exames e testes intermédios 1. Em C, conjunto dos números complexos, considere z = + i19 cis θ Determine os valores de θ pertencentes

Leia mais

Instituto Superior de Engenharia do Porto Departamento de Engenharia Electrotécnica. Licenciatura em Engenharia Electrotécnica e de Computadores

Instituto Superior de Engenharia do Porto Departamento de Engenharia Electrotécnica. Licenciatura em Engenharia Electrotécnica e de Computadores Instituto Superior de Engenharia do Porto Departamento de Engenharia Electrotécnica Licenciatura em Engenharia Electrotécnica e de Computadores SISEL - Sistemas Electromecânicos Eercícios de 006 . Considere

Leia mais

Escola Básica e Secundária de Velas

Escola Básica e Secundária de Velas Escola Básica e Secundária de Velas Planificação Anual do 12º Ano Matemática A Ano letivo 2015 /2016 1º Período 2º Período 3º Período Nº DE BLOCOS PREVISTOS 39 32 24 Apresentação 0,5 1º Período 2º Período

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Civil. Mecânica Vetorial ENG01035

Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Civil. Mecânica Vetorial ENG01035 Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Civil EXERCÍCIOS D 2 a. ÁRE Mecânica Vetorial ENG035 LIST DE PROLEMS DE PROV CENTRO DE GRVIDDE 1) peça representada

Leia mais

PUCGoiás Física I. Lilian R. Rios. Rotação

PUCGoiás Física I. Lilian R. Rios. Rotação PUCGoiás Física I Lilian R. Rios Rotação O movimento de um cd, de um ventilador de teto, de uma roda gigante, entre outros, não podem ser representados como o movimento de um ponto cada um deles envolve

Leia mais

Os conceitos mais básicos dessa matéria são: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo.

Os conceitos mais básicos dessa matéria são: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo. Os conceitos mais básicos dessa matéria são: Cinemática Básica: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo. Velocidade: Consiste na taxa de variação dessa distância

Leia mais

O que é o Sistema Geodésico de Referência? Qual é o Sistema Geodésico adotado no Brasil? Qual a diferença entre o Sistema SAD69 e SIRGAS2000?

O que é o Sistema Geodésico de Referência? Qual é o Sistema Geodésico adotado no Brasil? Qual a diferença entre o Sistema SAD69 e SIRGAS2000? O que é o Sistema Geodésico de Referência? É um sistema coordenado que serve de referência ao posicionamento no globo terrestre ou em um território nacional ou continental, utilizado para representar características

Leia mais

Seleção 2015 - Edital N 15/2014

Seleção 2015 - Edital N 15/2014 Departamento de Áreas Acadêmicas II Curso de Especialização em Matemática Seleção 015 - Edital N 15/014 INSTRUÇÕES: 1. O horário da realização da prova é previsto de 14h00min até as 17h30min.. A prova

Leia mais

Levantamento topográfico

Levantamento topográfico MA092 - Geometria plana e analítica - Segundo projeto Levantamento topográfico Francisco A. M. Gomes Outubro de 2014 1 Descrição do projeto Nessa atividade, vamos usar a lei dos senos e a lei dos cossenos

Leia mais

PROJETO E CONSTRUÇÃO DE ESTRADAS

PROJETO E CONSTRUÇÃO DE ESTRADAS 11 PROJETO E CONSTRUÇÃO DE ESTRADAS PROJETO EOMÉTRICO DE VIAS 2 - CURVAS HORIZONTAIS SIMPLES 2.1 - INTRODUÇÃO O traçado em planta de uma estrada deve ser composto de trechos retos concordados com curvas

Leia mais

CADEX. Consultoria em Logística Interna. Layout de armazém. Objectivos. Popularidade. Semelhança. Tamanho. Características

CADEX. Consultoria em Logística Interna. Layout de armazém. Objectivos. Popularidade. Semelhança. Tamanho. Características CADEX Consultoria em Logística Interna Layout de armazém fonte: Wikipédia O layout de armazém é a forma como as áreas de armazenagem de um armazém estão organizadas, de forma a utilizar todo o espaço existente

Leia mais

2) A área da parte mostarda dos 100 padrões é 6. 9. 2. 3) A área total bordada com a cor mostarda é (5400 + 3700) cm 2 = 9100 cm 2

2) A área da parte mostarda dos 100 padrões é 6. 9. 2. 3) A área total bordada com a cor mostarda é (5400 + 3700) cm 2 = 9100 cm 2 MATEMÁTICA 1 Um tapete deve ser bordado sobre uma tela de m por m, com as cores marrom, mostarda, verde e laranja, da seguinte forma: o padrão quadrado de 18 cm por 18 cm, mostrado abaio, será repetido

Leia mais

RESOLUÇÃO Nº DE DE DE 2012

RESOLUÇÃO Nº DE DE DE 2012 RESOLUÇÃO Nº DE DE DE 2012 Estabelece os padrões e critérios para a instalação de ondulações transversais (lombadas físicas) em vias públicas, disciplinadas pelo Parágrafo único do art. 94 do Código de

Leia mais

- PROVA OBJETIVA - Câmpus Santos Dumont - Edital 005/2014

- PROVA OBJETIVA - Câmpus Santos Dumont - Edital 005/2014 MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO SUDESTE DE MINAS GERAIS CONCURSO PÚBLICO PARA PROVIMENTO DE CARGO EFETIVO DE DOCENTES ÁREA: Matemática - PROVA OBJETIVA - Câmpus

Leia mais

Planificação 2015/2016

Planificação 2015/2016 Planificação 2015/2016 ENSINO SECUNDÁRIO PLANIFICAÇÃO DA DISCIPLINA DE MATEMÁTICA A 11º ANO DE ESCOLARIDADE CONTEÚDOS PROGRAMÁTICOS GEOMETRIA NO PLANO E NO ESPAÇO II 1-Resolução de Problemas Envolvendo

Leia mais

PROVA DE CONHECIMENTOS ESPECÍFICOS

PROVA DE CONHECIMENTOS ESPECÍFICOS 10 PROVA DE CONHECIMENTOS ESPECÍFICOS QUESTÃO 31 As projeções do lado do polígono, com rumo no 4 o quadrante, sobre os eixos x e y são, respectivamente: a) positiva e positiva b) positiva e negativa c)

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA Quarta lista de Eercícios de Cálculo Diferencial e Integral I - MTM 1 1. Nos eercícios a seguir admita

Leia mais

4. Tangentes e normais; orientabilidade

4. Tangentes e normais; orientabilidade 4. TANGENTES E NORMAIS; ORIENTABILIDADE 91 4. Tangentes e normais; orientabilidade Uma maneira natural de estudar uma superfície S consiste em considerar curvas γ cujas imagens estão contidas em S. Se

Leia mais

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 9

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 9 RACIOCÍNIO LÓGICO AULA 9 TRIGONOMETRIA TRIÂNGULO RETÂNGULO Considere um triângulo ABC, retângulo em  ( = 90 ), onde a é a medida da hipotenusa, b e c, são as medidas dos catetos e a, β são os ângulos

Leia mais

(Exames Nacionais 2000)

(Exames Nacionais 2000) (Eames Nacionais 000) 1.a) Seja [ABC] um triângulo O ângulo, assinalado na figura, tem o seu vértice no centro isósceles em que BA = BC. Seja α da Terra; o seu lado origem passa no perigeu, o seu lado

Leia mais

Boa Prova! arcsen(x 2 +2x) Determine:

Boa Prova! arcsen(x 2 +2x) Determine: Universidade Federal de Campina Grande - UFCG Centro de Ciências e Tecnologia - CCT Unidade Acadêmica de Matemática e Estatística - UAME - Tarde Prova Estágio Data: 5 de setembro de 006. Professor(a):

Leia mais

1 SISTEMAS DE COORDENADAS

1 SISTEMAS DE COORDENADAS 1 SISTEMAS DE COORDENADAS 1.1 Objetivos do capítulo Aonaldestecapítulooalunodeverá: Representar pontos em coordenadas polares, cilíndricas e esféricas; Representargracamentecurvasescritasemcoordenadaspolares;

Leia mais

Edital nº 01, de 06 de janeiro de 2016.

Edital nº 01, de 06 de janeiro de 2016. COMISSÃO PERMANENTE DE SELEÇÃO COPESE Edital nº 01, de 06 de janeiro de 016. PROVA OBJETIVA - PROFESSOR DE ENSINO BÁSICO, TÉCNICO E TECNOLÓGICO ÁREA DE CONHECIMENTO MATEMÁTICA/ DESENHO GEOMÉTRICO INSTRUÇÕES

Leia mais

Método analítico para o traçado da polar de arrasto de aeronaves leves subsônicas aplicações para a competição Sae-Aerodesign

Método analítico para o traçado da polar de arrasto de aeronaves leves subsônicas aplicações para a competição Sae-Aerodesign SIMPÓSIO INTERNAIONA E IÊNIAS INTEGRAAS A UNAERP AMPUS GUARUJÁ Método analítico para o traçado da polar de arrasto de aeronaves leves subsônicas aplicações para a competição Sae-Aerodesign uiz Eduardo

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: CALCULO B UNIDADE III - LISTA DE EXERCÍCIOS Atualizado 2008.2 Domínio, Imagem e Curvas/Superfícies de Nível y2 è [1] Determine o domínio

Leia mais

Aula -2 Motores de Corrente Contínua com Escovas

Aula -2 Motores de Corrente Contínua com Escovas Aula -2 Motores de Corrente Contínua com Escovas Introdução Será descrito neste tópico um tipo específico de motor que será denominado de motor de corrente contínua com escovas. Estes motores possuem dois

Leia mais

TOPOGRAFIA GERAL Geotecnologias - 2013

TOPOGRAFIA GERAL Geotecnologias - 2013 UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO DEPARTAMENTO DE TECNOLOGIA RURAL GEOTECNOLOGIAS TOPOGRAFIA GERAL NOTAS DE AULAS JOSÉ MACHADO C. JÚNIOR josemachado@dtr.ufrpe.br RECIFE 2013 N o t a s d e A u l

Leia mais

7. DIAGRAMAÇÃO DAS PLACAS

7. DIAGRAMAÇÃO DAS PLACAS 7. DIAGRAMAÇÃO DAS PLACAS A diagramação das placas de Sinalização Vertical de Indicação compreende os seguintes passos: Definição da altura das letras, a partir da velocidade regulamentada na via; Dimensionamento

Leia mais

Departamento de Engenharia Civil Implantação de Pontos

Departamento de Engenharia Civil Implantação de Pontos Departamento de Engenharia Civil Implantação de Pontos Rosa Marques Santos Coelho Paulo Flores Ribeiro 2006 / 2007 1. Implantação A implantação de pontos ou quaisquer outros detalhes consiste na materialização

Leia mais

Aula 5 NOÇÕES BÁSICAS DE GEODÉSIA E ASTRONOMIA DE POSIÇÃO. Antônio Carlos Campos

Aula 5 NOÇÕES BÁSICAS DE GEODÉSIA E ASTRONOMIA DE POSIÇÃO. Antônio Carlos Campos Aula 5 NOÇÕES BÁSICAS DE GEODÉSIA E ASTRONOMIA DE POSIÇÃO META Mostrar as normas básicas de posicionamento e direção terrestre e apresentar formas de orientação que auxiliam na localização. OBJETIVOS Ao

Leia mais

ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere as seguintes afirmações sobre o conjunto U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} I. U e n(u) = 10 III. 5 U e {5}

Leia mais

Aula 5 - Parte 1: Funções. Exercícios Propostos

Aula 5 - Parte 1: Funções. Exercícios Propostos Aula 5 - Parte 1: Funções Exercícios Propostos 1 Construção de Funções: a) Um grupo de amigos deseja alugar uma van, por um dia, para um passeio, ao custo de R$300,00. Um levantamento preliminar indicou

Leia mais

-ESTRUTURA VIÁRIA TT048. SUPERELEVAÇÃO e SUPERLARGURA EXERCÍCIOS

-ESTRUTURA VIÁRIA TT048. SUPERELEVAÇÃO e SUPERLARGURA EXERCÍCIOS INFRAINFRA -ESTRUTURA VIÁRIA TT048 SUPERELEVAÇÃO e SUPERLARGURA EXERCÍCIOS Prof. Eduardo Ratton Profa. Profa. Márcia de Andrade Pereira Prof. Wilson Kuster Filho EXERCÍCIO 5.7.1 - Calcular e representar

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA CAPÍTULO 1. Prof. Carlos R. A. Lima INTRODUÇÃO AO CURSO E TEORIA DA RELATIVIDADE ESPECIAL

NOTAS DE AULAS DE FÍSICA MODERNA CAPÍTULO 1. Prof. Carlos R. A. Lima INTRODUÇÃO AO CURSO E TEORIA DA RELATIVIDADE ESPECIAL NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 1 INTRODUÇÃO AO CURSO E TEORIA DA RELATIVIDADE ESPECIAL Edição de junho de 2014 2 CAPÍTULO 1 TEORIA DA RELATIVIDADE ESPECIAL ÍNDICE 1.1-

Leia mais

REPRESENTAÇÃO DE SISTEMAS DE POTÊNCIA

REPRESENTAÇÃO DE SISTEMAS DE POTÊNCIA 1 REPRESENTAÇÃO DE SISTEMAS DE POTÊNCIA revisão mar06 1 - Introdução A maioria dos sistemas elétricos de potência é em corrente alternada. As instalações em corrente contínua são raras e tem aplicações

Leia mais

Vestibulando Web Page www.vestibulandoweb.com.br

Vestibulando Web Page www.vestibulandoweb.com.br 1. (Ufv 2000) Um aluno, sentado na carteira da sala, observa os colegas, também sentados nas respectivas carteiras, bem como um mosquito que voa perseguindo o professor que fiscaliza a prova da turma.

Leia mais

CAMPOS MAGNÉTICOS PRODUZIDOS POR CORRENTES

CAMPOS MAGNÉTICOS PRODUZIDOS POR CORRENTES Física (Eletromagnetismo) 1. Lei de iot-savart CAMPOS MAGNÉTICOS PRODUZIDOS POR CORRENTES A lei de iot-savart é uma lei no eletromagnetismo que descreve o vetor indução magnética em termos de magnitude

Leia mais