Torção Deformação por torção de um eixo circular

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Torção Deformação por torção de um eixo circular"

Transcrição

1 Torção Deformação por torção de um eixo irular Torque é um momento que tende a torer um elemento em torno de seu eixo longitudinal. Se o ângulo de rotação for pequeno, o omprimento e o raio do eixo permaneerão inalterados. 1

2 Cisalhamento por torção BDρ dφ dx γ Torção lim, γ ρ dφ/dx (dφ/dx para todos os elementos na seção transversal na posição x) então a deformação por isalhamento é proporional a ρ Como dφ/dx γ / ρ γ max / então: γ (ρ / ) γ max γ (ρ / ) γ max

3 A fórmula da torção Se o material for linear elástio, então a lei de Hooke se aplia τgγ. Uma variação linear na deformação por isalhamento γ resulta em uma variação linear na tensão de isalhamento τ orrespondente, ao longo de qualquer linha radial na seção transversal. Portanto, igual que no aso da deformação por isalhamento, τ variará de zero a τ max τ máx τ T τ (ρ / ) τ max Para qualquer elemento de área da loalizado em ρ teremos uma força F τ da. O torque produzido por F será dt ρ τda e para toda a seção teremos: T τ máx ou τ J Tρ J tensão de isalhamento máxima no eixo deformação por isalhamento à distânia ρ torque interno resultante (método das seções!) J ρ 3 momento polar de inéria da área da seção transversal raio externo do eixo distânia intermediária

4 Como alular o J (momento polar de inéria)? Se o eixo tiver uma seção transversal irular maiça, utilizamos um anel diferenial de área de espessura dρ portanto da πρdρ e a integral (0 a ) fia: J π 4 Se o eixo tiver uma seção transversal tubular, J 4 4 ( ) π o i 4

5 Exemplo 1 O eixo maiço de raio é submetido a um torque T. Determine a fração de T à qual resiste o material ontido no interior da região externa do eixo, que tem raio interno / e raio externo. Solução: ( τda) ρ( ρ ) τ ( πρdρ ) dt' ρ máx τ Para toda a área sombreada mais lara, o torque é ( ρ ) τ máx A tensão no eixo varia linearmente, tal que. O torque no anel (área) loalizado no interior da região sombreada mais lara é πτ máx 3 15π T ' ρ dρ τ 3 / máx 3 (1) Qual o valor de τ max em função do torque interno resultante T? 5

6 Usando a fórmula de torção para determinar a tensão máxima no eixo, temos τ τ máx máx T J T 3 π T ( π ) 4 Substituindo essa expressão na Equação 1, 15 T ' T 16 (Resposta) 6

7 Exemplo O eixo está apoiado em dois manais e sujeito a três torques. Determine a tensão de isalhamento desenvolvida nos pontos A e B loalizados na seção a a do eixo. 7

8 Solução: Pelo diagrama de orpo livre do segmento esquerdo determinamos o torque interno resultante na seção: M x 0; T 0 T 1.50 kn mm O momento polar de inéria para o eixo é J π 4 7 ( 75) 4,97 10 mm Visto que A se enontra em ρ 75 mm, utilizando a fórmula da torção... τ A T J ( 1.50)( 75) 4, ,89 MPa (Resposta) Da mesma forma, para B, em ρ 15 mm, temos τ B T J ( 1.50)( 15) 4, ,377 MPa (Resposta) 8

9 Transmissão de potênia Potênia é definida omo o trabalho realizado por unidade de tempo. Para um eixo rotativo om torque, a potênia é: P Tω onde a veloidade angular do eixo é ω dθ / dt Visto que 1 ilo π rad ω π f, a equação para a potênia é P π ft Se onheemos o torque T e τ adm, para o projeto do eixo, o parâmetro de projeto ou parâmetro geométrio sai de: J T τ adm 9

10 Exemplo 3 Um eixo maiço de aço AB será usado para transmitir W do motor M ao qual está aoplado. Se o eixo girar a ω 175 rpm e o aço tiver uma tensão de isalhamento admissível τ adm 100 MPa, determine o diâmetro exigido para o eixo om preisão de mm. 10

11 Solução: O torque no eixo é P Tω 175 π T T 04,6 Nm 60 Assim, o parâmetro geométrio é: J 4 π T πτ adm T τ 1/3 adm ( 04,6)( 1.000) π ( 100) 1/3 10,9 mm Visto que 1,84 mm, seleione um eixo om diâmetro mm. 11

12 Exeríios 1. O tubo da figura é submetido a um torque de 750 Nm. Determine a parela desse torque à qual a seção sombreada inza resiste. Resolva o problema de duas maneiras: (a) usando a fórmula da torção e (b) determinando a resultante da distribuição da tensão de isalhamento (5.4) 1

13 . O eixo maiço de 30mm de diâmetro é usado para transmitir os torques apliados às engrenagens. Determine a tensão de isalhamento máxima (em valores absolutos) no eixo. (5.5) 13

14 3. O eixo maiço tem oniidade linear r A em uma extremidade e r B na outra extremidade. Deduza uma equação que dê a tensão de isalhamento máxima no eixo em uma loalização x ao longo da linha entral do eixo. (5.30) 14

15 4. O projeto de um automóvel prevê que o eixo de transmissão AB será um tubo om parede fina. O motor transmite 15 kw quando o eixo está girando a 1500 rev/min. Determine a espessura mínima da parede do eixo se o diâmetro externo for 6,5 mm. A tensão de isalhamento admissível do material é τ adm 50 Mpa. (5.33) 15

16 Ângulo de torção - φ Para o diso diferenial de espessura dx loalizado em x o torque em geral será T(x). Sendo dφ o desloamento relativo de uma fae em relação à outra já sabemos que a uma distânia ρ do eixo teremos γ ρ dφ/dx. Como τ Gγ e omo τ Tρ/J teremos: γ T(x) ρ/j(x)g substituindo teremos: Integrando em todo o omprimento L do eixo, temos φ L 0 T J ( x) ( x) dx G ( ) Φ ângulo de torção T(x) torque interno J(x) momento polar de inéria do eixo G módulo de elastiidade ao isalhamento Por exemplo, se o material é homogêneo, om seção, T e G onstantes... TL φ JG A onvenção de sinal é determinada pela regra da mão direita. 16

17 Exemplo 4 Os dois eixos maiços de aço estão interligados por meio das engrenagens. Determine o ângulo de torção da extremidade A do eixo AB quando é apliado o torque 45 Nm. Considere G 80 GPa. O eixo AB é livre para girar dentro dos manais E e F, enquanto o eixo DC é fixo em D. Cada eixo tem diâmetro de 0 mm. 17

18 Solução: Do diagrama de orpo livre, nas engrenagens teremos uma F e um T: F 45/ 0, N ( ) 300( 0,075),5 Nm T D x φ 1. O ângulo de torção da engrenagem C é C T L JG DC ( +,5)( 1,5) ( π )( 0,001 ) 80 ( 10 ) Visto que as engrenagens na extremidade estão relaionadas (r θ te), 9 [ ] + 4 0,069 rad φ B ( 0,15) ( 0,069)( 0,075) 0,0134 rad Agora determinaremos o ângulo de torção da extremidade A em relação à extremidade B. 18

19 O ângulo na extremidade A em relação ao extremo B do eixo AB ausada pelo torque de 45 Nm, φ T L JG ( + 45)( ) AB AB A/ B + 4 ( )( 0,010) [ 80( 10 )] 9 π A rotação total da extremidade A é portanto 0,0716 rad φ A φb B + φa/ 0, , ,0850 rad (Resposta) 19

20 Exemplo 5 O eixo ônio mostrado abaixo é feito de um material om módulo de isalhamento G. Determine o ângulo de torção de sua extremidade B quando submetido ao torque T. 0

21 Solução: Do diagrama de orpo livre, o torque interno é T e o raio (x) é: L x x L 1 1 Assim, em x teremos um J(x): ( ) 4 1 L x x J π O ângulo de torção será: (Resposta) G TL L x dx G πt L π φ 1 ( ) ( ) L G x J dx x T 0 φ

22 Exeríios 5. Um eixo é submetido a um torque T. Compare a efetividade da utilização do tubo mostrado na figura om a de uma seção maiça de raio. Para isso alule o aumento perentual na tensão de torção e no ângulo de torção por unidade de omprimento para o tubo em omparação om o da seção maiça (5.45)

23 Exeríios 6. O eixo de aço A-36 de 0 mm de diâmetro é submetido aos torques mostrados. Determine o ângulo de torção da extremidade B (5.51) 3

24 Exeríios 7. O eixo maiço de 60 mm de diâmetro de aço A-36 é submetido aos arregamentos de torção distribuídos e onentrados mostrados na figura. Determine o ângulo de torção na extremidade livre A devido a esses arregamentos (5.6) 4

25 Elementos estatiamente indeterminados arregados om torque 0 0 çã ( ) O ângulo de torção da extremidade A em relação à outra (B) deve ser 0 φ 0 Portanto: 0 Como L L AB +L BC obtemos:

26 Exemplo 6 O eixo maiço de aço mostrado na figura abaixo tem diâmetro de 0 mm. Se for submetido aos dois torques, determine as reações nos apoios fixos A e B. Solução: Examinando o diagrama de orpo livre, M x 0 ; T T 0 b A (1) Visto que as extremidades do eixo são fixas,. / B 0 TL Utilizando a relação φ para as 3 regiões: JG Para as três regiões (método das seções), usando a onvenção de sinal (para fora + ver figura ao lado): TB JG ( 0,) ( T + 500)( 1,5 ) T ( 0,3) + A JG + 1,8 T A A JG 0,T B 0 φ A 750 () Resolvendo as equações 1 e, obtemos T A 345 Nm e T B 645 Nm. 6

27 Exeríios 8. O eixo de aço é omposto por dois segmentos: AC, om diâmetro de 1 mm e CB, om diâmetro de 5 mm. Se estiver preso em suas extremidades A e B e for submetido a um torque de 750 Nm, determine a tensão de isalhamento máxima no eixo. G aço 75 Gpa (5.76) 7

Resistência dos Materiais

Resistência dos Materiais Aula 6 Estudo de Torção, Transmissão de Potência e Torque Aula 6 Definição de Torque Torque é o momento que tende a torcer a peça em torno de seu eixo longitudinal. Seu efeito é de interesse principal

Leia mais

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais II Estruturas III. Capítulo 2 Torção

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais II Estruturas III. Capítulo 2 Torção Capítulo 2 Torção 2.1 Revisão Torque é um momento que tende a torcer um elemento em torno de seu eixo longitudinal. Se o ângulo de rotação for pequeno, o comprimento e o raio do eixo permanecerão inalterados.

Leia mais

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais I Estruturas II. Capítulo 5 Torção

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais I Estruturas II. Capítulo 5 Torção Capítulo 5 Torção 5.1 Deformação por torção de um eixo circular Torque é um momento que tende a torcer um elemento em torno de seu eixo longitudinal. Se o ângulo de rotação for pequeno, o comprimento e

Leia mais

Terceira Lista de Exercícios

Terceira Lista de Exercícios Universidade Católica de Petrópolis Disciplina: Resitência dos Materiais I Prof.: Paulo César Ferreira Terceira Lista de Exercícios 1. Calcular o diâmetro de uma barra de aço sujeita a ação de uma carga

Leia mais

Curso de Engenharia Civil. Universidade Estadual de Maringá Centro de Tecnologia Departamento de Engenharia Civil CAPÍTULO 6: TORÇÃO

Curso de Engenharia Civil. Universidade Estadual de Maringá Centro de Tecnologia Departamento de Engenharia Civil CAPÍTULO 6: TORÇÃO Curso de Engenharia Civil Universidade Estadual de Maringá Centro de ecnologia Departamento de Engenharia Civil CPÍULO 6: ORÇÃO Revisão de Momento orçor Convenção de Sinais: : Revisão de Momento orçor

Leia mais

2.0 DEFORMAÇÃO POR TORÇÃO DE UM EIXO CIRCULAR

2.0 DEFORMAÇÃO POR TORÇÃO DE UM EIXO CIRCULAR TORÇÃO 1.0 OBJETIVO No estudo da torção serão discutidos os efeitos da aplicação de esforços torcionais em um elemento linear longo, tal como um eixo ou um tubo. Será considerado que o elemento tenha seção

Leia mais

D - Torção Pura. ω ω. Utilizador

D - Torção Pura. ω ω. Utilizador 4.0 ORÇÃO PURA D - orção Pura 4.1 MOMENO DE ORÇÃO ORQUE Quando uma barra reta é submetida, exclusivamente, a um momento em torno do eixo da barra, diz-se que estará submetida a um momento torçor (ou torque).

Leia mais

Fichas de sistemas de partículas

Fichas de sistemas de partículas Capítulo 3 Fichas de sistemas de partículas 1. (Alonso, pg 247) Um tubo de secção transversal a lança um fluxo de gás contra uma parede com uma velocidade v muito maior que a agitação térmica das moléculas.

Leia mais

Aula 14 - Transmissão de Potência e Torque.

Aula 14 - Transmissão de Potência e Torque. Aula 14 - Transmissão de Potência e Torque. Prof. Wanderson S. Paris, M.Eng. prof@cronosquality.com.br Transmissão de Potência Eixos e tubos com seção transversal circular são freqüentemente empregados

Leia mais

Aula 13 - Estudo de Torção.

Aula 13 - Estudo de Torção. Aula 13 - Estudo Torção. Prof. Wanrson S. Paris, M.Eng. prof@cronosquality.com.br Definição Torque Torque é o momento que ten a torcer a peça em torno seu eixo longitudinal. Seu efeito é interesse principal

Leia mais

Resistência dos Materiais

Resistência dos Materiais Aula 5 Carga Axial e Princípio de Saint-Venant Carga Axial A tubulação de perfuração de petróleo suspensa no guindaste da perfuratriz está submetida a cargas e deformações axiais extremamente grandes,

Leia mais

Ensaios Mecânicos de Materiais. Aula 10 Ensaio de Torção. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Ensaios Mecânicos de Materiais. Aula 10 Ensaio de Torção. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Ensaios Mecânicos de Materiais Aula 10 Ensaio de Torção Tópicos Abordados Nesta Aula Ensaio de Torção. Propriedades Avaliadas do Ensaio. Exemplos de Cálculo. Definições O ensaio de torção consiste em aplicação

Leia mais

M Questões Corte / Torção Questões de Testes e Provas Corte Puro Torção Pura. 4 cordões de solda a = 4 mm; l =160 mm. 60 k N

M Questões Corte / Torção Questões de Testes e Provas Corte Puro Torção Pura. 4 cordões de solda a = 4 mm; l =160 mm. 60 k N M Questões orte / Torção Questões de Testes e rovas orte uro Torção ura 8 parafusos Φ = 10 mm cordões de solda a = mm; l =160 mm 160 00 60 k N (1) ROV 003-01 O duto esquematizado é fabricado em chapa de

Leia mais

Resistência dos Materiais. Aula 6 Estudo de Torção, Transmissão de Potência e Torque

Resistência dos Materiais. Aula 6 Estudo de Torção, Transmissão de Potência e Torque Aula 6 Estudo de Torção, Transmissão de Potência e Torque Definição de Torque Torque é o momento que tende a torcer a peça em torno de seu eixo longitudinal. Seu efeito é de interesse principal no projeto

Leia mais

PUCGoiás Física I. Lilian R. Rios. Rotação

PUCGoiás Física I. Lilian R. Rios. Rotação PUCGoiás Física I Lilian R. Rios Rotação O movimento de um cd, de um ventilador de teto, de uma roda gigante, entre outros, não podem ser representados como o movimento de um ponto cada um deles envolve

Leia mais

MECÂNICA GERAL PARA ENGENHEIROS

MECÂNICA GERAL PARA ENGENHEIROS MEÂNI GER R ENGENHEIRS apítulo rofª: cilayne Freitas de quino Forças no lano sobre um orpo Rígido R RGID Em mecânica elementar assumimos que a maior parte dos corpos são rígidos, isto é, as deformações

Leia mais

5ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO FLEXÃO

5ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO FLEXÃO Universidade Federal da Bahia Escola Politécnica Departamento de Construção e Estruturas Professor: Armando Sá Ribeiro Jr. Disciplina: ENG285 - Resistência dos Materiais I-A www.resmat.ufba.br 5ª LISTA

Leia mais

e a temperatura do gás, quando, no decorrer deste movimento,

e a temperatura do gás, quando, no decorrer deste movimento, Q A figura mostra em corte um recipiente cilíndrico de paredes adiabáticas munido de um pistão adiabático vedante de massa M kg e raio R 5 cm que se movimenta sem atrito. Este recipiente contém um mol

Leia mais

Resistência dos Materiais

Resistência dos Materiais Aula 7 Estudo de Torção, Ângulo de Torção Ângulo de Torção O projeto de um eixo depende de limitações na quantidade de rotação ou torção ocorrida quando o eixo é submetido ao torque, desse modo, o ângulo

Leia mais

Vibrações Mecânicas. Vibração Livre Sistemas com 1 GL. Ramiro Brito Willmersdorf ramiro@willmersdorf.net

Vibrações Mecânicas. Vibração Livre Sistemas com 1 GL. Ramiro Brito Willmersdorf ramiro@willmersdorf.net Vibrações Mecânicas Vibração Livre Sistemas com 1 GL Ramiro Brito Willmersdorf ramiro@willmersdorf.net Departamento de Engenharia Mecânica Universidade Federal de Pernambuco 2015.1 Introdução Modelo 1

Leia mais

lb d pol Para o trecho CB temos: pol Resposta: A tensão de cisalhamento no trecho AC é de 27,2 ksi e no trecho CB é de 10,9 ksi.

lb d pol Para o trecho CB temos: pol Resposta: A tensão de cisalhamento no trecho AC é de 27,2 ksi e no trecho CB é de 10,9 ksi. 1) O exo macço de 1,5 de dâmetro é usado para transmtr os torques aplcados às engrenagens. Determnar a tensão de csalhamento desenvolvda nos trechos AC e CB do exo. Para o trecho AC temos: T 1500.pés 1500

Leia mais

EM 421 - RESISTÊNCIA DOS MATERIAIS I 3. Prova Data: 06/12/96 Profs. Marco Lúcio Bittencourt e Euclides de Mesquita Neto GABARITO

EM 421 - RESISTÊNCIA DOS MATERIAIS I 3. Prova Data: 06/12/96 Profs. Marco Lúcio Bittencourt e Euclides de Mesquita Neto GABARITO EM 421 - RESISTÊNCIA DOS MATERIAIS I 3. Prova Data: 06/12/96 Profs. Marco Lúcio Bittencourt e Euclides de Mesquita Neto GABARITO 1. QUESTÃO (VALOR 6.0) A viga bi-engastada abaio mostrada deverá ser construída

Leia mais

MOVIMENTO CIRCULAR ATIVIDADE 1 Professores: Claudemir C. Alves / Luiz C. R. Montes

MOVIMENTO CIRCULAR ATIVIDADE 1 Professores: Claudemir C. Alves / Luiz C. R. Montes MOVIMENTO CIRCULAR ATIVIDADE 1 Professores: Claudemir C. Alves / Luiz C. R. Montes 1 1- Velocidade Angular (ω) Um ponto material P, descrevendo uma trajetória circular de raio r, apresenta uma variação

Leia mais

FICHA DE TRABALHO 6 - RESOLUÇÃO

FICHA DE TRABALHO 6 - RESOLUÇÃO ecção de Álgebra e Análise, Departamento de Matemática, Instituto uperior Técnico Análise Matemática III A - 1 o semestre de 23/4 FIHA DE TRABALHO 6 - REOLUÇÃO 1) Indique se as formas diferenciais seguintes

Leia mais

Introdução A tensão plana existe praticamente em todas as estruturas comuns, incluindo prédios máquinas, veículos e aeronaves.

Introdução A tensão plana existe praticamente em todas as estruturas comuns, incluindo prédios máquinas, veículos e aeronaves. - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Vasos de Pressão Introdução

Leia mais

3 Conceitos Fundamentais

3 Conceitos Fundamentais 3 Coneitos Fundamentais Neste aítulo são aresentados oneitos fundamentais ara o entendimento e estudo do omressor axial, assim omo sua modelagem termodinâmia 3 Máquinas de Fluxo As máquinas de fluxo odem

Leia mais

26 a 28 de maio de 2010 Associação Brasileira de Métodos Computacionais em Engenharia

26 a 28 de maio de 2010 Associação Brasileira de Métodos Computacionais em Engenharia Universidade ederal de São João Del-Rei MG 26 a 28 de maio de 200 Assoiação rasileira de Métodos Computaionais em Engenharia Aoplamento entre o Método dos Elementos de Contorno e o Método dos Elementos

Leia mais

Capítulo 6 Transformação de tensões e critérios de falhas

Capítulo 6 Transformação de tensões e critérios de falhas Capítulo 6 Transformação de tensões e critérios de falhas 6.1 Tensões principais no plano- O estado geral de tensão em um ponto é caracterizado por seis componentes independentes da tensão normal e de

Leia mais

Universidade Federal de Santa Catarina Departamento de Engenharia Mecânica Grupo de Análise e Projeto Mecânico

Universidade Federal de Santa Catarina Departamento de Engenharia Mecânica Grupo de Análise e Projeto Mecânico Universidade Federal de Santa Catarina Departamento de Engenharia Mecânica Grupo de nálise e Projeto Mecânico CURSO DE MECÂNIC DOS SÓLIDOS Prof. José Carlos Pereira gosto de 00 SUMÁRIO 1 CÁLCULO DS REÇÕES...

Leia mais

Faculdade de Engenharia Química (FEQ) Departamento de Termofluidodinâmica (DTF) Disciplina EQ741 - Fenômenos de Transporte III

Faculdade de Engenharia Química (FEQ) Departamento de Termofluidodinâmica (DTF) Disciplina EQ741 - Fenômenos de Transporte III Fauldade de Engenharia Químia (FEQ) Departamento de Termofluidodinâmia (DTF) Disiplina EQ74 - Fenômenos de Transporte III Capítulo III Difusão Moleular em Estado Estaionário Professora: Katia Tannous Monitor:

Leia mais

Lista de exercícios sobre barras submetidas a força normal

Lista de exercícios sobre barras submetidas a força normal RESISTÊNCIA DOS MATERIAIS I Lista de exercícios sobre barras submetidas a força normal 1) O cabo e a barra formam a estrutura ABC (ver a figura), que suporta uma carga vertical P= 12 kn. O cabo tem a área

Leia mais

Limalhas de ferro sob ação de um campo magnético (Esquerda). Linhas de campo magnético da Terra (Direita)

Limalhas de ferro sob ação de um campo magnético (Esquerda). Linhas de campo magnético da Terra (Direita) O ampo Magnético Os primeiros registros de campos magnéticos foram feitos pelos gregos quando descobriram a quase 6 anos A.. uma pedra que tinha a propriedade de atrair metais Esta pedra, mais precisamente

Leia mais

Exercícios 3 Movimentos em 2 Dimensões, Movimento Circular e Aplicações

Exercícios 3 Movimentos em 2 Dimensões, Movimento Circular e Aplicações Exercícios 3 Movimentos em 2 Dimensões, Movimento Circular e Aplicações Movimentos em 2D 1) Você está operando um modelo de carro com controle remoto em um campo de tênis vazio. Sua posição é a origem

Leia mais

Prof. MSc. David Roza José -

Prof. MSc. David Roza José - 1/15 2/15 Torção Objetivos: Determinar a distribuição de tensão de um membro longilíneo circular sujeito a um carregamento torsional; Determinar o giro provocado a um membro longilíneo circular sujeito

Leia mais

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais II. Capítulo 2 Torção

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais II. Capítulo 2 Torção Capítulo 2 Torção 2.1 Revisão Torque é um momento que tende a torcer um elemento em torno de seu eixo longitudinal. Se o ângulo de rotação for pequeno, o comprimento e o raio do eixo permanecerão inalterados.

Leia mais

Calculando RPM. O s conjuntos formados por polias e correias

Calculando RPM. O s conjuntos formados por polias e correias A U L A Calculando RPM O problema O s conjuntos formados por polias e correias e os formados por engrenagens são responsáveis pela transmissão da velocidade do motor para a máquina. Geralmente, os motores

Leia mais

Comprimentos de Curvas e Coordenadas Polares Aula 38

Comprimentos de Curvas e Coordenadas Polares Aula 38 Comprimentos de Curvas e Coordenadas Polares Aula 38 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 12 de Junho de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia

Leia mais

Resistência. dos Materiais II

Resistência. dos Materiais II Resistência Prof. MSc Eng Halley Dias dos Materiais II Material elaborado pelo Prof. MSc Eng Halley Dias Instituto Federal de Educação Ciência e Tecnologia de Santa Catarina Aplicado ao Curso Técnico de

Leia mais

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais II Estruturas III. Capítulo 5 Flambagem

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais II Estruturas III. Capítulo 5 Flambagem Capítulo 5 Flambagem 5.1 Experiências para entender a flambagem 1) Pegue uma régua escolar de plástico e pressione-a entre dois pontos bem próximos, um a cinco centímetros do outro. Você está simulando

Leia mais

PROVAESCRITA CARGO: ENGENHARIA CIVIL I

PROVAESCRITA CARGO: ENGENHARIA CIVIL I MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO SUL DE MINAS GERAIS CONCURSO PÚBLICO DE DOCENTES DO QUADRO EFETIVO EDITAL

Leia mais

MODELO CINEMÁTICO DE UM ROBÔ MÓVEL

MODELO CINEMÁTICO DE UM ROBÔ MÓVEL MODELO CINEMÁTICO DE UM ROBÔ MÓVEL y r v ω r E v E y ω E v D b ω D r D θ x x (x,y) = Posição do referencial fixo no robô em relação ao referencial fixo no espaço de trabalho. θ = Ângulo de orientação do

Leia mais

Polias, Correias e Transmissão de Potência

Polias, Correias e Transmissão de Potência Polias, Correias e Transmissão de Potência Blog Fatos Matemáticos Prof. Paulo Sérgio Costa Lino Maio de 2013 Introdução Figura 1: Esquema de duas polias acopladas através de uma correia As polias são peças

Leia mais

RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE III

RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE III RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE III Prof. Dr. Daniel Caetano 2012-2 Objetivos Conceituar e capacitar paa a resolução de problemas estaticamente indeterminados na torção Compreender as limitações

Leia mais

PROCESSAMENTO DOS DADOS DE DIFRAÇÃO DE RAIOS X PARA MEDIÇÃO DE TENSÕES

PROCESSAMENTO DOS DADOS DE DIFRAÇÃO DE RAIOS X PARA MEDIÇÃO DE TENSÕES PROCESSAMENTO DOS DADOS DE DIFRAÇÃO DE RAIOS X PARA MEDIÇÃO DE TENSÕES J.T.Assis joaquim@iprj.uerj.br V.I.Monin monin@iprj.uerj.br Souza, P. S. Weidlih, M. C. Instituto Politénio IPRJ/UERJ Caixa Postal

Leia mais

(a) a aceleração do sistema. (b) as tensões T 1 e T 2 nos fios ligados a m 1 e m 2. Dado: momento de inércia da polia I = MR / 2

(a) a aceleração do sistema. (b) as tensões T 1 e T 2 nos fios ligados a m 1 e m 2. Dado: momento de inércia da polia I = MR / 2 F128-Lista 11 1) Como parte de uma inspeção de manutenção, a turbina de um motor a jato é posta a girar de acordo com o gráfico mostrado na Fig. 15. Quantas revoluções esta turbina realizou durante o teste?

Leia mais

Manual de Laboratório Física Experimental I- Hatsumi Mukai e Paulo R.G. Fernandes

Manual de Laboratório Física Experimental I- Hatsumi Mukai e Paulo R.G. Fernandes Pêndulo Simples 6.1 Introdução: Capítulo 6 Um pêndulo simples se define como uma massa m suspensa por um fio inextensível, de comprimento com massa desprezível em relação ao valor de m. Se a massa se desloca

Leia mais

Exercícios do item 1.6: 1) Calcule as reações nos apoios da viga abaixo.

Exercícios do item 1.6: 1) Calcule as reações nos apoios da viga abaixo. Exercícios do item 1.5: 1) Calcule a força de tração nas duas barras da estrutura abaixo. tan θ 0 1 θ1 arc tan (0,75) θ1, 87 tan θ 0 θ arc tan (1,) θ 5, 1 o x 0 : 1 cos (,87 ) cos(5,1 ) 0 0, 0,8 1 0,8

Leia mais

Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA

Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Carga Elétrica e Lei de Coulomb 1. Consideremos o ponto P no centro de um quadrado

Leia mais

3.4 Movimento ao longo de uma curva no espaço (terça parte)

3.4 Movimento ao longo de uma curva no espaço (terça parte) 3.4-41 3.4 Movimento ao longo de uma curva no espaço (terça parte) Antes de começar com a nova matéria, vamos considerar um problema sobre o material recentemente visto. Problema: (Projeção de uma trajetória

Leia mais

Aula -2 Motores de Corrente Contínua com Escovas

Aula -2 Motores de Corrente Contínua com Escovas Aula -2 Motores de Corrente Contínua com Escovas Introdução Será descrito neste tópico um tipo específico de motor que será denominado de motor de corrente contínua com escovas. Estes motores possuem dois

Leia mais

e R 2 , salta no ar, atingindo sua altura máxima no ponto médio entre A e B, antes de alcançar a rampa R 2

e R 2 , salta no ar, atingindo sua altura máxima no ponto médio entre A e B, antes de alcançar a rampa R 2 FÍSICA 1 Uma pista de skate, para esporte radical, é montada a partir de duas rampas R 1 e R 2, separadas entre A e B por uma distância D, com as alturas e ângulos indicados na figura. A pista foi projetada

Leia mais

Torção em eixos de seção circular Análise de tensões e deformações na torção Exercícios. Momento torsor. 26 de setembro de 2016.

Torção em eixos de seção circular Análise de tensões e deformações na torção Exercícios. Momento torsor. 26 de setembro de 2016. 26 de setembro de 2016 00 11 0000 1111 000000 111111 0 1 0 1 000000 111111 0000 1111 00 11 0000 1111 000000 111111 0 1 0 1 000000 111111 0000 1111 Este capítulo é dividido em duas partes: 1 Torção em barras

Leia mais

Modelo Matemático e Controle de um Robô Móvel. 2.1. Modelo do motor que aciona cada roda do robô

Modelo Matemático e Controle de um Robô Móvel. 2.1. Modelo do motor que aciona cada roda do robô 1. Introdução Modelo Matemático e Controle de um Robô Móvel Nesta aula serão apresentadas leis de controle que permitem a um robô móvel nãoholonômico navegar de maneira coordenada desde uma localização

Leia mais

Critérios de Resistência

Critérios de Resistência Critérios de Resistência Coeficiente de segurança ensão uivalente Seja um ponto qualquer, pertencente a um corpo em uilíbrio, submetido a um estado de tensões cujas tensões principais estão representadas

Leia mais

4ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO ANÁLISE DE TENSÕES

4ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO ANÁLISE DE TENSÕES Universidade Federal da Bahia Escola Politécnica Departamento de Construção e Estruturas Disciplina: ENG285 - Resistência dos Materiais I-A Professor: Armando Sá Ribeiro Jr. www.resmat.ufba.br 4ª LISTA

Leia mais

Departamento de Engenharia Química e de Petróleo UFF

Departamento de Engenharia Química e de Petróleo UFF Departamento de Engenharia Químia e de Petróleo UFF Outros Aula Proessos 08 de Separação Malhas de Controle Realimentado (Feed-Bak) Diagrama de Bloos usto Prof a Ninoska Bojorge Controlador SUMÁRIO Bloo

Leia mais

FISICA (PROVA DISCURSIVA)

FISICA (PROVA DISCURSIVA) FISICA (PROVA DISCURSIVA) Questão 1: A transmissão de energia elétria das usinas hidrelétrias para os entros onsumidores é feita através de fios metálios que transmitem milhares de watts. Como esses fios

Leia mais

LISTA DE EXERCICIOS RM - TORÇÃO

LISTA DE EXERCICIOS RM - TORÇÃO PROBLEMAS DE TORÇÃO SIMPLES 1 1) Um eixo circular oco de aço com diâmetro externo de 4 cm e espessura de parede de 0,30 cm está sujeito ao torque puro de 190 N.m. O eixo tem 2,3 m de comprimento. G=83

Leia mais

Questão 46. Questão 48. Questão 47. alternativa D. alternativa E

Questão 46. Questão 48. Questão 47. alternativa D. alternativa E Questão 46 Correndo com uma bicicleta, ao longo de um trecho retilíneo de uma ciclovia, uma criança mantém a velocidade constante de módulo igual a,50 m/s. O diagrama horário da posição para esse movimento

Leia mais

1 ATUADORES HIDRÁULICOS

1 ATUADORES HIDRÁULICOS 1 ATUADORES HIDRÁULICOS Danniela Rosa Sua função é aplicar ou fazer atuar energia mecânica sobre uma máquina, levando-a a realizar um determinado trabalho. Aliás, o motor elétrico também é um tipo de atuador.

Leia mais

Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5

Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5 Cálculo em Computadores - 2007 - trajectórias Trajectórias Planas Índice Trajectórias. exercícios............................................... 2 2 Velocidade, pontos regulares e singulares 2 2. exercícios...............................................

Leia mais

Resistência dos Materiais

Resistência dos Materiais Resistência dos Materiais Eng. Mecânica, Produção UNIME 2016.1 Lauro de Freitas, Março, 2016. 3 Torção Conteúdo Introdução Cargas de Torção em Eixos Circulares Torque Puro Devido a Tensões Internas Componentes

Leia mais

Teorema da Mudança de Variáveis

Teorema da Mudança de Variáveis Instituto Superior écnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires eorema da Mudança de Variáveis 1 Mudança de Variáveis Definição 1 Seja R n um aberto. Di-se que uma

Leia mais

Modelagem de Sistemas Dinâmicos. Eduardo Camponogara

Modelagem de Sistemas Dinâmicos. Eduardo Camponogara Equações Diferenciais Ordinárias Modelagem de Sistemas Dinâmicos Eduardo Camponogara Departamento de Automação e Sistemas Universidade Federal de Santa Catarina DAS-5103: Cálculo Numérico para Controle

Leia mais

Lista 4. 2 de junho de 2014

Lista 4. 2 de junho de 2014 Lista 4 2 de junho de 24 Seção 5.. (a) Estime a área do gráfico de f(x) = cos x de x = até x = π/2 usando quatro retângulos aproximantes e extremidades direitas. Esboce os gráficos e os retângulos. Sua

Leia mais

Mecânica dos Materiais

Mecânica dos Materiais Mecânica dos Materiais Esforços axiais Tensões e Deformações Esforços multiaxiais Lei de Hooke generalizada 2 Tradução e adaptação: Victor Franco Correia (versão 1/2013) Ref.: Mechanics of Materials, Beer,

Leia mais

UniposRio - FÍSICA. Leia atentamente as oito (8) questões e responda nas folhas de respostas fornecidas.

UniposRio - FÍSICA. Leia atentamente as oito (8) questões e responda nas folhas de respostas fornecidas. UniposRio - FÍSICA Exame Unificado de Acesso às Pós-Graduações em Física do Rio de Janeiro 9 de novembro de 00 Nome (legível): Assinatura: Leia atentamente as oito (8) questões e responda nas folhas de

Leia mais

Condução Unidimensional em Regime Estacionário 5ª parte (Geração de Energia Térmica e Superfícies Estendidas)

Condução Unidimensional em Regime Estacionário 5ª parte (Geração de Energia Térmica e Superfícies Estendidas) FENÔMENOS DE TRANSPORTE II TRANSFERÊNCIA DE CALOR DEQ303 Condução Unidimensional em Regime Estacionário 5ª parte (Geração de Energia Térmica e Superfícies Estendidas) Professor Osvaldo Chiavone Filho Soluções

Leia mais

Torção - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA SALETE SOUZA DE OLIVEIRA BUFFONI

Torção - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA SALETE SOUZA DE OLIVEIRA BUFFONI - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA SALETE SOUZA DE OLIVEIRA BUFFONI RESISTÊNCIA DOS MATERIAIS Torção Definições: Torção se refere ao giro de

Leia mais

Esforços axiais e tensões normais

Esforços axiais e tensões normais Esforços axiais e tensões normais (Ref.: Beer & Johnston, Resistência dos Materiais, ª ed., Makron) Considere a estrutura abaixo, construída em barras de aço AB e BC, unidas por ligações articuladas nas

Leia mais

Dica : Para resolver esse exercício pegue o arquivo pontosm.txt, na página do professor.

Dica : Para resolver esse exercício pegue o arquivo pontosm.txt, na página do professor. Colégio Ténio Antônio Teieira Fernandes Disiplina ICG Computação Gráfia - 3º Anos (Informátia) (Lista de Eeríios I - Bimestre) Data: 10/03/2015 Eeríios 1) Elabore um proedimento em C++ que passe os pares

Leia mais

8 a Aula. Fundações por estacas

8 a Aula. Fundações por estacas Meânia dos Solos e Fundações PEF 522 8 a Aula Fundações por estaas Fundações por estaas Conreto Aço madeira 1 Capaidade de arga de estaas Q ult Q atrito lateral Q ult = Q atrito lateral + Q ponta Q ponta

Leia mais

Models for prevision of the modulus of elasticity of concrete: NBR- 6118 versus CEB

Models for prevision of the modulus of elasticity of concrete: NBR- 6118 versus CEB Teoria e Prátia na Engenharia Civil, n.12, p.81-91, Outubro, 08 Modelos para previsão do módulo de deformação longitudinal do onreto: NBR-6118 versus Models for prevision of the modulus of elastiity of

Leia mais

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 21

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 21 Aula 1 Ondas sonoras harmônicas Na aula passada deduzimos a equação de onda para ondas sonoras propagando-se em uma dimensão. Vimos que ela pode ser escrita em termos de três variáveis medidas em relação

Leia mais

PEA 2400 - MÁQUINAS ELÉTRICAS I 60 CARACTERIZAÇÃO DAS PERDAS E RENDIMENTO NO TRANSFORMADOR EM CARGA: PERDAS NO FERRO (HISTERÉTICA E FOUCAULT)

PEA 2400 - MÁQUINAS ELÉTRICAS I 60 CARACTERIZAÇÃO DAS PERDAS E RENDIMENTO NO TRANSFORMADOR EM CARGA: PERDAS NO FERRO (HISTERÉTICA E FOUCAULT) PEA 400 - MÁQUINAS ELÉTRICAS I 60 CARACTERIZAÇÃO DAS PERDAS E RENDIMENTO NO TRANSFORMADOR EM CARGA: PERDAS NO FERRO (HISTERÉTICA E FOUCAULT) PERDAS CONSTANTES: p C INDEPENDENTES DA CARGA EFEITO DO CAMPO

Leia mais

Analogia de Mohr. Viga Análoga.

Analogia de Mohr. Viga Análoga. nalogia de Mohr analogia de Mohr se baseia no fato ue a euação da linha elástia e a euação do relaionamento entre a arga apliada, a força ortante e o momento fletor possuem a mesma forma. expressão 1 é

Leia mais

Carga axial. Princípio de Saint-Venant

Carga axial. Princípio de Saint-Venant Carga axial Princípio de Saint-Venant O princípio Saint-Venant afirma que a tensão e deformação localizadas nas regiões de aplicação de carga ou nos apoios tendem a nivelar-se a uma distância suficientemente

Leia mais

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Eletrônica Departamento de Sistemas e Controle

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Eletrônica Departamento de Sistemas e Controle Instituto Tecnológico de Aeronáutica Divisão de Engenharia Eletrônica Departamento de Sistemas e ontrole EES-5/ ELE/AES Engenharia de ontrole LAB : rojeto e Simulação de ontrolador com ealimentação de

Leia mais

ENG285 TORÇÃO. =. á. = G. (material linear-elástico) Adriano Alberto

ENG285 TORÇÃO. =. á. = G. (material linear-elástico) Adriano Alberto ENG285 1 Adriano Alberto Fonte: Hibbeler, R.C., Resistência dos Materiais 5ª edição; Beer 5ª Ed; Barroso, L.C., Cálculo Numérico (com aplicações) 2ª edição; slides do Prof. Alberto B. Vieira Jr.; http://pessoal.sercomtel.com.br/matematica/geometria/geom-areas/geomareas-circ.htm

Leia mais

TORNEIRO MECÂNICO OPERAÇÃO

TORNEIRO MECÂNICO OPERAÇÃO TORNEIRO MECÂNICO OPERAÇÃO RETIFICAR SUPERF. CÔNICAS E CILÍNDRICAS EXTERNAS DEFINIÇÃO: É utilizar uma retificadora portátil, presa no carro superior do torno, cujo rebolo, em rotação, age como ferramenta,

Leia mais

RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE IV

RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE IV RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE IV Prof. Dr. Daniel Caetano 2012-2 Objetivos Conceituar fluxo de cisalhamento Determinar distribuição de tensões de cisalhamento em tubos de paredes finas sob

Leia mais

Concurso Público para provimento de cargo efetivo de Docentes. Edital 24/2015 ENGENHARIA MECÂNICA Campus Santos Dumont

Concurso Público para provimento de cargo efetivo de Docentes. Edital 24/2015 ENGENHARIA MECÂNICA Campus Santos Dumont Questão 01 O registro representado na Figura 1 é composto por vários componentes mecânicos, muitos deles, internamente à caraça. Peças com essa característica são difíceis de representar em desenhos técnicos,

Leia mais

EXPERIMENTO 08 REOLOGIA - VISCOSIDADE DE LÍQUIDOS. b) Reagentes. - Óleo mineral; - Biodiesel; - Mel ou melado.

EXPERIMENTO 08 REOLOGIA - VISCOSIDADE DE LÍQUIDOS. b) Reagentes. - Óleo mineral; - Biodiesel; - Mel ou melado. ŀ EXPERIMENTO 08 UNIVERSIDADE COMUNITÁRIA REGIONAL DE CHAPECÓ ÁREA DE CIÊNCIAS EXATAS E AMBIENTAIS ENGENHARIA DE ALIMENTOS/ENGENHARIA QUÍMICA DISCIPLINA: FÍSICO-QUÍMICA EXPERIMENTAL PROFESSOR: JACIR DAL

Leia mais

CAP. 3 - EXTENSÔMETROS - "STRAIN GAGES" Exemplo: extensômetro Huggenberger

CAP. 3 - EXTENSÔMETROS - STRAIN GAGES Exemplo: extensômetro Huggenberger CAP. 3 - EXTENSÔMETOS - "STAIN GAGES" 3. - Extensômetros Mecânicos Exemplo: extensômetro Huggenberger Baseia-se na multiplicação do deslocamento através de mecanismos de alavancas. Da figura: l' = (w /

Leia mais

Um corpo é submetido ao esforço de cisalhamento quando sofre a ação de um carregamento (força cortante) que atua na direção transversal ao seu eixo.

Um corpo é submetido ao esforço de cisalhamento quando sofre a ação de um carregamento (força cortante) que atua na direção transversal ao seu eixo. 47 8. CISALHAMENTO Um corpo é submetido ao esforço de cisalhamento quando sofre a ação de um carregamento (força cortante) que atua na direção transversal ao seu eixo. A tensão de cisalhamento ( ) é obtida

Leia mais

Exercícios Resolvidos Integrais de Linha. Teorema de Green

Exercícios Resolvidos Integrais de Linha. Teorema de Green Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Exercícios Resolvidos Integrais de Linha. Teorema de Green Exercício 1 Um aro circular de raio 1 rola sem deslizar ao longo

Leia mais

Critérios de falha. - determinam a segurança do componente; - coeficientes de segurança arbitrários não garantem um projeto seguro;

Critérios de falha. - determinam a segurança do componente; - coeficientes de segurança arbitrários não garantem um projeto seguro; Critérios de falha - determinam a segurança do componente; - coeficientes de segurança arbitrários não garantem um projeto seguro; - compreensão clara do(s) mecanismo(s) de falha (modos de falha); -aspectos

Leia mais

COEFICIENTES DE ATRITO

COEFICIENTES DE ATRITO Físia Geral I EF, ESI, MAT, FQ, Q, BQ, OCE, EAm Protoolos das Aulas Prátias 003 / 004 COEFICIENTES DE ATRITO 1. Resumo Corpos de diferentes materiais são deixados, sem veloidade iniial, sobre um plano

Leia mais

mecânica e estruturas geodésicas II FLAMBAGEM PROF. DR. CARLOS AURÉLIO NADL

mecânica e estruturas geodésicas II FLAMBAGEM PROF. DR. CARLOS AURÉLIO NADL mecânica e estruturas geodésicas II FLAMBAGEM PROF. DR. CARLOS AURÉLIO NADL FONTE:AutoFEM Buckling Analysis Buckling = FLAMBAGEM Flambagem em trilho ferroviário (tala de junção) Ensaio em laboratório de

Leia mais

Cap. 7 - Fontes de Campo Magnético

Cap. 7 - Fontes de Campo Magnético Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 7 - Fontes de Campo Magnético Prof. Elvis Soares Nesse capítulo, exploramos a origem do campo magnético - cargas em movimento.

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Civil. Mecânica Vetorial ENG01035

Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Civil. Mecânica Vetorial ENG01035 Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Civil EXERCÍCIOS D 2 a. ÁRE Mecânica Vetorial ENG035 LIST DE PROLEMS DE PROV CENTRO DE GRVIDDE 1) peça representada

Leia mais

Figura 2.1: Carro-mola

Figura 2.1: Carro-mola Capítulo 2 EDO de Segunda Ordem com Coeficientes Constantes 2.1 Introdução - O Problema Carro-Mola Considere um carro de massa m preso a uma parede por uma mola e imerso em um fluido. Colocase o carro

Leia mais

Introdução: momento fletor.

Introdução: momento fletor. Flexão em Vigas e Projeto de Vigas APOSTILA Mecânica dos Sólidos II Introdução: As vigas certamente podem ser consideradas entre os mais importantes de todos os elementos estruturais. Citamos como exemplo

Leia mais

i _y 1. PARTE ENGENHARIA AERONÁUTICA NÃO DESTACAR A PARTE INFERIOR INSTRUÇÕES GERAIS MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA 000 A 100

i _y 1. PARTE ENGENHARIA AERONÁUTICA NÃO DESTACAR A PARTE INFERIOR INSTRUÇÕES GERAIS MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA 000 A 100 - PROCESSO - MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA PROCESSO SELETIVO PARA INGRESSO NO CORPO DE ENGENHEIROS DA MARINHA (PS-EngNav/2008) ENGENHARIA AERONÁUTICA 1. PARTE INSTRUÇÕES GERAIS 1- A

Leia mais

Aula 10 - Transmissão de Potência e Torque.

Aula 10 - Transmissão de Potência e Torque. Aula 10 - Transmissão de Potência e Torque. Prof. Wanderson S. Paris, M.Eng. prof@cronosquality.com.br Transmissão de Potência Eixos e tubos com seção transversal circular são freqüentemente empregados

Leia mais

6 Ações Mecânicas Principais sobre Edificações de uma Usina Nuclear

6 Ações Mecânicas Principais sobre Edificações de uma Usina Nuclear 6 Ações Mecânicas Principais sobre Edificações de uma Usina Nuclear 6.1 Forças sobre estruturas civis sensíveis Na avaliação da força sobre a estrutura é utilizada a relação força/velocidade descrita pela

Leia mais

Curvas em coordenadas polares

Curvas em coordenadas polares 1 Curvas em coordenadas polares As coordenadas polares nos dão uma maneira alternativa de localizar pontos no plano e são especialmente adequadas para expressar certas situações, como veremos a seguir.

Leia mais

CAPÍTULO I INTRODUÇÃO

CAPÍTULO I INTRODUÇÃO CAPITULO 1 - Introdução 1 CAPÍTULO I INTRODUÇÃO O estado gasoso O estado gasoso é ertamente o estado de agregação sob o qual menos nos debruçamos, se pensarmos na observação que fazemos daquilo que nos

Leia mais

SEL 705 - FUNDAMENTOS FÍSICOS DOS PROCESSOS DE FORMAÇÃO DE IMAGENS MÉDICAS. Prof. Homero Schiabel (Sub-área de Imagens Médicas)

SEL 705 - FUNDAMENTOS FÍSICOS DOS PROCESSOS DE FORMAÇÃO DE IMAGENS MÉDICAS. Prof. Homero Schiabel (Sub-área de Imagens Médicas) SEL 705 - FUNDAMENTOS FÍSICOS DOS PROCESSOS DE FORMAÇÃO DE IMAGENS MÉDICAS Prof. Homero Schiabel (Sub-área de Imagens Médicas) 3. INTERAÇÃO DOS RAIOS X COM A MATÉRIA 3.1. Atenuação e Absorção ATENUAÇÃO:

Leia mais

Hidráulica móbil aplicada a máquina agrícolas 1. 1. Bombas e Motores

Hidráulica móbil aplicada a máquina agrícolas 1. 1. Bombas e Motores Hidráulica móbil aplicada a máquina agrícolas 1 BOMBAS: 1. Bombas e Motores As bombas hidráulicas são o coração do sistema, sua principal função é converter energia mecânica em hidráulica. São alimentadas

Leia mais