Parte 5. TÉCNICAS DE DISCRIMINAÇÃO E DE CLASSIFICAÇÃO DE DADOS

Tamanho: px
Começar a partir da página:

Download "Parte 5. TÉCNICAS DE DISCRIMINAÇÃO E DE CLASSIFICAÇÃO DE DADOS"

Transcrição

1 arte 5. ÉCNICAS DE DISCRIMINAÇÃO E DE CLASSIFICAÇÃO DE DADOS Introdução écnicas estatísticas de análise baseadas em discriminantes são utilizadas normalmente para a separação de dados em diferentes rupos, a partir de um determinado rupo de dados experimentais. Baseiam-se na criação de um discriminante, ou seja, um critério quantitativo para separar observações em diferentes rupos, com máxima distância entre si. São utilizadas normalmente com a finalidade de explorar conjuntos de dados. écnicas de classificação de dados consistem na aplicação de técnicas estatísticas para estabelecer reras, ou critérios para alocar uma dada observação em diferentes rupos, os quais são definidos previamente. O texto a seuir apresenta primeiramente um exemplo ilustrativo da aplicação de um discriminante para um conjunto de dados. Em seuida, são apresentadas e ilustradas as técnicas de classificação.

2 Discriminação Um exemplo de criação de discriminante para separar dados é apresentado a seuir, para um caso em que há duas populações de dados (dois rupos), apresentados na abela e na Fiura. abela. Conjunto de dados bivariados, pertencentes a dois rupos Grupo Grupo N. X X N. X X X Grupo Grupo -.3 X Fiura. Representação ráfica dos dados da abela.

3 3 odem ser aplicadas técnicas estatísticas convencionais para verificar se os dados podem ser considerados pertencentes a dois rupos. or exemplo, pode-se utilizar teste de hipótese para a diferença entre as médias dos rupos: H : μ μ X X tν. s + ( μ μ ) X X + tν. s + n n n n em que a variância combinada dos dois rupos é calculada por: s ( n ) s + ( n ) ( n ) + ( n ) Na abela a seuir, são apresentados os valores de médias e desvios padrão da amostra de dados considerada. s Grupo Grupo N. X X N. X X X - X X-X média s Exemplo para X: t (.95, ν ).74 e:.46 μ μ.3 ortanto, com 95% de certeza pode-se afirmar que as médias entre os dois rupos são diferentes, e a hipótese nula é rejeitada. ode-se, também, construir um discriminante para os dois rupos, baseado em alum critério estatístico. Uma das técnicas, por exemplo, consiste na criação de novas variáveis discriminantes para os dados. ara os dados do exemplo, pode-se criar um discriminante que seja uma combinação linear das variáveis oriinais e utilizar um valor de corte para separar os dados:

4 4 d + w x w x. Neste caso, cada valor de d é o ponto em uma reta calculada com os pesos w p, expressos como: w cosθ ; w sen θ e θ é o ânulo de inclinação da reta em relação ao eixo da variável x, como mostrado na Fiura..3. X. θ Grupo Grupo -.3 X. Fiura. Representação ráfica de um discriminante linear para as variáveis x e x. ode-se, assim, utilizar um valor limite, ou de corte, em d, para separar os dois rupos de dados. O valor do ânulo θ é calculado de modo a se maximizar a distância entre os dois rupos de dados e minimizar a distância entre os dados de um mesmo rupo. ara isso, utilizam-se as matrizes B e W, definidas a seuir para uma população de dados com n observações das p variáveis, x p, e: G rupos na população (,...,G); n o número de observações no rupo ; x ( px) o vetor das médias das p variáveis, para toda a população; x ( px) o vetor das médias das p variáveis no rupo,

5 5 A matriz B ( pxp) é a soma ponderada dos quadrados das distâncias quadráticas entre rupos, é obtida pela Eq. : G B n ( x )( ) x x x () Essa matriz é obtida fazendo-se o produto das diferenças entre vetores para cada rupo e, então, fazendo-se a soma ponderada para todos os rupos (soma de G matrizes pxp). A matriz W ( pxp) é a soma das distâncias quadráticas entre cada observação e a média de todas observações em cada rupo, somada para todos os rupos, indicada pela Eq. : W G n i ( x x )( ) x x i, i, () A matriz ( pxp) é a soma das distâncias quadráticas entre cada observação e a média de todas as observações: ode-se demonstrar que: ( )( ) x x x x n i i (3) i W + B (4) or exemplo, pode-se adotar o quociente entre ambas as matrizes, ou seja, o valor do produto W - B, como critério de seleção dos coeficientes do discriminante. ara os dados da abela, sejam, respectivamente, SSb, SSw e SSt as somas das distâncias quadráticas entre rupos, em cada rupo e a soma total, sendo: SSt SSb + SSw. Sejam: λ SSb ; λ SSw Então, pode-se variar o ânulo θ de modo a selecionar o ânulo que maximize λ, ou λ, como ilustrado na Fiura 3. No caso, o máximo ocorre para θ o. SSb SSt

6 SSb/SSw SSb/SSt SSb/SSw SSb/SSt ânulo Fiura 3. Variação dos quocientes entre distâncias quadráticas λ e λ em função do ânulo de inclinação da reta discriminante. A Fiura 4 mostra os valores do discriminante d que maximizam a relação entre distâncias quadráticas entre rupos e internas aos rupos. Observa-se que há sobreposição entre as distribuições dos dados dos dois rupos, o que impossibilita separar os dados entre os rupos usando um discriminante linear. Este fato ilustra o fato de que a capacidade de discriminar os dados depende não apenas da distância entre os valores médios dos rupos, mas também da distribuição dos dados, como ilustrado na Fiura 5. Y, Grupo Y, Grupo Fiura 4. Valores do discriminante d para os dados dos dois rupos.

7 7 y y y y Fiura 5. Superior: médias distantes, distribuições sobrepostas de dados; inferior: médias dos dois rupos próximas, com menor dispersão dos dados. Discriminante linear de Fisher Dado um conjunto de vetores centrados na média X, define-se o discriminante linear Y como: Y X γ (4) em que γ é um vetor de pesos determinado seundo o critério de máximo quociente entre a distância quadrática do discriminante entre rupos : dentro dos rupos. O quadrado do discriminante é: ( X γ) ( X γ) γ XX γ Y (5) Somando-se para todas as n observações: n n Y γ XX γ γ Bγ + γ i i Wγ (6) Deve-se obter o discriminante maximizando-se o escalar: γ γ Bγ Wγ λ (7)

8 8 ara isso, calcula-se a derivada em relação ao vetor γ: λ γ Bγ ( γ Wγ) ( γ Bγ) ( γ Wγ) Wγ (p x ) (8) Usando-se a Eq. (7): Bγ ( γ Wγ) ( γ Wγ) Wγ λ (9) Ou: Bγ λ Wγ () ré-multiplicando-se por W - : ( B I) γ W λ () As soluções não triviais são os autovalores e autovetores da matriz W - B. Assim, obtêm-se p discriminantes. O número de discriminantes a ser adotado é: ( G p) Exemplo: 3 populações bivariadas, 3 rupos, com mesma variância: d min ; () G: 5 3 G: 6 4 G3: 4 Centróides de cada rupo: x x 3 x 3 4 Centróide de tudo: Cálculo das matrizes: x G 6 ( x x)( x x) W ( xj x )( x j x ) B j 4

9 9 Inversa de W: 4,7,4 W W 4 W B 6,4,7 Autovalores e autovetores da matriz: λ,87; λ,9,386,938 γ γ,495, Os autovetores são comumente normalizados fazendo: γ Sγ Em que S é a variância ponderada na forma: S ( n ) S + ( n ) S + ( n3 ) ( n ) + ( n ) + ( n ) Critério de alocação de novas observações: 3 S 3 ) Calcula-se o valor de cada discriminante Y para a nova observação; ) Calcula-se o discriminante para a centróide de cada rupo: 3) Aloca-se com base na mínima distância quadrática entre o valor dos discriminantes em relação à centróide de cada rupo: min D d Y d Y d,, para,..., G

10 Classificação odem-se utilizar as funções discriminantes, como os discriminantes lineares de Fisher, para classificar uma nova observação em um dos rupos previamente conhecidos. O critério mais usado para classificação nesses casos é a soma dos desvios quadráticos entre discriminantes, ou seja: aloca-se uma observação qualquer no rupo para o qual a soma dos desvios quadráticos dos discriminantes é a menor entre os rupos. O procedimento é: ) calcular os valores dos D discriminantes para a nova observação, X obs : yd, obs γ d Xobs, d,...d; ) calcular os valores dos discriminantes para os centróides dos G rupos: y d d γ X,, d, D,, G; 3) buscar a menor distância quadrática: min D d y d, obs y d, Alocar X obs no rupo com mínima distância quadrática., para, G Critérios estatísticos de classificação entre duas populações: Considerando-se duas populações (ou rupos) de observações x i, i,...n, com probabilidades de ocorrência a priori dadas por p e p, de modo que: p + p e que as funções densidade de probabilidade, f (x) e f (x), têm a forma ilustrada na Fiura 6, pode-se dizer que a probabilidade de uma observação qualquer, x, pertencente a um rupo m, ser alocada em um dado rupo, ( m), é expressa por: ( m) ( x R Gm) f m ( x)dx ara o caso aqui considerado, a probabilidade de alocar x erradamente é: R, e: ( ) ( x R G) f( x)dx R ( ) ( x RG) f ( x)dx R

11 e a probabilidade de alocar x corretamente é: e: ( ) ( x RG) f( x)dx R ( ) ( x R G) f ( x)dx R. ( ) f ( x)dx R ( ) f ( x)dx R f ( x) ( x) f R R Classificar no Grupo Classificar no Grupo x Fiura 6. Ilustração da distribuição de observações de dois rupos. Essas probabilidades podem ser expressas, então, por: para os acertos: ( x RG) ( ). ( ) p ( x R G) ( ). ( ) p e para os erros: ( x R G) ( ). ( ) p e: ( x RG) ( ). ( ) p odem-se atribuir atribuir custos, ou punições, pelos erros de classificação, na forma de uma matriz de custo : Classificação Grupo G G G C( ) G C( )

12 Define-se a função custo esperado de falhas, ECM (para expected cost of missclassification ), como: ( ). ( ). p C( ). ( ). p ECM C +. Os aloritmos de classificação baseiam-se na minimização dessa função, a qual pode ser escrita como: ECM C ( ). p f( x) dx + C( ). p f ( x)dx R R + como f ( x) dx f ( x) dx f ( x) dx R R R+ R então ECM C( ). p f( x) dx + C( ). p f ( x)dx ou ECM R R R [ C( ). p f ( x) C( ). p f( x) ] dx + C( ). p Como o último termo à direita é constante e positivo, a função ECM só diminui na reião R se o interando for neativo. Assim, pode-se estabelecer o seuinte critério de classificação: Alocar x em R se: f f ( x ) ( x ) C C ( ) p ( ). ) p ara a reião R, fazendo-se a mesma substituição: Alocar x em R se: f f ( x ) ( x ) C < C ( ) p ( ). ) p.

13 3 Classificações baseadas em populações com distribuição normal multivariada: ara G rupos de observações multivariadas (com dimensão p) a função densidade de distribuição normal de probabilidade das observações em um rupo qualquer é expressa como: f ( x) ( π ) exp p ( x μ ) ( x μ ),,... G Supondo que: a) as variâncias dos rupos não sejam iuais; b) os custos de alocação correta, C( ), sejam iuais a zero; c) os custos de alocação errada, C( m), sejam iuais a, pode-se definir um critério de alocação similar ao anterior, baseado no produto: p f ( x) ara isso, normalmente se utiliza a função densidade de distribuição normal de probabilidade na forma linearizada, ficando o produto na forma: p [ p f ( x) ] ln( p ) ln( ) ln ( x μ ) ( x μ ) ln π,,... G Aloca-se uma observação qualquer,x, no rupo para o qual essa expressão for máxima. Como o seundo termo do lado direito da equação é o mesmo para todos os rupos, a comparação entre os rupos baseia-se nos demais termos. Assim, define-se o discriminante quadrático, expresso como: discr. Q ln p ( ) ln ( x μ ) ( x μ ) or esse critério, aloca-se x no rupo se discr.q q for máximo para esse rupo, em comparação com os demais rupos. O discriminante é denominado quadrático devido à distância estatística quadrática, presente na equação.

Análise de dados industriais

Análise de dados industriais Aálise de dados idustriais Escola olitécica Departameto de Eeharia Química Roberto Guardai 4 arte 5. ÉCNICAS DE DISCRIMINAÇÃO E DE CLASSIFICAÇÃO DE DADOS Itrodução écicas estatísticas de aálise baseadas

Leia mais

Mestrado Profissional em Administração. Disciplina: Análise Multivariada Professor: Hedibert Freitas Lopes 1º trimestre de 2015

Mestrado Profissional em Administração. Disciplina: Análise Multivariada Professor: Hedibert Freitas Lopes 1º trimestre de 2015 Mestrado Profissional em Administração Disciplina: Análise Multivariada Professor: Hedibert Freitas Lopes 1º trimestre de 2015 Análise Discriminante MANLY, Cap. 8 HAIR et al., Cap. 5 2 Objetivos o Construir

Leia mais

CC-226 Aula 05 - Teoria da Decisão Bayesiana

CC-226 Aula 05 - Teoria da Decisão Bayesiana CC-226 Aula 05 - Teoria da Decisão Bayesiana Carlos Henrique Q. Forster - Instituto Tecnológico de Aeronáutica 2008 Classificador Bayesiano Considerando M classes C 1... C M. N observações x j. L atributos

Leia mais

Cálculo II (Primitivas e Integral)

Cálculo II (Primitivas e Integral) Cálculo II (Primitivas e Integral) Antônio Calixto de Souza Filho Escola de Artes, Ciências e Humanidades Universidade de São Paulo 5 de março de 2013 1 Aplicações de Integrais subject Aplicações de Integrais

Leia mais

Cálculo II (Primitivas e Integral)

Cálculo II (Primitivas e Integral) Cálculo II (Primitivas e Integral) Antônio Calixto de Souza Filho Escola de Artes, Ciências e Humanidades Universidade de São Paulo 19 de março de 2013 1 Aplicações de Integrais 2 subject Aplicações de

Leia mais

Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação

Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Francisco A. Rodrigues Departamento de Matemática Aplicada e Estatística - SME Objetivo Dada M classes ω 1, ω 2,..., ω M e um

Leia mais

Sensoriamento Remoto II

Sensoriamento Remoto II Sensoriamento Remoto II Componentes principais Revisão de matemática Análise de componentes principais em SR UFPR Departamento de Geomática Prof. Jorge Centeno 2016 copyright@ centenet Revisão matemática

Leia mais

Avaliação Monte Carlo do teste para comparação de duas matrizes de covariâncias normais na presença de correlação

Avaliação Monte Carlo do teste para comparação de duas matrizes de covariâncias normais na presença de correlação Avaliação Monte Carlo do teste para comparação de duas matrizes de covariâncias normais na presença de correlação Vanessa Siqueira Peres da Silva 1 2 Daniel Furtado Ferreira 1 1 Introdução É comum em determinadas

Leia mais

ANÁLISE DISCRIMINANTE. Análise discriminante. Função discriminante. Análise de agrupamentos e Análise das componentes principais

ANÁLISE DISCRIMINANTE. Análise discriminante. Função discriminante. Análise de agrupamentos e Análise das componentes principais Análise de agrupamentos e Análise das componentes principais Ambas as análises são técnicas de redução de dados. ANÁLISE DISCRIMINANTE Objetivo da análise de agrupamentos é formar grupos, reduzindo o número

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS fonte de graus de soma de quadrado variação liberdade quadrados médio teste F regressão 1 1,4 1,4 46,2 resíduo 28 0,8 0,03 total 2,2 A tabela de análise de variância (ANOVA) ilustrada acima resulta de

Leia mais

(x 1, y 1 ) (x 2, y 2 ) = (x 1 x 2, y 1 y 2 ); e α (x, y) = (x α, y α ), α R.

(x 1, y 1 ) (x 2, y 2 ) = (x 1 x 2, y 1 y 2 ); e α (x, y) = (x α, y α ), α R. INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-2457 Álgebra Linear para Engenharia I Terceira Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS 1. Considere as retas

Leia mais

Funções ortogonais e problemas de Sturm-Liouville. Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE

Funções ortogonais e problemas de Sturm-Liouville. Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE Funções ortogonais e problemas de Sturm-Liouville Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE Série de Fourier Soma de funções ortogonais entre si Perguntas: -existem outras bases ortogonais que podem

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Variáveis Aleatórias Ao descrever um espaço

Leia mais

Aula 2 Uma breve revisão sobre modelos lineares

Aula 2 Uma breve revisão sobre modelos lineares Aula Uma breve revisão sobre modelos lineares Processo de ajuste de um modelo de regressão O ajuste de modelos de regressão tem como principais objetivos descrever relações entre variáveis, estimar e testar

Leia mais

AGA Análise de Dados em Astronomia I 7. Modelagem dos Dados com Máxima Verossimilhança: Modelos Lineares

AGA Análise de Dados em Astronomia I 7. Modelagem dos Dados com Máxima Verossimilhança: Modelos Lineares 1 / 0 AGA 0505- Análise de Dados em Astronomia I 7. Modelagem dos Dados com Máxima Verossimilhança: Modelos Lineares Laerte Sodré Jr. 1o. semestre, 018 modelos modelagem dos dados dado um conjunto de dados,

Leia mais

Bioestatística. AULA 6 - Variáveis aleatórias. Isolde Previdelli

Bioestatística. AULA 6 - Variáveis aleatórias. Isolde Previdelli Universidade Estadual de Maringá Mestrado Acadêmico em Bioestatística Bioestatística Isolde Previdelli itsprevidelli@uem.br isoldeprevidelli@gmail.com AULA 6 - Variáveis aleatórias 30 de Março de 2017

Leia mais

Álgebra Linear I - Aula Bases Ortonormais e Matrizes Ortogonais

Álgebra Linear I - Aula Bases Ortonormais e Matrizes Ortogonais Álgebra Linear I - Aula 19 1. Bases Ortonormais e Matrizes Ortogonais. 2. Matrizes ortogonais 2 2. 3. Rotações em R 3. Roteiro 1 Bases Ortonormais e Matrizes Ortogonais 1.1 Bases ortogonais Lembre que

Leia mais

Parte 3 - Produto Interno e Diagonalização

Parte 3 - Produto Interno e Diagonalização Parte 3 - Produto Interno e Diagonalização Produto Escalar: Sejam u = (u 1,..., u n ) e v = (v 1,..., v n ) dois vetores no R n. O produto escalar, ou produto interno euclidiano, entre esses vetores é

Leia mais

3 3. Variáveis Aleatórias

3 3. Variáveis Aleatórias ÍNDICE 3. VARIÁVEIS ALEATÓRIAS...49 3.. VARIÁVEIS ALEATÓRIAS UNIDIMENSIONAIS...49 3.2. VARIÁVEIS DISCRETAS FUNÇÃO DE PROBABILIDADE E FUNÇÃO DISTRIBUIÇÃO DE PROBABILIDADE...50 3.2.. Função de probabilidade...50

Leia mais

Estatística

Estatística Estatística 1 2016.2 Sumário Capítulo 1 Conceitos Básicos... 3 MEDIDAS DE POSIÇÃO... 3 MEDIDAS DE DISPERSÃO... 5 EXERCÍCIOS CAPÍTULO 1... 8 Capítulo 2 Outliers e Padronização... 12 VALOR PADRONIZADO (Z)...

Leia mais

carga do fio: Q. r = r p r q figura 1

carga do fio: Q. r = r p r q figura 1 Uma carga Q está distribuída uniformemente ao longo de um fio reto de comprimento infinito. Determinar o vetor campo elétrico nos pontos situados sobre uma reta perpendicular ao fio. Dados do problema

Leia mais

SUMÁRIOS DE VARIÁVEIS ALEATÓRIAS CONTINUAS

SUMÁRIOS DE VARIÁVEIS ALEATÓRIAS CONTINUAS 4 SUMÁRIOS DE VARIÁVEIS ALEATÓRIAS CONTINUAS Em muitos problemas de probabilidade que requerem o uso de variáveis aleatórias, uma completa especificação da função de densidade de probabilidade ou não está

Leia mais

Sinais e Sistemas Aula 1 - Revisão

Sinais e Sistemas Aula 1 - Revisão MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS JOINVILLE DEPARTAMENTO DO DESENVOLVIMENTO DO ENSINO

Leia mais

UNIVERSIDADE FEDERAL FLUMINENSE. Programa de Mestrado e Doutorado em Engenharia de Produção. Disciplina: Estatística Multivariada

UNIVERSIDADE FEDERAL FLUMINENSE. Programa de Mestrado e Doutorado em Engenharia de Produção. Disciplina: Estatística Multivariada UNIVERSIDADE FEDERAL FLUMINENSE Programa de Mestrado e Doutorado em Engenharia de Produção Disciplina: Estatística Multivariada Aula: Análise Discriminante Professor: Valdecy Pereira, D. Sc. email: valdecy.pereira@gmail.com

Leia mais

ANÁLISE DISCRIMINANTE. Análise discriminante. Função discriminante. Análise de agrupamentos e Análise das componentes principais

ANÁLISE DISCRIMINANTE. Análise discriminante. Função discriminante. Análise de agrupamentos e Análise das componentes principais Análise de agrupamentos e Análise das componentes principais Ambas as análises são técnicas de redução de dados. ANÁLISE DISCRIMINANTE Objetivo da análise de agrupamentos é formar grupos, reduzindo o número

Leia mais

Cap. 3 - Cinemática Tridimensional

Cap. 3 - Cinemática Tridimensional Universidade Federal do Rio de Janeiro Instituto de Física Física I IGM1 2014/1 Cap. 3 - Cinemática Tridimensional Prof. Elvis Soares 1 Cinemática Vetorial Para determinar a posição de uma partícula no

Leia mais

x 2 + (x 2 5) 2, x 0, (1) 5 + y + y 2, y 5. (2) e é positiva em ( 2 3 , + ), logo x = 3

x 2 + (x 2 5) 2, x 0, (1) 5 + y + y 2, y 5. (2) e é positiva em ( 2 3 , + ), logo x = 3 Página 1 de 4 Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral I - MAC 118 Gabarito segunda prova - Escola Politécnica / Escola de Química - 13/06/2017 Questão 1: (2 pontos) Determinar

Leia mais

MÉTODOS ESTATÍSTICOS PARA ANÁLISE DE DADOS

MÉTODOS ESTATÍSTICOS PARA ANÁLISE DE DADOS MÉTODOS ESTATÍSTICOS PARA ANÁLISE DE DADOS LEANDRO DE PAULA UFRJ Escola de Inverno do IFGW A Física de Partículas do Novo Século julho de 2014 PROGRAMA DO CURSO Introdução à Probabilidade e Estatística

Leia mais

MAP Métodos Numéricos e Aplicações Escola Politécnica 1 Semestre de 2017 EPREC - Entrega em 27 de julho de 2017

MAP Métodos Numéricos e Aplicações Escola Politécnica 1 Semestre de 2017 EPREC - Entrega em 27 de julho de 2017 1 Preliminares MAP3121 - Métodos Numéricos e Aplicações Escola Politécnica 1 Semestre de 2017 EPREC - Entrega em 27 de julho de 2017 A decomposição de Cholesky aplicada a Finanças O exercício-programa

Leia mais

Conteúdo Teórico: 04 Esperança

Conteúdo Teórico: 04 Esperança ACH2053 Introdução à Estatística Conteúdo Teórico: 04 Esperança Marcelo de Souza Lauretto Sistemas de Informação EACH www.each.usp.br/lauretto Referência: Morris DeGroot, Mark Schervish. Probability and

Leia mais

Técnicas Multivariadas em Saúde. Vetores Aleatórios. Métodos Multivariados em Saúde Roteiro. Definições Principais. Vetores aleatórios:

Técnicas Multivariadas em Saúde. Vetores Aleatórios. Métodos Multivariados em Saúde Roteiro. Definições Principais. Vetores aleatórios: Roteiro Técnicas Multivariadas em Saúde Lupércio França Bessegato Dep. Estatística/UFJF 1. Introdução 2. Distribuições de Probabilidade Multivariadas 3. Representação de Dados Multivariados 4. Testes de

Leia mais

Fluxo de carga não linear: algoritmos básicos. Formulação do problema básico. Equações básicas (para (1) 2 NB equações

Fluxo de carga não linear: algoritmos básicos. Formulação do problema básico. Equações básicas (para (1) 2 NB equações Fluo de cara não linear: aloritmos básicos Formulação do roblema básico Euações básicas (ara,, L, NB m K m K m m ( G cos B sen m m m m ( G sen B cos m m m m ( ( NB euações 4 NB variáveis NB euações tio

Leia mais

Teste de hipótese de variância e Análise de Variância (ANOVA)

Teste de hipótese de variância e Análise de Variância (ANOVA) Teste de hipótese de variância e Análise de Variância (ANOVA) Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais Testes sobre variâncias Problema: queremos saber se há diferenças estatisticamente

Leia mais

Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 03 / Detecção de Sinais

Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 03 / Detecção de Sinais Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 03 / Detecção de Sinais Prof. Eduardo Simas (eduardo.simas@ufba.br) Programa de Pós-Graduação em Engenharia Elétrica/PPGEE Universidade Federal

Leia mais

Variáveis Aleatórias. Esperança e Variância. Prof. Luiz Medeiros Departamento de Estatística - UFPB

Variáveis Aleatórias. Esperança e Variância. Prof. Luiz Medeiros Departamento de Estatística - UFPB Variáveis Aleatórias Esperança e Variância Prof. Luiz Medeiros Departamento de Estatística - UFPB ESPERANÇA E VARIÂNCIA Nos modelos matemáticos aleatórios parâmetros podem ser empregados para caracterizar

Leia mais

Teste de hipótese de variância e Análise de Variância (ANOVA)

Teste de hipótese de variância e Análise de Variância (ANOVA) Teste de hipótese de variância e Análise de Variância (ANOVA) Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais Modelos explicativos estatísticos Modelos estatísticos visam descrever

Leia mais

ANPEC. Prova de Matemática Exame de 2017

ANPEC. Prova de Matemática Exame de 2017 ANPEC Prova de Matemática Exame de 2017 Exercícios 1. Considere o seguinte conjunto: C = x, y : x ' 2x 1 y min x + 17, x + 19. Analise a veracidade das seguintes afirmações: A. O valor máximo da coordenada

Leia mais

TP537 Transmissão Digital 1ª Avaliação 27/10/ :00h Prof. Dayan Adionel Guimarães. Aluno(a):

TP537 Transmissão Digital 1ª Avaliação 27/10/ :00h Prof. Dayan Adionel Guimarães. Aluno(a): TP537 Transmissão Digital ª Avaliação 7//4 8:h Prof. Dayan Adionel Guimarães ota: Aluno(a): ª questão (4 pontos) Prova com consulta ao livro texto, com duração de 3 horas. A interpretação é parte integrante

Leia mais

ANÁLISE DE COMPONENTES PRINCIPAIS/PCA ou ACP

ANÁLISE DE COMPONENTES PRINCIPAIS/PCA ou ACP Procedimento para a determinação de novas variáveis (componentes) que expliquem a maior variabilidade possível existente em uma matriz de dados multidimensionais. ANÁLISE DE COMPONENTES PRINCIPAIS/PCA

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ano Versão Nome: N.º Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando,

Leia mais

Seminário de Análise Multivariada

Seminário de Análise Multivariada Seminário de Análise Multivariada Capítulo 1 - Introdução Conteúdo 1 Introdução 1 11 Aplicações de Técnicas Multivariadas 2 12 Organização de Dados 3 121 Arranjos 3 122 Exemplo 11 - Seleção de recibos

Leia mais

Análise Multivariada Aplicada à Contabilidade

Análise Multivariada Aplicada à Contabilidade Mestrado e Doutorado em Controladoria e Contabilidade Análise Multivariada Aplicada à Contabilidade Prof. Dr. Marcelo Botelho da Costa Moraes www.marcelobotelho.com mbotelho@usp.br Turma: 2º / 2016 1 Agenda

Leia mais

Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos)

Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos) Prova de Conhecimentos Específicos 1 a QUESTÃO: (,0 pontos) 5x Considere a função f(x)=. Determine, se existirem: x +7 (i) os pontos de descontinuidade de f; (ii) as assíntotas horizontais e verticais

Leia mais

G3 de Álgebra Linear I

G3 de Álgebra Linear I G de Álgebra Linear I 7 Gabarito ) Considere a transformação linear T : R R cuja matriz na base canônica E = {(,, ), (,, ), (,, )} é [T] E = a) Determine os autovalores de T e seus autovetores correspondentes

Leia mais

Fundamentos da Teoria da Probabilidade

Fundamentos da Teoria da Probabilidade Fundamentos da Teoria da Probabilidade Edmar José do Nascimento (Princípios de Comunicações) http://www.univasf.edu.br/ edmar.nascimento Universidade Federal do Vale do São Francisco Sinais Aleatórios

Leia mais

UNIVERSIDADE ESTADUAL DE SANTA CRUZ UESC. 1 a Avaliação escrita de Cálculo IV Professor: Afonso Henriques Data: 10/04/2008

UNIVERSIDADE ESTADUAL DE SANTA CRUZ UESC. 1 a Avaliação escrita de Cálculo IV Professor: Afonso Henriques Data: 10/04/2008 1 a Avaliação escrita de Professor: Afonso Henriques Data: 10/04/008 1. Seja R a região do plano delimitada pelos gráficos de y = x, y = 3x 18 e y = 0. Se f é continua em R, exprima f ( x, y) da em termos

Leia mais

Estatística Aplicada I. } Análise Bidimensional

Estatística Aplicada I. } Análise Bidimensional Estatística Aplicada I } Análise Bidimensional 1 Aula de hoje } Temas } Associação entre variáveis } Qualitativas e Quantitativas } Covariância: conceitos e propriedades } Coeficiente de correlação } Observações

Leia mais

Métodos Empíricos de Pesquisa I. } Análise Bidimensional

Métodos Empíricos de Pesquisa I. } Análise Bidimensional Métodos Empíricos de Pesquisa I } Análise Bidimensional 1 Aula de hoje } Temas } Associação entre variáveis } Qualitativas e Quantitativas } Covariância: conceitos e propriedades } Coeficiente de correlação

Leia mais

Geração de Variáveis Aleatórias Contínuas. Mat02274 Estatística Computacional. A Normal. A Normal. Normal Log-Normal Gama Erlang Beta.

Geração de Variáveis Aleatórias Contínuas. Mat02274 Estatística Computacional. A Normal. A Normal. Normal Log-Normal Gama Erlang Beta. Estatística Computacional Geração de Variáveis Aleatórias Contínuas 6 Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Normal Log-Normal Gama Erlang Beta Weibull Student (t) Qui-Quadrado

Leia mais

Vetor de Variáveis Aleatórias

Vetor de Variáveis Aleatórias Vetor de Variáveis Aleatórias Luis Henrique Assumpção Lolis 25 de junho de 2013 Luis Henrique Assumpção Lolis Vetor de Variáveis Aleatórias 1 Conteúdo 1 Vetor de Variáveis Aleatórias 2 Função de Várias

Leia mais

Capítulo 1 Estatística Descritiva. Prof. Fabrício Maciel Gomes

Capítulo 1 Estatística Descritiva. Prof. Fabrício Maciel Gomes Capítulo 1 Estatística Descritiva Prof. Fabrício Maciel Gomes Gráficos 1. Gráfico de Colunas Um gráfico de colunas mostra as alterações de dados em um período de tempo ou ilustra comparações entre itens.

Leia mais

Funções Discriminantes Lineares

Funções Discriminantes Lineares Funções Discriminantes Lineares Revisão Cap. 2 Classificação Bayesiana: Fdp s conhecidas, w ) P e x w ) ( i p. ( i Cap. 3 Formas das fdp s conhecidas, idem No. de parâmetros. a) Máxima verossimilhança:

Leia mais

Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo

Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Geração de Números Aleatórios Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo 1 / 61 Simulando de Distribuições Discretas Assume-se que um

Leia mais

Admita que, à entrada de uma fibra óptica, a componente longitudinal do campo eléctrico é dada por. a frequência (angular) da portadora.

Admita que, à entrada de uma fibra óptica, a componente longitudinal do campo eléctrico é dada por. a frequência (angular) da portadora. Aula de Problemas 5 Problema Admita que, à entrada de uma fibra óptica, a componente lonitudinal do campo eléctrico é dada por z,,,, exp E x y z t F x y t i t em que o sinal modulante t é um impulso aussiano

Leia mais

GAAL - Terceira Prova - 15/junho/2013. Questão 1: Analise se a afirmação abaixo é falsa ou verdadeira:

GAAL - Terceira Prova - 15/junho/2013. Questão 1: Analise se a afirmação abaixo é falsa ou verdadeira: GAAL - Terceira Prova - /junho/3 SOLUÇÕES Questão : Analise se a afirmação abaio é falsa ou verdadeira: [ A matriz A é diagonalizável SOLUÇÃO: Sabemos que uma matriz n n é diagonalizável se ela possuir

Leia mais

P4 de Álgebra Linear I

P4 de Álgebra Linear I P4 de Álgebra Linear I 2008.2 Data: 28 de Novembro de 2008. Gabarito. 1) (Enunciado da prova tipo A) a) Considere o plano π: x + 2 y + z = 0. Determine a equação cartesiana de um plano ρ tal que a distância

Leia mais

Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 05 / Detecção Binária Baseada em

Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 05 / Detecção Binária Baseada em Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 05 / Detecção Binária Baseada em Múltiplas Observações e Detecção com Múltiplas Hipóteses Prof. Eduardo Simas (eduardo.simas@ufba.br) Programa

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 5

MAE Introdução à Probabilidade e Estatística II Resolução Lista 5 MAE 229 - Introdução à Probabilidade e Estatística II Resolução Lista 5 Professor: Pedro Morettin e Profa. Chang Chian Exercício 1 (a) De uma forma geral, o desvio padrão é usado para medir a dispersão

Leia mais

Setor de Tecnologia - TC Engenharia Ambiental Prova 1. Matemática Aplicada I

Setor de Tecnologia - TC Engenharia Ambiental Prova 1. Matemática Aplicada I Universidade Federal do Paraná Matemática Aplicada I Setor de Tecnologia - TC Engenharia Ambiental 2014-2 Curitiba, 24.09.2014 Prova 1 Matemática Aplicada I Tobias Bleninger Departamento de Engenharia

Leia mais

Nota: Turma: MA 327 Álgebra Linear. Terceira Prova. Boa Prova! Primeiro Semestre de T o t a l

Nota: Turma: MA 327 Álgebra Linear. Terceira Prova. Boa Prova! Primeiro Semestre de T o t a l Turma: Nota: MA 327 Álgebra Linear Primeiro Semestre de 26 Terceira Prova Nome: RA: Questões Pontos Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 T o t a l Boa Prova! Questão 1. 2. Pontos) Seja U um

Leia mais

Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE

Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE Funções Geradoras de Variáveis Aleatórias 1 Funções Geradoras de Variáveis Aleatórias Nos programas de simulação existe um GNA e inúmeras outras funções matemáticas descritas como Funções Geradoras de

Leia mais

AGA Análise de Dados em Astronomia I. 1. Introdução

AGA Análise de Dados em Astronomia I. 1. Introdução 1 / 22 1. Introdução AGA 0505 - Análise de Dados em Astronomia I 1. Introdução Laerte Sodré Jr. 1o. semestre, 2019 2 / 22 introdução aula de hoje: Introdução 1 objetivo 2 o que é ciência 3 dados 4 o que

Leia mais

Matrizes. Lino Marcos da Silva

Matrizes. Lino Marcos da Silva Matrizes Lino Marcos da Silva lino.silva@univasf.edu.br Introdução Chamamos de matriz a uma tabela de elementos dispostos em linhas e colunas. Por exemplo, ao recolhermos os dados população, área e distância

Leia mais

Álgebra Linear I - Lista 12. Matrizes semelhantes. Diagonalização. Respostas

Álgebra Linear I - Lista 12. Matrizes semelhantes. Diagonalização. Respostas Álgebra Linear I - Lista 12 Matrizes semelhantes. Diagonalização Respostas 1) Determine quais das matrizes a seguir são diagonalizáveis. Nos caso afirmativos encontre uma base de autovetores e uma forma

Leia mais

q 2 r 2 ( 1 1 ( r 2 r 1 r 1 r 2

q 2 r 2 ( 1 1 ( r 2 r 1 r 1 r 2 Determine o otencial elétrico de um diolo a Num onto P qualquer, a uma distância r da carga ositiva e a uma distância r da carga negativa; b Obtenha a eressão ara ontos muito afastados do diolo. c Determine

Leia mais

Capítulo 3: Elementos de Estatística e Probabilidades aplicados à Hidrologia

Capítulo 3: Elementos de Estatística e Probabilidades aplicados à Hidrologia Departamento de Engenharia Civil Prof. Dr. Doalcey Antunes Ramos Capítulo 3: Elementos de Estatística e Probabilidades aplicados à Hidrologia 3.1 - Objetivos Séries de variáveis hidrológicas como precipitações,

Leia mais

Tiago Viana Flor de Santana

Tiago Viana Flor de Santana ESTATÍSTICA BÁSICA DISTRIBUIÇÃO NORMAL DE PROBABILIDADE (MODELO NORMAL) Tiago Viana Flor de Santana www.uel.br/pessoal/tiagodesantana/ tiagodesantana@uel.br sala 07 Curso: MATEMÁTICA Universidade Estadual

Leia mais

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 e 2 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 29/11/2015 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES:

Leia mais

1 Matrizes Ortogonais

1 Matrizes Ortogonais Álgebra Linear I - Aula 19-2005.1 Roteiro 1 Matrizes Ortogonais 1.1 Bases ortogonais Lembre que uma base β é ortogonal se está formada por vetores ortogonais entre si: para todo par de vetores distintos

Leia mais

EUF. Exame Unificado

EUF. Exame Unificado EUF Exame Unificado das Pós-graduações em Física Para o segundo semestre de 06 Respostas esperadas Parte Estas são sugestões de possíveis respostas. Outras possibilidades também podem ser consideradas

Leia mais

29 e 30 de julho de 2013

29 e 30 de julho de 2013 Programa de Pós-Graduação em Estatística e Experimentação Agronômica ESALQ/USP 29 e 30 de julho de 2013 Dia 2 - Conteúdo 1 2 3 Dados multivariados Estrutura: n observações tomadas de p variáveis resposta.

Leia mais

P4 de Álgebra Linear I de junho de 2005 Gabarito

P4 de Álgebra Linear I de junho de 2005 Gabarito P4 de Álgebra Linear I 25.1 15 de junho de 25 Gabarito 1) Considere os pontos A = (1,, 1), B = (2, 2, 4), e C = (1, 2, 3). (1.a) Determine o ponto médio M do segmento AB. (1.b) Determine a equação cartesiana

Leia mais

PROVAS Ciência da Computação. 2 a Prova: 13/02/2014 (Quinta) Reavaliação: 20/02/2014 (Quinta)

PROVAS Ciência da Computação. 2 a Prova: 13/02/2014 (Quinta) Reavaliação: 20/02/2014 (Quinta) PROVAS Ciência da Computação 2 a Prova: 13/02/2014 (Quinta) Reavaliação: 20/02/2014 (Quinta) Ajuste de Curvas Objetivo Ajustar curvas pelo método dos mínimos quadrados 1 - INTRODUÇÃO Em geral, experimentos

Leia mais

G3 de Álgebra Linear I

G3 de Álgebra Linear I G3 de Álgebra Linear I 11.1 Gabarito 1) Seja A : R 3 R 3 uma transformação linear cuja matriz na base canônica é 4 [A] = 4. 4 (a) Determine todos os autovalores de A. (b) Determine, se possível, uma forma

Leia mais

MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 2015

MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 2015 MAT27 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 201 Nesta prova considera-se fixada uma orientação do espaço e um sistema de coordenadas Σ (O, E) em E 3, em que E é uma base

Leia mais

DESENVOLVIMENTO Segundo Sadosky (1965), dado um conjunto de m equações lineares a seguir: a a x b 11 1n. x b mn n m

DESENVOLVIMENTO Segundo Sadosky (1965), dado um conjunto de m equações lineares a seguir: a a x b 11 1n. x b mn n m MSc Alexandre Estácio Féo Associação Educacional Dom Bosco - Faculdade de Engenharia de Resende Caixa Postal: 81.698/81711 - CEP: 7511-971 - Resende - RJ Brasil Professor e Doutorando de Engenharia aefeo@unifei.edu.br

Leia mais

Introdução a Regressão Linear

Introdução a Regressão Linear Introdução a Regressão Linear 1 Duas pedras fundamentais em econometria: 1) Modelo de Regressão Linear 2) OLS método de estimação: Mínimos Quadrados Ordinários técnica algébrica / estatística Modelo de

Leia mais

Agrupamento de dados. Critério 1: grupos são concentrações de dados k-means Critério 2: grupos são conjuntos de elementos próximos entre si espectral

Agrupamento de dados. Critério 1: grupos são concentrações de dados k-means Critério 2: grupos são conjuntos de elementos próximos entre si espectral Agrupamento de dados Critério 1: grupos são concentrações de dados k-means Critério 2: grupos são conjuntos de elementos próximos entre si espectral Dados e grafos Se temos dados x i, i 0... n, criamos

Leia mais

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma:

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: 46 VALOR ESPERADO CONDICIONADO Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: Variável contínua E + ( X Y

Leia mais

MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2016/2017

MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2016/2017 MESTADO INTEGADO EM ENG. INFOMÁTICA E COMPUTAÇÃO 016/017 EIC0010 FÍSICA I 1o ANO, o SEMESTE 16 de junho de 017 Nome: Duração horas. Prova com consulta de formulário e uso de computador. O formulário pode

Leia mais

Provas de. Cálculo II 02/2008. Professor Rudolf R. Maier

Provas de. Cálculo II 02/2008. Professor Rudolf R. Maier Provas de Cálculo II 0/008 Professor Rudolf R. Maier UNIVERSIDADE DE BRASÍLIA Brasília, 5 de setembro de 008. a prova em CALCULO II ) Determinar as retas normais da curva y = + x que passam pela origem.

Leia mais

Química Analítica V 2S Prof. Rafael Sousa. Notas de aula:

Química Analítica V 2S Prof. Rafael Sousa. Notas de aula: Química Analítica V 2S 2012 Aula 3: 04-12-12 Estatística Aplicada à Química Analítica Prof. Rafael Sousa Departamento de Química - ICE rafael.arromba@ufjf.edu.br Notas de aula: www.ufjf.br/baccan 1 Conceito

Leia mais

G4 de Álgebra Linear I

G4 de Álgebra Linear I G4 de Álgebra Linear I 27.1 Gabarito 1) Considere a base η de R 3 η = {(1, 1, 1); (1,, 1); (2, 1, )} (1.a) Determine a matriz de mudança de coordenadas da base canônica para a base η. (1.b) Considere o

Leia mais

Mais sobre Modelos Continuos

Mais sobre Modelos Continuos Mais sobre Modelos Continuos Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo 1 / 41 Transformação Linear da Uniforme Seja X uma variável aleatória

Leia mais

Resolução dos Problemas Pares da Primeira Lista de Exercícios

Resolução dos Problemas Pares da Primeira Lista de Exercícios Resolução dos Problemas Pares da Primeira Lista de Exercícios Wagner Leite www.wagnerleite.com 6 de março de 010 Resumo Esse texto contém cálculos referentes as resoluções dos problemas pares disponíveis

Leia mais

A forma do elemento pode ser aproximada a um arco de um círculo de raio R, cujo centro está em O. A força líquida na direção de O é F = 2(τ sen θ).

A forma do elemento pode ser aproximada a um arco de um círculo de raio R, cujo centro está em O. A força líquida na direção de O é F = 2(τ sen θ). A forma do elemento pode ser aproximada a um arco de um círculo de raio R, cujo centro está em O. A força líquida na direção de O é F = (τ sen θ). Aqui assumimos que θ

Leia mais

Value at Risk Não-linear. Análise de Risco (4) R.Vicente

Value at Risk Não-linear. Análise de Risco (4) R.Vicente Value at Risk Não-linear Análise de Risco (4) R.Vicente Resumo Portfolios Lineares Portfolios Não-lineares: Aproximação Delta Portfolios Não-lineares: Aproximação Delta-quadrática Portfolios Não-lineares:

Leia mais

CM005 Álgebra Linear Lista 3

CM005 Álgebra Linear Lista 3 CM005 Álgebra Linear Lista 3 Alberto Ramos Seja T : V V uma transformação linear. Se temos que T v = λv, v 0, para λ K. Dizemos que λ é um autovalor de T e v autovetor de T associado a λ. Observe que λ

Leia mais

ESPAÇO VETORIAL REAL. b) Em relação à multiplicação: (ab) v = a(bv) (a + b) v = av + bv a (u + v ) = au + av 1u = u, para u, v V e a, b R

ESPAÇO VETORIAL REAL. b) Em relação à multiplicação: (ab) v = a(bv) (a + b) v = av + bv a (u + v ) = au + av 1u = u, para u, v V e a, b R ESPAÇO VETORIAL REAL Seja um conjunto V, não vazio, sobre o qual estão definidas as operações de adição e multiplicação por escalar, isto é: u, v V, u + v V a R, u V, au V O conjunto V com estas duas operações

Leia mais

Tratamento Estatístico de Dados em Física Experimental

Tratamento Estatístico de Dados em Física Experimental Tratamento Estatístico de Dados em Física Experimental Prof. Zwinglio Guimarães o semestre de 06 Tópico 7 - Ajuste de parâmetros de funções (Máxima Verossimilhança e Mínimos Quadrados) Método da máxima

Leia mais

Exercícios de Mínimos Quadrados

Exercícios de Mínimos Quadrados INSTITUTO DE CIÊNCIAS MATEMÁTICAS E DE COMPUTAÇÃO DEPARTAMENTO DE MATEMÁTICA APLICADA E ESTATÍSTICA Exercícios de Mínimos Quadrados 1 Provar que a matriz de mínimos quadrados é denida positiva, isto é,

Leia mais

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO

Leia mais

1º Exame de Mecânica e Ondas

1º Exame de Mecânica e Ondas º Exame de Mecânica e Ondas (LEMat, LQ, MEBiol, MEAmbi, MEQ) Quar 09:00 - :30 3 de Junho 00. Três objectos de massas m m m e m 3 4 m deslizam sem atrito numa superfície como indicado na fiura. Assumindo

Leia mais

Distância Estatística

Distância Estatística Distância Estatística Renato Assunção 0/05/03 Pressão sistólica A pressão sistólica mede a força do sangue nas artérias, à medida que o coração contrai para impulsionar o sangue através do corpo. Se alta

Leia mais

Mestrado Profissional em Administração. Disciplina: Análise Multivariada Professor: Hedibert Freitas Lopes 1º trimestre de 2015

Mestrado Profissional em Administração. Disciplina: Análise Multivariada Professor: Hedibert Freitas Lopes 1º trimestre de 2015 Mestrado Profissional em Administração Disciplina: Análise Multivariada Professor: Hedibert Freitas Lopes 1º trimestre de 015 Decomposição Espectral Autovalores e autovetores MANLY, Cap. Objetivo e Definição

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Propostas de resolução Exercícios de exames e testes intermédios 1. Simplificando as expressões de z 1 e z, temos que: Como i 19 i + i i, vem

Leia mais

Tratamento Estatístico de dados em Física Experimental

Tratamento Estatístico de dados em Física Experimental Tratamento Estatístico de dados em Física Experimental Prof. Zwinglio Guimarães 2 o semestre de 2017 Tópico 6 - Testes estatísticos (Chi-quadrado, z e t ) O método dos mínimos quadrados (revisão) O método

Leia mais

3 Filtro de Kalman Discreto

3 Filtro de Kalman Discreto 3 Filtro de Kalman Discreto As medidas realizadas por sensores estão sujeitas a erros, como pode ser visto no Capítulo 2. Os filtros são aplicados aos sinais medidos pelos sensores para reduzir os erros,

Leia mais