RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR INSPER. ANÁLISE QUANTITATIVA E LÓGICA POR PROFA. MARIA ANTÔNIA C. GOUVEIA

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014-2 INSPER. ANÁLISE QUANTITATIVA E LÓGICA POR PROFA. MARIA ANTÔNIA C. GOUVEIA"

Transcrição

1 RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR - INSPER. ANÁLISE QUANTITATIVA E LÓGICA POR PROFA. MARIA ANTÔNIA C. GOUVEIA Utilize as informações a seguir para as questões e. Uma estação de trens é constituída por dois galpões cujas fachadas têm a forma de dois semicírculos que se tangenciam, conforme a figura a seguir. Os raios dos semicírculos das fachadas dos terminais e medem, respectivamente, m e m. Uma empresa está fazendo um estudo para instalar um sistema de ar condicionado nos galpões.. Para dimensionar o sistema de renovação do ar, uma das informações necessárias é o volume total dos galpões, que têm a forma de semicilindros. Se a distancia entre as fachadas e os fundos é metros, esse volume é aproximadamente igual a (a) 5.m (c) 5.m (e) 5.m (b).m (d).m O volume dos dois galpões é igual à semissoma dos volumes dos dois cilindros: 9... RESPOSTA: Alternativa d.. Para diminuir o impacto da insolação, pretende-se instalar um telhado tangenciando os dois terminais conforme indicado pela linha tracejada na figura. A medida do telhado, correspondente ao comprimento dessa linha tracejada, é igual a (a) 6 m (b) 6 m (c) m (d) m (e) 6 m O segmento AB, tangente aos círculos é perpendicular aos raios AE e BD. Pelo ponto D traça-se uma paralela ao segmento AB. O triângulo CDE é retângulo e seus lados medem d, e 5 centímetros. Então, d 5 d d 6. RESPOSTA: Alternativa e.

2 Utilize as informações a seguir para as questões e. Os analistas responsáveis pelas estratégias comerciais de uma grande rede de lojas propuseram a seguinte regra para conceder descontos aos clientes:,9v, se v p ( v),8v, se v,,7v, se v em que v é a soma dos valores marcados nos produtos que o cliente comprar e p(v) é o pagamento que o cliente deverá fazer no caixa, com desconto sobre essa soma.. Dois clientes passaram pelo caixa e pagaram R$9,, mas os valores totais das compras deles antes de ser aplicado o desconto eram diferentes. A diferença entre esses valores totais é de (a) R$,5. (b) R$5,. (c) R$7,5. (d) R$,. (e) R$,5. Considerando que,7v = 9 v 8,57 v < ; (não satisfaz),8v = 9 v =,5 ( o valor de v está contido no intervalo: ], ] ),9v = 9 v = ( o valor de v está contido no intervalo: ], ] ). Logo um cliente comprou R$, 5 e o outro comprou R$,. A diferença entre esses valores totais é de R$,5. RESPOSTA: Alternativa a.. O departamento de marketing precisa criar uma tabela para comunicar as condições dos descontos para os clientes. Das opções abaixo, aquela que explica corretamente a regra proposta pelos analistas é (a) (b) (c) (d) (e) Se o valor da sua compra é......seu desconto é de... menor do que R$, 9% menor do que R$, e maior ou igual a R$, 8% maior ou igual a R$, 7% Se o valor da sua compra é......seu desconto é de... menor ou igual a R$, 9% menor ou igual a R$, e maior do que R$, 8% maior do que R$, 7% Se o valor da sua compra é......seu desconto é de... menor do que R$, % menor do que R$, e maior ou igual a R$, % maior ou igual a R$, % Se o valor da sua compra é......seu desconto é de... menor ou igual R$, % menor ou igual a R$, e maior do que R$, % maior do que R$, % Se o valor da sua compra é......seu desconto é de... menor ou igual R$, % menor ou igual a R$, e maior do que R$, % maior do que R$, %

3 ,9v, se v DESCONTO :,v p( v),8v, se v DESCONTO :,v,7v, se v DESCONTO :,v RESPOSTA: Alternativa d. 5. O grêmio de uma faculdade convidou os alunos do primeiro semestre para uma atividade de integração. Eles contaram os calouros presentes e tentaram agrupá-los de forma que todos os grupos tivessem a mesma quantidade de pessoas, mas não havia maneira de fazê-lo, pois não queriam apenas uma pessoa por grupo e nem um único grande grupo. Pode-se concluir que a quantidade de calouros era necessariamente um número (a) par. (c) primo. (e) maior do que 5. (b) quadrado perfeito. (d) menor do que. Conhecendo o número n de calouros, ao se tentar agrupá-los de maneira que os grupos formados tivessem a mesma quantidade de pessoas, verificou-se ser impossível fazê-lo. Como existe a informação de que a quantidade de pessoas tinha que ser diferente de e de n, isso implica que os únicos divisores de n são ele próprio e, logo, n é um número primo. Alternativa c. 6. O gráfico a seguir mostra os resultados de uma pesquisa sobre o governo brasileiro. (Fonte: A maior variação positiva, em pontos percentuais, entre dois meses consecutivos ocorreu (a) na opção regular entre os meses de março e junho. (b) na opção ruim/péssimo entre os meses de junho e julho. (c) na opção ótimo/bom entre os meses de junho e julho. (d) na opção regular entre os meses de julho e agosto. (e) na opção ruim/péssimo entre os meses de julho e agosto.

4 a. Na opção regular entre os meses de março e junho, a variação foi de ( 7)% = 6%. b. Na opção ruim/péssimo entre os meses de junho e julho, a variação foi de ( )% = 8%. c. Na opção ótimo/bom entre os meses de junho e julho, a variação foi negativa de ( 55)% = %. d. Na opção regular entre os meses de julho e agosto, a variação foi de (7 7)% = %. e. Na opção ruim/péssimo entre os meses de julho e agosto, a variação foi negativa de ( )% = 7%. RESPOSTA: Alternativa b. Utilize as informações a seguir para as questões 7 e 8. O gráfico a seguir representa a quantidade diária de pessoas (q) atendidas em um hospital público com os sintomas de um novo tipo de gripe, a gripe X, em função do tempo (t), em meses, desde que se iniciou um programa de vacinação para este tipo de gripe na cidade do hospital. 7. A prefeitura da cidade fará uma campanha publicitária com frases que pretendem ressaltar os aspectos positivos da vacinação. Das opções abaixo, aquela que informa corretamente o que o gráfico mostra é (a) Em um ano de vacinação, a quantidade diária de atendimentos a pessoas com a gripe X caiu de. para! (b) A cada três meses, a quantidade de pessoas que chega todos os dias ao hospital com a gripe X cai pela metade! (c) O número de atendimentos diários no hospital a pessoas com a gripe X diminui em a cada meses! (d) A cada mês, chegam ao hospital pessoas a menos por dia, em relação ao mês anterior, com os sintomas da gripe X. (e) Entre o o e o 6 o mês do programa de vacinação, 5 pessoas foram vacinadas contra a gripe X diariamente no hospital.

5 Analisando o gráfico, conclui-se que A cada três meses, a quantidade de pessoas que chega todos os dias ao hospital com a gripe X cai pela metade! RESPOSTA: Alternativa b. 8. Das funções a seguir, aquela que melhor representa a relação proposta no gráfico é t (a) q(t) =.. (d) q(t) = 5.log (t ). t (b) q(t) = 5.. (e) q(t) =.log t. t (c) q(t) =.. Vimos pela questão anterior que a opção representada pelo gráfico é: A cada três meses, a quantidade de pessoas que chega todos os dias ao hospital com a gripe X cai pela metade! t Então, q(t) =. é a função exponencial que melhor representa a relação proposta no gráfico. RESPOSTA: Alternativa a. 5

6 9. Para ilustrar a afirmação Se beber, não dirija. um designer criou a seguinte imagem: Interprete as imagens a seguir, construídas a partir do mesmo raciocínio utilizado pelo designer : As afirmações que melhor representam essas imagens são, respectivamente, (a) Se dirigir, beba. e Se não dirigir, durma. (b) Se não dirigir, beba. e Se dirigir, não durma. (c) Se não dirigir, beba. e Se não dirigir, durma. (d) Se dirigir, beba. e Se dirigir, não durma. (e) Se não dirigir, beba. e Se dirigir, durma. Estudando a imagem criada pelo designer, chega-se aos significados: Se beber Não dirija. Logo os significados das imagens abaixo: Se não beber Dirija. CONCLUSÃO: O significado das imagens a seguir, construídas a partir do mesmo raciocínio utilizado pelo designer : é: Se não dirigir, beba. e Se dirigir, não durma. RESPOSTA: Alternativa b. 6

7 . As quantidades de raízes reais dos polinômios p(x) = x +, q(x) = x + e r(x) = p(x) q(x) são, respectivamente, (a), e. (d), e. (b), e. (e), e. (c), e. O polinômio p(x) = x + tem como raízes x R. O polinômio q(x) = x + tem como raízes x R. O polinômio r(x) = x (x ) x x 9 tem como raízes: 6 x x r(x) tem raízes reais. 6 x 8 x RESPOSTA: Alternativa a.. Uma pizzaria vende pizzas circulares com cm de diâmetro, divididas em 8 pedaços iguais. O dono do estabelecimento pensou em criar uma pizza de tamanho maior, a ser dividida em pedaços iguais, de modo que a área de cada um deles seja igual à área de um pedaço da pizza menor. Para isso, o diâmetro da pizza de pedaços deve ser aproximadamente igual a (a) 6cm. (b) cm. (c) cm. (d) 8cm. (e) 5cm. Como a área de cada / da pizza maior de raio R deve ter a mesma área de /8 da pizza menor de raio 6cm: R 6 R R 8 R 8,5 R 9,6 R 9, 8 R 8 6 RESPOSTA: Alternativa b.. O número de soluções reais da equação [log (x + )] log (x + ) + 6 = é (a). (b). (c). (d). (e) 5. Na equação [log (x + )] log (x + ) + 6 = com x + > para x R, fazendo log (x + ) = a, tem-se: a a + 6 = a = a a a ou a Para a log (x Para a log (x ) x ) x RESPOSTA: Alternativa d. x x R R 7

8 . As vendas de ingressos para um grande evento esportivo ocorreram durante dois meses. O gráfico a seguir representa as vendas diárias, em milhares de unidades, durante este período. Das opções a seguir, aquela que melhor representa o total (acumulado) de ingressos vendidos até cada dia do período de vendas é (Obs.: os gráficos das alternativas estão em uma escala diferente do gráfico acima.) a) (b) (c) (d) (e) 8

9 Analisando o gráfico acima percebe-se que até o trigésimo dia a venda diária de ingressos foi crescente. Daí em diante a venda diária dos ingressos continuou a acontecer, porém de forma decrescente. O gráfico que melhor representa esta situação é RESPOSTA: Alternativa c.. O esquema a seguir representa a hierarquia dos executivos de uma grande empresa. As ligações de uma pessoa com outra(s) abaixo dela representam relações de subordinação. Por exemplo, o presidente da empresa, no topo do esquema, tem pessoas subordinadas diretamente a ele. Dessas pessoas, uma não tem subordinados (à esquerda), e as outras têm, respectivamente (da esquerda para a direita), quatro, um e três subordinados. 9

10 Os valores indicados nos retângulos abaixo de cada pessoa são os salários mensais dessas pessoas. A política de salários da empresa estabelece que: uma pessoa não pode ganhar mais do que a metade da soma dos salários de seus subordinados, se tiver dois subordinados ou mais; uma pessoa que só tem um subordinado não pode ganhar mais do que o dobro desse subordinado. De acordo com essas regras, o salário máximo que o presidente pode ter é (a) R$5.5,. (c) R$7.75,. (e) R$.5,. (b) R$6.5,. (d) R$9.,. OBSERVANDO-SE AS REGRAS: Os valores indicados nos retângulos abaixo de cada pessoa são os salários mensais dessas pessoas. A política de salários da empresa estabelece que: uma pessoa não pode ganhar mais do que a metade da soma dos salários de seus subordinados, se tiver dois subordinados ou mais; uma pessoa que só tem um subordinado não pode ganhar mais do que o dobro desse subordinado. E em seguida colocando nos retângulos vazios, em vermelho, os salários que faltam: Conclusão: O salário máximo do presidente é R$7.75,. RESPOSTA: Alternativa c.

11 5. Observe o mosaico a seguir. As peças que foram usadas para construí-los são idênticas e têm a forma a seguir. A relação entre as medidas a, b e c é (a) a = b e b = c. (b) a = b e b = c. (c) a = b e b = c. (d) a = b e b = c. (e) a = b e b = c. Cada flor da figura abaixo é formada por seis figuras iguais à figura ao lado. O círculo inscrito em cada flor está dividido em seis arcos congruentes, e que portanto medem 6. A figura acima é formada pelo encaixe das diversas flores e nos mostra que b=c=d. (I)

12 O triângulo AED da figura, é equilátero por ser isósceles com um ângulo de 6, então todos os seus lados têm medida a. 8 Na figura tem-se que AB = BC = CD, logo os ângulos AÔB = BÔC = CÔD = 6. Os triângulos AOB, BOC e COD são equiláteros e AD = a = b.(ii) De (I) e (II) vem b = c e a = b. RESPOSTA Alternativa d. Utilize as informações a seguir para as questões 6 e 7. A tabela a seguir apresenta a distribuição das notas dos alunos de uma disciplina da faculdade de Administração nas duas provas realizadas por eles. Nota Prova (quantidade de alunos) Prova (quantidade de alunos) A nota final de cada aluno deve ser calculada considerando peso de 5% para a prova e de 75% para a prova. A média das notas finais de todos os alunos é igual a (a) 6,. (b) 6,5. (c) 6,6. (d) 6,7. (e) 6,8. Média das notas dos alunos na prova : Média das notas dos alunos na prova : A média das notas finais de todos os alunos é igual a:,5 6,,756,8,6 5, 6,7. RESPOSTA: Alternativa d , 6,8

13 7. O percentil da nota de um aluno em uma prova é a porcentagem de pessoas que obtiveram, naquela prova, uma nota igual ou inferior à nota desse aluno. Se a nota de um aluno na prova foi 7, então o percentil dessa nota é, aproximadamente, (a) 5%. (b) 55%. (c) 59%. (d) 6%. (e) 67%. Na prova, alunos tiveram nota inferior à nota 7 e, nota igual a 7. Como o total de alunos é 75, o percentil da nota 7 é, aproximadamente:, , RESPOSTA: Alternativa e. 8. Um analista de recursos humanos desenvolveu o seguinte modelo matemático para relacionar os anos de formação (t) com a remuneração mensal (R) de uma pessoa ao ingressar no mercado de trabalho: R = k(, ) t, em que k é um fator de carreira, determinado de acordo com a área que a pessoa estudou. A tabela a seguir apresenta os anos de formação e os correspondentes fatores de carreira de três pessoas (A, B e C). Pessoa Anos de Formação (t) Fator de Carreira (k) A 8 5 B 6 6 C 9 5 Se as remunerações mensais das pessoas A, B e C são, respectivamente, RA, RB e RC, então, de acordo com esse modelo, (a) R B < R A < R C. (c) R A = R B < R C. (e) R B < R C = R A. (b) R A < R B < R C. (d) R C < R B < R A. Levando em consideração que, e, são múltiplosde, : 8 R A = 5, 5,, 65,. R B = 6, 6 9 R C = 5, 5,, 665,5,. Conclusão: R B < R A < R C. RESPOSTA: Alternativa a Utilize as informações a seguir para as questões 9 e. Sejam A e B matrizes com todos os elementos reais, sendo A quadrada de ordem e B uma matriz coluna com linhas. Sabe-se que: A é uma matriz triangular superior, ou seja, todos os elementos abaixo de sua diagonal principal são nulos; Todos os elementos que não estão abaixo da diagonal principal de A são iguais a ; B = (b i ), com b i = i, para todo i {,, }. Considere, também, que I denota a matriz identidade de ordem.

14 9. Sabendo que o traço de uma matriz quadrada é a soma dos elementos de sua diagonal principal, o traço da matriz (A + I ) é (a). (b). (c) 6. (d). (e) 6. B e I ; A a a a RESPOSTA: Alternativa d.. Seja X uma matriz coluna de linhas tal que AX = B. Então, a soma dos elementos de X é igual a (a). (b). (c). (d) 6. (e). Como X é uma matriz coluna de linhas: z y x X z y x z y x z y x z y z y x z z y z y x z y x RESPOSTA: Alternativa b.. Um economista analisou dados históricos sobre o valor das ações de uma empresa e, com o intuito de prevê-lo ao longo do ano de, elaborou o seguinte modelo: ) ( t sen t sen t V Na função acima, V é o valor da ação e t é o tempo decorrido, em dias, a partir do início do ano (ou seja, t = denota o fim do dia o de janeiro de ). Para simplificar, suponha que todos os meses tenham dias. De acordo com esse modelo, a ação deve atingir seu preço máximo ao término do dia (a) de janeiro. (c) 5 de julho. (e) 5 de maio. (b) de julho. (d) de março. A ação deve atingir o valor máximo quando o valor de 8. t sen for máximo, ou seja, quando dias t t t t sen Supondo que todos os meses tenham dias, 5 dias correspondem a meses e 5 dias. Como t = denota o fim do dia o de janeiro de.

15 t = denota o fim do dia de janeiro, t = 6 denota o fim do dia de fevereiro, t = 9 denota o fim do dia de março, t = denota o fim do dia de abril e t= 5 = ( + 5) denota o fim do dia 5 de maio. RESPOSTA: Alternativa e. Utilize as informações a seguir para as questões e. Considere uma esfera de raio medindo R e um plano que a tangencia. Pode-se associar a ela um outro sólido, obtido da seguinte maneira: constrói-se um cilindro equilátero de raio R com uma das bases contida no plano; retira-se desse cilindro dois cones circulares, sendo que a base de cada um deles coincide com uma das bases do cilindro e os vértices coincidem em V, no centro desse cilindro. O sólido que resta após a retirada dos cones é chamado de anticlepsidra e tem o mesmo volume da esfera. Ambos os sólidos estão representados na figura abaixo.. Apesar de terem o mesmo volume, a esfera e a anticlepsidra associada não têm a mesma área superficial. A razão entre a área da superfície esférica e a área da superfície da anticlepsidra é (a). (b). (c) (d). (e). R No triângulo retângulo ABV: g = R R R Área da superfície esférica: S E = R Área da superfície da anticlepsidra: S A = S Lateral do cone + S Lateral do cilindro S A = Rg R R R R R R R R SE R. S A R RESPOSTA: Alternativa d.. 5

16 . Uma anticlepsidra tem volume igual a. O raio da esfera associada tem medida (a). (b) 6. (c) Volume da anticlepsidra é igual ao volume da esfera a ela associada, então (d) R 6 R R R RESPOSTA: Alternativa c. (e). O gráfico da função f : R R, dada por f(x) = x 5 x + 6, é melhor representado por a) c) e) b) d) f(x) = x 5 x + 6 x f ( x) x 5x 6, para 5x 6, para x x 6

17 f ( x) x 5x 6, para x f ( x) x 5x 6, para x Como f : R R, o gráfico de f(x) é a união dos dois gráficos acima. RESPOSTA: Alternativa a. 5. A função g, de domínio real, tem parte de seu gráfico mostrada na figura a seguir. O gráfico da função f(x) = x g(x) é melhor representado por a) c) e) b) d) 7

18 Para x, g(x) passa pelos pontos (,) e (, ) g(x) = x. Para < x, g(x) passa pelos pontos (,) e (, ) g(x) = x. Para x >, g(x) passa pelos pontos (, ) e (, ) g(x) = x +. x, para x g( x) x, para x x, para x GRÁFICO EM VERMELHO x, para x f ( x) x. g( x) x, para x x x, para x GRÁFICO EM AZUL RESPOSTA: Alternativa c. 6. Seja z C um complexo de módulo z e argumento, ], ]. Defina w C da seguinte forma: w = log z + i Se w = + i, o valor de z é: (a) 9. (b) 9. (c) 9 i. (d) 9 i. (e). Se w = log z + i e w = + i w log z i. log z i. i. z w i. log.. z e i i Usando a forma trigonométrica, z 9cos i.sen.. 9 z cos i.sen z 9 cos 5 i.sen5 z cos i.sen z 9 i RESPOSTA: Alternativa b. 8

19 Utilize as informações a seguir para as questões 7 e 8. É fato conhecido por estudantes do ensino médio que uma circunferência de raio medindo R tem comprimento igual a R. Porém, nem sempre a humanidade soube calcular tal comprimento, e para isso lançou mão de aproximações. Um dos jeitos de se estimar o comprimento da circunferência é inscrevendo-se nela um polígono regular; quanto mais lados tiver o polígono, melhor a aproximação. A figura a seguir ilustra uma circunferência de raio medindo R e o octógono regular de lado medindo d nela inscrito. Dessa forma, o comprimento da circunferência pode ser aproximado por 8d. Outra possibilidade é circunscrever um polígono regular, em vez de inscrever, como mostra a figura a seguir. Nesse caso, o comprimento é aproximado por 8D. 7. A razão entre o comprimento exato de uma circunferência e o comprimento aproximado, obtido com o perímetro do octógono circunscrito, é (a). (b). tg 8 8. tg 8 8 A circunferência tem raio R, logo seu comprimento é C = R. Determinando no triângulo ABO a tangente de 8 : D D tg tg D R tg R 8 R 8 8 C R C 8D 8D 8 Rtg 8tg 8 8 RESPOSTA: Alternativa a. (c). (d). tg. (e). tg. tg 8 8 9

20 8. O método descrito no texto também permite obter uma aproximação para a área do círculo. Utilizando-se o octógono inscrito, a razão entre a área exata e a área aproximada do círculo é (a). (b). (c) A área exata do círculo é S = R. A área aproximada do círculo é S octógono = 8 R R sen R R. S S octógono R R RESPOSTA: Alternativa e.. (d). (e). 9. Carlos deseja sacar num caixa eletrônico uma quantia entre R$ 5, e R$ 99,. O caixa dispõe de notas de R$ 5,, R$, e R$,, e sempre fornece o menor número de cédulas que compõe o valor solicitado. Dentre os valores que Carlos está disposto a sacar, apenas alguns que serão feitos com exatamente 5 cédulas. A soma desses valores é (a) R$ 75,. (b) R$ 6,. (c) R$ 5,. (d) R$,. (e) R$ 5,. O número de cédulas deve ser o menor possível: O valor de R$ 55,, pode ser sacado notas de R$,, mais nota de R$, e mais de R$5,. ( cédulas). O valor de R$ 6,, com notas de R$,. (cédulas). O valor de R$ 65,, com notas de R$,, mais de R$5,. ( cédulas). O valor de R$ 75,, com notas de R$, ou nota de R$, mais de R$5,. (5 cédulas). O valor de R$ 8,, com notas de R$,. ( cédulas). O valor de R$ 85,, com notas de R$, mais de R$5,. (5 cédulas). O valor de R$ 9,, com notas de R$, ou nota de R$,. (5 cédulas). O valor de R$ 95,, com notas de R$, ou nota de R$, mais de R$5,. (6 cédulas). R$ 75, + R$ 85, + R$ 9, = R$ 5, RESPOSTA: Alternativa c. Utilize as informações a seguir para as questões e. Em um jogo de azar, são sorteados 5 números, sem reposição, dentre os algarismos de a 9. Esses 5 números são, então, escondidos, de modo que os participantes não os vejam. Cada participante escolhe de um a cinco números distintos dentre os algarismos de a 9 e os anota em um papel, anotando também o valor que deseja apostar. Os números sorteados são revelados e, então, vencem as apostas apenas os jogadores que acertarem todos os números anotados. Se mais de um jogador vencer e esses vencedores tiverem apostado a mesma quantia, o prêmio é dividido de maneira inversamente proporcional à probabilidade de que cada aposta fosse vencedora.

21 . Numa determinada rodada, jogadores que apostaram a mesma quantia venceram, sendo que um deles escolheu algarismos e, o outro,. Se o prêmio a ser dividido for de R$.,, o jogador que escolheu algarismos receberá (a) R$,. (b) R$,. (c) R$ 66,. (d) R$ 88,. (e) R$ 99,. O número de modos diferentes de serem sorteados 5 números, sem reposição, dentre os algarismos de a 9 é C 9,5 C9, 6. Como o primeiro escolheu algarismos, o número de modos destes aparecerem entre os : 7 5 sorteados é C 7, 5 uma probabilidade de. 6 : 7 8 Como o segundo escolheu algarismos, o número de modos destes aparecerem entre os 65 5: 5 sorteados é C 6, 5 uma probabilidade de. 6 : Considerando como x o valor recebido por quem escolheu algarismos e por y quem escolheu algarismos, e, que o prêmio é dividido de maneira inversamente proporcional à probabilidade de que cada aposta fosse vencedora. x y. x y. x y. x y. x y x y x 5y x y 5 5 x y x y 7. 8 x y. x 7x.. 7x y x RESPOSTA: Alternativa a. Numa determinada rodada, todos os jogadores apostaram em apenas números, todos eles venceram, e nenhum deles escolheu o mesmo par de números que outro jogador. A quantidade máxima possível de vencedores nessa rodada foi de (a) 5. (b) 8. (c). (d) 6. (e) 8. 5 São 5 os números sorteados. Existem C 5, modos diferentes de entre os 5 números sorteados se escolher números, portanto pares diferentes. Logo o número de vencedores é. RESPOSTA: Alternativa c.

22 . Em um sistema ortogonal de coordenadas, a superfície lateral de um sólido é descrita pela união das seguintes regiões: x + y =, com z x + y, com z = ou z = A área lateral e o volume desse sólido são, respectivamente, (a) 6 e. (b) e 8. (c) 6 e 8. (d) e 8. e) e. x + y =, com z é a equação da circunferência de centro (, ) e raio. x + y, com z = ou z = é a equação da região circular interna à circunferência acima. A área lateral é =. O volume é = RESPOSTA: Alternativa e.. O valor exato da expressão, com 5 casas decimais, é,. Considere os seguintes métodos para se fazer essa conta sem o auxílio da calculadora: Método A: usa-se um valor aproximado para e faz-se a divisão; Método B: racionaliza-se o denominador e usa-se um valor aproximado para. Ao se fazer uma aproximação, comete-se um erro, que é definido como a diferença, em módulo, entre o valor aproximado e o valor exato. Usando a melhor aproximação para com uma única casa decimal, a razão entre os erros (em relação ao valor exato) obtidos nos métodos A e B, respectivamente, é de cerca de (a). (b) 8. (c) 6. (d). (e). Método A:,5,5,,8579,, Método B:,,,,,,8579 6, , RESPOSTA: Alternativa c.

23 . Considere a seguinte sequência de figuras formadas a partir de pontos. Para escrever a a figura dessa sequência, a quantidade de pontos adicionais que devem ser utilizados em relação ao que é necessário para escrever a 9 a figura é igual a (a) 55. (b) 56. (c) 57. (d) 58. (e) 59. Figura bola. Figura = bolas. Figura = 8 bolas. Figura = 5 bolas. Figura 5 5 = bolas.... Figura n (n ) bolas. Logo a partir da segunda figura o número de elementos é n, sendo n o número de ordem da figura. Para escrever a 9 a figura, são necessários 9 = 8 = 8 pontos. Para escrever a a figura, são necessários = 9 = 899 pontos = 59. RESPOSTA: Alternativa e. 5. Sejam A n e B n, com n N_, valores definidos por: A n = n B n = (n + ) O valor de A + B é igual a (a) (b) (c) 96. (d) (e) a = = 9 A = A = (soma dos termos de uma P.G. onde a =, q = e a = 9 ), ( ) então, A =. b = +=6. B = ( soma dos termos de uma P.A. onde a =, r = e b = 6), 6 então B = 96. O valor de A + B é igual a + 96 = RESPOSTA: Alternativa e.

CPV seu Pé Direito no INSPER

CPV seu Pé Direito no INSPER ANÁLISE Quantitativa e Lógica Utilize as informações a seguir para as questões 01 e 02. Uma estação de trens é constituída por dois galpões cujas fachadas têm a forma de dois semicírculos que se tangenciam,

Leia mais

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFBA VESTIBULAR a Fase Profa. Maria Antônia Gouveia. Questão. Considerando-se as funções f: R R e g: R R definidas por f(x) = x e g(x) = log(x² + ), é correto afirmar: () A função

Leia mais

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA O 9 Ọ ANO EM 2014. Disciplina: MaTeMÁTiCa

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA O 9 Ọ ANO EM 2014. Disciplina: MaTeMÁTiCa Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO EM 04 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 A soma das medidas dos catetos de um triângulo retângulo é 8cm

Leia mais

PROVA DO VESTIBULAR ESAMC-2003-1 RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A

PROVA DO VESTIBULAR ESAMC-2003-1 RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A PROVA DO VESTIBULAR ESAMC-- RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A Q. O valor da epressão para = é : A, B, C, D, E, ( (,..., ( ( RESPOSTA: Alternativa A. Q. Sejam A

Leia mais

1ª Parte Questões de Múltipla Escolha

1ª Parte Questões de Múltipla Escolha MATEMÁTICA 11 a 1ª Parte Questões de Múltipla Escolha A soma dos cinco primeiros termos de uma PA vale 15 e o produto desses termos é zero. Sendo a razão da PA um número inteiro e positivo, o segundo termo

Leia mais

9 é MATEMÁTICA. 26. O algarismo das unidades de (A) 0. (B) 1. (C) 3. (D) 6. (E) 9.

9 é MATEMÁTICA. 26. O algarismo das unidades de (A) 0. (B) 1. (C) 3. (D) 6. (E) 9. MATEMÁTICA 6. O algarismo das unidades de (A) 0. (B) 1. (C) 3. (D) 6. (E) 9. 10 9 é 7. A atmosfera terrestre contém 1.900 quilômetros cúbicos de água. Esse valor corresponde, em litros, a (A) (B) (C) (D)

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C Questão TIPO DE PROVA: A Se a circunferência de um círculo tiver o seu comprimento aumentado de 00%, a área do círculo ficará aumentada de: a) 00% d) 00% b) 400% e) 00% c) 50% Aumentando o comprimento

Leia mais

12) A círculo = π r 2. 13) A lateral cone = π.r.g. 16) V esfera = 18) A lateral pirâmide = 19) (y y 0 ) = m(x x 0 ) 20) T p+1 = a

12) A círculo = π r 2. 13) A lateral cone = π.r.g. 16) V esfera = 18) A lateral pirâmide = 19) (y y 0 ) = m(x x 0 ) 20) T p+1 = a MATEMÁTICA FORMULÁRIO 0 o 45 o 60 o sen cos tg base altura ) A triângulo = ) A círculo = π r x y ) A triângulo = D, onde D = x y x y ) A lateral cone = π.r.g ) sen (x)+ cos (x)= 4) A retângulo = base altura

Leia mais

Prova 3 - Matemática

Prova 3 - Matemática Prova 3 - QUESTÕES OBJETIIVAS N ọ DE ORDEM: N ọ DE INSCRIÇÃO: NOME DO CANDIDATO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que constam na etiqueta

Leia mais

MATEMÁTICA 3. Resposta: 29

MATEMÁTICA 3. Resposta: 29 MATEMÁTICA 3 17. Uma ponte deve ser construída sobre um rio, unindo os pontos A e, como ilustrado na figura abaixo. Para calcular o comprimento A, escolhe-se um ponto C, na mesma margem em que está, e

Leia mais

VESTIBULAR 2004 - MATEMÁTICA

VESTIBULAR 2004 - MATEMÁTICA 01. Dividir um número real não-nulo por 0,065 é equivalente a multiplicá-lo por: VESTIBULAR 004 - MATEMÁTICA a) 4 c) 16 e) 1 b) 8 d) 0. Se k é um número inteiro positivo, então o conjunto A formado pelos

Leia mais

ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere as seguintes afirmações sobre o conjunto U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} I. U e n(u) = 10 III. 5 U e {5}

Leia mais

Matemática, Raciocínio Lógico e suas Tecnologias

Matemática, Raciocínio Lógico e suas Tecnologias Matemática, Raciocínio Lógico e suas Tecnologias 21. (UFAL 2008) Uma copiadora pratica os preços expressos na tabela a seguir: Número de cópias Preço unitário (em reais) 1 a 10 0,20 11 a 50 0,15 51 a 200

Leia mais

Canguru sem fronteiras 2007

Canguru sem fronteiras 2007 Duração: 1h15mn Destinatários: alunos do 12 ano de Escolaridade Nome: Turma: Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. Inicialmente tens 30 pontos. Por cada questão errada

Leia mais

Instruções para a Prova de MATEMÁTICA APLICADA:

Instruções para a Prova de MATEMÁTICA APLICADA: Instruções para a Prova de : Confira se seu nome e RG estão corretos. Não se esqueça de assinar a capa deste caderno, no local indicado, com caneta azul ou preta. A duração total do Módulo Discursivo é

Leia mais

Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas.

Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas. PROVA APLICADA ÀS TURMAS DO O ANO DO ENSINO MÉDIO DO COLÉGIO ANCHIETA EM MARÇO DE 009. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES DE 0 A 08.

Leia mais

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 010 1 a Fase Profa Maria Antônia Gouveia QUESTÃO 01 Sobre números reais, é correto afirmar: (01) Se m é um número inteiro divisível por e n é um número inteiro divisível

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV CPV O Cursinho que Mais Aprova na GV FGV Economia 1 a Fase /nov/014 MATEMÁTICA 01. Observe o diagrama com 5 organizações intergovernamentais de integração sul-americana: Dos 1 países que compõem esse diagrama,

Leia mais

EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1

EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1 EXAME NACIONAL DO ENSINO SECUNDÁRIO 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais e Cursos Tecnológicos PROVA 435/9 Págs. Duração da prova: 120 minutos 2005 1.ª FASE

Leia mais

Métodos Quantitativos Prof. Ms. Osmar Pastore e Prof. Ms. Francisco Merlo. Funções Exponenciais e Logarítmicas Progressões Matemáticas

Métodos Quantitativos Prof. Ms. Osmar Pastore e Prof. Ms. Francisco Merlo. Funções Exponenciais e Logarítmicas Progressões Matemáticas Métodos Quantitativos Prof. Ms. Osmar Pastore e Prof. Ms. Francisco Merlo Funções Exponenciais e Logarítmicas Progressões Matemáticas Funções Exponenciais e Logarítmicas. Progressões Matemáticas Objetivos

Leia mais

PROVAS DE MATEMÁTICA DO VESTIBULARES-2011 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 13 / 12 / 2010

PROVAS DE MATEMÁTICA DO VESTIBULARES-2011 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 13 / 12 / 2010 PROVAS DE MATEMÁTICA DO VESTIBULARES-0 DA MACKENZIE Profa. Maria Antônia Gouveia. / / 00 QUESTÃO N o 9 Dadas as funções reais definidas por f(x) x x e g(x) x x, considere I, II, III e IV abaixo. I) Ambas

Leia mais

QUESTÕES COMENTADAS E RESOLVIDAS

QUESTÕES COMENTADAS E RESOLVIDAS LENIMAR NUNES DE ANDRADE INTRODUÇÃO À ÁLGEBRA: QUESTÕES COMENTADAS E RESOLVIDAS 1 a edição ISBN 978-85-917238-0-5 João Pessoa Edição do Autor 2014 Prefácio Este texto foi elaborado para a disciplina Introdução

Leia mais

MATEMÁTICA TIPO A GABARITO: VFFVF. Solução: é a parábola com foco no ponto (0, 3) e reta diretriz y = -3.

MATEMÁTICA TIPO A GABARITO: VFFVF. Solução: é a parábola com foco no ponto (0, 3) e reta diretriz y = -3. 1 MATEMÁTICA TIPO A 01. Seja o conjunto de pontos do plano cartesiano, cuja distância ao ponto é igual à distância da reta com equação. Analise as afirmações a seguir. 0-0) é a parábola com foco no ponto

Leia mais

MATEMÁTICA PROVA DO VESTIBULAR ESAMC-2003-2 RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA. 26. A expressão numérica ( ) RESOLUÇÃO:

MATEMÁTICA PROVA DO VESTIBULAR ESAMC-2003-2 RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA. 26. A expressão numérica ( ) RESOLUÇÃO: PROVA DO VESTIULAR ESAMC-003- RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA MATEMÁTICA 3 3 3 6. A epressão numérica ( ) 3.( ).( ).( ) equivale a: A) 9 ) - 9 C) D) - E) 6 3 3 3 3 ( ).( ).( ).(

Leia mais

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFPE VESTIBULAR 0 a Fase Profa. Maria Antônia Gouveia. 0. A ilustração a seguir é de um cubo com aresta medindo 6cm. A, B, C e D são os vértices indicados do cubo, E é o centro da

Leia mais

(A) é Alberto. (B) é Bruno. (C) é Carlos. (D) é Diego. (E) não pode ser determinado apenas com essa informação.

(A) é Alberto. (B) é Bruno. (C) é Carlos. (D) é Diego. (E) não pode ser determinado apenas com essa informação. 1. Alberto, Bruno, Carlos e Diego beberam muita limonada e agora estão apertados fazendo fila no banheiro. Eles são os únicos na fila, e sabe se que quem está imediatamente antes de Carlos bebeu menos

Leia mais

MATEMÁTICA PRIMEIRA ETAPA - 1999

MATEMÁTICA PRIMEIRA ETAPA - 1999 MATEMÁTICA PRIMEIRA ETAPA - 1999 QUESTÃO 46 Observe a figura. Essa figura representa o intervalo da reta numérica determinado pelos números dados. Todos os intervalos indicados (correspondentes a duas

Leia mais

PROVAS DE MATEMÁTICA DA UFMG. VESTIBULAR 2013 2 a ETAPA. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVAS DE MATEMÁTICA DA UFMG. VESTIBULAR 2013 2 a ETAPA. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVAS DE MATEMÁTICA DA UFMG VESTIBULAR 01 a ETAPA Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA A - a Etapa o DIA QUESTÃO 01 Janaína comprou um eletrodoméstico financiado, com taxa de 10% ao mês,

Leia mais

Bilhete de Identidade n.º Emitido em (Localidade) Classificação em percentagem % ( por cento) Correspondente ao nível ( ) Data

Bilhete de Identidade n.º Emitido em (Localidade) Classificação em percentagem % ( por cento) Correspondente ao nível ( ) Data EXAME NACIONAL DO ENSINO BÁSICO Prova 23 / 1.ª Chamada / 2009 Decreto-Lei n.º 6/2001, de 18 de Janeiro A PREENCHER PELO ESTUDANTE Nome Completo Bilhete de Identidade n.º Emitido em (Localidade) Assinatura

Leia mais

Matemática SSA 2 REVISÃO GERAL 1

Matemática SSA 2 REVISÃO GERAL 1 1. REVISÃO 01 Matemática SSA REVISÃO GERAL 1. Um recipiente com a forma de um cone circular reto de eixo vertical recebe água na razão constante de 1 cm s. A altura do cone mede cm, e o raio de sua base

Leia mais

Leia estas instruções:

Leia estas instruções: Leia estas instruções: 1 2 3 Confira se os dados contidos na parte inferior desta capa estão corretos e, em seguida, assine no espaço reservado para isso. Caso se identifique em qualquer outro local deste

Leia mais

36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase

36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase 36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 1 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta correta e a pontuação

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA Q ) Um apostador ganhou um premio de R$ 1.000.000,00 na loteria e decidiu investir parte do valor

Leia mais

AMARELA EFOMM-2008 AMARELA

AMARELA EFOMM-2008 AMARELA PROVA DE MATEMÁTICA EFOMM-008 1ª Questão: A figura acima representa uma caixa de presente de papelão que mede 16 por 30 centímetros. Ao cortarmos fora os quadrados do mesmo tamanho dos quatro cantos e

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

PSAEN 2007/08 Primeira Fase - Matemática

PSAEN 2007/08 Primeira Fase - Matemática PSAEN 007/08 Primeira Fase - Matemática : Caio Guimarães, Rodolpho Castro, Victor Faria, Paulo Soares, Iuri Lima Digitação: Caio Guimarães, Júlio Sousa. Comentário da Prova: A prova de matemática desse

Leia mais

Nível 3 IV FAPMAT 28/10/2007

Nível 3 IV FAPMAT 28/10/2007 1 Nível 3 IV FAPMAT 8/10/007 1. A figura abaixo representa a área de um paralelepípedo planificado. A que intervalo de valores, x deve pertencer de modo que a área da planificação seja maior que 184cm

Leia mais

Resolverei neste artigo a prova de Raciocínio Lógico do concurso para a SEFAZ-SP 2009 organizada pela FCC.

Resolverei neste artigo a prova de Raciocínio Lógico do concurso para a SEFAZ-SP 2009 organizada pela FCC. Olá pessoal! Resolverei neste artigo a prova de Raciocínio Lógico do concurso para a SEFAZ-SP 2009 organizada pela FCC. 01. (SEFAZ-SP 2009/FCC) Considere o diagrama a seguir, em que U é o conjunto de todos

Leia mais

Prova de Admissão para o Mestrado em Matemática IME-USP - 23.11.2007

Prova de Admissão para o Mestrado em Matemática IME-USP - 23.11.2007 Prova de Admissão para o Mestrado em Matemática IME-USP - 23.11.2007 A Nome: RG: Assinatura: Instruções A duração da prova é de duas horas. Assinale as alternativas corretas na folha de respostas que está

Leia mais

GRADUAÇÃO FGV 2005 PROVA DISCURSIVA DE MATEMÁTICA

GRADUAÇÃO FGV 2005 PROVA DISCURSIVA DE MATEMÁTICA GRADUAÇÃO FGV 005 PROVA DISCURSIVA DE MATEMÁTICA PREENCHA AS QUADRÍCULAS ABAIXO: NOME DO CANDIDATO: NÚMERO DE INSCRIÇÃO: Assinatura 1 Você receberá do fiscal este caderno com o enunciado de 10 questões,

Leia mais

PROVAS DE MATEMÁTICA DO VESTIBULAR-2012 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 14/12/2011

PROVAS DE MATEMÁTICA DO VESTIBULAR-2012 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 14/12/2011 PROVAS DE MATEMÁTICA DO VESTIBULAR-0 DA MACKENZIE Profa. Maria Antônia Gouveia. //0 QUESTÃO N o 9 Turma N o de alunos Média das notas obtidas A 0,0 B 0,0 C 0,0 D 0,0 A tabela acima refere-se a uma prova

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2009 1 a Fase Professora Maria Antônia Gouveia.

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2009 1 a Fase Professora Maria Antônia Gouveia. RESOLUÇÃO DA PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 009 1 a Fase Professora Maria Antônia Gouveia. QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados

Leia mais

Fração como porcentagem. Sexto Ano do Ensino Fundamental. Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antonio Caminha M.

Fração como porcentagem. Sexto Ano do Ensino Fundamental. Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antonio Caminha M. Material Teórico - Módulo de FRAÇÕES COMO PORCENTAGEM E PROBABILIDADE Fração como porcentagem Sexto Ano do Ensino Fundamental Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antonio Caminha M. Neto

Leia mais

- PROVA OBJETIVA - Câmpus Santos Dumont - Edital 005/2014

- PROVA OBJETIVA - Câmpus Santos Dumont - Edital 005/2014 MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO SUDESTE DE MINAS GERAIS CONCURSO PÚBLICO PARA PROVIMENTO DE CARGO EFETIVO DE DOCENTES ÁREA: Matemática - PROVA OBJETIVA - Câmpus

Leia mais

FGV-EAESP PROVA DE RACIOCÍNIO MATEMÁTICO CURSO DE GRADUAÇÃO AGOSTO/2004

FGV-EAESP PROVA DE RACIOCÍNIO MATEMÁTICO CURSO DE GRADUAÇÃO AGOSTO/2004 QUESTÃO 1. Numa cidade do interior do estado de São Paulo, uma prévia eleitoral entre 2.000 filiados revelou as seguintes informações a respeito de três candidatos A, B, e C, do Partido da Esperança (PE)

Leia mais

O quadrado ABCD, inscrito no círculo de raio r é formado por 4 triângulos retângulos (AOB, BOC, COD e DOA),

O quadrado ABCD, inscrito no círculo de raio r é formado por 4 triângulos retângulos (AOB, BOC, COD e DOA), 0 - (UERN) A AVALIAÇÃO UNIDADE I -05 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA. MARIA ANTÔNIA C. GOUVEIA Em uma sorveteria, há x sabores de sorvete e y sabores de cobertura.

Leia mais

CPV 82% de aprovação na ESPM

CPV 82% de aprovação na ESPM CPV 8% de aprovação na ESPM ESPM julho/010 Prova E Matemática 1. O valor da expressão y =,0 é: a) 1 b) c) d) e) 4 Sendo x =, e y =,0, temos: x 1 + y 1 x. y 1 y. x 1 1 1 y + x x 1 + y 1 + x y xy = = = xy

Leia mais

FUVEST VESTIBULAR 2006. RESOLUÇÃO DA PROVA DA FASE 1. Por Professora Maria Antônia Conceição Gouveia. MATEMÁTICA

FUVEST VESTIBULAR 2006. RESOLUÇÃO DA PROVA DA FASE 1. Por Professora Maria Antônia Conceição Gouveia. MATEMÁTICA FUVEST VESTIBULAR 006. RESOLUÇÃO DA PROVA DA FASE 1. Por Professora Maria Antônia Conceição Gouveia. MATEMÁTICA 1. A partir de 64 cubos brancos, todos iguais, forma-se um novo cubo. A seguir, este novo

Leia mais

Vestibular UFRGS 2015 Resolução da Prova de Matemática

Vestibular UFRGS 2015 Resolução da Prova de Matemática Vestibular UFRGS 015 Resolução da Prova de Matemática 6. Alternativa (D) (0,15) 15 1 15 8 1 15 [() ] 15 5 7. Alternativa (C) Algarismo da unidade de 9 99 é 9 Algarismo da unidade de é 6 9 6 8. Alternativa

Leia mais

Canguru Matemático sem Fronteiras 2015

Canguru Matemático sem Fronteiras 2015 http://www.mat.uc.pt/canguru/ Destinatários: alunos do 1. o ano de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões

Leia mais

V MARATONA DE PROGRAMAÇÃO INTERNA UERJ 03/12/2011. Este caderno contém 11 páginas com a descrição de 10 problemas 1 definidos a seguir:

V MARATONA DE PROGRAMAÇÃO INTERNA UERJ 03/12/2011. Este caderno contém 11 páginas com a descrição de 10 problemas 1 definidos a seguir: V MARATONA DE PROGRAMAÇÃO INTERNA UERJ 0/1/011 Este caderno contém 11 páginas com a descrição de 10 problemas 1 definidos a seguir: A - Campanhas Publicitárias B Prefixando os Sufixos C Jogo na TV D Senhas

Leia mais

XXVI Olimpíada de Matemática da Unicamp. Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

XXVI Olimpíada de Matemática da Unicamp. Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas Gabarito da Prova da Primeira Fase 15 de Maio de 010 1 Questão 1 Um tanque de combustível, cuja capacidade é de 000 litros, tinha 600 litros de uma mistura homogênea formada por 5 % de álcool e 75 % de

Leia mais

Objetivas 2012. Qual dos números abaixo é o mais próximo de 0,7? A) 1/2 B) 2/3 C) 3/4 D) 4/5 E) 5/7 *

Objetivas 2012. Qual dos números abaixo é o mais próximo de 0,7? A) 1/2 B) 2/3 C) 3/4 D) 4/5 E) 5/7 * Objetivas 01 1 Qual dos números abaixo é o mais próximo de 0,7? A) 1/ B) /3 C) 3/4 D) 4/5 E) 5/7 * Considere três números, a, b e c. A média aritmética entre a e b é 17 e a média aritmética entre a, b

Leia mais

QUESTAO ENVOLVENDO RACIOCINIO DIRETO OBSERVE QUE APENAS AS PLACAS I-III e V deve-se verificar a informação ALTERNATIVA D

QUESTAO ENVOLVENDO RACIOCINIO DIRETO OBSERVE QUE APENAS AS PLACAS I-III e V deve-se verificar a informação ALTERNATIVA D 11. Em um posto de fiscalização da PRF, cinco veículos foram abordados por estarem com alguns caracteres das placas de identificação cobertos por uma tinta que não permitia o reconhecimento, como ilustradas

Leia mais

RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_2007_ 2A FASE. RESOLUÇÃO PELA PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_2007_ 2A FASE. RESOLUÇÃO PELA PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_007_ A FASE RESOLUÇÃO PELA PROFA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA Questão Se Amélia der R$3,00 a Lúcia, então ambas ficarão com a mesma quantia Se Maria

Leia mais

1) Na figura abaixo, a reta r tem equação x+3y-6=0 e a reta s passa pela origem e tem coeficiente angular 3

1) Na figura abaixo, a reta r tem equação x+3y-6=0 e a reta s passa pela origem e tem coeficiente angular 3 ) Na figura abaixo, a reta r tem equação x+y-6=0 e a reta s passa pela origem e tem coeficiente angular. A área do triângulo OAB, em unidades de área, é igual a: a) b) c) d)4 (correta) e)5 O(0,0) 0 6 0

Leia mais

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul Resolução da Prova da Escola Naval 29. Matemática Prova Azul GABARITO D A 2 E 2 E B C 4 D 4 C 5 D 5 A 6 E 6 C 7 B 7 B 8 D 8 E 9 A 9 A C 2 B. Os 6 melhores alunos do Colégio Naval submeteram-se a uma prova

Leia mais

COMENTÁRIO DA PROVA DE MATEMÁTICA

COMENTÁRIO DA PROVA DE MATEMÁTICA COMENTÁRIO DA PROA DE MATEMÁTICA Quanto ao nível: A prova apresentou questões simples, médias e de melhor nível, o que traduz uma virtude num processo de seleção. Quanto à abrangência: Uma prova com 9

Leia mais

Universidade Federal do Rio Grande do Norte. Centro De Ciências Exatas e da Terra. Departamento de Física Teórica e Experimental

Universidade Federal do Rio Grande do Norte. Centro De Ciências Exatas e da Terra. Departamento de Física Teórica e Experimental Universidade Federal do Rio Grande do Norte Centro De Ciências Exatas e da Terra Departamento de Física Teórica e Experimental Programa de Educação Tutorial Curso de Nivelamento: Pré-Cálculo PET DE FÍSICA:

Leia mais

QUESTÃO 16 Na figura, temos os gráficos das funções f e g, de em. O valor de gof(4) + fog(1) é:

QUESTÃO 16 Na figura, temos os gráficos das funções f e g, de em. O valor de gof(4) + fog(1) é: Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A ạ SÉRIE DO ENSINO MÉDIO EM 4 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 Na figura, temos os gráficos das funções f e g,

Leia mais

Simulado OBM Nível 2

Simulado OBM Nível 2 Simulado OBM Nível 2 Gabarito Comentado Questão 1. Quantos são os números inteiros x que satisfazem à inequação? a) 13 b) 26 c) 38 d) 39 e) 40 Entre 9 e 49 temos 39 números inteiros. Questão 2. Hoje é

Leia mais

UFRGS 2005 - MATEMÁTICA. 01) Considere as desigualdades abaixo. 2 2 3 3. 1 1 3 3. III) 3 2. II) Quais são verdadeiras?

UFRGS 2005 - MATEMÁTICA. 01) Considere as desigualdades abaixo. 2 2 3 3. 1 1 3 3. III) 3 2. II) Quais são verdadeiras? UFRGS 005 - MATEMÁTICA 0) Considere as desigualdades abaixo. I) 000 3000 3. II) 3 3. III) 3 3. Quais são verdadeiras? a) Apenas I. b) Apenas II. Apenas I e II. d) Apenas I e III e) Apenas II e III 0) Observe

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 5. Questão 3. alternativa C. alternativa E. alternativa C.

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 5. Questão 3. alternativa C. alternativa E. alternativa C. Questão TIPO DE PROVA: A José possui dinheiro suficiente para comprar uma televisão de R$ 900,00, e ainda lhe sobrarem da quantia inicial. O valor que so- 5 bra para José é a) R$ 50,00. c) R$ 800,00. e)

Leia mais

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa E. alternativa A. alternativa B

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa E. alternativa A. alternativa B Questão TIPO DE PROVA: A Em uma promoção de final de semana, uma montadora de veículos colocou à venda n unidades, ao preço único unitário de R$ 0.000,00. No sábado foram vendidos 9 dos Questão Na figura,

Leia mais

Preparação para o teste intermédio de Matemática 8º ano

Preparação para o teste intermédio de Matemática 8º ano Preparação para o teste intermédio de Matemática 8º ano Conteúdos do 7º ano Conteúdos do 8º ano Conteúdos do 8º Ano Teorema de Pitágoras Funções Semelhança de triângulos Ainda os números Lugares geométricos

Leia mais

2ª fase. 19 de Julho de 2010

2ª fase. 19 de Julho de 2010 Proposta de resolução da Prova de Matemática A (código 635) ª fase 19 de Julho de 010 Grupo I 1. Como só existem bolas de dois tipos na caixa e a probabilidade de sair bola azul é 1, existem tantas bolas

Leia mais

Raciocínio Lógico-Quantitativo Correção da Prova APO 2010 Gabarito 1 Prof. Moraes Junior RACIOCÍNIO LÓGICO-QUANTITATIVO

Raciocínio Lógico-Quantitativo Correção da Prova APO 2010 Gabarito 1 Prof. Moraes Junior RACIOCÍNIO LÓGICO-QUANTITATIVO RACIOCÍNIO LÓGICO-QUANTITATIVO 1 - Um viajante, a caminho de determinada cidade, deparou-se com uma bifurcação onde estão três meninos e não sabe que caminho tomar. Admita que estes três meninos, ao se

Leia mais

Raciocínio Matemático RESOLUÇÃO

Raciocínio Matemático RESOLUÇÃO ESCOLA DE ECONOMIA DE SÃO PAULO FUNDAÇÃO GETÚLIO VARGAS PROCESSO SELETIVO 2007/1.º SEMESTRE CADERNO 1 Respostas da 2. a Fase Raciocínio Matemático RESOLUÇÃO 17.12.2006 RACIOCÍNIO MATEMÁTICO 01. Em uma

Leia mais

RQ Edição Fevereiro 2014

RQ Edição Fevereiro 2014 RQ Edição Fevereiro 2014 18. Um noivo foi postar os convites de casamento nos Correios. Durante a pesagem das cartas, percebeu que todas tinham 0,045 kg, exceto uma, de 0,105 kg. Em um primeiro instante,

Leia mais

Coordenadoria de Educação CADERNO DE REVISÃO-2011. Matemática Aluno (a) 5º ANO

Coordenadoria de Educação CADERNO DE REVISÃO-2011. Matemática Aluno (a) 5º ANO CADERNO DE REVISÃO-2011 Matemática Aluno (a) 5º ANO Caderno de revisão FICHA 1 COORDENADORIA DE EDUCAÇÃO examesqueiros Os Números gloriabrindes.com.br noticias.terra.com.br cidadesaopaulo.olx... displaypaineis.com.br

Leia mais

CPV 82% de aprovação dos nossos alunos na ESPM

CPV 82% de aprovação dos nossos alunos na ESPM CPV 8% de aprovação dos nossos alunos na ESPM ESPM Resolvida Prova E 11/novembro/01 MATEMÁTICA 1. A distribuição dos n moradores de um pequeno prédio de 4 5 apartamentos é dada pela matriz 1 y, 6 y + 1

Leia mais

01) 48 02) 96 03) 144 04) 240 05) 336. Os três anéis de cores diferentes poderão ser colocados em 3 de 8 dedos das mãos da senhora, logo

01) 48 02) 96 03) 144 04) 240 05) 336. Os três anéis de cores diferentes poderão ser colocados em 3 de 8 dedos das mãos da senhora, logo PROVA FINAL DE MATEMÁTICA - TURMAS DO o ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - OUTUBRO DE 0. ELABORAÇÃO: PROFESSORES ADRIANO CARIBÉ E WALTER PORTO. PROFESSORA MARIA ANTÔNIA C. GOUVEIA 0 - (FGV-Adaptada)

Leia mais

MA.01. 4. Sejam a e b esses números naturais: (a + b) 3 (a 3 + b 3 ) = a 3 + 3a 2 b + 3ab 2 + b 3 a 3 b 3 = = 3a 2 b + 3ab 2 = 3ab (a + b)

MA.01. 4. Sejam a e b esses números naturais: (a + b) 3 (a 3 + b 3 ) = a 3 + 3a 2 b + 3ab 2 + b 3 a 3 b 3 = = 3a 2 b + 3ab 2 = 3ab (a + b) Reformulação Pré-Vestibular matemática Cad. 1 Mega OP 1 OP MA.01 1.. 3. 4. Sejam a e b esses números naturais: (a + b) 3 (a 3 + b 3 ) a 3 + 3a b + 3ab + b 3 a 3 b 3 3a b + 3ab 3ab (a + b) Reformulação

Leia mais

Uma estação de trens é constituída por dois galpões cujas fachadas têm a forma de dois semicírculos que se tangenciam, conforme a figura a seguir.

Uma estação de trens é constituída por dois galpões cujas fachadas têm a forma de dois semicírculos que se tangenciam, conforme a figura a seguir. Utilize as informações a seguir para as questões e. Uma estação de trens é constituída por dois galpões cujas fachadas têm a forma de dois semicírculos que se tangenciam, conforme a figura a seguir. Terminal

Leia mais

(número de atendidos por dia)

(número de atendidos por dia) Utilize as informações a seguir para as questões e. O gráfico a seguir representa a quantidade diária de pessoas (q) atendidas em um hospital público com os sintomas de um novo tipo de gripe, a gripe X,

Leia mais

Obs.: São cartesianos ortogonais os sistemas de coordenadas

Obs.: São cartesianos ortogonais os sistemas de coordenadas MATEMÁTICA NOTAÇÕES : conjunto dos números complexos : conjunto dos números racionais : conjunto dos números reais : conjunto dos números inteiros = {0,,, 3,...} * = {,, 3,...} Ø: conjunto vazio A\B =

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR UFMG_ ANO 2007 RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA.

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR UFMG_ ANO 2007 RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA. UFMG 2007 RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR UFMG_ ANO 2007 PROFA. MARIA ANTÔNIA GOUVEIA. QUESTÃO 0 Francisco resolveu comprar um pacote de viagem que custava R$ 4 200,00, já incluídos R$ 20,00

Leia mais

MATEMÁTICA. y Q. (a,b)

MATEMÁTICA. y Q. (a,b) MATEMÁTICA 1. Sejam (a, b), com a e b positivos, as coordenadas de um ponto no plano cartesiano, e r a reta com inclinação m

Leia mais

A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto sergioln@smt.ufrj.br

A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto sergioln@smt.ufrj.br A Matemática no Vestibular do ITA Material Complementar: Prova 01 c 01, Sergio Lima Netto sergioln@smtufrjbr 11 Vestibular 01 Questão 01: Das afirmações: I Se x, y R Q, com y x, então x + y R Q; II Se

Leia mais

( ) O lado do sexto quadrado construído medirá

( ) O lado do sexto quadrado construído medirá Matemática Questões 01 a 25 01. O nível β, de um som que tem intensidade I, é dado pela fórmula β= 10.log I, em que I0 I 0 = 10 12. Se a intensidade I for multiplicada por 100, em quantos decibéis aumenta

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva nos pontos onde e Vamos determinar a reta tangente à curva nos pontos de abscissas

Leia mais

(a) 9. (b) 8. (c) 7. (d) 6. (e) 5.

(a) 9. (b) 8. (c) 7. (d) 6. (e) 5. 41. Num supermercado, são vendidas duas marcas de sabão em pó, Limpinho, a mais barata, e Cheiroso, 30% mais cara do que a primeira. Dona Nina tem em sua carteira uma quantia que é suficiente para comprar

Leia mais

MATEMÁTICA. Prova resolvida. Material de uso exclusivo dos alunos do Universitário

MATEMÁTICA. Prova resolvida. Material de uso exclusivo dos alunos do Universitário Prova resolvida Material de uso exclusivo dos alunos do Universitário Prova de Matemática - UFRGS/00 0. Durante os jogos Pan-Americanos de Santo Domingo, os rasileiros perderam o ouro para os cuanos por

Leia mais

O B. Podemos decompor a pirâmide ABCDE em quatro tetraedros congruentes ao tetraedro BCEO. ABCDE tem volume igual a V = a2.oe

O B. Podemos decompor a pirâmide ABCDE em quatro tetraedros congruentes ao tetraedro BCEO. ABCDE tem volume igual a V = a2.oe GABARITO - QUALIFICAÇÃO - Setembro de 0 Questão. (pontuação: ) No octaedro regular duas faces opostas são paralelas. Em um octaedro regular de aresta a, calcule a distância entre duas faces opostas. Obs:

Leia mais

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) Num triângulo retângulo, definimos o cosseno de seus ângulos agudos O triângulo retângulo da figura

Leia mais

Teste Intermédio Matemática. 9.º Ano de Escolaridade. Versão 1. Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03.

Teste Intermédio Matemática. 9.º Ano de Escolaridade. Versão 1. Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03. Teste Intermédio Matemática Versão 1 Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03.2014 9.º Ano de Escolaridade Indica de forma legível a versão do teste. O teste é constituído por dois

Leia mais

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS DA NATUREZA CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS DA NATUREZA CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS DA NATUREZA CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO (Aprovados em Conselho Pedagógico de 27 de outubro de 2015) AGRUPAMENTO DE CLARA DE RESENDE CÓD. 152 870 No caso específico

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa D. alternativa C. alternativa E. alternativa E

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa D. alternativa C. alternativa E. alternativa E Questão TIPO DE PROVA: A Uma escola paga, pelo aluguel anual do ginásiodeesportesdeumclubea,umataxa fixa de R$.000,00 e mais R$ 0,00 por aluno. Um clube B cobraria pelo aluguel anual de um ginásio equivalente

Leia mais

a soma dois números anteriores da primeira coluna está na segunda coluna: (3m +1) + (3n +1) = 3(m + n) + 2.

a soma dois números anteriores da primeira coluna está na segunda coluna: (3m +1) + (3n +1) = 3(m + n) + 2. OBMEP 01 Nível 3 1 QUESTÃO 1 ALTERNATIVA A Basta verificar que após oito giros sucessivos o quadrado menor retorna à sua posição inicial. Como 01 = 8 1+ 4, após o 01º giro o quadrado cinza terá dado 1

Leia mais

3º Ano do Ensino Médio. Aula nº10 Prof. Daniel Szente

3º Ano do Ensino Médio. Aula nº10 Prof. Daniel Szente Nome: Ano: º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº10 Prof. Daniel Szente Assunto: Função exponencial e logarítmica 1. Potenciação e suas propriedades Definição: Potenciação é a operação

Leia mais

Caderno 1: 35 minutos. Tolerância: 10 minutos

Caderno 1: 35 minutos. Tolerância: 10 minutos Nome: Ano / Turma: N.º: Data: - - Caderno 1: 35 minutos. Tolerância: 10 minutos (é permitido o uso de calculadora) A prova é constituída por dois cadernos (Caderno 1 e Caderno ). Utiliza apenas caneta

Leia mais

Solução. a) Qual deve ser o preço de venda de cada versão, de modo que a quantidade de livros vendida seja a maior possível?

Solução. a) Qual deve ser o preço de venda de cada versão, de modo que a quantidade de livros vendida seja a maior possível? 1 A Editora Progresso decidiu promover o lançamento do livro Descobrindo o Pantanal em uma Feira Internacional de Livros, em 01. Uma pesquisa feita pelo departamento de Marketing estimou a quantidade de

Leia mais

RESOLUÇÃO DAS QUESTÕES OBJETIVAS DO EXAME NACIONAL DE SELEÇÃO PARA O PROFMAT

RESOLUÇÃO DAS QUESTÕES OBJETIVAS DO EXAME NACIONAL DE SELEÇÃO PARA O PROFMAT UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA E ESTATÍSTICA (UNIDADE ACADÊMICA DE MATEMÁTICA E ESTATÍSTICA) PROGRAMA DE EDUCAÇÃO TUTORIAL TUTOR: PROF.

Leia mais

MATEMÁTICA TIPO C. 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a

MATEMÁTICA TIPO C. 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a 1 MATEMÁTICA TIPO C 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a veracidade das afirmações seguintes sobre, cujo gráfico está esboçado a seguir.

Leia mais

3. Trace os gráficos das retas de equação 4x + 5y = 13 e 3x + y = -4 e determine seu ponto de intersecção.

3. Trace os gráficos das retas de equação 4x + 5y = 13 e 3x + y = -4 e determine seu ponto de intersecção. Assunto: Função MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA 67-000 - VIÇOSA - MG BRASIL a LISTA DE EXERCÍCIOS DE MAT 0 0/0/0. a) O que é uma unção? Dê um eemplo. b) O que é domínio

Leia mais

CPV 82% de aprovação na ESPM

CPV 82% de aprovação na ESPM CPV 8% de aprovação na ESPM ESPM NOVEMBRO/009 Prova E matemática x + y y x 1. O valor da expressão + 6 : x + y para x 4 e y 0,15 é: a) 0 b) 1 c) d) e) 4 Temos x + y y x + 6 : x + y. Uma costureira pagou

Leia mais

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 2014. Disciplina: MaTeMÁTiCa

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 2014. Disciplina: MaTeMÁTiCa Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A ạ SÉRIE DO ENSINO MÉDIO EM 04 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 Um mecânico de uma equipe de corrida necessita

Leia mais

Exercícios Teóricos Resolvidos

Exercícios Teóricos Resolvidos Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar

Leia mais

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma.

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma. 2ª Fase Matemática Introdução A prova de matemática da segunda fase é constituída de 12 questões, geralmente apresentadas em ordem crescente de dificuldade. As primeiras questões procuram avaliar habilidades

Leia mais

Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se

Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se "Gigante pela própria natureza, És belo, és forte, impávido colosso, E o teu futuro espelha essa grandeza Terra adorada." 01. Um consumidor necessita comprar um determinado produto. Na loja, o vendedor

Leia mais