Construção de um modelo para o preço de venda de casas residenciais na cidade de Sorocaba-SP

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Construção de um modelo para o preço de venda de casas residenciais na cidade de Sorocaba-SP"

Transcrição

1 Costrução de um modelo para o preço de veda de casas resideciais a cidade de Sorocaba-SP Recebido: 0/03/01 Aprovado: 5/09/01 Júlio César Pereira (UFSCar-SP/Brasil) - Rodovia João Leme dos Satos (SP-64), Km 110, , Sorocaba-SP Salomão Garso (UFSCar-SP/Brasil) - Elto Gea de Araújo (UFMS-MS/Brasil) - RESUMO Palavras-chave O presete artigo foi desevolvido com base em um estudo estatístico realizado o mercado imobiliário de Sorocaba, cidade localizada o iterior de São Paulo. Neste estudo, objetivou-se a utilização de métodos de regressão liear múltipla a modelagem do preço de veda de casas da cidade de Sorocaba-SP com base em suas características. Visado obter maior qualidade a predição dos preços de veda, foram utilizados métodos de seleção de variáveis, que garatem a utilização apeas das variáveis relevates ao problema, implicado em uma estimação mais fiel dos preços de veda. Além disso, uma das variáveis cotidas era qualitativa, o que demadou o uso de variáveis dummy. Através dos métodos citados, chegou-se à coclusão de que algumas variáveis coletadas ão deveriam fazer parte do modelo. Obteve-se assim, as variáveis importates para a costrução de um modelo de regressão liear múltipla adequado, que pode auxiliar de maeira eficiete a avaliação e estimação do preço de veda de imóveis situados em Sorocaba. Regressão Liear Múltipla; Seleção de Variáveis; Estimação do Preço de Veda de Casas. ABSTRACT Keywords This article is based o a survey about the real estate market i Sorocaba, a city i the iterior of Sao Paulo. The mai objective of this study was to use the multiple liear regressio modelig method for gaugig housig prices i Sorocaba. I order to obtai higher quality i the predictio of sales prices, various methods were used for selectig variables which ca the guaratee the use of oly usig variables that are relevat to the problem, therefore resultig i a more accurate estimatio of sale prices. I additio, a qualitative variable was icluded, which required the use of dummy variables. Usig the methods metioed we came to the coclusio that some of the variables collected should ot be part of the model. Thus through obtaiig the importat variables for the costructio of a appropriate multiple liear regressio model, we ca effectively assist i the evaluatio ad estimatio of the sales prices of real estate located i Sorocaba. Multiple Liear Regressio; Selectio of Variables; Estimatio of the Sales Prices of Houses. PEREIRA, J. C.; GARSON, S.; ARAÚJO, E. G. Costrução de um modelo para o preço de veda de casas resideciais a cidade de Sorocaba-SP. GEPROS. Gestão da Produção, Operações e Sistemas, Ao 7, º 4, out-dez/01, p

2 Costrução de um modelo para o preço de veda de casas resideciais a cidade de Sorocaba-SP 1. INTRODUÇÃO O muicípio de Sorocaba, localizado o iterior do estado de São Paulo, tem passado por um grade desevolvimeto as últimas décadas. Sedo cosiderado o terceiro muicípio mais populoso do iterior paulista e o quarto mercado cosumidor do estado, com exceção da região metropolitaa, Sorocaba recebe grades ivestimetos os mais diversos setores, como idustrial e educacioal (PORTAL SOROCABA, 010). Cosequetemete, a cidade tem tido um grade crescimeto populacioal, levado a uma movimetação estrodosa o mercado imobiliário, que segudo Steier et al. (007), é uma das áreas mais diâmicas do setor terciário da ecoomia e a maior dificuldade em desevolver estudos acerca do mesmo é a grade heterogeeidade das características (atributos e variáveis) de cada imóvel, bem como as relações que elas podem guardar etre si. Além da utilidade como moradia, uma uidade imobiliária é também um ivestimeto fiaceiro, e a costrução de um modelo para predição de seu preço passa a ser ecessária para a observação de sua volatilidade, para a estimativa dos retoros esperados e para sua avaliação. Assim, os compradores poderão medir o retoro de seus ivestimetos e os geretes poderão estimar seus preços coforme parâmetros valorizados pelo mercado (ROZENBAUM; MACEDO- -SOARES, 007). Dada a grade quatidade de variáveis que podem ser utilizadas para explicar o preço de imóveis, é ecessário que haja uma seleção do cojuto de variáveis idepedetes a ser usado o modelo. Algumas vezes, muitas das variáveis evolvidas ão são importates para modelar adequadamete o preço do imóvel. Nessas situações tem-se iteresse em filtrar as variáveis cadidatas para obter um modelo que coteha o melhor cojuto possível de variáveis regressoras que expliquem a variável preço (Y). Dessa forma, espera-se obter um modelo fial que coteha variáveis regressoras suficietes, de modo a obter desempeho satisfatório do modelo a descrição, bem como previsão, da variável Y. Por outro lado, para mater os custos míimos de mauteção e torar um modelo de fácil utilização, é desejável que o modelo use o meor úmero possível de variáveis regressoras. Diate desse coflito etre usar uma quatidade suficiete de vaiáveis que descreva bem a variável Y e o meor úmero possível de variáveis para que o modelo seja de fácil iterpretação, é ecessária a utilização dos métodos de seleção de variáveis (MONTGOMERY; RUNGER, 008). Pelo iteso aquecimeto do mercado imobiliário de Sorocaba e pela dificuldade de predição e avaliação dos preços de veda de imóveis, o presete artigo tem por objetivo propor um modelo de regressão liear múltipla que auxilie a estimação dos preços de veda de imóveis da cidade de Sorocaba, a partir de suas características físicas e de sua localização. Para isso, foi cosiderada uma amostra de casas resideciais à veda a cidade. Além disso, foram utilizados métodos de seleção de variáveis, com o ituito de se obter um modelo de regressão liear adequado, que cotemple apeas as variáveis relevates ao estudo em questão e que estime de maeira fiel os preços de veda de uma casa situada em Sorocaba. Este artigo está estruturado da seguite forma: a seção é feita uma revisão de literatura, em que algus estudos semelhates ao assuto abordado são apresetados, de forma a ilustrar que tipos de modelos são desevolvidos para avaliação do mercado imobiliário; a seção 3 apreseta os materiais e métodos utilizados; a seção 4 são apresetados os resultados obtidos e discussões. Nas seções 5 e 6 são apresetadas as cosiderações fiais e as referêcias bibliográficas, respectivamete. 154 GEPROS. Gestão da Produção, Operações e Sistemas, Ao 7, º 4, out-dez/01, p

3 Júlio César Pereira, Salomão Garso, Elto Gea de Araújo. REVISÃO BIBLIOGRÁFICA Em estudos do mercado imobiliário, é comum utilizar modelos de regressão liear múltipla, a fim de aalisar uma variável de iteresse (Y) em fução de diversas outras variáveis (x j ). Por exemplo, Nadal et al. (003) fez uso de uma amostra de 0 imóveis a cidade de Curitiba para o desevolvimeto de um modelo de regressão liear múltipla que auxiliasse a predição do preço de veda de um imóvel da cidade que havia sido desapropriado por fatores ambietais e turísticos. Foram utilizadas as variáveis idade aparete do imóvel, área equivalete, padrão da costrução, úmero de vagas a garagem e preço de veda do imóvel para chegar ao modelo de regressão liear, através do método dos míimos quadrados. Além disso, foram realizados algus testes para validação do modelo adotado, com o ituito de garatir a qualidade do modelo. Este é apeas um exemplo, etre diversos outros que empregam modelos de regressão para a modelagem do preço de veda de imóveis, como é o caso de Steier et al. (007), Rozebaum e Macedo-Soares (007), Gazola (00), Alves (005), Couto (007) e Braulio (005). A regressão liear é um método estatístico que estabelece uma relação etre uma variável resposta Y e outras variáveis idepedetes x. A regressão liear simples cosidera um úico regressor ou preditor x e uma variável depedete Y, equato a regressão liear múltipla relacioa Y com outras variáveis, como apresetado a seguir. Cosiderado-se k regressores o modelo de regressão liear múltipla pode ser expresso pela Equação 1, podedo ser escrito a forma reduzida, como a Equação (MONTGOMERY; RUN- GER, 008). y = β 0 + β 1 x 1 + β x + + β k x k + ε (1) k y = β 0 + β jx ij + ε i j=1 () Em que, β j, j = 0, 1,, k são os coeficietes de regressão, sedo parâmetros que represetam a variação esperada em y por uidade de variação em x j quado todos os outros regressores são matidos costates. Além disso, a regressão liear múltipla também pode ser trabalhada a forma matricial, como ilustra a Equação 3, em que represeta o úmero de observações utilizadas a amostra (MONTGOMERY; RUNGER, 008). x i1 x i x ik y 1. x i1 x i1 x i1 x i x i1 x ik x i1 y = β k.. x ik x ik x i1 x i1 x i x ik x ik y 1. β 1 β (3) GEPROS. Gestão da Produção, Operações e Sistemas, Ao 7, º 4, out-dez/01, p

4 Costrução de um modelo para o preço de veda de casas resideciais a cidade de Sorocaba-SP Esse modelo é utilizado com o objetivo de eteder como Y se comporta após uma mudaça em uma ou mais variáveis idepedetes. Dessa forma, é possível fazer iferêcias sobre a variável resposta, tais como realizar predições de seu comportameto e obter estimativas por itervalo (CHARNET et al., 1999; MONTGOMERY; RUNGER, 008). Detre outros trabalhos que empregam técicas de regressão liear aplicadas ao mercado imobiliário, pode-se citar Steier et al. (007), que realizaram um estudo imobiliário a cidade de Campo Mourão, o Paraá, utilizado a aálise de agrupameto para criar grupos de imóveis com características mais homogêeas, para posteriormete utilizar a regressão liear múltipla, com o ituito de estimar preços de imóveis que seriam colocados à veda. Gazola (00) coletou dados referetes a apartametos da cidade de Criciúma, o estado de Sata Cataria, visado à estimação de preços de outros apartametos a partir de suas características por meio de uma regressão liear múltipla. As variáveis utilizadas foram a área total do imóvel, cosumo de eergia, distâcia à escola, acessibilidade, idade do imóvel, dormitórios, meio ambiete, região homogêea, zoa fiscal, padrão de etrada, classificação, coservação, garagem, suíte, depedêcia de empregada, elevador e pólos de valorização. Além disso, utilizou-se a técica de Ridge Regressio, que evita a multicoliearidade, que ocorre quado as variáveis idepedetes de uma regressão possuem relações lieares exatas ou aproximadamete exatas. No mesmo âmbito, Alves (005) avaliou preços de imóveis a cidade de Campo Mourão, o estado do Paraá, através de modelos de regressão liear e com o auxílio de um programa computacioal deomiado AMI (Aálise Multivariada de Imóveis), desevolvido através da liguagem computacioal MATLAB. A iterface do programa oferece como opções três diferetes tipos de regressões e forece o resultado de maeira imediata ao usuário. Além disso, Couto (007) realizou um estudo imobiliário a cidade de Porto, em Portugal, através de ferrametas estatísticas, detre elas, modelos de regressão liear múltipla, tedo sido seu trabalho voltado pricipalmete para imóveis destiados à habitação e com maior cocetração a tributação imobiliária. Braulio (005) desevolveu um modelo através de métodos estatísticos multivariados para avaliar imóveis em fução de suas pricipais características a cidade de Campo Mourão, assim como Alves (005). Porém, para apurar os dados coletados e garatir a cofiabilidade do modelo fial, foram utilizadas técicas de aálise multivariada, como aálise de agrupameto e diversos testes de seleção de variáveis, como a aálise de todas as regressões possíveis, o teste Stepwise (passo a passo), Seleção forward e Elimiação backward. O resultado obtido foi um modelo de regressão liear múltipla de alto ível de precisão o que diz respeito à predição de preços de casas, apartametos e terreos da cidade de Campo Mourão. Já o estudo de Rozebau e Macedo- -Soares (007), foi costruído um ídice de preço de imóveis através de um modelo de regressão liear múltipla. Estes autores, citado Sirmas et al. (005), elecam as seguites variáveis etre as mais presetes os estudos de avaliação do preço de imóveis, sedo elas: área privativa, úmero de quartos, localização, ameidades e idade do imóvel. Porém, a difereça do trabalho de Rozebau e Macedo-Soares (007) com o desevolvido por Braulio (005) é que o primeiro ão foram utilizados métodos de seleção de variáveis formais, mas estas foram selecioadas de maeira subjetiva através de um modelo hedôico, que permite aalisar a importâcia relativa a cada variável. 156 GEPROS. Gestão da Produção, Operações e Sistemas, Ao 7, º 4, out-dez/01, p

5 Júlio César Pereira, Salomão Garso, Elto Gea de Araújo 3. MATERIAL E MÉTODO DA PESQUISA 3.1. Material Foi coletada uma amostra de 150 observações a partir dos websites de diversas imobiliárias da cidade de Sorocaba-SP. Foram cosideradas as iformações dispoíveis os sites, sedo as variáveis dispoíveis: o preço de veda da casa (Y), quatidade de dormitórios (x 1 ), área costruída em m (x ), área do terreo em m (x 3 ), úmero de vagas a garagem (x 4 ) e a localização do imóvel idicada pelo bairro (d), sedo que a amostra obtida cobriu todas as regiões da cidade. 3.. Métodos Os dados mecioados a seção aterior foram tratados utilizado-se técicas de regressão liear múltipla, a qual se procurou costruir um modelo para o preço de casas em fução das demais características dispoíveis. E a fim de elecar as variáveis realmete importates a formação do preço, foram empregados os métodos de seleção de variáveis. No que se segue são apresetados os métodos utilizados Seleção de Variáveis para a Modelagem do Preço Com o ituito de selecioar as variáveis relevates para a costrução de um modelo relacioado o preço de veda das casas resideciais e suas características dispoíveis, foram utilizados algus métodos de seleção de variáveis. Muitas vezes, em todas as variáveis ou regressores são relevates para o modelo, esse caso, é ecessário obter um subcojuto de variáveis que coteha apeas as que iflueciam o setido de melhorar o modelo. O objetivo ao se utilizar esses métodos é ecotrar um modelo de regressão liear que coteha o melhor subcojuto de regressores, de modo a desempehar sua fução de forma satisfatória. Porém, quato maior for o úmero de regressores, maior é o gasto de recursos para se trabalhar com o modelo, como o custo de mauteção e a dificuldade de utilização do modelo. Assim, a seleção de variáveis a verdade é um problema de otimização, em que o objetivo é ecotrar o melhor subcojuto de regressores que gere um modelo fiel (MONTGO- MERY; RUNGER, 008). Os métodos de seleção de variáveis utilizados são citados a seguir Todas as regressões possíveis Nessa abordagem, para se ecotrar o melhor modelo, foram testadas todas as equações de regressão possíveis, cosiderado as quatro variáveis quatitativas dispoíveis. Ou seja, foram ajustadas todas as equações existetes com apeas uma das variáveis cadidatas, todas existetes com duas e assim por diate, obtedo um total de 4 equações diferetes. Assim, todas as equações foram avaliadas de acordo com algus critérios apresetados a seguir, visado ecotrar o melhor modelo. GEPROS. Gestão da Produção, Operações e Sistemas, Ao 7, º 4, out-dez/01, p

6 Costrução de um modelo para o preço de veda de casas resideciais a cidade de Sorocaba-SP Um dos critérios utilizados para aalisar e comparar as equações é o coeficiete de determiação múltipla (R p ), represetado pela Equação 4. SQ R (p) R p = = 1 SQ T SQ E (p) SQ T (4) Em que SQ R (p) é a soma quadrática da regressão, SQ E (p) é a soma quadrática dos erros e SQ t é a soma quadrática total, para um modelo com p variáveis. Coforme p aumeta, ocorre também um aumeto em R p. Assim, adicioam-se variáveis ao modelo até o poto que é visível que o aumeto em R p é praticamete desprezível. Essa técica é importate, pois mostra que existem modelos de regressão bos com úmeros diferetes de regressores. Existe um mometo em que se aumeta o úmero de regressores e a qualidade do modelo aumeta pouquíssimo, o que gera maior gasto de recursos pelo maior úmero de regressores. Outro critério utilizado é o quadrado médio do erro, dado pela Equação 5. MQ E (p) = SQ E (p) ( p) (5) Normalmete ocorre uma dimiuição o MQ E (p) quado p aumeta. Escolhe-se o míimo MQ E (p), pois a média quadrática devido ao erro seria meor, ão prejudicado a qualidade do modelo. Um terceiro critério utilizado foi a média quadrática total do erro, C p, para o modelo de regressão. Essa medida é defiida através da Equação 6. C p = SQ E (p) = + p (6) σˆ As equações que possuem tedeciosidade egligeciável têm valores de C p próximos de p, equato aquelas com tedeciosidades sigificates terão C p relativamete maiores do que p. Obviamete, o modelo escolhido é o que possui a média quadrática do erro mais próxima do valor de p, pois é o que possui meor tedeciosidade. Outro critério empregado, apresetado a Equação 7, é o chamado R p ajustado, que é basicamete uma modificação em R p que cosidera o úmero de variáveis o modelo. ( 1) R p = 1 = (1 R p ) ( p) (7) Percebe-se que R p decresce à medida que p aumeta, se a dimiuição de ( 1)(1 R p ) ão for compesada pela perda de um grau de liberdade p. Além disso, o modelo selecioado é o de valor máximo do R p, que a verdade é o mesmo que selecioar o valor míimo de MQ E (p) (MONTGOMERY; RUNGER, 008). 158 GEPROS. Gestão da Produção, Operações e Sistemas, Ao 7, º 4, out-dez/01, p

7 Júlio César Pereira, Salomão Garso, Elto Gea de Araújo Regressão por etapas Segudo Charet et al. (1999), o método de regressão por etapas é o mais utilizado a seleção de variáveis de modelos de regressão, em que é costruída uma sequêcia de modelos adicioado ou removedo variáveis, em cada etapa. Os três métodos de regressão por etapas foram utilizados, sedo o Passo atrás, Passo a frete e Passo a Passo. No primeiro caso, iicialmete foram utilizadas todas as variáveis do modelo e feitos testes de sigificâcia (Teste F) por etapas, sedo que a cada etapa, uma variável poderia ser elimiada. A partir do mometo em que ão foi elimiada ehuma variável, as variáveis que restaram o processo foram as selecioadas. No método Passo a frete, iiciaram-se os testes com apeas uma variável, a de maior coeficiete de correlação amostral com a variável resposta y. Assim, foram realizados os testes, em que a cada etapa, poderia ser adicioada uma variável. Da mesma forma que o método Passo atrás, o mometo em que ehuma variável foi adicioada, o teste foi iterrompido e foram utilizadas o modelo fial as variáveis que restaram o cojuto. O método Passo a Passo é semelhate ao Passo a frete, possuido como difereça, o fato de que em cada etapa, alguma variável poderia ser descartada também. Ou seja, este método, variáveis foram adicioadas e descartadas a cada etapa. Obtivemos o subcojuto de variáveis selecioado para utilização o modelo fial quado ehuma variável foi icluída ou excluída do modelo (CHARNET et al., 1999) Variáveis Dummy No presete estudo, foram utilizadas variáveis quatitativas, como quatidade de vagas a garagem, úmero de quartos, área útil e área do terreo. Porém, como o caso da utilização da variável bairro, muitas vezes existe a ecessidade de utilizar variáveis ão uméricas, chamadas de variáveis qualitativas e cohecidas a ecoometria como variáveis Dummy, que são biárias. Assim, em casos como iformações sobre gêero (masculio ou femiio), pessoas que possuem esio superior ou ão, empresas que dispoibilizam determiado serviço ou ão, as variáveis Dummy são utilizadas (WOOLDRIDGE, 010). Geralmete essas variáveis possuem valor 1 para uma das opções e zero para a outra, como ilustra o exemplo a Tabela 1. Tabela 1 Exemplo de utilização de variáveis Dummy para variáveis com íveis. Bairro de Sorocaba Variável Dummy Fote: Dados da pesquisa. Campolim 1 Não Campolim 0 Segudo Motgomery (008), quado a variável qualitativa possui mais de dois valores, é ecessária utilização de mais de uma variável Dummy, sedo que uma variável com t íveis pode ser modelada com t 1 variáveis idicativas, como ilustra o exemplo a Tabela. GEPROS. Gestão da Produção, Operações e Sistemas, Ao 7, º 4, out-dez/01, p

8 Costrução de um modelo para o preço de veda de casas resideciais a cidade de Sorocaba-SP Tabela Exemplo da utilização de variáveis Dummy para variáveis com mais de íveis. Bairros de Sorocaba Variável Dummy 1 Variável Dummy Variável Dummy 3 Campolim Jardim Vera Cruz Jardim São Paulo Cetro Fote: Dados da pesquisa. A pricípio, o presete trabalho, os preços dos imóveis foram avaliados em fução das variáveis quatitativas, tedo sido a variável bairro trabalhada posteriormete, por ser uma variável Dummy e demadar tratameto estatístico difereciado. Para todos os tratametos estatísticos realizados o presete artigo, foi utilizado o software R Developmet Core Team (010). 4. ANÁLISE DE DADOS E RESULTADOS Ates de se iiciar o processo de ajuste de modelos e seleção de variáveis foi realizada uma aálise da correlação etre as variáveis quatitativas, cadidatas a regressores, x 1 (úmero de dormitórios), x (área do terreo), x 3 (área costruída), x 4 (úmero de vagas a garagem) e a variável resposta Y (preço do imóvel). O resultado obtido está expresso a Tabela 3. Tabela 3 Correlação etre as variáveis idepedetes quatitativas e a variável depedete. x 1 x x 3 x 4 Y x 1-0,48 0,35 0,17 0,39 x 0,48-0,84 0,45 0,88 x 3 0,35 0,84-0,51 0,86 x 4 0,17 0,45 0,51-0,48 Y 0,39 0,88 0,86 0,48 - Fote: Dados da pesquisa. Percebe-se que as variáveis x, x 3 apresetam fortes correlações com a variável y. Isso sigifica que a relação etre a área do terreo e área costruída das casas de Sorocaba é mais próxima de uma relação liear com o preço de veda, e havedo um crescimeto de uma dessas variáveis, o valor do preço da casa acompahará esse crescimeto. A Figura 1 corrobora com os resultados obtidos a Tabela 3, em que se ota forte associação etre as variáveis área do terreo e área costruída das casas com o preço de veda. Porém, observa-se aida que, a partir de uma certa medida do terreo (em toro de 400m ), os potos ficam um pouco mais dispersos (Figura 1b), equato que para a área costruída embora a dispersão também aumete com o aumeto da área, os potos aida se cocetram mais próximos de uma reta. Esses resultados idicam que a partir de um determiado poto, a área do terreo já ão é tão determiate para o preço quato a área costruída. 160 GEPROS. Gestão da Produção, Operações e Sistemas, Ao 7, º 4, out-dez/01, p

9 Júlio César Pereira, Salomão Garso, Elto Gea de Araújo Figura 1 Diagrama de dispersão etre preço e área costruída da casa (a) e Diagrama de dispersão etre preço e área do terreo da casa (b). 0 0 Preço imóvel Preço imóvel Área costruída (a) Área do terreo (b) Fote: Dados da pesquisa Seleção das Variáveis Iicialmete foi utilizado o método Todas as regressões possíveis, sedo ajustados todos os possíveis modelos de regressão, cosiderado as variáveis idepedetes (x 1, x, x 3 e x 4 ). Os modelos cadidatos foram comparados através de algus idicadores, como coeficiete de determiação múltipla (R ), coeficiete de determiação múltipla ajustado (R p ), quadrado médio do erro (MQ E ) e média quadrática total do erro (C p ). A Tabela 4 apreseta os resultados dos idicadores para cada modelo de regressão liear. As lihas em egrito represetam os melhores idicadores a cada grupo de equações com as mesmas quatidades de variáveis. Tabela 4 Cálculo dos idicadores para seleção de variáveis de cada modelo cadidato. Variáveis usadas a equação cadidata R R ajustado MQ E C p C p p x 1 0, ,0756E , ,816 x 0, ,83E+10 31,468 9,468 x 3 0, ,183E+10 60, ,5690 x 4 0, ,4114E ,348 41,348 x 1 e x 0, ,8058E+10 31,9109 8,9109 x 1 e x 3 0, ,0958E+10 56, ,0978 x 1 e x 4 0, ,5754E , ,549 x e x 3 0, ,4495E+10, x e x 4 0, ,756E+10 7,6176 4,6176 x 3 e x 4 0, ,157E+10 60,704 57,704 x 1, x e x 3 0, ,447E+10 3, x 1, x e x 4 0, ,7491E+10 8,66 4,66 x 1, x 3 e x 4 0, ,0734E+10 56,145 54,145 x, x 3 e x 4 0, ,439E+10 3, x 1, x, x 3 e x 4 0, ,4371E+10 4, Fote: Dados da pesquisa. GEPROS. Gestão da Produção, Operações e Sistemas, Ao 7, º 4, out-dez/01, p

10 Costrução de um modelo para o preço de veda de casas resideciais a cidade de Sorocaba-SP A última liha da Tabela 4, represetada pela equação que possui todas as variáveis, apresetou os melhores idicadores. Porém, como mostra o gráfico do comportameto do coeficiete de correlação múltipla, ilustrado a Figura, existe um poto em que a adição de variáveis ao modelo ão gera grades difereças os idicadores. A equação que represeta este poto é a que possui apeas as variáveis x e x 3, sugerido que talvez ão seja vatajoso icluir as variáveis x 1 e x 4 o modelo, fato que ão implicaria em melhora sigificativa a qualidade do mesmo. Figura Comportameto do coeficiete de determiação múltipla para cada equação. Coeficiete de determiação múltipla 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0, 0,1 0 x1 e x x1, x e x4 x1, x e x3 x1, x, x3 e x4 x3 e x4 x1, x3 e x4 x e x3 x, x3 e x4 x3 x x e x4 x1 e x x1 e x4 x4 x Fote: Dados da pesquisa. Também foram aplicados os procedimetos de seleção de variáveis Passo a Passo, Passo a Frete e Passo Atrás. Esses procedimetos apresetaram os mesmos resultados que o método Todas as Regressões. Dessa forma, a Tabela 5 são apresetados os resultados apeas do método Passo a Passo divididos por etapas. As lihas em egrito a Tabela 5 idicam as variáveis que devem compor o modelo a cada etapa. Assim como o método Todas as Regressões, observa-se a Tabela 5 que o método Passo a Passo idica ão haver ecessidade de se utilizar um modelo com mais que duas variáveis regressoras detre as variáveis testadas. Tabela 5 Cálculo dos idicadores para seleção de variáveis de cada modelo cadidato usado o método Passo a Passo. Etapa Variável presete a Equação Teste F p-valor (Resultado) x 1, e-06 *** 1 x 441,87.e-16 *** x 3 350,65.e-16 *** x 4 37, e-08 *** x e x 1 1,079 Não Sigificativo x e x 3 31, e-07 *** x e x 4 4, * 3 x, x 3 e x 1 0,1984 Não Sigificativo x, x 3 e x 4 0,89 Não Sigificativo Fote: Dados da pesquisa. 16 GEPROS. Gestão da Produção, Operações e Sistemas, Ao 7, º 4, out-dez/01, p

11 Júlio César Pereira, Salomão Garso, Elto Gea de Araújo Os resultados dos métodos de seleção de variáveis aplicados idicam a ecessidade de se trabalhar apeas com as variáveis x e x 3, o que resultou em um modelo expresso através da Equação 8. Neste modelo, observa-se que a cada uidade aumetada a área útil das casas (x ), o valor do preço terá um acréscimo de R$ 989,40, cosiderado a área do terreo fixa, ou seja, a área costruída é um dos atributos pricipais a serem cosiderados pelos ivestidores imobiliários, sedo este mais relevate do que o tamaho do terreo. y = 3479, ,4x + 43,4x 3 (8) O fato das variáveis x 1 e x 4 (úmero de dormitórios e úmero de vagas a garagem) terem sido elimiadas do modelo de regressão liear pode parecer ão fazer setido, pelo fato da estimação do preço de veda de uma casa ser baseada apeas a área útil e a área do terreo. No etato, é perceptível o motivo que gerou este fato, sedo que a maioria das vezes, quato maior a área útil de uma casa, maior o úmero de dormitórios presetes ela e quato maior a área de um terreo, maior a possível quatidade de vagas a garagem; ou seja, para um terreo com área grade, mesmo que a quatidade de vagas auciadas ão seja grade, espera-se que seja possível dispoibilizar espaço para esse fim. Assim, as variáveis x 1 e x 4, de certo modo, são explicadas pelas variáveis x e x 3, o que tora irrelevate a preseça delas o modelo. 4.. Variável Bairro Na amostra coletada, existem casas de 3 bairros diferetes, havedo a ecessidade da utilização de variáveis Dummy, fato que prejudica a eficiêcia do modelo, visto que o objetivo do estudo é desevolver um modelo de regressão liear com o melhor desempeho possível e utilizado apeas variáveis relevates. Dessa forma, foi realizada uma aálise da difereça existete etre cada bairro, auxiliado o agrupameto dos bairros de características semelhates. Para isso, cosideraram-se as variáveis selecioadas ateriormete, x e x 3, e ajustou-se um modelo icluido as variáveis Dummy, represetado os 3 bairros. Esse modelo foi ajustado diversas vezes, tomado como base um bairro diferete em cada ajuste, ou seja, a cada ajuste um bairro diferete era represetado por todas as variáveis Dummy assumido valores iguais a zero. Com isso foi possível verificar, através do teste de sigificâcia dos coeficietes de regressão, quais bairros eram diferetes do bairro base. Os bairros que ão apresetaram difereças sigificativas foram colocados o mesmo grupo. Através do teste de sigificâcia dos coeficietes de regressão, bairros que possuem casas de características semelhates foram agrupados. Dessa forma, foram criados 5 grupos que icluem os 3 bairros coletados a amostra, como ilustra a Tabela 6. Cada grupo formado represeta, de certa forma, a similaridade social e de ifra-estrutura dos bairros que compõem o grupo. O grupo 1, por exemplo, cotém os bairros obres, ode reside a elite da cidade e ode se cocetram shoppig ceters e hipermercados. No grupo, pode-se dizer que se cocetram bairros populares, o grupo 3 bairros de classe média, o grupo 4 bairros atigos e bem localizados, equato que o grupo 5 bairros localizados os extremos da cidade e distates do cetro. GEPROS. Gestão da Produção, Operações e Sistemas, Ao 7, º 4, out-dez/01, p

12 Costrução de um modelo para o preço de veda de casas resideciais a cidade de Sorocaba-SP Tabela 6 Grupos criados o agrupameto dos bairros. Grupo 1 Grupo Grupo 3 Grupo 4 Grupo 5 Campolim Nova Machester Pq Vitória Régia Cetro Cajuru Jd dos Estados Jd Sato Adré Éde Vila Sataa São Beto Trujilo Pq das Larajeiras Jd Casa Braca Jd Vera Cruz Vila Fiori Sata Rosália Simus Jd São Paulo Fote: Dados da pesquisa. Jd Europa São Corado Jd Guaíba Jd Tatiaa Jd Bertaha Assim, o úmero de variáveis Dummy o modelo foi reduzido de variáveis para apeas 4. Dessa forma, para realizar a estimação do valor de uma casa através do modelo fial, deve-se utilizar a Tabela 6 para saber em qual grupo a casa em questão está iserida Modelo Fial Após a realização dos diversos testes para seleção de variáveis que explicam a variável y (preço do imóvel), chegou-se a um cojuto de regressores composto pelas variáveis x e x 3, que represetam área costruída e área do terreo respectivamete, além das variáveis Dummy d 1, d, d 3 e d 4, que represetam os 5 grupos de bairros. O modelo de regressão fial é apresetado através da Equação 9. y = 900, ,7x + 451,9x ,8d ,1d 36061d ,7d 4 ε (9) Para utilização do modelo, devem-se substituir as variáveis x, x 3 a equação pela área costruída e área do terreo da casa que se deseja estimar o preço de veda. Para as variáveis Dummy, é preciso equadrar o bairro do imóvel em um dos 5 grupos expostos a Tabela 6. Assim, deve-se utilizar a Tabela 7 para atribuir os valores às 4 variáveis, depededo do grupo que está sedo cosiderado. Por exemplo, o caso da ecessidade de se estimar o preço de veda de uma casa o bairro Jardim Europa, percebe-se através da Tabela 6 que ele pertece ao grupo 3. Portato, de acordo com a Tabela 7, a variável d 3 deve ser igual a 1 e todas as outras variáveis Dummy devem ser ulas. Tabela 7 Valores das variáveis Dummy para cada grupo de bairros. Grupo d1 d d3 d Fote: Dados da pesquisa. 164 GEPROS. Gestão da Produção, Operações e Sistemas, Ao 7, º 4, out-dez/01, p

13 Júlio César Pereira, Salomão Garso, Elto Gea de Araújo 4.4. Validação Preditiva A fim de realizar um teste de validação acerca da qualidade do modelo de regressão liear obtido, foram selecioadas ao acaso 10 casas da amostra utilizada, com o ituito de empregar o modelo para calcular seus preços de veda a partir de suas áreas costruídas, áreas do terreo e bairros. O resultado obtido ecotra-se a Tabela 8. Tabela 8 Utilização do modelo de regressão a previsão de preços de casas cotidas a amostra utilizada. Bairro x x 3 Preço observado Preço estimado Erro (%) Campolim 0 35 R$ ,00 R$ ,40 16,65% Campolim R$ ,00 R$ 58.46,0 16,50% Trujilo R$ ,00 R$ ,00-16,95% Sata Rosália R$ ,00 R$ 71.18,90 10,95% Pq das Larejeiras R$ ,00 R$ 17.46,60 14,43% Jd Europa R$ ,00 R$ 39.3,40-8,00% Pq São Beto R$ ,00 R$ ,30 0,17% Trujilo R$ ,00 R$ ,60 3,67% Trujilo R$ ,00 R$ ,0 10,% Pq Vitória Régia R$ ,00 R$ ,40 19,73% Fote: Dados da pesquisa. Erro absoluto médio 13,73% Como se pode perceber, existe uma difereça etre os preços de veda utilizados o mercado e os estimados através do modelo de regressão. No bairro Campolim, por exemplo, observou-se erros de previsão de aproximadamete 16,5% para as duas casas sorteadas. Porém, isso ão implica em um padrão de erros aproximadamete iguais detro dos bairros. Os valores dos erros de previsão esse bairro poderiam ser diferetes caso tivessem sido sorteadas outras casas para a previsão. A exemplo disso, observa-se, por exemplo, o bairro Trujilo, em que o erro de previsão apresetou uma variação de -16,95% a 10,%. Essa variação possivelmete poderia ser explicada por variáveis ão medidas, como a localização do imóvel detro do bairro (proximidade com o shoppig ceter ou com a uiversidade localizados o bairro). De uma forma geral, o erro absoluto médio de previsão foi estimado em cerca de 13,70%. Esta difereça pode ser causada pela falta de algumas variáveis que poderiam agregar qualidade ao modelo, como idade, estado de coservação do imóvel e proximidade com cetros comerciais e escolas. Dessa forma, é possível que a falta de dados gere algumas imperfeições o modelo de regressão fial. Estes resultados idicam que o modelo proposto pode cotribuir a avaliação do preço de casas da cidade de Sorocaba, visto que ão ocorreu ehuma difereça maior do que 0,17% etre o preço estimado e o preço observado. Os resultados, o etato, mostram também a ecessidade de se dispoibilizarem mais iformações a respeito do imóvel, tais como idade, estado de coservação, etre outras, como já citado ateriormete, a fim de se avaliar de maeira mais eficiete o imóvel e cosequetemete estimar o preço de forma mais precisa. GEPROS. Gestão da Produção, Operações e Sistemas, Ao 7, º 4, out-dez/01, p

14 Costrução de um modelo para o preço de veda de casas resideciais a cidade de Sorocaba-SP 5. CONSIDERAÇÕES FINAIS A partir do modelo desevolvido para estimação de preços de veda de casas a cidade de Sorocaba, percebe-se a grade importâcia da prática de testes de seleção de variáveis ates da costrução efetiva de um modelo. Isso se deve ao fato de que em algus casos, a utilização de uma variável a mais o modelo traz um aumeto de qualidade tão ífimo o resultado fial, que ão justifica a utilização da variável em questão, pelo simples fato do objetivo pricipal, ao se trabalhar com regressão liear múltipla, ser a busca por um modelo eficaz e eficiete, ou seja, um modelo que cumpra com os objetivos propostos e ao mesmo tempo seja desevolvido com utilização míima de recursos. Outra vatagem dos testes de seleção de variáveis, que pode ser vista o presete estudo, ocorre quado são idetificadas variáveis que ão precisam fazer parte do modelo, pois são explicadas por alguma outra variável já presete. É o caso das variáveis úmero de quartos e úmero de vagas a garagem, que foram retiradas do modelo, pois eram desecessárias, dado que as variáveis área útil e área do terreo estavam o modelo. A aplicação dos diversos testes de seleção de variáveis idicou a irrelevâcia das variáveis que foram descartadas para o estudo proposto, porém, é importate haver uma iterpretação do motivo pelo qual as variáveis estatisticamete ão devem compor o modelo, o que ão ocorre comumete. No presete caso, etede-se que em geral, uma casa com grade área costruída possui maior úmero de dormitórios do que uma de meor área costruída. Do mesmo modo, quato maior a área do terreo de uma casa, maior a possibilidade desta possuir mais vagas a garagem. Assim, resultados estatísticos são iterpretados de maeira mais eficiete e tora-se mais fácil a exposição dos mesmos para público em geral. Com relação ao modelo fial, é ítida a cotribuição que este pode oferecer o mercado imobiliário, pelo fato de o preço da casa ser estimado com base em suas características e ser semelhate ao preço de veda das casas dos bairros de características semelhates. Desta forma, situações de casas superestimadas ou subestimadas seriam evitadas e, ao mesmo tempo, ocorreria grade facilidade da geração do preço do imóvel demadado pouquíssimo tempo e recursos, bastado apeas a utilização de um computador. Como sugestão para futuros estudos, seria iteressate a utilização de uma gama maior de variáveis relativas às casas, de modo a buscar um modelo de regressão aida mais realista. Seria, também, iteressate cogitar a possibilidade do desevolvimeto de um modelo de regressão liear que cotemplasse ão só casas, mas apartametos e imóveis comercias, o que ampliaria a gama de utilização do modelo e traria muitos beefícios para o mercado imobiliário, podedo iclusive ser utilizado em imobiliárias a estimação dos preços de imóveis à veda. Além disso, pelo fato do grade crescimeto da população uiversitária da cidade de Sorocaba, seria de suma importâcia a criação de um modelo que evolvesse preços de aluguéis de imóveis a cidade, os quais vêm tedo demada crescete os últimos aos, e que com o crescimeto do esio uiversitário público a cidade, tede a crescer aida mais. 166 GEPROS. Gestão da Produção, Operações e Sistemas, Ao 7, º 4, out-dez/01, p

15 Júlio César Pereira, Salomão Garso, Elto Gea de Araújo REFERÊNCIAS BIBLIOGRÁFICAS ALVES, V. Avaliação de imóveis urbaos baseada em métodos estatísticos multivariados. Dissertação de Mestrado Programa de Pós Graduação em Métodos Numéricos em Egeharia, Uiversidade Federal do Paraá, UFPR, Campo Mourão, PR, 005. BRAULIO, S. N. Proposta de uma metodologia para avaliação de imóveis urbaos baseados em métodos estatísticos multivariados. Dissertação de Mestrado - Programa de Pós Graduação em Métodos Numéricos em Egeharia, Uiversidade Federal do Paraá, UFPR, Curitiba, PR, 005. CHARNET, R.; FREIRE, C. A. L.; CHARNET, E. M. R.; BONVINO, H. Aálise de Modelos de Regressão Liear com Aplicações. Campias: Editora da Uicamp, p. COUTO, P. M. Avaliação Patrimoial de Imóveis para Habitação f. Tese de Doutorado, Laboratório Nacioal de Egeharia Civil, Uiversidade do Porto, Porto GAZOLA, S. Costrução de um modelo de regressão para avaliação de imóveis. Dissertação de Mestrado Programa de Pós-Graduação em Egeharia de Produção, Uiversidade Federal de Sata Cataria, UFSC, Floriaópolis, SC, 00. MONTGOMERY, D. C.; RUNGER, G. C. Estatística Aplicada e Probabilidade para Egeheiros. ed. Rio de Jaeiro: LTC Editora, p. NADAL, C. A.; JULIANO, K.A.; RATTON, E. Testes Estatísticos Utilizados para a Validação de Regressões Múltiplas Aplicadas a Avaliação de Imóveis Urbaos. Bol. Ciêc. Geod., Curitiba, v. 9, º, p. 43-6, 003. STEINER, M.T.A.; NETO, A.C.; BRAULIO, S.N.; ALVES, V.. Métodos Estatísticos Multivariados Aplicados à Egeharia de Avaliações. Gest. Prod., São Carlos, v. 15,. 1, p. 3-3, ja.-abr Portal da Cidade de Sorocaba. Texto. Dispoível em: <http: >. Acesso em: 0 setembro 010. R Developmet Core Team (010). R: A laguage ad eviromet for statistical computig. R Foudatio for Statistical Computig, Viea, Austria. ISBN , URL -project.org. ROZENBAUN, S.; MACEDO-SOARES, T.D.L.V.A. Proposta para Costrução de Um Ídice Local de Preços de Imóveis a Partir dos Laçametos Imobiliários de Codomíios Resideciais. Rev. Adm. Pública. Rio de Jaeiro, v. 41,. 6, p , 007. SIRMANS, S.G.; MACPHERSON, D.A.; ZIETZ, E.N. The compositio of hedoic pricig models. Joural of Real Estate Literature, v. 13,. 1, p. 3-43, 005. WOOLDRIDGE, J. M. Itrodução à ecoometria: uma abordagem modera. 4 ed. São Paulo: Cegage Learig Editora, p. GEPROS. Gestão da Produção, Operações e Sistemas, Ao 7, º 4, out-dez/01, p

16

ActivALEA. ative e atualize a sua literacia

ActivALEA. ative e atualize a sua literacia ActivALEA ative e atualize a sua literacia N.º 29 O QUE É UMA SONDAGEM? COMO É TRANSMIITIIDO O RESULTADO DE UMA SONDAGEM? O QUE É UM IINTERVALO DE CONFIIANÇA? Por: Maria Eugéia Graça Martis Departameto

Leia mais

CAPÍTULO 8 - Noções de técnicas de amostragem

CAPÍTULO 8 - Noções de técnicas de amostragem INF 6 Estatística I JIRibeiro Júior CAPÍTULO 8 - Noções de técicas de amostragem Itrodução A Estatística costitui-se uma excelete ferrameta quado existem problemas de variabilidade a produção É uma ciêcia

Leia mais

1.5 Aritmética de Ponto Flutuante

1.5 Aritmética de Ponto Flutuante .5 Aritmética de Poto Flutuate A represetação em aritmética de poto flutuate é muito utilizada a computação digital. Um exemplo é a caso das calculadoras cietíficas. Exemplo:,597 03. 3 Este úmero represeta:,597.

Leia mais

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA 5. INTRODUÇÃO É freqüete ecotrarmos problemas estatísticos do seguite tipo : temos um grade úmero de objetos (população) tais que se fossem tomadas as medidas

Leia mais

III Simpósio sobre Gestão Empresarial e Sustentabilidade (SimpGES) Produtos eco-inovadores: produção e consumo"

III Simpósio sobre Gestão Empresarial e Sustentabilidade (SimpGES) Produtos eco-inovadores: produção e consumo 4 e 5 de outubro de 03 Campo Grade-MS Uiversidade Federal do Mato Grosso do Sul RESUMO EXPANDIDO COMPARAÇÃO ENTRE REDES NEURAIS ARTIFICIAIS E REGRESSÃO LINEAR MÚLTIPLA PARA PREVISÃO DE PREÇOS DE HORTALIÇAS

Leia mais

EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N

EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N Estudaremos este capítulo as equações diereciais lieares de ordem, que são de suma importâcia como suporte matemático para vários ramos da egeharia e das ciêcias.

Leia mais

Introdução ao Estudo de Sistemas Lineares

Introdução ao Estudo de Sistemas Lineares Itrodução ao Estudo de Sistemas Lieares 1. efiições. 1.1 Equação liear é toda seteça aberta, as icógitas x 1, x 2, x 3,..., x, do tipo a1 x1 a2 x2 a3 x3... a x b, em que a 1, a 2, a 3,..., a são os coeficietes

Leia mais

AMOSTRAGEM. metodologia de estudar as populações por meio de amostras. Amostragem ou Censo?

AMOSTRAGEM. metodologia de estudar as populações por meio de amostras. Amostragem ou Censo? AMOSTRAGEM metodologia de estudar as populações por meio de amostras Amostragem ou Ceso? Por que fazer amostragem? população ifiita dimiuir custo aumetar velocidade a caracterização aumetar a represetatividade

Leia mais

Uma Metodologia de Busca Otimizada de Transformadores de Distribuição Eficiente para qualquer Demanda

Uma Metodologia de Busca Otimizada de Transformadores de Distribuição Eficiente para qualquer Demanda 1 Uma Metodologia de Busca Otimizada de Trasformadores de Distribuição Eficiete para qualquer Demada A.F.Picaço (1), M.L.B.Martiez (), P.C.Rosa (), E.G. Costa (1), E.W.T.Neto () (1) Uiversidade Federal

Leia mais

PRESTAÇÃO = JUROS + AMORTIZAÇÃO

PRESTAÇÃO = JUROS + AMORTIZAÇÃO AMORTIZAÇÃO Amortizar sigifica pagar em parcelas. Como o pagameto do saldo devedor pricipal é feito de forma parcelada durate um prazo estabelecido, cada parcela, chamada PRESTAÇÃO, será formada por duas

Leia mais

CAP. I ERROS EM CÁLCULO NUMÉRICO

CAP. I ERROS EM CÁLCULO NUMÉRICO CAP I ERROS EM CÁLCULO NUMÉRICO 0 Itrodução Por método umérico etede-se um método para calcular a solução de um problema realizado apeas uma sequêcia fiita de operações aritméticas A obteção de uma solução

Leia mais

DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO ESTATISTICA AVANÇADA

DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO ESTATISTICA AVANÇADA DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO Ferado Mori DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO ESTATISTICA AVANÇADA Resumo [Atraia o leitor com um resumo evolvete, em geral, uma rápida visão geral do

Leia mais

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (III ) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Ídice Itrodução Aplicação do cálculo matricial aos

Leia mais

Módulo 4 Matemática Financeira

Módulo 4 Matemática Financeira Módulo 4 Matemática Fiaceira I Coceitos Iiciais 1 Juros Juro é a remueração ou aluguel por um capital aplicado ou emprestado, o valor é obtido pela difereça etre dois pagametos, um em cada tempo, de modo

Leia mais

Aplicação de geomarketing em uma cidade de médio porte

Aplicação de geomarketing em uma cidade de médio porte Aplicação de geomarketig em uma cidade de médio porte Guilherme Marcodes da Silva Vilma Mayumi Tachibaa Itrodução Geomarketig, segudo Chasco-Yrigoye (003), é uma poderosa metodologia cietífica, desevolvida

Leia mais

UFRGS 2007 - MATEMÁTICA

UFRGS 2007 - MATEMÁTICA - MATEMÁTICA 01) Em 2006, segudo otícias veiculadas a impresa, a dívida itera brasileira superou um trilhão de reais. Em otas de R$ 50, um trilhão de reais tem massa de 20.000 toeladas. Com base essas

Leia mais

INTRODUÇÃO A TEORIA DE CONJUNTOS

INTRODUÇÃO A TEORIA DE CONJUNTOS INTRODUÇÃO TEORI DE CONJUNTOS Professora Laura guiar Cojuto dmitiremos que um cojuto seja uma coleção de ojetos chamados elemetos e que cada elemeto é um dos compoetes do cojuto. Geralmete, para dar ome

Leia mais

Carteiras de Mínimo VAR ( Value at Risk ) no Brasil

Carteiras de Mínimo VAR ( Value at Risk ) no Brasil Carteiras de Míimo VAR ( Value at Risk ) o Brasil Março de 2006 Itrodução Este texto tem dois objetivos pricipais. Por um lado, ele visa apresetar os fudametos do cálculo do Value at Risk, a versão paramétrica

Leia mais

Precificação orientada ao mercado: uma abordagem econométrica e de otimização

Precificação orientada ao mercado: uma abordagem econométrica e de otimização Precificação orietada ao mercado: uma abordagem ecoométrica e de otimização Rodrigo Araldo Scarpel (ITA) rodrigo@ita.br Resumo A estratégia de determiação do preço sedo customizada por marca, categoria,

Leia mais

Problema de Fluxo de Custo Mínimo

Problema de Fluxo de Custo Mínimo Problema de Fluo de Custo Míimo The Miimum Cost Flow Problem Ferado Nogueira Fluo de Custo Míimo O Problema de Fluo de Custo Míimo (The Miimum Cost Flow Problem) Este problema possui papel pricipal etre

Leia mais

PG Progressão Geométrica

PG Progressão Geométrica PG Progressão Geométrica 1. (Uel 014) Amalio Shchams é o ome cietífico de uma espécie rara de plata, típica do oroeste do cotiete africao. O caule dessa plata é composto por colmos, cujas características

Leia mais

O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE li

O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE li O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE li Média Aritmética Simples e Poderada Média Geométrica Média Harmôica Mediaa e Moda Fracisco Cavalcate(f_c_a@uol.com.br)

Leia mais

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ...

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... INTRODUÇÃO Exemplos Para curar uma certa doeça existem quatro tratametos possíveis: A, B, C e D. Pretede-se saber se existem difereças sigificativas os tratametos o que diz respeito ao tempo ecessário

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA MATEMÁTICA FINANCEIRA VALOR DO DINHEIRO NO TEMPO Notas de aulas Gereciameto do Empreedimeto de Egeharia Egeharia Ecoômica e Aálise de Empreedimetos Prof. Márcio Belluomii Moraes, MsC CONCEITOS BÁSICOS

Leia mais

1.4- Técnicas de Amostragem

1.4- Técnicas de Amostragem 1.4- Técicas de Amostragem É a parte da Teoria Estatística que defie os procedimetos para os plaejametos amostrais e as técicas de estimação utilizadas. As técicas de amostragem, tal como o plaejameto

Leia mais

O erro da pesquisa é de 3% - o que significa isto? A Matemática das pesquisas eleitorais

O erro da pesquisa é de 3% - o que significa isto? A Matemática das pesquisas eleitorais José Paulo Careiro & Moacyr Alvim O erro da pesquisa é de 3% - o que sigifica isto? A Matemática das pesquisas eleitorais José Paulo Careiro & Moacyr Alvim Itrodução Sempre que se aproxima uma eleição,

Leia mais

Guia do Professor. Matemática e Saúde. Experimentos

Guia do Professor. Matemática e Saúde. Experimentos Guia do Professor Matemática e Saúde Experimetos Coordeação Geral Elizabete dos Satos Autores Bárbara N. Palharii Alvim Sousa Karia Pessoa da Silva Lourdes Maria Werle de Almeida Luciaa Gastaldi S. Souza

Leia mais

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina10.com.br

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina10.com.br A seguir, uma demostração do livro. Para adquirir a versão completa em papel, acesse: www.pagia10.com.br Matemática comercial & fiaceira - 2 4 Juros Compostos Iiciamos o capítulo discorredo sobre como

Leia mais

Matemática Financeira I 3º semestre 2013 Professor Dorival Bonora Júnior Lista de teoria e exercícios

Matemática Financeira I 3º semestre 2013 Professor Dorival Bonora Júnior Lista de teoria e exercícios www/campossalles.br Cursos de: dmiistração, Ciêcias Cotábeis, Ecoomia, Comércio Exterior, e Sistemas de Iformação - telefoe (11) 3649-70-00 Matemática Fiaceira I 3º semestre 013 Professor Dorival Boora

Leia mais

ANDRÉ REIS MATEMÁTICA. 1ª Edição NOV 2013

ANDRÉ REIS MATEMÁTICA. 1ª Edição NOV 2013 ANDRÉ REIS MATEMÁTICA TEORIA 6 QUESTÕES DE PROVAS DE CONCURSOS GABARITADAS EXERCÍCIOS RESOLVIDOS Teoria e Seleção das Questões: Prof. Adré Reis Orgaização e Diagramação: Mariae dos Reis ª Edição NOV 0

Leia mais

Séries de Potências AULA LIVRO

Séries de Potências AULA LIVRO LIVRO Séries de Potêcias META Apresetar os coceitos e as pricipais propriedades de Séries de Potêcias. Além disso, itroduziremos as primeiras maeiras de escrever uma fução dada como uma série de potêcias.

Leia mais

Um Protocolo Híbrido de Anti-colisão de Etiquetas para Sistemas RFID

Um Protocolo Híbrido de Anti-colisão de Etiquetas para Sistemas RFID XXIX SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT 11, 2-5 DE OUTUBRO DE 211, CURITIBA, PR Um Protocolo Híbrido de Ati-colisão de Etiquetas para Sistemas RFID Bruo A. de Jesus, Rafael C. de Moura, Liliae

Leia mais

Capitulo 6 Resolução de Exercícios

Capitulo 6 Resolução de Exercícios FORMULÁRIO Cojutos Equivaletes o Regime de Juros Simples./Vecimeto Comum. Descoto Racioal ou Por Detro C1 C2 Cm C1 C2 C...... 1 i 1 i 1 i 1 i 1 i 1 i 1 2 m 1 2 m C Ck 1 i 1 i k1 Descoto Por Fora ou Comercial

Leia mais

DEMANDA POR VEÍCULOS SEMI NOVOS: UMA ANÁLISE QUANTITATIVA

DEMANDA POR VEÍCULOS SEMI NOVOS: UMA ANÁLISE QUANTITATIVA RECIFE 011 THOMAS DA SILVA CAMELO BASTOS CURSO DE BACHARELADO EM CIÊNCIAS ECONÔMICAS THOMAS DA SILVA CAMELO BASTOS DEMANDA POR VEÍCULOS SEMI NOVOS: UMA ANÁLISE QUANTITATIVA DEMANDA POR VEÍCULOS SEMI NOVOS:

Leia mais

Calendário de inspecções em Manutenção Preventiva Condicionada com base na Fiabilidade

Calendário de inspecções em Manutenção Preventiva Condicionada com base na Fiabilidade Caledário de ispecções em Mauteção Prevetiva Codicioada com base a Fiabilidade Rui Assis Faculdade de Egeharia da Uiversidade Católica Portuguesa Rio de Mouro, Portugal rassis@rassis.com http://www.rassis.com

Leia mais

MOMENTOS DE INÉRCIA. Física Aplicada à Engenharia Civil II

MOMENTOS DE INÉRCIA. Física Aplicada à Engenharia Civil II Física Aplicada à Egeharia Civil MOMENTOS DE NÉRCA Neste capítulo pretede-se itroduzir o coceito de mometo de iércia, em especial quado aplicado para o caso de superfícies plaas. Este documeto, costitui

Leia mais

Influência do ruído aéreo gerado pela percussão de pavimentos na determinação de L n,w

Influência do ruído aéreo gerado pela percussão de pavimentos na determinação de L n,w Ifluêcia do ruído aéreo gerado pela percussão de pavimetos a determiação de,w iogo M. R. Mateus CONTRAruído Acústica e Cotrolo de Ruído, Al. If.. Pedro, Nº 74-1º C, 3030 396 Coimbra Tel.: 239 403 666;

Leia mais

Os juros compostos são conhecidos, popularmente, como juros sobre juros.

Os juros compostos são conhecidos, popularmente, como juros sobre juros. Módulo 4 JUROS COMPOSTOS Os juros compostos são cohecidos, popularmete, como juros sobre juros. 1. Itrodução Etedemos por juros compostos quado o fial de cada período de capitalização, os redimetos são

Leia mais

INTERPOLAÇÃO. Interpolação

INTERPOLAÇÃO. Interpolação INTERPOLAÇÃO Profa. Luciaa Motera motera@facom.ufms.br Faculdade de Computação Facom/UFMS Métodos Numéricos Iterpolação Defiição Aplicações Iterpolação Liear Equação da reta Estudo do erro Iterpolação

Leia mais

ANÁLISE DO RETORNO ELÁSTICO EM DOBRAMENTO DE CHAPAS VIA MÉTODO DOS ELEMENTOS FINITOS

ANÁLISE DO RETORNO ELÁSTICO EM DOBRAMENTO DE CHAPAS VIA MÉTODO DOS ELEMENTOS FINITOS ANÁLISE DO ETONO ELÁSTICO EM DOBAMENTO DE CHAPAS VIA MÉTODO DOS ELEMENTOS FINITOS Alexadre Tácito Malavolta Escola de Egeharia de São Carlos, Av. Trabalhador São-Carlese 400, CEP 13566-590, São Carlos

Leia mais

UM MODELO DE PLANEJAMENTO DA PRODUÇÃO CONSIDERANDO FAMÍLIAS DE ITENS E MÚLTIPLOS RECURSOS UTILIZANDO UMA ADAPTAÇÃO DO MODELO DE TRANSPORTE

UM MODELO DE PLANEJAMENTO DA PRODUÇÃO CONSIDERANDO FAMÍLIAS DE ITENS E MÚLTIPLOS RECURSOS UTILIZANDO UMA ADAPTAÇÃO DO MODELO DE TRANSPORTE UM MODELO DE PLANEJAMENTO DA PRODUÇÃO CONSIDERANDO FAMÍLIAS DE ITENS E MÚLTIPLOS RECURSOS UTILIZANDO UMA ADAPTAÇÃO DO MODELO DE TRANSPORTE Debora Jaesch Programa de Pós-Graduação em Egeharia de Produção

Leia mais

VII Equações Diferenciais Ordinárias de Primeira Ordem

VII Equações Diferenciais Ordinárias de Primeira Ordem VII Equações Difereciais Ordiárias de Primeira Ordem Itrodução As equações difereciais ordiárias são istrumetos esseciais para a modelação de muitos feómeos proveietes de várias áreas como a física, química,

Leia mais

INE 5111- ESTATÍSTICA APLICADA I - TURMA 05324 - GABARITO LISTA DE EXERCÍCIOS SOBRE AMOSTRAGEM E PLANEJAMENTO DA PESQUISA

INE 5111- ESTATÍSTICA APLICADA I - TURMA 05324 - GABARITO LISTA DE EXERCÍCIOS SOBRE AMOSTRAGEM E PLANEJAMENTO DA PESQUISA INE 5111- ESTATÍSTICA APLICADA I - TURMA 534 - GABARITO LISTA DE EXERCÍCIOS SOBRE AMOSTRAGEM E PLANEJAMENTO DA PESQUISA 1. Aalise as situações descritas abaixo e decida se a pesquisa deve ser feita por

Leia mais

5 Proposta de Melhoria para o Sistema de Medição de Desempenho Atual

5 Proposta de Melhoria para o Sistema de Medição de Desempenho Atual 49 5 Proposta de Melhoria para o Sistema de Medição de Desempeho Atual O presete capítulo tem por objetivo elaborar uma proposta de melhoria para o atual sistema de medição de desempeho utilizado pela

Leia mais

Solução de Equações Diferenciais Ordinárias Usando Métodos Numéricos

Solução de Equações Diferenciais Ordinárias Usando Métodos Numéricos DELC - Departameto de Eletrôica e Computação ELC 0 Estudo de Casos em Egeharia Elétrica Solução de Equações Difereciais Ordiárias Usado Métodos Numéricos Versão 0. Giovai Baratto Fevereiro de 007 Ídice

Leia mais

SISTEMA DE AMORTIZAÇÃO FRANCÊS DESENVOLVIDO ATRAVÉS DA LINGUAGEM DE PROGRAMAÇÃO JAVA¹

SISTEMA DE AMORTIZAÇÃO FRANCÊS DESENVOLVIDO ATRAVÉS DA LINGUAGEM DE PROGRAMAÇÃO JAVA¹ SISTEMA DE AMORTIZAÇÃO FRANCÊS DESENVOLVIDO ATRAVÉS DA RESUMO LINGUAGEM DE PROGRAMAÇÃO JAVA¹ Deis C. L. Costa² Edso C. Cruz Guilherme D. Silva Diogo Souza Robhyso Deys O presete artigo forece o ecadeameto

Leia mais

ESTIMATIVA DA EMISSIVIDADE ATMOSFÉRICA E DO BALANÇO DE ONDAS LONGAS EM PIRACICABA, SP

ESTIMATIVA DA EMISSIVIDADE ATMOSFÉRICA E DO BALANÇO DE ONDAS LONGAS EM PIRACICABA, SP ESTIMATIVA DA EMISSIVIDADE ATMOSFÉRICA E DO BALAÇO DE ODAS LOGAS EM PIRACICABA, SP Kare Maria da Costa MATTOS (1) ; Marcius Gracco Marcoi GOÇALVES (1) e Valter BARBIERI () (1) Aluos de Pós-graduação em

Leia mais

ANÁLISE DO PERFIL DOS FUNDOS DE RENDA FIXA DO MERCADO BRASILEIRO

ANÁLISE DO PERFIL DOS FUNDOS DE RENDA FIXA DO MERCADO BRASILEIRO III SEMEAD ANÁLISE DO PERFIL DOS FUNDOS DE RENDA FIXA DO MERCADO BRASILEIRO José Roberto Securato (*) Alexadre Noboru Chára (**) Maria Carlota Moradi Seger (**) RESUMO O artigo trata da dificuldade de

Leia mais

CAPÍTULO 5 CIRCUITOS SEQUENCIAIS III: CONTADORES SÍNCRONOS

CAPÍTULO 5 CIRCUITOS SEQUENCIAIS III: CONTADORES SÍNCRONOS 60 Sumário CAPÍTULO 5 CIRCUITOS SEQUENCIAIS III: CONTADORES SÍNCRONOS 5.1. Itrodução... 62 5.2. Tabelas de trasição dos flip-flops... 63 5.2.1. Tabela de trasição do flip-flop JK... 63 5.2.2. Tabela de

Leia mais

Programando em C++ Joel Saade. Novatec Editora Ltda. www.novateceditora.com.br

Programando em C++ Joel Saade. Novatec Editora Ltda. www.novateceditora.com.br Programado em C++ Joel Saade Novatec Editora Ltda. www.ovateceditora.com.br Programado em C++ Capítulo 1 Itrodução Este capítulo trata, de forma breve, a história de C e C++. Apreseta a estrutura básica

Leia mais

SUMÁRIO 1. AMOSTRAGEM 4. 1.1. Conceitos básicos 4

SUMÁRIO 1. AMOSTRAGEM 4. 1.1. Conceitos básicos 4 SUMÁRIO 1. AMOSTRAGEM 4 1.1. Coceitos básicos 4 1.. Distribuição amostral dos estimadores 8 1..1. Distribuição amostral da média 8 1... Distribuição amostral da variâcia 11 1..3. Distribuição amostral

Leia mais

Conceito 31/10/2015. Módulo VI Séries ou Fluxos de Caixas Uniformes. SÉRIES OU FLUXOS DE CAIXAS UNIFORMES Fluxo de Caixa

Conceito 31/10/2015. Módulo VI Séries ou Fluxos de Caixas Uniformes. SÉRIES OU FLUXOS DE CAIXAS UNIFORMES Fluxo de Caixa Módulo VI Séries ou Fluxos de Caixas Uiformes Daillo Touriho S. da Silva, M.Sc. SÉRIES OU FLUXOS DE CAIXAS UNIFORMES Fluxo de Caixa Coceito A resolução de problemas de matemática fiaceira tora-se muito

Leia mais

APLICAÇÃO DO MÉTODO DE INTEGRAÇÃO TRAPEZOIDAL EM SISTEMAS ELÉTRICOS

APLICAÇÃO DO MÉTODO DE INTEGRAÇÃO TRAPEZOIDAL EM SISTEMAS ELÉTRICOS AT49-07 - CD 6-07 - PÁG.: APLICAÇÃO DO MÉTODO DE INTEGAÇÃO TAPEZOIDAL EM SISTEMAS ELÉTICOS J.. Cogo A.. C. de Oliveira IEE - EFEI Uiv. Taubaté Artigo apresetado o Semiário de Pesquisa EFEI 983 ESUMO Este

Leia mais

Matemática Alexander dos Santos Dutra Ingrid Regina Pellini Valenço

Matemática Alexander dos Santos Dutra Ingrid Regina Pellini Valenço 4 Matemática Alexader dos Satos Dutra Igrid Regia Pellii Valeço Professor SUMÁRIO Reprodução proibida. Art. 84 do Código Peal e Lei 9.60 de 9 de fevereiro de 998. Módulo 0 Progressão aritmérica.................................

Leia mais

Duas Fases da Estatística

Duas Fases da Estatística Aula 5. Itervalos de Cofiaça Métodos Estadísticos 008 Uiversidade de Averio Profª Gladys Castillo Jordá Duas Fases da Estatística Estatística Descritiva: descrever e estudar uma amostra Estatística Idutiva

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO DEPARTAMENTO DE ENGENHARIA DE CONSTRUÇÃO CIVIL GRUPO DE ENSINO E PESQUISA EM REAL ESTATE

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO DEPARTAMENTO DE ENGENHARIA DE CONSTRUÇÃO CIVIL GRUPO DE ENSINO E PESQUISA EM REAL ESTATE Ídice Setorial de Real Estate IRE São Paulo Juho 205 2 FINALIDADE A costrução e a divulgação do IRE tem o propósito de espelhar o comportameto médio dos preços das ações das empresas que atuam o segmeto

Leia mais

ALOCAÇÃO DE VAGAS NO VESTIBULAR PARA OS CURSOS DE GRADUAÇÃO DE UMA INSTITUIÇÃO DE ENSINO SUPERIOR

ALOCAÇÃO DE VAGAS NO VESTIBULAR PARA OS CURSOS DE GRADUAÇÃO DE UMA INSTITUIÇÃO DE ENSINO SUPERIOR ALOCAÇÃO DE VAGAS NO VESTIBULAR PARA OS CURSOS DE GRADUAÇÃO DE UMA INSTITUIÇÃO DE ENSINO SUPERIOR Alexadre Stamford da Silva Programa de Pós-Graduação em Egeharia de Produção PPGEP / UFPE Uiversidade Federal

Leia mais

Estatística stica para Metrologia

Estatística stica para Metrologia Estatística stica para Metrologia Aula Môica Barros, D.Sc. Juho de 28 Muitos problemas práticos exigem que a gete decida aceitar ou rejeitar alguma afirmação a respeito de um parâmetro de iteresse. Esta

Leia mais

Convergência em renda implica em convergência em desigualdade e pobreza? Um estudo para Minas Gerais

Convergência em renda implica em convergência em desigualdade e pobreza? Um estudo para Minas Gerais Covergêcia em reda implica em covergêcia em desigualdade e pobreza? Um estudo para Mias Gerais Joatha de Souza Matias Resumo: Vários são os estudos teóricos e empíricos que aalisam a relação etre crescimeto,

Leia mais

APOSTILA MATEMÁTICA FINANCEIRA PARA AVALIAÇÃO DE PROJETOS

APOSTILA MATEMÁTICA FINANCEIRA PARA AVALIAÇÃO DE PROJETOS Miistério do Plaejameto, Orçameto e GestãoSecretaria de Plaejameto e Ivestimetos Estratégicos AJUSTE COMPLEMENTAR ENTRE O BRASIL E CEPAL/ILPES POLÍTICAS PARA GESTÃO DE INVESTIMENTOS PÚBLICOS CURSO DE AVALIAÇÃO

Leia mais

A Elasticidade preço-demanda e a concentração do mercado de cimento no Brasil.

A Elasticidade preço-demanda e a concentração do mercado de cimento no Brasil. A Elasticidade preço-demada e a cocetração do mercado de cimeto o Brasil. Thiago do Bomfim Dorelas * Área de Submissão para o III Ecotro Perambucao de Ecoomia: 3. Teoria Aplicada Edereço: Rua Desembargador

Leia mais

Pesquisa Operacional

Pesquisa Operacional Faculdade de Egeharia - Campus de Guaratiguetá esquisa Operacioal Livro: Itrodução à esquisa Operacioal Capítulo 6 Teoria de Filas Ferado Maris fmaris@feg.uesp.br Departameto de rodução umário Itrodução

Leia mais

Unesp Universidade Estadual Paulista FACULDADE DE ENGENHARIA

Unesp Universidade Estadual Paulista FACULDADE DE ENGENHARIA Uesp Uiversidade Estadual Paulista FACULDADE DE ENGENHARIA CAMPUS DE GUARATINGUETÁ MBA-PRO ESTATÍSTICA PARA A TOMADA DE DECISÃO Prof. Dr. Messias Borges Silva e Prof. M.Sc. Fabricio Maciel Gomes GUARATINGUETÁ,

Leia mais

Parte I - Projecto de Sistemas Digitais

Parte I - Projecto de Sistemas Digitais Parte I - Projecto de Sistemas Digitais Na disciplia de sistemas digitais foram estudadas técicas de desevolvimeto de circuitos digitais ao ível da porta lógica, ou seja, os circuito digitais projectados,

Leia mais

Otimização e complexidade de algoritmos: problematizando o cálculo do mínimo múltiplo comum

Otimização e complexidade de algoritmos: problematizando o cálculo do mínimo múltiplo comum Otimização e complexidade de algoritmos: problematizado o cálculo do míimo múltiplo comum Custódio Gastão da Silva Júior 1 1 Faculdade de Iformática PUCRS 90619-900 Porto Alegre RS Brasil gastaojuior@gmail.com

Leia mais

(1) Escola Politécnica da Universidade de São Paulo (2) E. J. Robba Consultoria & Cia. Ltda.

(1) Escola Politécnica da Universidade de São Paulo (2) E. J. Robba Consultoria & Cia. Ltda. Otimização da Qualidade de Forecimeto pela Localização de Dispositivos de Proteção e Seccioameto em Redes de Distribuição Nelso Kaga () Herá Prieto Schmidt () Carlos C. Barioi de Oliveira () Eresto J.

Leia mais

Testes de Hipóteses para a Diferença Entre Duas Médias Populacionais

Testes de Hipóteses para a Diferença Entre Duas Médias Populacionais Estatística II Atoio Roque Aula Testes de Hipóteses para a Difereça Etre Duas Médias Populacioais Vamos cosiderar o seguite problema: Um pesquisador está estudado o efeito da deficiêcia de vitamia E sobre

Leia mais

ATIVIDADE DE CÁLCULO, FÍSICA E QUÍMICA ZERO

ATIVIDADE DE CÁLCULO, FÍSICA E QUÍMICA ZERO ATIVIDADE DE CÁLCULO, FÍSICA E QUÍMICA ZERO Rita Moura Fortes proeg.upm@mackezie.com.br Uiversidade Presbiteriaa Mackezie, Escola de Egeharia, Departameto de Propedêutica de Egeharia Rua da Cosolação,

Leia mais

ENGENHARIA ECONÔMICA AVANÇADA

ENGENHARIA ECONÔMICA AVANÇADA ENGENHARIA ECONÔMICA AVANÇADA INTRODUÇÃO MATERIAL DE APOIO ÁLVARO GEHLEN DE LEÃO gehleao@pucrs.br 1 1 Itrodução à Egeharia Ecoômica A egeharia, iserida detro do cotexto de escassez de recursos, pode aplicar

Leia mais

Resolução -Vestibular Insper 2015-1 Análise Quantitativa e Lógica. Por profa. Maria Antônia Conceição Gouveia.

Resolução -Vestibular Insper 2015-1 Análise Quantitativa e Lógica. Por profa. Maria Antônia Conceição Gouveia. Resolução -Vestibular Isper 0- Aálise Quatitativa e Lógica Por profa. Maria Atôia Coceição Gouveia.. A fila para etrar em uma balada é ecerrada às h e, quem chega exatamete esse horário, somete cosegue

Leia mais

Tabela Price - verdades que incomodam Por Edson Rovina

Tabela Price - verdades que incomodam Por Edson Rovina Tabela Price - verdades que icomodam Por Edso Rovia matemático Mestrado em programação matemática pela UFPR (métodos uméricos de egeharia) Este texto aborda os seguites aspectos: A capitalização dos juros

Leia mais

MATEMÁTICA FINANCEIRA E ENGENHARIA ECONÔMICA: a teoria e a prática

MATEMÁTICA FINANCEIRA E ENGENHARIA ECONÔMICA: a teoria e a prática UNIVERSIDADE FEDERAL DE SANTA CATARINA Roberta Torres MATEMÁTICA FINANCEIRA E ENGENHARIA ECONÔMICA: a teoria e a prática Trabalho de Coclusão de Curso submetido ao Curso de Matemática Habilitação Liceciatura

Leia mais

UM ESTUDO DO MODELO ARBITRAGE PRICING THEORY (APT) APLICADO NA DETERMINAÇÃO DA TAXA DE DESCONTOS

UM ESTUDO DO MODELO ARBITRAGE PRICING THEORY (APT) APLICADO NA DETERMINAÇÃO DA TAXA DE DESCONTOS UM ESTUDO DO MODELO ARBITRAGE PRICING THEORY (APT) APLICADO NA DETERMINAÇÃO DA TAXA DE DESCONTOS Viícius Atoio Motgomery de Mirada e-mail: vmotgomery@hotmail.com Edso Oliveira Pamploa e-mail: pamploa@iem.efei.rmg.br

Leia mais

O oscilador harmônico

O oscilador harmônico O oscilador harmôico A U L A 5 Meta da aula Aplicar o formalismo quâtico ao caso de um potecial de um oscilador harmôico simples, V( x) kx. objetivos obter a solução da equação de Schrödiger para um oscilador

Leia mais

Computação Científica - Departamento de Informática Folha Prática 1

Computação Científica - Departamento de Informática Folha Prática 1 1. Costrua os algoritmos para resolver os problemas que se seguem e determie as respetivas ordes de complexidade. a) Elaborar um algoritmo para determiar o maior elemeto em cada liha de uma matriz A de

Leia mais

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Estáticos

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Estáticos Aálise de Projectos ESAPL / IPVC Critérios de Valorização e Selecção de Ivestimetos. Métodos Estáticos Como escolher ivestimetos? Desde sempre que o homem teve ecessidade de ecotrar métodos racioais para

Leia mais

REFLECTÂNCIA A PARTIR DO NÚMERO DIGITAL DE IMAGENS ETM+

REFLECTÂNCIA A PARTIR DO NÚMERO DIGITAL DE IMAGENS ETM+ Aais XI SBSR, Belo Horizote, Brasil, 05-0 abril 003, INPE, p. 07-078. REFLECTÂNCIA A PARTIR DO NÚMERO DIGITAL DE IMAGENS ETM+ ALFREDO JOSÉ BARRETO LUIZ SALETE GÜRTLER JOSÉ MARINALDO GLERIANI JOSÉ CARLOS

Leia mais

Aula 7. Em outras palavras, x é equivalente a y se, ao aplicarmos x até a data n, o montante obtido for igual a y.

Aula 7. Em outras palavras, x é equivalente a y se, ao aplicarmos x até a data n, o montante obtido for igual a y. DEPARTAMENTO...: ENGENHARIA CURSO...: PRODUÇÃO DISCIPLINA...: ENGENHARIA ECONÔMICA / MATEMÁTICA FINANCEIRA PROFESSORES...: WILLIAM FRANCINI PERÍODO...: NOITE SEMESTRE/ANO: 2º/2008 Aula 7 CONTEÚDO RESUMIDO

Leia mais

Capítulo 2 Análise Descritiva e Exploratória de Dados

Capítulo 2 Análise Descritiva e Exploratória de Dados UNIVERSIDADE FEDERAL DE SÃO CARLOS C E N T R O D E C I Ê N C I A S E X A T A S E D E T E C N O L O G I A D E P A R T A M E N T O D E E S T A T Í S T I C A INTRODUÇÃO AO PLANEJAMENTO E ANÁLISE ESTATÍSTICA

Leia mais

ANÁLISE ENERGÉTICA E EXERGÉTICA DA DESTILARIA PIONEIROS NA SAFRA 2003-2004

ANÁLISE ENERGÉTICA E EXERGÉTICA DA DESTILARIA PIONEIROS NA SAFRA 2003-2004 ILHA SOLTEIRA XII Cogresso Nacioal de Estudates de Egeharia Mecâica - 22 a 26 de agosto de 2005 - Ilha Solteira - SP Paper CRE05-FS20 ANÁLISE ENERGÉTICA E EXERGÉTICA DA DESTILARIA PIONEIROS NA SAFRA 2003-2004

Leia mais

Modelos Conceituais de Dados. Banco de Dados Profa. Dra. Cristina Dutra de Aguiar Ciferri

Modelos Conceituais de Dados. Banco de Dados Profa. Dra. Cristina Dutra de Aguiar Ciferri Modelos Coceituais de Dados Baco de Dados Motivação Objetivo da abordagem de BD: oferecer abstração dos dados separar aplicações dos usuários dos detalhes de hardware ferrameta utilizada: modelo de dados

Leia mais

Modelo Matemático para Estudo da Viabilidade Econômica da Implantação de Sistemas Eólicos em Propriedades Rurais

Modelo Matemático para Estudo da Viabilidade Econômica da Implantação de Sistemas Eólicos em Propriedades Rurais Modelo Matemático para Estudo da Viabilidade Ecoômica da Implatação de Sistemas Eólicos em Propriedades Rurais Josiae Costa Durigo Uiversidade Regioal do Noroeste do Estado do Rio Grade do Sul - Departameto

Leia mais

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV DISCIPLINA: TGT410026 FUNDAMENTOS DE ESTATÍSTICA 8ª AULA: ESTIMAÇÃO POR INTERVALO

Leia mais

Sistema Computacional para Medidas de Posição - FATEST

Sistema Computacional para Medidas de Posição - FATEST Sistema Computacioal para Medidas de Posição - FATEST Deise Deolido Silva, Mauricio Duarte, Reata Ueo Sales, Guilherme Maia da Silva Faculdade de Tecologia de Garça FATEC deisedeolido@hotmail.com, maur.duarte@gmail.com,

Leia mais

Avaliação da Confiabilidade de Itens com Testes Destrutivos - Aplicação da Estimação da Proporção em uma População Finita Amostrada sem Reposição

Avaliação da Confiabilidade de Itens com Testes Destrutivos - Aplicação da Estimação da Proporção em uma População Finita Amostrada sem Reposição Avaliação da Cofiabilidade de Ites com Testes Destrutivos - Alicação da Estimação da roorção em uma oulação Fiita Amostrada sem Reosição F. A. A. Coelho e Y.. Tavares Diretoria de Sistemas de Armas da

Leia mais

GESTÃO DA CADEIA DE SUPRIMENTOS E A SEGURANÇA DO ALIMENTO: UMA PESQUISA EXPLORATÓRIA NA CADEIA EXPORTADORA DE CARNE SUÍNA

GESTÃO DA CADEIA DE SUPRIMENTOS E A SEGURANÇA DO ALIMENTO: UMA PESQUISA EXPLORATÓRIA NA CADEIA EXPORTADORA DE CARNE SUÍNA GESTÃO DA CADEIA DE SUPRIMENTOS E A SEGURANÇA DO ALIMENTO: UMA PESQUISA EXPLORATÓRIA NA CADEIA EXPORTADORA DE CARNE SUÍNA Edso Talamii CEPAN, Uiversidade Federal do Rio Grade do Sul, Av. João Pessoa, 3,

Leia mais

SINCRONIZAÇÃO DE CAOS EM UMA REDE COM INTERAÇÃO DE LONGO ALCANCE

SINCRONIZAÇÃO DE CAOS EM UMA REDE COM INTERAÇÃO DE LONGO ALCANCE Uiversidade Estadual de Pota Grossa Programa de Pós-Graduação em Ciêcias Área de cocetração - Física SINCRONIZAÇÃO DE CAOS EM UMA REDE COM INTERAÇÃO DE LONGO ALCANCE MARLI TEREZINHA VAN KAN PONTA GROSSA

Leia mais

INTERVALOS DE CONFIANÇA ESTATISTICA AVANÇADA

INTERVALOS DE CONFIANÇA ESTATISTICA AVANÇADA INTERVALOS DE CONFIANÇA ESTATISTICA AVANÇADA Resumo Itervalos de Cofiaça ara médias e roorções com alicações a Egeharia. Ferado Mori Prof.fmori@gmail.com Itervallos de Cofiiaça ara Médiias e Proorções

Leia mais

AULA: Inferência Estatística

AULA: Inferência Estatística AULA: Iferêcia Estatística stica Prof. Víctor Hugo Lachos Dávila Iferêcia Estatística Iferêcia Estatística é um cojuto de técicas que objetiva estudar uma oulação através de evidêcias forecidas or uma

Leia mais

CONTROLE DA QUALIDADE DE PADRÕES ESCALONADOS UTILIZADOS NA VERIFICAÇÃO DE MÁQUINAS DE MEDIR POR COORDENADAS

CONTROLE DA QUALIDADE DE PADRÕES ESCALONADOS UTILIZADOS NA VERIFICAÇÃO DE MÁQUINAS DE MEDIR POR COORDENADAS CONTROLE DA QUALIDADE DE PADRÕES ESCALONADOS UTILIZADOS NA VERIFICAÇÃO DE MÁQUINAS DE MEDIR POR COORDENADAS José Carlos Valete de Oliveira Aluo do mestrado profissioal em Sistemas de Gestão da Uiversidade

Leia mais

Gestão de portfólios: uma proposta de otimização através da média-semivariância

Gestão de portfólios: uma proposta de otimização através da média-semivariância Gestão de portfólios: uma proposta de otimização através da média-semivariâcia Autores CALOS ALBTO OG PINHIO Fudação Viscode de Cairu ALBTO SHIGUU ATSUOTO Uiversidade Católica de Brasília esumo ste artigo

Leia mais

Tópicos de Mecânica Quântica I. Equações de Newton e de Hamilton versus Equações de Schrödinger

Tópicos de Mecânica Quântica I. Equações de Newton e de Hamilton versus Equações de Schrödinger Tópicos de Mecâica Quâtica I Equações de Newto e de Hamilto versus Equações de Schrödiger Ferado Ferades Cetro de Ciêcias Moleculares e Materiais, DQBFCUL Notas para as aulas de Química-Física II, 010/11

Leia mais

Cálculo das Probabilidades e Estatística I. Departamento de Estatistica

Cálculo das Probabilidades e Estatística I. Departamento de Estatistica Cálculo das Probabilidades e Estatística I Departameto de Estatistica Versão - 2013 Sumário 1 Itrodução à Estatística 1 1.1 Coceitos básicos de amostragem..................................... 2 1.1.1

Leia mais

Curso MIX. Matemática Financeira. Juros compostos com testes resolvidos. 1.1 Conceito. 1.2 Período de Capitalização

Curso MIX. Matemática Financeira. Juros compostos com testes resolvidos. 1.1 Conceito. 1.2 Período de Capitalização Curso MI Matemática Fiaceira Professor: Pacífico Referêcia: 07//00 Juros compostos com testes resolvidos. Coceito Como vimos, o regime de capitalização composta o juro de cada período é calculado tomado

Leia mais

Prof. Eugênio Carlos Stieler

Prof. Eugênio Carlos Stieler http://wwwuematbr/eugeio SISTEMAS DE AMORTIZAÇÃO A ecessidade de recursos obriga aqueles que querem fazer ivestimetos a tomar empréstimos e assumir dívidas que são pagas com juros que variam de acordo

Leia mais

PROTÓTIPO DE MODELO DE DIMENSIONAMENTO DE ESTOQUE

PROTÓTIPO DE MODELO DE DIMENSIONAMENTO DE ESTOQUE ROTÓTIO DE MODELO DE DIMENSIONAMENTO DE ESTOQUE Marcel Muk E/COE/UFRJ - Cetro de Tecologia, sala F-18, Ilha Uiversitária Rio de Jaeiro, RJ - 21945-97 - Telefax: (21) 59-4144 Roberto Citra Martis, D. Sc.

Leia mais

Equação Diferencial. Uma equação diferencial é uma expressão que relaciona uma função desconhecida (incógnita) y com suas derivadas.

Equação Diferencial. Uma equação diferencial é uma expressão que relaciona uma função desconhecida (incógnita) y com suas derivadas. Equação Difereial Uma equação difereial é uma epressão que relaioa uma fução desoheida (iógita) om suas derivadas É útil lassifiar os diferetes tipos de equações para um desevolvimeto sistemátio da Teoria

Leia mais

4 Teoria da Localização 4.1 Introdução à Localização

4 Teoria da Localização 4.1 Introdução à Localização 4 Teoria da Localização 4.1 Itrodução à Localização A localização de equipametos públicos pertece a uma relevate liha da pesquisa operacioal. O objetivo dos problemas de localização cosiste em determiar

Leia mais

Mário Meireles Teixeira. Departamento de Informática, UFMA. mario@deinf.ufma.br. Técnicas de Modelagem. Técnicas de Avaliação de desempenho.

Mário Meireles Teixeira. Departamento de Informática, UFMA. mario@deinf.ufma.br. Técnicas de Modelagem. Técnicas de Avaliação de desempenho. Simulação Mário Meireles Teixeira Departameto de Iformática, UFMA mario@deif.ufma.br Técicas de Modelagem Técicas de Avaliação de desempeho Aferição Modelagem Protótipos Bechmarcks Coleta de Dados Rede

Leia mais

FLUXO DE CARGA CONTINUADO CONSIDERANDO O CONTROLE DE INTERCÂMBIO ENTRE ÁREAS

FLUXO DE CARGA CONTINUADO CONSIDERANDO O CONTROLE DE INTERCÂMBIO ENTRE ÁREAS Aais do XIX Cogresso Brasileiro de Automática, CBA 2012. FLUXO DE CARA CONTINUADO CONSIDERANDO O CONTROLE DE INTERCÂMBIO ENTRE ÁREAS HEBERT AILA CARHUALLANQUI, DILSON AMANCIO ALES LASEP, DEE, UNESP Av.

Leia mais