2 x 2 2x Dêexemplodematrizesquadradas,demesmotamanho,AeB,taisqueAB BA.

Tamanho: px
Começar a partir da página:

Download "2 x 2 2x 1 0. 3. Dêexemplodematrizesquadradas,demesmotamanho,AeB,taisqueAB BA."

Transcrição

1 EXERCITANDOAULA. Determineovalordexsabendoqueamatri x x é simétrica.. Dêexemplodematriesquadradas,demesmotamanho,AeB,nãonulas,taisqueAB=O. 3. Dêexemplodematriesquadradas,demesmotamanho,AeB,taisqueAB BA. 4. SendoA=,calculeaspotênciasA, A 3, A 4 ea n parauminteiropositivonqualquer.. SejamA,B,C ex matriesdemesmotamanho. SabendoqueX A B= 3 X C,expresseX emtermos dea,bec. 6. SejamA,B,X ey matriesdemesmotamanho. Sabendoque { X+Y = A,expresseX ey emtermosdeaeb. X+Y =B 7. Resolva os seguintes sistemas matriciais a seguir. { X+Y =A X Y =3A a X+Y =O b Y +Z=B X+Z=C 8. DeterminetodasasmatriesX,,taisqueX =O.. DeterminetodasasmatriesX,,taisqueX =I.. DeterminetodasasmatriesX,,taisqueX =X.. SejaA=. MostrequeaequaçãomatricialX 6 =Aadmiteexatamente4soluçõesedetermine-as.. SejamA= 3. eb= 4. SejaXumamatri 3. DetermineXsabendoque t X+A=B. 3. Paracadamatridadaaseguir,encontreumamatrinaformaemescada,àqualamatridadaélinha-equivalente. a b c d 3 3 e 4 f SejamA,BeC matriesm n. Demonstreaspropriedadesaseguir. aa+c=b+c A=B.bA+A=A A=O.. SejamAumamatrim nex R. Demonstreaspropriedadesabaixo. axa=o A=Ooux=. ba+a=a. ca= A A=O. 6. SejamAumamatrim neb umamatrin p. Demonstreque A= A, A B= AB= AB e A B=AB. 7. SejamAeB matriesquadradasn ntaisqueab=ba. DemonstrequeA+B =A +AB+B. 8. SejamAeB matriesquadradasn ntaisqueab=ba. DemonstrequeA+BA B=A B.. SejamA,B ec matriesm n. Demonstreaspropriedadesabaixo. a A B= A+B b A+B= A B c A B C=A B+C d A+B C=A+B C. SejamAumamatrim neb ec matriesn p. DemonstrequeAB C=AB AC.. SejamAeB matriesm nec umamatrin p. DemonstrequeA BC=AC BC.. Demonstrequeostermosdadiagonalprincipaldeumamatrianti-simétrican nsãotodosnulos. 3. Demonstre que toda matri triangular superior e simétrica é diagonal. 4. Demonstre que toda matri triangular inferior e simétrica é diagonal.. Uma matri quadrada chama-se matri triangular estritamente superior se é triangular superior e se os termos da diagonal principal são todos nulos. Seja A uma matri triangular estritamente superior 3 3. Demonstre que A 3 =O. 6. SejamAeB,respectivamente,matriesm nen p. Mostrequeai-ésimalinhadeABéA i B. Concluaqueas linhasdeabsãoa B,A B,...,A m B.

2 7. SejamAeB,respectivamente,matriesm nen p. Mostrequeak-ésimacolunadeABéA B k. Concluaque ascolunasdeab sãoa B,A B,...,A B p. 8. SejaAumamatriquadradan n. DefinimosotraçodeAcomosendoasomadostermosqueconstituemsua diagonalprincipaleodenotamosportra. DemonstrequeAeB sãomatriesn nex R,entãotrA+B= tra+trb,trxa=xtraetrab=trba.. SejaAumamatrim n. Mostrequeaj-ésimalinhadatranspostadeAéatranspostadaj-ésimacolunadeA. Emsímbolos,istoquerdierque t A j = t A j. 3. SejaAumamatrin n. Demonstreasafirmaçõesabaixo. a Aésimétrica A= t A. b Aéanti-simétrica A= t A. c A=O Aésimétricaeanti-simétrica. 3. SejamAeB matriesm nex umnúmeroreal. Mostreque: a t A+B= t A+ t B b t xa=x t A c t t A=A. 3. SejamAumamatrim neb umamatrin p. Mostreque t AB= t B ta. 33. MostrequeseAeB sãomatriessimétricasn nex R,entãoA+B exasãotambémmatriessimétricas. 34. Mostre que se A e B são matries anti-simétricas n n e x R, então A+B e xa são também matries antisimétricas. 3. Paratodamatrin na,demonstreque a A+t Aésempresimétrica b A t Aésempreanti-simétrica. Concluaquetodamatriquadradaseescreve,demodoúnico,comosoma de uma matri simétrica com uma anti-simétrica. 36. SeAéanti-simétrica,demonstrequeA ésimétrica. 37. SejamAeB matriessimétricasn n. DemonstrequeAB=BA AB ésimétrica. 38. Demonstre que: a toda matri é linha-equivalente a si mesma b seamatriaélinha-equivalenteab eb élinha-equivalenteac,entãoaélinha-equivalenteac. 3. SuponhaqueumamatriA foiobtidaapartirdeaporumaúnicaoperaçãoelementarcomlinhas. MostrequeA podeserobtidadea,também,porumaúnicaoperaçãoelementarcomlinhas. ConcluaqueseAélinha-equivalente ab,entãob élinha-equivalenteaa. 4. Mostrequepodemospermutarduaslinhasdeumamatriutiliandosomenteasoperaçõese3. 4. Escreva na forma matricial AX = B os sistemas lineares seguintes: { x+3=4 a x+= 3x = x+8= d 4= x= b { x+=4 += c e 7x+ 4= x+3+= 8+4 = { 7x+4 +8w= x+8 7w=. 4. Escrevanaformamatricialx A +x A +...+x n A n =Bossistemaslinearesdoexercícioanterior. 43. Resolva os sistemas lineares do penúltimo exercício anterior. 44. Determine todas as matries que comutam com cada uma das seguintes matries: a b c. 4. SejaAumamatri. MostrequeAcomutacomrespeitoàmultiplicaçãodematriescomqualquermatri a RtalqueA=aI. a b 46. Determine todas as matries que comutam com,sendoc. c d a b 47. Determine todas as matries que comutam com. d 48. João,queinicialmentetemumacertaquantiaemreais,dáaPedrotantosreaisquantosPedropossuieaJosétantos reaisquantosjosépossui. Depois, PedrodáaJoséeaJoãoarespectivaquantiaemreaisquecadaumpassoua possuir. Emseguida, José fa amesmacoisacomjoãoepedro. Se, nofinal, todosterminamcom6reais, com quantos reais João começou?

3 4. Calcule as inversas das seguintes matries invertíveis: 4 3 a b 8 c Resolva cada sistema linear a seguir calculando a inversa da matri dos coeficientesque é invertível e aplicando a fórmulax=a B. { x+= a x+3= b.. Determinea demodoqueosistema. Determinea paraqueosistema x +=4 7x+= +3= x +3= 4 x 6+7= 8 6x 8+a= x++= x++a= x+4+a =. seja indeterminado. só admita a solução trivial. 3. Determine o conjunto solução de cada sistema linear abaixo, em função dos valores do parâmetro a. { x++= ax+a+a= ax+ = a x+a = b x++a= c ax++=. x+4+a = ax+=a 4. SejaA= a a a 33 GeneralieparaAn n.. Sea ii paratodoi,demonstrequeaéinvertívelequea =. Dêexemplodeduasmatriesinvertíveisn ncujasomanãoéinvertível. a. a SejamAeBmatriesquadradasdemesmotamanho,emqueAéinvertível. Mostre,porindução,que ABA n = AB n A paratodointeiropositivon. 7. SejaAumamatrin n. MostrequeseAtemumalinhanula,entãoAnãoéinvertível. 8. SeAéumamatriinvertível,demonstreque t Aétambéminvertíveleque t A = t A.. SejaAumamatrisimétricainvertível. DemonstrequeA ésimétrica. 6. SejaAumamatriquadrada. MostrequeseAteminversaàesquerda,entãoAéinvertível. a b 6. MostrequeamatriA= éinvertível ad bc.emcasoafirmativo,calculea c d. 6. SejamA,B ex matriesn n,emqueaéinvertível. ExpresseX emtermosdeaeb sabendoque t XA=B SejamA= eb=. SejaX umamatritalque 6 t XA=B. DetermineX. 64. Sejam A e B matries quadradas n n. Diemos que A é semelhante a B e escrevemos A B se existe uma matriinvertívelp talquea=p BP. Demonstreaspropriedadesabaixo,ondeA,BeC sãomatriesquadradas de mesmo tamanho. a A A b A B B A c A B eb C A C. 6. Demonstrequeaúnicamatrisemelhanteàmatrinulaeaprópria. Idem,paraamatriidentidade. 66. Demonstre que duas matries semelhantes têm o mesmo traço. 67. SejamAeB matriesquadradasn n. MostrequeseABéinvertível,entãoAeB tambémosão. 68. SejamA,A,...,A r matriesn n. Mostre,usandooprincípiodeindução,queA,A,...,A r sãoinvertíveis o produtórioa A A r oé. 6. SeAéumamatri eb é,mostrequeab nãoéinvertível. 7. Uma matri quadrada chama-se ortogonal se é invertível e sua inversa é sua transposta. Mostre que se uma matri diagonalétambémortogonal,entãoostermosdesuadiagonalprincipalsãoiguaisaou. 7. DemonstrequeseAéortogonal,então t Aétambémortogonal. 7. DemonstrequeseAeB sãomatriesortogonaisentãoabeb ABtambémosão. 73. Discuta o conjunto solução de cada sistema linear abaixo segundo os valores do parâmetro a. ax+a+a= ax++= a ax++= b x+a+=a. ax=a x++a= a 3

4 74. Determineosvaloresdea eb quetornamosistemalinearabaixopossíveleindeterminado. x++a= 3x++=4 x+4 =b 7. Discuta,segundoosvaloresdoparâmetrot,oconjuntosoluçãodosistemalinearaseguir,sabendoquea+b+c= ea, becsãodoisadoisdistintos. tx++=a x+t+=b x++t=c 76. Sejam A e B matries n n quaisquer. Mostre que se I AB é invertível, então I BA também o é e que I BA =I+BI AB A. 77. SejaAumamatrin n. MostrequeseAnãoéinvertível, entãoexisteumamatrib,n n,nãonula, talque AB=O. 78. SejaAumamatrin n.mostrequeseanãoéinvertível, entãoexisteumamatric,n n,nãonula, talque CA=O. 7. SejamAeB,respectivamente,matriesn mem n. Mostrequesen>m,entãoAB nãoéinvertível. 8. SejamAumamatritriangularestritamentesuperiorn n,emquen>,e k n. Demonstre,porindução sobre k, que a potência A k tem a seguinte propriedade: seu termo de posição i,j é igual a ero sempre que j i k,istoé,amatria k temoseguinteaspecto: Apartesombreadaéconstituídadostermosdeposiçãoi,jtaisquej i k. ConcluaqueA n =O. 8. SejaAumamatritriangularestritamenteinferiorn n. MostrequeA n =O. 8. SejaAumamatrin n. MostrequeAcomutacomqualquermatrin n existea RtalqueA=aI n. RESPOSTAS OU SUGESTÕES: x= A= eb= 3Mesmoexemplodoexercícioanterior 4A= n X= 6A+6B C 6X= 4 A+BeY = B A 7 ax= 3 AeY = 6 A bx= C B+A,Y = C+B+AeZ= C+B A x 8X= oux= com x x X=,X=,X= ou X= com + 4 X =, X =, X = 4 4 ou X = 4 3 3,,, X= 3a 3 b c 4 d e f Denote: A=a ij,b=b jk, t A= a ji e t B= b kj,emquea ji=a ij eb ji=b jk. Façaainda: t AB=c ki e t B ta=d ki. Notequec ki =A i B k ed ki = t B k t A i 4SejamAeB aslinhas. Primeiramente,substituaAporA B,depoissubstituaB por B+A B,etc 4 a 3 x 4 = b x 4 = + 4 com 4

5 c e x ax bx = 4 d x = w = = cx = dx = 43a 7 ex { x= = b + 8 x= 4+t = t =t +x ,t Rc = x=8u 7v = dosistemaéimpossível e 4 4 u+ 4 4 v =u w=v w 44 a,,w R b +w w w c x x x a d,x,, R x x= = + 6 = 8 =,u,v R,,w R 46 c +w b c,ewlivres w 47 Para b=ea=d, a matri dada comuta comtoda matri. Para b=ea d, ela comuta só com as matries diagonaise,parab,elacomutacomasmatriesquetêmaformaaseguir: a d b +w w a c a 3/4 /4,,w R b / /38 6/ 3/76 / /76 3/ 3/38 / /47 /47 /47 /47 /47 83/47 8/47 /47 8/47 4/47 /47 /47 /47 /47 /47 /47 { x= 3 = 4 b x= = 3 = a= a ea 3 ac.s.= paraa=± ec.s.={ a a, a paraa ± bc.s.={a t, at,tt R}paraa=oua=eC.S.={,,}paraa ea cosistematemúnicasolução a eéimpossívelsea= I n e I n 6SejaB inversadea,àesquerda,logo,ba=i. Assim,AéinversadeB,àdireita. UseagoraofatodeB serinvertível a } 6Separeemdoiscasos: a=ea,useescalonamentoeofatodequeumamatriéinvertível d b ad bc c a élinha-equivalenteàmatriidentidade. A = 4 6X= t B A 63X= 3 67ParademonstrarqueAéinvertível,mostrequeAteminversaàdireita. ParaprovarqueB é invertível,useb=a AB 73 aosistematemúnicasolução a eéimpossívelsea= bosistemaépossíveldeterminado a ea eéimpossívelparaa=oua= 74a= /7eb= 46/ 7Osistemaépossíveldeterminado t et parat=osistemaéimpossíveleépossível indeterminado para t = 76FaçaX=I AB euseofatodequex XAB=I=X ABX 77ConsidereosistemalinearhomogêneoAX=Oetomeumasoluçãonãotrivialdestesistema 78Considere t Aeuseoexercícioanterior 7ConsidereosistemalinearhomogêneoBX=O,emqueOéamatricolunam nula,tome umasoluçãonãotrivialdomesmoenotequeestaétambémsoluçãodosistemaabx=o,em queoéamatricolunan nula

6 8Considere t Aeuseoexercícioanterior 8SejaA=a ij. Parademonstraraimplicação,primeiramente,demonstra-sequea ij =para i j. Paraisso,fixeiej distintos,considereamatrix=x uv definidacomosesegue: x ji =e x uv =parau j ouv i,e,useofatodequeax=xatomandoostermosdeposiçãoi,i. Paraprovarquea ii =a,paratodoi,fixeumiedefinaamatrix=x uv colocandox i =e x uv =parau iouv econsidereostermosdeposiçãoi,dasmatriesax exa. 6

Aulas Teóricas e de Problemas de Álgebra Linear

Aulas Teóricas e de Problemas de Álgebra Linear Aulas Teóricas e de Problemas de Álgebra Linear Nuno Martins Departamento de Matemática Instituto Superior Técnico Maio de Índice Parte I (Aulas teóricas e chas de exercícios) Matrizes e sistemas de equações

Leia mais

Álgebra Linear. Mauri C. Nascimento Departamento de Matemática UNESP/Bauru. 19 de fevereiro de 2013

Álgebra Linear. Mauri C. Nascimento Departamento de Matemática UNESP/Bauru. 19 de fevereiro de 2013 Álgebra Linear Mauri C. Nascimento Departamento de Matemática UNESP/Bauru 19 de fevereiro de 2013 Sumário 1 Matrizes e Determinantes 3 1.1 Matrizes............................................ 3 1.2 Determinante

Leia mais

Álgebra Linear. André Arbex Hallack Frederico Sercio Feitosa

Álgebra Linear. André Arbex Hallack Frederico Sercio Feitosa Álgebra Linear André Arbex Hallack Frederico Sercio Feitosa Janeiro/2006 Índice 1 Sistemas Lineares 1 11 Corpos 1 12 Sistemas de Equações Lineares 3 13 Sistemas equivalentes 4 14 Operações elementares

Leia mais

Álgebra Linear - Prof. a Cecilia Chirenti. Lista 3 - Matrizes

Álgebra Linear - Prof. a Cecilia Chirenti. Lista 3 - Matrizes Álgebra Linear - Prof. a Cecilia Chirenti Lista 3 - Matrizes. Sejam A = C = 0 3 4 3 0 5 4 0 0 3 4 0 3, B = 3, D = 3,. Encontre: a A+B, A+C, 3A 4B. b AB, AC, AD, BC, BD, CD c A t, A t C, D t A t, B t A,

Leia mais

Este apêndice resume os conceitos de álgebra matricial, inclusive da álgebra de probabilidade,

Este apêndice resume os conceitos de álgebra matricial, inclusive da álgebra de probabilidade, D Resumo de Álgebra Matricial Este apêndice resume os conceitos de álgebra matricial, inclusive da álgebra de probabilidade, necessária para o estudo de modelos de regressão linear múltipla usando matrizes,

Leia mais

Notas de Aula. Álgebra Linear I

Notas de Aula. Álgebra Linear I Notas de Aula Álgebra Linear I Rodney Josué Biezuner 1 Departamento de Matemática Instituto de Ciências Exatas (ICEx) Universidade Federal de Minas Gerais (UFMG) Notas de aula da disciplina Álgebra Linear

Leia mais

I Lista de Álgebra Linear /02 Matrizes-Determinantes e Sistemas Prof. Iva Zuchi Siple

I Lista de Álgebra Linear /02 Matrizes-Determinantes e Sistemas Prof. Iva Zuchi Siple 1 I Lista de Álgebra Linear - 2012/02 Matrizes-Determinantes e Sistemas Prof. Iva Zuchi Siple 1. Determine os valores de x e y que tornam verdadeira a igualdade ( x 2 + 5x x 2 ( 6 3 2x y 2 5y y 2 = 5 0

Leia mais

Tópicos Matriciais Pedro Henrique O. Pantoja Natal / RN

Tópicos Matriciais Pedro Henrique O. Pantoja Natal / RN 1. Traço de Matrizes. Definição 1.1: O traço de uma matriz quadrada A a de ordem n é a soma dos elementos da diagonal principal. Em símbolos, TrA a a a a. Daqui em diante, A denotará uma matriz quadrada

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Matrizes; Matrizes Especiais; Operações com Matrizes; Operações Elementares

Leia mais

Capítulo 1: Sistemas Lineares e Matrizes

Capítulo 1: Sistemas Lineares e Matrizes 1 Livro: Introdução à Álgebra Linear Autores: Abramo Hefez Cecília de Souza Fernandez Capítulo 1: Sistemas Lineares e Matrizes Sumário 1 O que é Álgebra Linear?............... 2 1.1 Corpos.........................

Leia mais

QUESTÕES DE ESCOLHA MÚLTIPLA

QUESTÕES DE ESCOLHA MÚLTIPLA ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 9/ TÓPICOSDERESOLUÇÃODO o TESTE(DIURNO) QUESTÕES DE ESCOLHA MÚLTIPLA. [,]SejamAeB duas matrizes

Leia mais

Exercícios de Matemática Matrizes

Exercícios de Matemática Matrizes Exercícios de Matemática Matrizes ) (Unicamp-999) Considere as matrizes: cos sen x sen cos y M=, X = z e Y = a) Calcule o determinante de M e a matriz inversa de M. b) Resolva o sistema MX = Y. ) (ITA-6)

Leia mais

Breve referência à Teoria de Anéis. Álgebra (Curso de CC) Ano lectivo 2005/2006 191 / 204

Breve referência à Teoria de Anéis. Álgebra (Curso de CC) Ano lectivo 2005/2006 191 / 204 Breve referência à Teoria de Anéis Álgebra (Curso de CC) Ano lectivo 2005/2006 191 / 204 Anéis Há muitos conjuntos, como é o caso dos inteiros, dos inteiros módulo n ou dos números reais, que consideramos

Leia mais

Sistemas de Equações Lineares e Matrizes

Sistemas de Equações Lineares e Matrizes Sistemas de Equações Lineares e Matrizes. Quais das seguintes equações são lineares em x, y, z: (a) 2x + 2y 5z = x + xy z = 2 (c) x + y 2 + z = 2 2. A parábola y = ax 2 + bx + c passa pelos pontos (x,

Leia mais

QUESTÕES COMENTADAS E RESOLVIDAS

QUESTÕES COMENTADAS E RESOLVIDAS LENIMAR NUNES DE ANDRADE INTRODUÇÃO À ÁLGEBRA: QUESTÕES COMENTADAS E RESOLVIDAS 1 a edição ISBN 978-85-917238-0-5 João Pessoa Edição do Autor 2014 Prefácio Este texto foi elaborado para a disciplina Introdução

Leia mais

Tratamentos Tempo de Armazenamento T F secagem 0 mês 6 meses ( C) (m 3 /minuto/t) (hora) D 1 D 2 D 3 Médias D 1 D 2 D 3 Médias 42 26,9 0 10,4 10,8

Tratamentos Tempo de Armazenamento T F secagem 0 mês 6 meses ( C) (m 3 /minuto/t) (hora) D 1 D 2 D 3 Médias D 1 D 2 D 3 Médias 42 26,9 0 10,4 10,8 Tratamentos Tempo de Armazenamento T F secagem 0 mês 6 meses ( C) (m 3 /minuto/t) (hora) D 1 D 2 D 3 Médias D 1 D 2 D 3 Médias 42 26,9 0 10,4 10,8 10,9 10,7 12,8 11,6 12,0 12,1 4 11,1 10,6 10,9 10,9 13,1

Leia mais

Sistema de equações lineares

Sistema de equações lineares Sistema de equações lineares Sistema de m equações lineares em n incógnitas sobre um corpo ( S) a x + a x + + a x = b a x + a x + + a x = b a x + a x + + a x = b 11 1 12 2 1n n 1 21 1 22 2 2n n 2 m1 1

Leia mais

11 a LISTA DE PROBLEMAS DE ÁLGEBRA LINEAR LEIC-Taguspark, LERCI, LEGI, LEE 1 o semestre 2003/04 - semana de 2003-12-08

11 a LISTA DE PROBLEMAS DE ÁLGEBRA LINEAR LEIC-Taguspark, LERCI, LEGI, LEE 1 o semestre 2003/04 - semana de 2003-12-08 INSTITUTO SUPERIOR TÉCNICO - DEPARTAMENTO DE MATEMÁTICA a LISTA DE PROBLEMAS DE ÁLGEBRA LINEAR LEIC-Taguspark LERCI LEGI LEE o semestre 23/4 - semana de 23-2-8. Diga justificando quais dos seguintes ternos

Leia mais

Lista de Exercícios 04 Álgebra Matricial

Lista de Exercícios 04 Álgebra Matricial Lista de Exercícios 04 Álgebra Matricial - 017.1 1. Determine a quantidade desconhecida em cada uma das expressões: ( ) ( ) ( ) T 0 3 x + y + 3 3 w (a) 3.X = (b) = 6 9 4 0 6 z. Uma rede de postos de combustíveis

Leia mais

UNIV ERSIDADE DO EST ADO DE SANT A CAT ARINA UDESC CENT RO DE CI ^ENCIAS T ECNOLOGICAS DEP ART AMENT O DE MAT EMAT ICA DMAT

UNIV ERSIDADE DO EST ADO DE SANT A CAT ARINA UDESC CENT RO DE CI ^ENCIAS T ECNOLOGICAS DEP ART AMENT O DE MAT EMAT ICA DMAT UNIV ERSIDADE DO EST ADO DE SANT A CAT ARINA UDESC CENT RO DE CI ^ENCIAS T ECNOLOGICAS CCT DEP ART AMENT O DE MAT EMAT ICA DMAT Professora Graciela Moro Exercícios sobre Matrizes, Determinantes e Sistemas

Leia mais

Matrizes e Determinantes

Matrizes e Determinantes Capítulo 1 Matrizes e Determinantes 11 Generalidades Iremos usar K para designar IR conjunto dos números reais C conjunto dos números complexos Deste modo, chamaremos números ou escalares aos elementos

Leia mais

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017 º Sábado - Matrizes - //7. Plano e Programa de Ensino. Definição de Matrizes. Exemplos. Definição de Ordem de Uma Matriz. Exemplos. Representação Matriz Genérica m x n 8. Matriz Linha 9. Exemplos. Matriz

Leia mais

Álgebra Linear Resumo das aulas teóricas e práticas Paulo R. Pinto http://www.math.ist.utl.pt/ ppinto/ Lisboa, Novembro de 2011

Álgebra Linear Resumo das aulas teóricas e práticas Paulo R. Pinto http://www.math.ist.utl.pt/ ppinto/ Lisboa, Novembro de 2011 Álgebra Linear Resumo das aulas teóricas e práticas Paulo R Pinto http://wwwmathistutlpt/ ppinto/ Lisboa, Novembro de 2011 Conteúdo 1 Matrizes e sistemas lineares 1 11 Álgebra das Matrizes 1 12 Operações

Leia mais

Capítulo 3 - Sistemas de Equações Lineares

Capítulo 3 - Sistemas de Equações Lineares Capítulo 3 - Sistemas de Equações Lineares Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/

Leia mais

Álgebra Linear e Geometria Analítica

Álgebra Linear e Geometria Analítica Álgebra Linear e Geometria Analítica Departamento de Matemática para a Ciência e Tecnologia Universidade do Minho 2005/2006 Engenharia e Gestão Industrial Engenharia Electrónica Industrial e de Computadores

Leia mais

Capítulo 3 - Sistemas de Equações Lineares

Capítulo 3 - Sistemas de Equações Lineares Capítulo 3 - Sistemas de Equações Lineares Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/

Leia mais

2 Matrizes. 3 Definição Soma de duas matrizes, e ( ) 4 Propriedades Propriedades da soma de matrizes ( )

2 Matrizes. 3 Definição Soma de duas matrizes, e ( ) 4 Propriedades Propriedades da soma de matrizes ( ) Nova School of Business and Economics Apontamentos Álgebra Linear 1 Definição Matriz ( ) Conjunto de elementos dispostos em linhas e colunas. Ex.: 0 1 é uma matriz com 2 linhas e 3 colunas. 2 Definição

Leia mais

Exercícios Teóricos Resolvidos

Exercícios Teóricos Resolvidos Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar

Leia mais

Trabalhos e Exercícios 1 de Álgebra Linear

Trabalhos e Exercícios 1 de Álgebra Linear Trabalhos e Exercícios de Álgebra Linear Fabio Iareke 30 de março de 0 Trabalhos. Mostre que se A tem uma linha nula, então AB tem uma linha nula.. Provar as propriedades abaixo:

Leia mais

Capítulo 2: Transformação de Matrizes e Resolução de Sistemas

Capítulo 2: Transformação de Matrizes e Resolução de Sistemas 2 Livro: Introdução à Álgebra Linear Autores: Abramo Hefez Cecília de Souza Fernandez Capítulo 2: Transformação de Matrizes e Resolução de Sistemas Sumário 1 Transformação de Matrizes.............. 3 1.1

Leia mais

Revisões de Matemática e Estatística

Revisões de Matemática e Estatística Revisões de Matemática e Estatística Joaquim J.S. Ramalho Contents 1 Operadores matemáticos 2 1.1 Somatório........................................ 2 1.2 Duplo somatório....................................

Leia mais

Lista de Exercícios Nº 02 Tecnologia em Mecatrônica Prof.: Carlos Bezerra

Lista de Exercícios Nº 02 Tecnologia em Mecatrônica Prof.: Carlos Bezerra TEXTO PARA A PRÓXIMA QUESTÃO (Ufba 96) Na(s) questão(ões) a seguir escreva nos parenteses a soma dos itens corretos. 1. Sendo m = x + 1, n = x - x, p = x - 1, pode-se afirmar: (01) m = n. p (02) m + n

Leia mais

Matrizes - Matemática II /05 1. Matrizes

Matrizes - Matemática II /05 1. Matrizes Matrizes - Matemática II - 00/0 1 Matrizes Introdução Se m e n são números naturais, chama-se matriz real de tipo m n a uma função A de nida no conjunto f(i; j) i f1; ; ; mg e j f1; ; ; ngg e com valores

Leia mais

R é o conjunto dos reais; f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range).

R é o conjunto dos reais; f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range). f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range). R é o conjunto dos reais; R n é o conjunto dos vetores n-dimensionais reais; Os vetores

Leia mais

Universidade Federal de Ouro Preto Departamento de Matemática MTM112 - Introdução à Álgebra Linear - Turmas 81, 82 e 84 Lista 1 - Tiago de Oliveira

Universidade Federal de Ouro Preto Departamento de Matemática MTM112 - Introdução à Álgebra Linear - Turmas 81, 82 e 84 Lista 1 - Tiago de Oliveira Universidade Federal de Ouro Preto Departamento de Matemática MTM2 - Introdução à Álgebra Linear - Turmas 8, 82 e 84 Lista - Tiago de Oliveira Reveja a teoria e os exercícios feitos em sala. 2 3 2 0. Sejam

Leia mais

ficha 1 matrizes e sistemas de equações lineares

ficha 1 matrizes e sistemas de equações lineares Exercícios de Álgebra Linear ficha matrizes e sistemas de equações lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2/2

Leia mais

ficha 3 espaços lineares

ficha 3 espaços lineares Exercícios de Álgebra Linear ficha 3 espaços lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2011/12 3 Notação Sendo

Leia mais

MÓDULO 17. Radiciações e Equações. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA

MÓDULO 17. Radiciações e Equações. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Mostre que MÓDULO 7 Radiciações e Equações 3 + 8 5 + 3 8 5 é múltiplo de 4. 2. a) Escreva A + B como uma soma de radicais simples. b) Escreva

Leia mais

Lista de Exercícios de Geometria

Lista de Exercícios de Geometria Núcleo Básico de Engenharias Geometria - Geometria Analítica Professor Julierme Oliveira Lista de Exercícios de Geometria Primeira Parte: VETORES 1. Sejam os pontos A(0,0), B(1,0), C(0,1), D(-,3), E(4,-5)

Leia mais

para Fazer Contas? A primeira e, de longe, mais importante lição é 1.1. Produtos notáveis; em especial, diferença de quadrados!

para Fazer Contas? A primeira e, de longe, mais importante lição é 1.1. Produtos notáveis; em especial, diferença de quadrados! Álgebra: É Necessário ter Ideias para Fazer Contas? A primeira e, de longe, mais importante lição é 1. Fatoração é legal; fatoração é sua amiga 1.1. Produtos notáveis; em especial, diferença de quadrados!

Leia mais

A minha mãe MariadaConceiçãodeFreitas eemmemóriademeupai José de Andrade e Silva.

A minha mãe MariadaConceiçãodeFreitas eemmemóriademeupai José de Andrade e Silva. A minha mãe MariadaConceiçãodeFreitas eemmemóriademeupai José de Andrade e Silva. Prefácio Este texto surgiu da experiência do autor quando ministrou algumas vezes a disciplina Álgebra Linear e Geometria

Leia mais

Disciplina: Introdução à Álgebra Linear

Disciplina: Introdução à Álgebra Linear Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte Campus: Mossoró Curso: Licenciatura Plena em Matemática Disciplina: Introdução à Álgebra Linear Prof.: Robson Pereira de Sousa

Leia mais

Aula: Equações polinomiais

Aula: Equações polinomiais Aula: Equações polinomiais Turma 1 e 2 Data: 05/09/2012-12/09/2012 Tópicos Equações polinomiais. Teorema fundamental da álgebra. Raízes reais e complexas. Fatoração e multiplicação de raízes. Relações

Leia mais

FUVEST VESTIBULAR 2005 FASE II RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA.

FUVEST VESTIBULAR 2005 FASE II RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA. FUVEST VESTIBULAR 00 FASE II PROFA. MARIA ANTÔNIA GOUVEIA. Q 0. Para a fabricação de bicicletas, uma empresa comprou unidades do produto A, pagando R$9, 00, e unidades do produto B, pagando R$8,00. Sabendo-se

Leia mais

As expressões que apresentam letras, além de operações e números são chamadas expressões algébricas. As letras são as variáveis.

As expressões que apresentam letras, além de operações e números são chamadas expressões algébricas. As letras são as variáveis. 1 Aula 3 Expressões algébricas. Produtos notáveis. Fatoração. Objetivos: Conceituar variáveis. Enumerar as propriedades operacionais das expressões algébricas. Fatorar expressões algébricas. Simplificar

Leia mais

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul Resolução da Prova da Escola Naval 29. Matemática Prova Azul GABARITO D A 2 E 2 E B C 4 D 4 C 5 D 5 A 6 E 6 C 7 B 7 B 8 D 8 E 9 A 9 A C 2 B. Os 6 melhores alunos do Colégio Naval submeteram-se a uma prova

Leia mais

Recordamos que Q M n n (R) diz-se ortogonal se Q T Q = I.

Recordamos que Q M n n (R) diz-se ortogonal se Q T Q = I. Diagonalização ortogonal de matrizes simétricas Detalhes sobre a Secção.3 dos Apontamentos das Aulas teóricas de Álgebra Linear Cursos: LMAC, MEBiom e MEFT (semestre, 0/0, Prof. Paulo Pinto) Recordamos

Leia mais

NOÇÕES DE ÁLGEBRA LINEAR

NOÇÕES DE ÁLGEBRA LINEAR ESPAÇO VETORIAL REAL NOÇÕES DE ÁLGEBRA LINEAR ESPAÇOS VETORIAIS Seja um conjunto V φ no qual estão definidas duas operações: adição e multiplicação por escalar, tais que u, v V, u+v V e α R, u V, αu V

Leia mais

Questão Resposta 1 e 2 c 3 a 4 a 5 d 6 d 7 d 8 b 9 a 10 c 11 e 12 c 13 c 14 d 15 d 16 b

Questão Resposta 1 e 2 c 3 a 4 a 5 d 6 d 7 d 8 b 9 a 10 c 11 e 12 c 13 c 14 d 15 d 16 b Questão Resposta 1 e 2 c 3 a 4 a 5 d 6 d 7 d 8 b 9 a 10 c 11 e 12 c 13 c 14 d 15 d 16 b MAT2457 - Álgebra Linear para Engenharia I Prova 1-10/04/2013 Nome: NUSP: Professor: Turma: INSTRUÇÕES (1) A prova

Leia mais

Matemática- 2008/ Se possível, dê exemplos de: (no caso de não ser possível explique porquê)

Matemática- 2008/ Se possível, dê exemplos de: (no caso de não ser possível explique porquê) Matemática- 00/09. Se possível, dê exemplos de (no caso de não ser possível explique porquê) (a) Uma matriz do tipo ; cujos elementos principais sejam 0. (b) Uma matriz do tipo ; cujo elemento na posição

Leia mais

Capítulo 5: Transformações Lineares

Capítulo 5: Transformações Lineares 5 Livro: Introdução à Álgebra Linear Autores: Abramo Hefez Cecília de Souza Fernandez Capítulo 5: Transformações Lineares Sumário 1 O que são as Transformações Lineares?...... 124 2 Núcleo e Imagem....................

Leia mais

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,...

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... 0) O que veremos na aula de hoje? Um fato interessante Produtos notáveis Equação do 2º grau Como fazer a questão 5 da 3ª

Leia mais

MATRIZES Matriz quadrada Matriz linha e matriz coluna Matriz diagonal Matriz identidade

MATRIZES Matriz quadrada Matriz linha e matriz coluna Matriz diagonal Matriz identidade MATRIZES Matriz quadrada matriz quadrada de ordem. diagonal principal matriz quadrada de ordem. - 7 9 diagonal principal diagonal secundária Matriz linha e matriz coluna [ ] colunas). (linha e matriz linha

Leia mais

MATEMÁTICA II. Aula 11. 3º Bimestre. Matrizes Professor Luciano Nóbrega

MATEMÁTICA II. Aula 11. 3º Bimestre. Matrizes Professor Luciano Nóbrega 1 MATEMÁTICA II Aula 11 Matrizes Professor Luciano Nóbrega º Bimestre MATRIZES _ INTRODUÇÃO DEFINIÇÃO Uma matriz é uma tabela com m linhas e n colunas que contém m. n elementos. EXEMPLO: Ângulo 0º 45º

Leia mais

n. 15 ÁREA DE UM TRIÂNGULO Logo, a área do triângulo é obtida calculando-se a metade da área do S = 1 2

n. 15 ÁREA DE UM TRIÂNGULO Logo, a área do triângulo é obtida calculando-se a metade da área do S = 1 2 n. 15 ÁREA DE UM TRIÂNGULO Do cálculo da área do paralelogramo temos: S ABCD = u x v Logo, a área do triângulo é obtida calculando-se a metade da área do paralelogramo, portanto S ABC = 1 u x v Assim,

Leia mais

Åaxwell Mariano de Barros

Åaxwell Mariano de Barros ÍÒ Ú Ö Ö Ð ÓÅ Ö Ò Ó Ô ÖØ Ñ ÒØÓ Å Ø Ñ Ø ÒØÖÓ Ò Ü Ø Ì ÒÓÐÓ ÆÓØ ÙÐ ¹¼ ÐÙÐÓÎ ØÓÖ Ð ÓÑ ØÖ Ò Ð Ø Åaxwell Mariano de Barros ¾¼½½ ËÓÄÙ ¹ÅA ËÙÑ Ö Ó 1 Vetores no Espaço 2 1.1 Bases.........................................

Leia mais

MA71B - Geometria Analítica e Álgebra Linear Prof a Dr a Diane Rizzotto Rossetto. LISTA 1 - Matrizes e Sistemas Lineares

MA71B - Geometria Analítica e Álgebra Linear Prof a Dr a Diane Rizzotto Rossetto. LISTA 1 - Matrizes e Sistemas Lineares Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba - DAMAT MA71B - Geometria Analítica e Álgebra Linear Prof a Dr a Diane Rizzotto Rossetto LISTA 1 - Matrizes e Sistemas

Leia mais

Lista de Álgebra Linear Aplicada

Lista de Álgebra Linear Aplicada Lista de Álgebra Linear Aplicada Matrizes - Vetores - Retas e Planos 3 de setembro de 203 Professor: Aldo Bazán Universidade Federal Fluminense Matrizes. Seja A M 2 2 (R) definida como 0 0 0 3 0 0 0 2

Leia mais

CURSO ONLINE RACIOCÍNIO LÓGICO

CURSO ONLINE RACIOCÍNIO LÓGICO AULA QUINZE: Matrizes & Determinantes (Parte II) Olá, amigos! Pedimos desculpas por não ter sido possível apresentarmos esta aula na semana passada. Motivos de força maior nos impediram de fazê-lo, mas

Leia mais

Revisão para a Bimestral 8º ano

Revisão para a Bimestral 8º ano Revisão para a Bimestral 8º ano 1- Quadrado da soma de dois termos Observe: (a + b)² = ( a + b). (a + b) = a² + ab+ ab + b² = a² + 2ab + b² Conclusão: (primeiro termo)² + 2.(primeiro termo). (segundo termo)

Leia mais

Livro: Introdução à Álgebra Linear Autores: Abramo Hefez Cecília de Souza Fernandez. Capítulo 10: Soluções e Respostas

Livro: Introdução à Álgebra Linear Autores: Abramo Hefez Cecília de Souza Fernandez. Capítulo 10: Soluções e Respostas 10 Livro: Introdução à Álgebra Linear Autores: Abramo Hefez Cecília de Souza Fernandez Capítulo 10: Soluções e Respostas 263 264 CAPÍTULO 10. SOLUÇÕES E RESPOSTAS Capítulo 1 2.1* Temos 2 4 6 3 6 0 2A =,

Leia mais

Espaços vectoriais com produto interno. ALGA 2007/2008 Mest. Int. Eng. Biomédica Espaços vectoriais com produto interno 1 / 15

Espaços vectoriais com produto interno. ALGA 2007/2008 Mest. Int. Eng. Biomédica Espaços vectoriais com produto interno 1 / 15 Capítulo 6 Espaços vectoriais com produto interno ALGA 2007/2008 Mest. Int. Eng. Biomédica Espaços vectoriais com produto interno 1 / 15 Definição e propriedades Seja V um espaço vectorial real. Chama-se

Leia mais

Matrizes - ALGA /05 1. Matrizes

Matrizes - ALGA /05 1. Matrizes Matrizes - ALGA - 004/0 1 Matrizes Introdução Se m e n são números naturais, chama-se matriz real de tipo m n a uma função A de nida no conjunto f(i; j) : i f1; ; :::; mg e j f1; ; :::; ngg e com valores

Leia mais

Cálculo. Álgebra Linear. Programação Computacional. Metodologia Científica

Cálculo. Álgebra Linear. Programação Computacional. Metodologia Científica UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL Cálculo Álgebra Linear Programação Computacional Metodologia Científica Realização: Fortaleza, Fevereiro/2012 UNIVERSIDADE

Leia mais

(os números, que constituirão os corpos numéricos) (os vetores, que constituirão os espaços vetoriais)

(os números, que constituirão os corpos numéricos) (os vetores, que constituirão os espaços vetoriais) Os objetos que serão considerados aqui são de duas natureza: Escalar: Vetorial: (os números, que constituirão os corpos numéricos) (os vetores, que constituirão os espaços vetoriais). Corpos Numéricos

Leia mais

r a t (I), ht rs (II) e (III) r s t r a

r a t (I), ht rs (II) e (III) r s t r a 01 De T 1 e T 3, temos: a h r s h r a t (I), ht rs (II) e (III) r s t r a De T e T 3, temos: h b s s b s b t (IV) e (V) r s t r h De (III) e (V): b h h a b (VI) h a Somando (I) e (IV) temos: r s at bt

Leia mais

x 1 3x 2 2x 3 = 0 2 x 1 + x 2 x 3 6x 4 = 2 6 x x 2 3x 4 + x 5 = 1 ( f ) x 1 + 2x 2 3x 3 = 6 2x 1 x 2 + 4x 3 = 2 4x 1 + 3x 2 2x 3 = 4

x 1 3x 2 2x 3 = 0 2 x 1 + x 2 x 3 6x 4 = 2 6 x x 2 3x 4 + x 5 = 1 ( f ) x 1 + 2x 2 3x 3 = 6 2x 1 x 2 + 4x 3 = 2 4x 1 + 3x 2 2x 3 = 4 INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-47 Álgebra Linear para Engenharia I Primeira Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS. Resolva os seguintes sistemas:

Leia mais

Caderno de Atividades: GEOMETRIA ANALÍTICA E ÁLGEBRA LINEAR. Prof. Carlos Vidigal Profª. Érika Vidigal

Caderno de Atividades: GEOMETRIA ANALÍTICA E ÁLGEBRA LINEAR. Prof. Carlos Vidigal Profª. Érika Vidigal Caderno de Atividades: GEOMETRIA ANALÍTICA E ÁLGEBRA LINEAR Prof. Carlos Vidigal Profª. Érika Vidigal GEOMETRIA ANALÍTICA E ÁLGEBRA LINEAR FINALIDADE: Aplicar e desenvolver o raciocínio analítico na resolução

Leia mais

ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere os conjuntos S = {0,2,4,6}, T = {1,3,5} e U = {0,1} e as afirmações: I. {0} S e S U. II. {2} S\U e S T U={0,1}.

Leia mais

POLINÔMIOS. Ana Paula Gargano

POLINÔMIOS. Ana Paula Gargano POLINÔMIOS Ana Paula Gargano O que é polinômio? É uma expressão algébrica composta de um ou mais termos, que é o produto de um número por letras elevadas a expoentes naturais. A parte numérica é o coeficiente

Leia mais

CM005 Algebra Linear Lista 1

CM005 Algebra Linear Lista 1 CM005 Algebra Linear Lista Alberto Ramos. Para cada um dos sistemas de equações lineares, use o método de Gauss para obter um sistema equivalente cuja matriz de coeficientes esteja na forma escada. Indique

Leia mais

2.2 Subespaços Vetoriais

2.2 Subespaços Vetoriais 32 CAPÍTULO 2. ESPAÇOS VETORIAIS 2.2 Subespaços Vetoriais Sejam V um espaço vetorial sobre R e W um subconjunto de V. Dizemos que W é um subespaço (vetorial) de V se as seguintes condições são satisfeitas:

Leia mais

Instituto Superior Técnico Departamento de Matemática Última actualização: 11/Dez/2003 ÁLGEBRA LINEAR A

Instituto Superior Técnico Departamento de Matemática Última actualização: 11/Dez/2003 ÁLGEBRA LINEAR A Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 11/Dez/2003 ÁLGEBRA LINEAR A FICHA 8 APLICAÇÕES E COMPLEMENTOS Sistemas Dinâmicos Discretos (1) (Problema

Leia mais

MA13 Geometria AVF 2014

MA13 Geometria AVF 2014 MA1 Geometria AVF 014 Questão 1 [,0 pt ] Na figura, AB AC e a bissetriz interna traçada de B intersecta o lado AC em P de forma que AP + BP = BC. Os pontos Q e D são tomados de forma que BQ BP e P D é

Leia mais

Universidade Estadual de Santa Cruz. Departamento de Ciências Exatas e Tecnológicas. Especialização em Matemática. Disciplina: Estruturas Algébricas

Universidade Estadual de Santa Cruz. Departamento de Ciências Exatas e Tecnológicas. Especialização em Matemática. Disciplina: Estruturas Algébricas 1 Universidade Estadual de Santa Cruz Departamento de Ciências Exatas e Tecnológicas Especialização em Matemática Disciplina: Estruturas Algébricas Profs.: Elisangela S. Farias e Sérgio Motta Operações

Leia mais

a m1 A ou [ A] ou A ou A A = a ij para i = 1 m e j = 1 n A=[ 1 2 3 Os elementos da diagonal principal são: a ij para i = j

a m1 A ou [ A] ou A ou A A = a ij para i = 1 m e j = 1 n A=[ 1 2 3 Os elementos da diagonal principal são: a ij para i = j Cap. 2.- Matrizes e Sistemas Lineares 2.. Definição Matriz é um conjunto organizado de números dispostos em linhas e colunas. Representações Matriz retangular A, m x n (eme por ene) a 2 a n A=[a a 2 a

Leia mais

Teste Intermédio Matemática. 9.º Ano de Escolaridade. Versão 1. Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03.

Teste Intermédio Matemática. 9.º Ano de Escolaridade. Versão 1. Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03. Teste Intermédio Matemática Versão 1 Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03.2014 9.º Ano de Escolaridade Indica de forma legível a versão do teste. O teste é constituído por dois

Leia mais

III) Os vetores (m, 1, m) e (1, m, 1) são L.D. se, somente se, m = 1

III) Os vetores (m, 1, m) e (1, m, 1) são L.D. se, somente se, m = 1 Lista de Exercícios de SMA000 - Geometria Analítica 1) Indique qual das seguintes afirmações é falsa: a) Os vetores (m, 0, 0); (1, m, 0); (1, m, m 2 ) são L.I. se, somente se, m 0. b) Se u, v 0, então

Leia mais

Álgebra Linear - 1 a lista de exercícios Prof. - Juliana Coelho

Álgebra Linear - 1 a lista de exercícios Prof. - Juliana Coelho Álgebra Linear - a lista de exercícios Prof. - Juliana Coelho - Considere as matrizes abaixo e faça o que se pede: M N O 7 P Q R 8 4 T S a b a Determine quais destas matrizes são simétricas. E antisimétricas?

Leia mais

Vetores. Definição geométrica de vetores

Vetores. Definição geométrica de vetores Vetores Várias grandezas físicas, tais como por exemplo comprimento, área, olume, tempo, massa e temperatura são completamente descritas uma ez que a magnitude (intensidade) é dada. Tais grandezas são

Leia mais

Propriedades da Inversão de Matrizes

Propriedades da Inversão de Matrizes Propriedades da Inversão de Matrizes Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial

Leia mais

MATEMÁTICA GEOMETRIA ANALÍTICA I PROF. Diomedes. E2) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B.

MATEMÁTICA GEOMETRIA ANALÍTICA I PROF. Diomedes. E2) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B. I- CONCEITOS INICIAIS - Distância entre dois pontos na reta E) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B. d(a,b) = b a E: Dados os pontos A e B de coordenadas

Leia mais

GLOSSÁRIO: UM DICIONÁRIO PARA ÁLGEBRA LINEAR

GLOSSÁRIO: UM DICIONÁRIO PARA ÁLGEBRA LINEAR GLOSSÁRIO: UM DICIONÁRIO PARA ÁLGEBRA LINEAR Matriz de adjacência de um grafo. Matriz quadrada com a ij = 1 quando existe uma arestado nodo i para o nodo j; caso contrário a ij = 0. A = A T para um grafo

Leia mais

CURSO DE. Álgebra Linear Aplicada

CURSO DE. Álgebra Linear Aplicada CURSO DE Álgebra Linear Aplicada Antonio Cândido Faleiros Centro de Matemática, Computação e Cognição Universidade Federal do ABC Santo André, SP 6 de abril de 2009 Sumário 1 Equações lineares 1 1.1 Equaçãoalgébricalinear...

Leia mais

Exercícios e questões de Álgebra Linear

Exercícios e questões de Álgebra Linear CEFET/MG Exercícios e questões de Álgebra Linear Versão 1.2 Prof. J. G. Peixoto de Faria Departamento de Física e Matemática 25 de outubro de 2012 Digitado em L A TEX (estilo RevTEX). 2 I. À GUISA DE NOTAÇÃO

Leia mais

Capítulo 1: Fração e Potenciação

Capítulo 1: Fração e Potenciação 1 Capítulo 1: Fração e Potenciação 1.1. Fração Fração é uma forma de expressar uma quantidade sobre o todo. De início, dividimos o todo em n partes iguais e, em seguida, reunimos um número m dessas partes.

Leia mais

Gramáticas Livres de Contexto

Gramáticas Livres de Contexto Gramáticas Livres de Contexto 25 de novembro de 2011 Definição 1 Uma Regra (ou produção) é um elemento do conjunto V (V Σ). Sendo que V é um conjunto finito de elementos chamados de variáveis e Σ um conjunto

Leia mais

Gobooks.com.br. PucQuePariu.com.br

Gobooks.com.br. PucQuePariu.com.br ÁLGEBRA LINEAR todos os conceitos, gráficos e fórmulas necessárias, em um só lugar. Gobooks.com.br PucQuePariu.com.br e te salvando de novo. Agora com o: RESUMO ÁLGEBRA LINEAR POR: Giovanni Tramontin 1.

Leia mais

Eduardo. Matemática Matrizes

Eduardo. Matemática Matrizes Matemática Matrizes Eduardo Definição Tabela de números dispostos em linhas e colunas. Representação ou Ordem da Matriz Se uma matriz A possui m linhas e n colunas, dizemos que A tem ordem m por n e escrevemos

Leia mais

ENSINO ENS. FUNDAMENTAL PROFESSOR(ES) TURNO. 01. A) 83 16 B) 3 2005 D) 103 a. 02. A) 5 2 B) 3 2 C) 6 2 D) a 2006 E) (ab) 3 F) (3a) p 03.

ENSINO ENS. FUNDAMENTAL PROFESSOR(ES) TURNO. 01. A) 83 16 B) 3 2005 D) 103 a. 02. A) 5 2 B) 3 2 C) 6 2 D) a 2006 E) (ab) 3 F) (3a) p 03. SÉRIE 8º ANO OLÍMPICO ENSINO ENS. FUNDAMENTAL PROFESSOR(ES) SEDE ALUNO(A) Nº RESOLUÇÃO TURMA TURNO DATA / / ÁLGEBRA CAPÍTULO POTENCIAÇÃO Exercícios orientados para a sua aprendizagem (Pág. 6 e 7) 0. A)

Leia mais

Produto de Matrizes. Márcio Nascimento

Produto de Matrizes. Márcio Nascimento Produto de Matrizes Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2016.1 1 de dezembro

Leia mais

Apostila 03 - Linguagens Livres de Contexto Exercícios

Apostila 03 - Linguagens Livres de Contexto Exercícios Cursos: Bacharelado em Ciência da Computação e Bacharelado em Sistemas de Informação Disciplinas: (1493A) Teoria da Computação e Linguagens Formais, (4623A) Teoria da Computação e Linguagens Formais e

Leia mais

INSTITUTO TECNOLÓGICO

INSTITUTO TECNOLÓGICO PAC - PROGRAMA DE APRIMORAMENTO DE CONTEÚDOS. ATIVIDADES DE NIVELAMENTO BÁSICO. DISCIPLINAS: MATEMÁTICA & ESTATÍSTICA. PROFº.: PROF. DR. AUSTER RUZANTE 1ª SEMANA DE ATIVIDADES DOS CURSOS DE TECNOLOGIA

Leia mais

Matrizes e sistemas de equações algébricas lineares

Matrizes e sistemas de equações algébricas lineares Capítulo 1 Matrizes e sistemas de equações algébricas lineares ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 1 / 37 Definições Equação linear Uma equação (algébrica)

Leia mais

Álgebra Linear e Geometria Analítica

Álgebra Linear e Geometria Analítica Álgebra Linear e Geometria Analítica Engenharia Electrotécnica Escola Superior de Tecnologia de Viseu wwwestvipvpt/paginaspessoais/lucas lucas@matestvipvpt 007/008 Álgebra Linear e Geometria Analítica

Leia mais

. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1

. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1 QUESTÕES ANPEC ÁLGEBRA LINEAR QUESTÃO 0 Assinale V (verdadeiro) ou F (falso): (0) Os vetores (,, ) (,,) e (, 0,) formam uma base de,, o espaço vetorial gerado por,, e,, passa pela origem na direção de,,

Leia mais

PROFº. LUIS HENRIQUE MATEMÁTICA

PROFº. LUIS HENRIQUE MATEMÁTICA Geometria Analítica A Geometria Analítica, famosa G.A., ou conhecida como Geometria Cartesiana, é o estudo dos elementos geométricos no plano cartesiano. PLANO CARTESIANO O sistema cartesiano de coordenada,

Leia mais

Nome: Instruções: Oabandonodasalaemcasodedesistênciasópoderáefectuar-sedecorridaumahoraapartirdoiníciodaprova.

Nome: Instruções: Oabandonodasalaemcasodedesistênciasópoderáefectuar-sedecorridaumahoraapartirdoiníciodaprova. ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA o TESTE 007/008 RESOLUÇÃO Curso: EECn Turma: 4-6() 07//007 Nome: N o Instruções: Otestequevairealizartemaduraçãode05minutoseéconstituído

Leia mais

Nivelamento Matemática Básica

Nivelamento Matemática Básica Faculdade de Tecnologia de Taquaritinga Av. Dr. Flávio Henrique Lemos, 8 Portal Itamaracá Taquaritinga/SP CEP 900-000 fone (6) -0 Nivelamento Matemática Básica ELIAMAR FRANCELINO DO PRADO Taquaritinga

Leia mais

Mudança de Coordenadas

Mudança de Coordenadas Mudança de Coordenadas Reginaldo J. Santos Departamento de Matemática-ICE Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi regi@mat.ufmg.br 13 de deembro de 2001 1 Rotação e Translação

Leia mais