Experimento 2 Gerador de funções e osciloscópio

Tamanho: px
Começar a partir da página:

Download "Experimento 2 Gerador de funções e osciloscópio"

Transcrição

1 Experimento 2 Gerador de funções e osciloscópio 1. OBJETIVO O objetivo desta aula é introduzir e preparar o estudante para o uso de dois instrumentos muito importantes no curso: o gerador de funções e o osciloscópio. 2. MATERIAL UTILIZADO osciloscópio; gerador de funções. 3. INTRODUÇÃO Nas aulas anteriores utilizamos instrumentos de medida (amperímetro e voltímetro) e fontes de energia (fonte de voltagem DC) para estudar o comportamento de correntes elétricas e voltagens estacionárias, ou seja, que não variam com o passar do tempo. No entanto, como veremos a partir da próxima aula, a resposta elétrica de alguns elementos de circuito que utilizaremos está relacionada com correntes e voltagens variáveis no tempo. Assim, para estudá-los devemos ser capazes de gerar e observar correntes e voltagens com essas características. Em nosso curso utilizaremos um gerador de sinais ou gerador de funções para gerar voltagens variáveis com o tempo e um osciloscópio para observá-las e medi-las. 3.1 Gerador de sinais O gerador de sinais, ou gerador de funções, é um aparelho que gera voltagens V g variáveis como funções do tempo t. As voltagens geradas são periódicas, de período T (dado em segundos), freqüência f (dada em Hz) e amplitude V 0, assemelhando-se a uma onda. É por esse motivo que cada função de voltagem gerada é denominada de forma de onda. São três as principais formas de onda geradas: quadrada, senoidal e triangular. A voltagem gerada pode ter valores positivos ou negativos em relação a uma referência que é denominada de GND ou terra. A amplitude V 0 da forma de onda corresponde ao valor máximo, em módulo, da voltagem gerada em relação à referência (terra). Na Figura 1 mostramos um gráfico de duas dessas formas de onda, quadrada e senoidal, que foram geradas com uma freqüência f =1kHz (1kHz = 10 3 Hz), período T =1ms (1ms = 10-3 s ) e amplitude V 0 =1V. 21

2 Figura 1: Formas de onda quadrada e senoidal com período T =1ms e amplitude V 0 =1V. A Figura 2 abaixo mostra uma representação esquemática do painel frontal do gerador de sinais que utilizaremos no curso. Figura 2: Painel frontal de um gerador de sinais típico. A seguir apresentamos uma breve descrição do significado de cada chave e botão apresentados com numeração na Figura 2. Observe que nem todos os botões estão numerados. Os botões não numerados correspondem a funções que não serão utilizadas no curso. (1) Botão liga-desliga: esse botão corresponde a uma chave do tipo Push Bottom que quando pressionada liga o aparelho. (2) Chave de controle da amplitude de sinal: esta chave controla a amplitude em volts do sinal de voltagem gerado. (3) Chave de controle de sinal contínuo: esta chave permite adicionar um certo valor de voltagem que não varia com o tempo. Esta voltagem constante é denominada de voltagem DC (do inglês 22

3 direct current ), termo que é utilizado quando o sinal de voltagem é equivalente ao utilizado em um experimento de corrente contínua, como já discutimos em aulas anteriores. Esta chave funciona como uma fonte de voltagem ajustável associada em série com o sinal variável no tempo que é produzido pelo gerador. (4) Sinal de saída: sinal gerado pelo gerador. O sinal gerado tem freqüência variando de fração de Hz até MHz (10 6 Hz) e amplitude variando de 0 a 10V. Junto dessa chave há informação sobre o valor máximo de amplitude que pode ser gerado. V PP corresponde à voltagem pico-a-pico. Um sinal de 20V PP tem amplitude V 0 =10V. (5) Sinal de sincronismo: sinal complementar gerado com amplitude fixa, usualmente menor que 5V, e a mesma freqüência do sinal de saída. Em situações normais ele não é utilizado. Em alguns casos, quando a amplitude do sinal de saída é muito pequena, e não conseguimos observar o sinal no osciloscópio, temos a opção de usar o sinal de sincronismo como sinal externo para sincronizar o osciloscópio e o gerador, como será discutido na próxima seção. (6) Botões seletores de função: quando um determinado botão ( Push Bottom ) é pressionado, a forma de onda respectiva é selecionada. Nos geradores comerciais há usualmente três opções de sinais, onda quadrada, onda senoidal e onda triangular. Neste curso nós trabalharemos apenas com as formas de onda quadrada e senoidal. (7) Seletor de faixa de freqüência: estas sete chaves Push Bottom permitem selecionar a faixa de freqüência do sinal gerado que seja adequada ao experimento a ser realizado. O valor da freqüência é aproximadamente o valor indicado pela chave (8) multiplicado pela faixa de freqüência selecionada. (8) Chave de ajuste da freqüência: esta chave permite variar continuamente a freqüência de 0,2 a 2,0 vezes o valor da faixa de freqüência selecionada pelos botões do item (7). É importante observar que o valor da freqüência selecionada pelas chaves em (7) e (8) é aproximado. Para obtermos o valor preciso da freqüência devemos utilizar o osciloscópio para visualizar o sinal e através da medida do período do mesmo, determinar qual é sua freqüência com a respectiva incerteza. (9) Botão de inversão: esta chave Push Bottom quando pressionada multiplica o sinal gerado por menos um. (10) Seletor de faixa de amplitude: esta chave Push Bottom quando pressionada limita a amplitude do sinal de saída gerado a 1V. Num circuito, representamos o gerador de funções pelo símbolo indicado na Figura 3. O símbolo dentro do círculo representa a forma de onda gerada. No exemplo da Figura 3 a forma de onda gerada é quadrada. GND na Figura 3 significa o mesmo que referência ou terra. Figura 3: Representação esquemática de um gerador de funções num circuito elétrico. Neste caso o sinal gerado é uma onda quadrada. 23

4 3.2 Osciloscópio O osciloscópio é um instrumento empregado para visualizar voltagens que variam com o tempo. Ele é utilizado para determinação de amplitudes e freqüências de sinais de voltagem, bem como para comparação de sinais diferentes. Muitas são suas funções e é fundamental para o bom andamento deste curso que o estudante se torne familiarizado com as mesmas. Para tanto, uma breve descrição de seu princípio de funcionamento e principais funções serão a seguir apresentados. Gostaríamos de ressaltar no entanto, que apenas a prática com o instrumento permitirá ao estudante usufruir de todas as possibilidades que o mesmo oferece. Esperamos que isso aconteça no decorrer do curso, quando observaremos fenômenos físicos para os quais o uso do osciloscópio é de fundamental importância. Na Figura 4 mostramos o esquema de um painel frontal de um osciloscópio analógico, muito semelhante ao que utilizamos no curso. Figura 4: Painel frontal do osciloscópio com a numeração das chaves e botões que serão relacionadas com as instruções de uso do mesmo para medidas de voltagens variáveis no tempo. Na Figura 4 o botão (1) corresponde a uma chave Push Bottom que é utilizada para ligar e desligar o osciloscópio. As demais chaves e botões serão apresentadas de acordo com a divisão do funcionamento do osciloscópio em blocos estruturais. O osciloscópio pode ser estruturalmente divido em quatro sub-sistemas básicos: mostrador, deflexão vertical, deflexão horizontal e gatilho Mostrador O mostrador do osciloscópio está representado na Figura 4 pelo retângulo quadriculado à esquerda. Esse retângulo corresponde à parte posterior de um tubo de raios catódicos que é usado para visualização do sinal. Uma representação simplificada do tubo de raios catódicos é mostrada na Figura 5. 24

5 Figura 5: Representação de um tubo de raios catódicos. Elétrons livres são gerados por efeito termiônico no filamento quando o mesmo é aquecido e são direcionados por sistemas complementares, criando um feixe de elétrons que caminha em direção às placas defletoras X 1, X 2, Y 1 e Y 2. Às placas são aplicadas voltagens que criam campos elétricos em seus interiores que deslocam o feixe na tela alvo (veja Figuras 4 e 5) de acordo com as voltagens aplicadas. Um sistema de controle de brilho (chave 2 na Figura 4) e de ajuste de foco (chave 3 na Figura 4) são usados para ajustar a intensidade e o foco do feixe de elétrons. A tela alvo é feita de material fosforescente que converte a energia do feixe de elétrons em luz visível, tornando possível sua visualização Deflexão vertical O sistema de deflexão vertical de um osciloscópio é usado para controlar a visualização dos sinais medidos através de ajustes nos sub-sistemas de mostrador e de gatilho. Ele consiste de dois canais CH1 e CH2, ou seja, duas entradas para voltagens independentes e uma série de chaves e botões para o ajuste do sinal na tela do osciloscópio. Um canal consiste de um atenuador e um amplificador que são utilizados para ajustar a escala de voltagem que será utilizada na visualização do sinal. Um sinal de voltagem proporcional ao sinal do canal é então aplicado às placas Y 1 e Y 2 fazendo o feixe de elétrons ser defletido na vertical de acordo com a escala escolhida, de modo que o reticulado do mostrador possa ser usado para medir a voltagem de entrada no canal. O coeficiente de deflexão (atenuador ou amplificador) é usualmente dado em VOLTS/DIV. DIV, neste caso, corresponde a uma divisão, à parte vertical do quadrado de cerca de 1cm de lado, no mostrador. Para o CH1, a chave (8) e para o CH2 a chave (18) na Figura 4, são usadas como seletores da escala de medida. Valores típicos são 10mV; 20mV; 0,1V; 0,2V; 0,5V; 1V; etc. Quando a chave seletora está posicionada em 1V, por exemplo, isso significa que cada retículo (DIV) no mostrador tem altura equivalente a 1V. Os sinais a serem observados são levados ao osciloscópio por meio de cabos coaxiais até as entradas dos CH1 e CH2. A entrada do CH1 está representada por (7) na Figura 4 e a do CH2 por (14). Um cabo coaxial corresponde a dois fios coaxiais de cobre separados por um material dielétrico num arranjo cilíndrico. Veja em sala de aula mais detalhes com seu professor. É possível ajustar continuamente o coeficiente de deflexão do feixe de elétrons no 25

6 mostrador. Isso é feito destravando a chave (9) para o CH1 ou a chave (17) para o CH2 (ver Figura 4). Neste caso, valores absolutos de voltagem não podem ser determinados usando o osciloscópio. Esta função não será utilizada neste curso. Certifique-se sempre, antes de começar suas medidas, que as chaves (9) e (17) estejam travadas. Para cada canal há uma chave para controlar a posição vertical do feixe de elétrons no mostrador, chave (11) para o CH1 e chave (15) para o CH2 (veja Figura 4). Essas chaves são usadas para mudar posições de referência dos sinais, o que em algumas situações é conveniente ser feito para se obter uma melhor resolução na imagem do sinal medido que é apresentada no mostrador do osciloscópio. Cada canal pode também ser chaveado para uma das três posições: GND, DC e AC, utilizando os botões (6) para CH1 e (13) para o CH2 (ver Figura 4). Na posição GND, o sinal de voltagem de referência, que chamamos de terra, é aplicado ao feixe de elétrons. Nesse caso, uma voltagem de zero volts está sendo lida no osciloscópio. Quando a posição DC é escolhida, o sinal é mostrado sem nenhum processamento, como ele se apresenta no circuito de prova. Quando a posição AC é escolhida, o sinal é submetido a um filtro, que corta as freqüências inferiores a 10Hz. Nesse caso, valores constantes do sinal são filtrados e não são mostrados no mostrador do osciloscópio. Em osciloscópios típicos podemos observar até dois sinais independentemente. Na visualização dos mesmos, podemos escolher apresentar apenas o sinal do CH1, apenas o sinal do CH2, ou ambos. A escolha de qual, ou quais sinais apresentar, é feita pelos botões indicados em (12) na Figura Deflexão horizontal Vimos que a deflexão vertical é proporcional à voltagem aplicada no CH1 ou no CH2 do osciloscópio, o que desloca o feixe de elétrons na direção vertical do mostrador. O que dizer sobre a deflexão horizontal? Qual deve ser a voltagem aplicada nas placas X 1 e X 2, que desloca o feixe de elétrons na direção horizontal do mostrador do osciloscópio, de modo que tenhamos a reprodução do eixo do tempo nessa direção? Para tanto um sinal de voltagem como o mostrado na Figura 6 é aplicado às placas X 1 e X 2. Figura 6: Sinal de voltagem usado para gerar a deflexão horizontal. 26

7 Nos intervalos onde a voltagem V X aplicada às placas X 1 e X 2 está representada com linha contínua temos um aumento da voltagem linearmente proporcional ao tempo t. Isto significa, que um sinal de voltagem em um dos canais do osciloscópio, percorrerá a tela movendo-se da esquerda para a direita. Na parte superior da Figura 6, indicamos a posição do feixe de elétrons, como vista no mostrador do osciloscópio, para o início e para o final do intervalo de traço t traço. No intervalo de retraço, t retraço, o feixe de elétrons não é mostrado na tela do osciloscópio (linhas pontilhadas representando a voltagem V X ). Esse processo se repete quando o feixe se encontra novamente na posição de início do ciclo. Assim, com essa construção, temos uma representação da voltagem aplicada no CH1 ou CH2 em função do tempo. Para ajustar o valor do intervalo de tempo t traço em que o sinal é visualizado no mostrador do osciloscópio, selecionamos usando a chave (24) da Figura 4, a escala de tempo adequada. A escala de tempo é dada em unidades de TEMPO/DIV. DIV neste caso corresponde a uma divisão, à parte horizontal do quadrado de cerca de 1cm de lado, no mostrador. Valores típicos são 10µs; 20µs; 50µs; 0,1ms; 0,5ms; 1ms; etc. Quando a chave seletora está posicionada em 1ms, por exemplo, isso significa que cada retículo (DIV) no mostrador tem largura equivalente a 1ms. Em grande parte das observações feitas usando o osciloscópio, os tempos característicos observados, como por exemplo períodos de sinais que se repetem, são muito pequenos, quando comparados ao tempo de resposta da percepção de nossos olhos. Por esse motivo, o feixe de elétrons se desloca tão rapidamente que aparece na tela do osciloscópio uma linha contínua representando o sinal medido. Como no caso da posição vertical do sinal no mostrador do osciloscópio, há também para a horizontal uma chave que controla a posição horizontal do feixe de elétrons no mostrador, chave (19) (veja Figura 4). Essa chave é utilizada para deslocar toda a imagem do sinal no mostrador do osciloscópio para a esquerda ou para a direita, operação que também será muito utilizada no curso. Quando dois sinais estão sendo observados, um no CH1 e outro no CH2, há também a possibilidade de desativar o sistema de deflexão horizontal e apresentar na tela do osciloscópio o sinal do CH2 em função do sinal do CH1. Esta função é obtida selecionando a opção X-Y na chave (24) mostrada na Figura 4. Ela é utilizada para criar figuras denominadas figuras de Lissajous que serão utilizadas no Experimento 10 do curso Gatilho O sistema de gatilho estabelece o momento em que o osciloscópio começa a desenhar o sinal. Muitos dos problemas enfrentados pelos estudantes quando não conseguem uma visualização adequada de determinado sinal estão relacionados com os ajustes desse sistema. Para você ter uma idéia, observaremos sinais com freqüências de ordem de grandeza superior a khz. Para observarmos uma imagem na tela do osciloscópio, que represente o sinal, precisamos sincronizar o osciloscópio com o sinal desejado. A situação é similar ao que acontece quando, por exemplo, desejamos fotografar as pás de um ventilador quando o mesmo está em movimento. Como o tempo de exposição do objeto para a determinação de sua imagem na câmera é maior que o período de rotação das pás do ventilador, vemos apenas um borrão na imagem. No entanto, se utilizarmos uma iluminação estroboscópica, na qual o objeto é iluminado com freqüência igual à freqüência de deslocamento das pás, podemos observar uma imagem das pás paradas, mesmo com o ventilador em movimento. É algo similar a isso que o sistema de gatilho do osciloscópio faz para colocar uma imagem do sinal parada na tela do osciloscópio. O sistema de gatilho sincroniza a deflexão horizontal com o sinal medido de modo que sua imagem fique estável. Um sinal periódico no tempo tem sempre duas regiões, uma que assume valores positivos e outra que assume valores negativos em relação a seu valor médio. Podemos escolher com qual 27

8 dessas duas regiões queremos sincronizar o osciloscópio através da chave SLOPE (20) na Figura 4. Quando a voltagem do lado selecionado passa por determinado valor, especificado pela chave LEVEL (21) na Figura 4, um pulso é gerado e conectado ao sistema de deflexão horizontal indicando o momento de iniciar a varredura e apresentação do sinal na tela do osciloscópio. Há três diferentes métodos de se fazer o sincronismo do osciloscópio com o sinal medido: automático (AUTO), normal (NORM), varredura única. a) SINCRONISMO AUTOMÁTICO nessa situação um novo pulso de sincronismo é gerado automaticamente após um intervalo de tempo pré-determinado se um novo sinal de sincronismo não puder ser gerado nesse intervalo de tempo. Nesse caso haverá sempre algum tipo de sinal sendo mostrado na tela do osciloscópio independentemente da presença de sinais no CH1 ou CH2. b) SINCRONISMO NORMAL nessa situação o sincronismo só acontece quando o sinal de entrada passa de um determinado valor, estabelecido pela chave (21) (veja Figura 4). Só aparecerá sinal na tela quando um sinal de entrada estiver presente no canal selecionado. c) VARREDURA ÚNICA- nessa situação um sinal de sincronismo é disparado uma única vez. Esta função é utilizada para visualização de respostas não periódicas no tempo. Ainda com relação ao sincronismo é preciso informar ao osciloscópio qual sinal desejamos ter sincronizado. A escolha é feita por meio dos botões descritos em (28) na Figura 4. Nos experimentos que realizaremos neste curso, escolheremos sempre o CH1 como fonte de sincronismo (botão 29 na Figura 4 pressionado), e trabalharemos com sincronismos normal e automático fixos (ambos os botões 22 na Figura 4 pressionados). Há várias outras funções do osciloscópio que não foram discutidas porque para as aplicações que teremos no curso elas não serão utilizadas. Num circuito, representamos o osciloscópio pelo símbolo indicado na Figura 7. Figura 8: Representação esquemática de um osciloscópio num circuito elétrico. As setas indicam onde devem ser conectados os sinais dos canais CH1 e CH2. Como exemplo de uso do osciloscópio para medidas de amplitudes e períodos de sinais periódicos no tempo, considere que o mostrador do osciloscópio seja aquele apresentado na Figura 9, e que tenham sido utilizadas para a deflexão vertical 1DIV = 5V e para a deflexão horizontal 1DIV=1ms. Vemos que a forma de onda é aproximadamente senoidal. Para determinarmos o período e a amplitude dessa forma de onda, utilizamos o reticulado da tela do osciloscópio como régua. Observe que cada retículo, ou seja, cada DIV está subdivido em 5 divisões menores. Assim temos para este caso que a amplitude V 0 =1,7 ± 0,1DIV, ou seja, V 0 = 8,5 ± 0,5V. Também temos 28

9 que o período T = 5,1± 0,1DIV, ou seja, T = 5,1± 0,1ms. Figura 9: Exemplo de sinal na tela do osciloscópio que é discutido no texto. 4. PROCEDIMENTOS EXPERIMENTAIS Procedimento I: Sincronismo e OFF SET 1) Monte o circuito da Figura 10 abaixo. Observe que esse circuito corresponde a escolher a forma de onda quadrada e a ligar diretamente o canal CH1 na saída descrita como MAIN do gerador. Figura 10: Circuito a ser montado para os procedimentos experimentais a serem realizados no Procedimento I. 2) Escolha visualizar apenas o CH1 utilizando os botões (12) da Figura 4. Certifique-se de que a chave 3 da Figura 2 esteja travada, evitando que a função DC OFFSET do gerador esteja ativa. 29

10 3) Ajuste os controles da deflexão vertical para mostrar a referência GND. Para isso use o botão (6) da Figura 4. Coloque o feixe de elétrons no centro do mostrador do osciloscópio. 4) Ajuste os botões de sincronismo para fonte no CH1 (chave 29 da Figura 4) e controles AUTO e NORM (chaves 22 na Figura 4) pressionando os botões respectivos. 5) Retire a opção GND destravando o botão (6) da Figura 4, e escolha a opção DC. Ajuste a freqüência do gerador para 1kHz, utilizando as chaves (7) e (8) indicadas na Figura 2, e a amplitude do CH1 para V 0 = 5V utilizando a chave (8) da Figura 4 e o controle de amplitude do gerador (chave 2 da Figura 2). Você deve obter uma imagem do sinal parada na tela do osciloscópio. 6) Destrave a chave de controle de sincronismo NORM, mude aleatoriamente o nível de sincronismo ajustando a função LEVEL (chave 21 na Figura 4) e descreva o que você observou. 7) Pressione novamente a chave de controle de sincronismo NORM e destrave a chave 3 do gerador de sinais (veja Figura 2) para ativar a função DC OFFSET. Ajuste aleatoriamente o valor do nível de OFFSET e descreva o que você observou. Qual foi o valor máximo de voltagem contínua (DC) acrescentado ao sinal utilizando a função DC OFFSET? 8) Mude agora para a opção AC e descreva o que aconteceu com a imagem do sinal. Qual é a função da chave AC? 9) Retire a função DC OFFSET do gerador travando a chave 3 da Figura 2 e acione novamente a função DC. Certifique-se de que as chaves (12) da Figura 4 estejam ambas pressionadas. Isso indica que o osciloscópio está preparado para fazer a leitura dos dois canais, CH1 e CH2, simultaneamente. Mude a fonte de sincronismo para o CH2 utilizando as chaves (28) da Figura 4. Descreva e explique o que você observou Procedimento II: Medidas de períodos e amplitudes 1) Monte o circuito da Figura 11 abaixo. Observe que esse circuito corresponde a escolher a forma de onda quadrada e a ligar diretamente os canais CH1 na saída descrita como MAIN do gerador e o canal CH2 na saída SYNC. Figura 11: Circuito a ser montado para os procedimentos experimentais a serem realizados no Procedimento II. 2) Ajuste os botões de sincronismo para fonte no CH1 (chave 29 na Figura 4) e controles AUTO e NORM (chaves 22 na Figura 4) pressionando os botões respectivos. 3) Ajuste a freqüência do gerador para 1kHz, utilizando as chaves (7) e (8) indicadas na Figura 2, 30

11 e a amplitude do CH1 para V MAIN 0 = 5V. Meça o período T MAIN do sinal no CH1. 4) Meça o valor máximo do sinal SYNC, V SYNC MAX e o período T SYNC do CH2. 5) Mude a amplitude do canal CH1 para V MAIN 0 =10V e mantenha a freqüência em 1kHz. Descreva o que aconteceu com o valor máximo do CH2, V SYNC MAX, neste caso. 6) Ajuste novamente o valor da amplitude do CH1 para V MAIN 0 = 5V. Mude agora a freqüência do gerador para 10kHz. Meça novamente T MAIN, T SYNC e V SYNC MAX. 7) Preencha a Tabela 1 com o resultados obtidos. f(khz) V MAIN 0 (V) T MAIN ± " TMAIN V SYNC MAX ± " T SYNC SYNC ± " TSYNC f SYNC ± " fsync VMAX Tabela 1: Resultados obtidos no Procedimento II. 8) O que podemos dizer sobre o sinal SYNC em comparação com o sinal MAIN do gerador? Como variam a amplitude e o período do sinal SYNC quando são variados a amplitude e o período do sinal MAIN. Faça um esboço da variação do sinal SYNC como função do tempo. 31

Gerador de funções e osciloscópio

Gerador de funções e osciloscópio Experimento 2 Gerador de funções e osciloscópio 2.1 Material Osciloscópio digital; Gerador de funções. 2.2 Introdução Na aula anterior utilizamos instrumentos de medida (amperímetro e voltímetro) e fontes

Leia mais

Experimento 2 Gerador de funções e osciloscópio

Experimento 2 Gerador de funções e osciloscópio Experimento 2 Gerador de funções e osciloscópio 1. OBJETIVO O objetivo desta aula é introduzir e preparar o estudante para o uso de dois instrumentos muito importantes no curso: o gerador de funções e

Leia mais

Análise de Circuitos

Análise de Circuitos INSTITUTO SUPERIOR TÉCNICO Departamento de Engenharia Electrotécnica e de Computadores Secção de Sistemas e Controlo Introdução ao Osciloscópio Março de 2002 Elaborado por: António Serralheiro INTRODUÇÃO

Leia mais

OSCILOSCÓPIO DIGITAL Tektronix TDS220 Guia Resumido

OSCILOSCÓPIO DIGITAL Tektronix TDS220 Guia Resumido Prof. Hamilton Klimach Janeiro de 2002 OSCILOSCÓPIO DIGITAL Tektronix TDS220 Guia Resumido Introdução Esse osciloscópio, como qualquer outro, tem por função apresentar a representação visual da tensão

Leia mais

Departamento de Matemática e Ciências Experimentais

Departamento de Matemática e Ciências Experimentais Departamento de Matemática e Ciências Experimentais Física e Química A -.º Ano Actividade Prático-Laboratorial AL. Física Assunto: Osciloscópio Questão-problema Perante o aumento da criminalidade tem-se

Leia mais

TÍTULO: OSCILOSCÓPIO - TEORIA

TÍTULO: OSCILOSCÓPIO - TEORIA TÍTULO: OSCILOSCÓPIO - TEORIA Uma das grandes dificuldades que os técnicos enfrentam na reparação de circuitos eletrônicos é esta: os fenômenos que ocorrem nos componentes eletrônicos são abstratos; ou

Leia mais

ESCOLA NÁUTICA INFANTE D. HENRIQUE DEPARTAMENTO DE MÁQUINAS MARÍTIMAS M224 ELECTRÓNICA I TRABALHO LABORATORIAL Nº 1

ESCOLA NÁUTICA INFANTE D. HENRIQUE DEPARTAMENTO DE MÁQUINAS MARÍTIMAS M224 ELECTRÓNICA I TRABALHO LABORATORIAL Nº 1 ESCOLA NÁUTICA INFANTE D. HENRIQUE DEPARTAMENTO DE MÁQUINAS MARÍTIMAS M224 ELECTRÓNICA I TRABALHO LABORATORIAL Nº 1 REVISÃO SOBRE CIRCUITOS ELÉCTRICOS Por: Prof. Luís Filipe Baptista Eng. Carlos Santos

Leia mais

PROTOCOLOS DAS AULAS PRÁTICAS. LABORATÓRIOS 1 - Física e circuitos

PROTOCOLOS DAS AULAS PRÁTICAS. LABORATÓRIOS 1 - Física e circuitos PROTOCOLOS DAS AULAS PRÁTICAS DE LABORATÓRIOS 1 - Física e circuitos Conteúdo P1 - Erro experimental....3 P2 - Osciloscópio.... 5 P3 - Divisor de tensão. Divisor de corrente.... 13 P4 - Fonte de tensão.

Leia mais

Laboratório 7 Circuito RC *

Laboratório 7 Circuito RC * Laboratório 7 Circuito RC * Objetivo Observar o comportamento de um capacitor associado em série com um resistor e determinar a constante de tempo do circuito. Material utilizado Gerador de função Osciloscópio

Leia mais

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL FÍSICA EXPERIMENTAL III INDUTORES E CIRCUITOS RL COM ONDA QUADRADA

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL FÍSICA EXPERIMENTAL III INDUTORES E CIRCUITOS RL COM ONDA QUADRADA UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL FÍSICA EXPERIMENTAL III INDUTORES E CIRCUITOS RL COM ONDA QUADRADA 1. OBJETIVO O objetivo desta aula é estudar o comportamento

Leia mais

Seleção de comprimento de onda com espectrômetro de rede

Seleção de comprimento de onda com espectrômetro de rede Seleção de comprimento de onda com espectrômetro de rede Fig. 1: Arranjo do experimento P2510502 O que você vai necessitar: Fotocélula sem caixa 06779.00 1 Rede de difração, 600 linhas/mm 08546.00 1 Filtro

Leia mais

TRANSMISSÃO DE TV 1 TRANSMISSÃO COM POLARIDADE NEGATIVA

TRANSMISSÃO DE TV 1 TRANSMISSÃO COM POLARIDADE NEGATIVA STV 18 ABR 2008 1 TRANSMISSÃO DE TV método de se transmitir o sinal de imagem modulado em amplitude a amplitude de uma portadora de RF varia de acordo com uma tensão moduladora a modulação é o sinal de

Leia mais

Todas as medições efectuadas no osciloscópio são basicamente medições de comprimentos nesta matriz.

Todas as medições efectuadas no osciloscópio são basicamente medições de comprimentos nesta matriz. Ciências Experimentais P5: Osciloscópio. Sensibilidade, resolução e erro máximo do aparelho. 1. Objectivos Iniciação ao osciloscópio. Estimativas de sensibilidade, resolução e erro máximo do aparelho.

Leia mais

EXPERIÊNCIA 5 OSCILOSCÓPIO DIGITAL

EXPERIÊNCIA 5 OSCILOSCÓPIO DIGITAL EXPERIÊNCIA 5 OSCILOSCÓPIO DIGITAL 1. INTRODUÇÃO TEÓRICA 1.1 VERIFICAÇÃO FUNCIONAL Esta rápida verificação deve ser executada para comprovar se o instrumento está funcionando corretamente. Ligue o instrumento

Leia mais

Objectivo. Material necessário. Procedimento experimental. Siga o procedimento para cada uma das alíneas. A alínea 3.1deve ser feita com a

Objectivo. Material necessário. Procedimento experimental. Siga o procedimento para cada uma das alíneas. A alínea 3.1deve ser feita com a Electrónica P1 - Osciloscópio. Objectivo Iniciação ao osciloscópio Material necessário 1 osciloscópio, 1gerador de sinais, 1 fonte de tensão. Procedimento experimental Siga o procedimento para cada uma

Leia mais

Instrumentos de Medidas II Osciloscópios

Instrumentos de Medidas II Osciloscópios Instrumentos de Medidas II Nesta prática iremos nos familiarizar com o uso de osciloscópios, mostrando algumas das funcionalidades desses instrumentos. Através de exemplos específicos mostraremos como

Leia mais

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL FÍSICA EXPERIMENTAL III CAPACITORES E CIRCUITOS RC COM ONDA QUADRADA

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL FÍSICA EXPERIMENTAL III CAPACITORES E CIRCUITOS RC COM ONDA QUADRADA UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL FÍSICA EXPERIMENTAL III CAPACITORES E CIRCUITOS RC COM ONDA QUADRADA 1. OBJETIVO O objetivo desta aula é estudar o comportamento

Leia mais

Analisador de Espectros

Analisador de Espectros Analisador de Espectros O analisador de espectros é um instrumento utilizado para a análise de sinais alternados no domínio da freqüência. Possui certa semelhança com um osciloscópio, uma vez que o resultado

Leia mais

EXPERIMENTO 6: OSCILOSCÓPIO DIGITAL MEDIDAS ELÉTRICAS

EXPERIMENTO 6: OSCILOSCÓPIO DIGITAL MEDIDAS ELÉTRICAS EXPERIMENTO 6: OSCILOSCÓPIO DIGITAL MEDIDAS ELÉTRICAS Nesse experimento você aprenderá os princípios básicos de funcionamento e manuseio de um osciloscópio digital e realizará medidas simples de sinais

Leia mais

Introdução teórica aula 6: Capacitores

Introdução teórica aula 6: Capacitores Introdução teórica aula 6: Capacitores Capacitores O capacitor é um elemento capaz de armazenar energia. É formado por um par de superfícies condutoras separadas por um material dielétrico ou vazio. A

Leia mais

Cátia Homem, 9 de Janeiro de 2008 Página 1

Cátia Homem, 9 de Janeiro de 2008 Página 1 Escola Secundária Vitorino Nemésio Física e Química A Componente de física 11º ano Actividade Laboratorial 2.1 Osciloscópio Nome: Turma: Nº: Classificação: docente: 1. Questão problema: Perante o aumento

Leia mais

GUIA DO TRABALHO SOBRE APARELHOS DE MEDIDA

GUIA DO TRABALHO SOBRE APARELHOS DE MEDIDA GUIA DO TRABALHO SOBRE APARELHOS DE MEDIDA OBJECTIVO Familiarização com os instrumentos a usar nos trabalhos práticos posteriores (osciloscópio, painel didáctico, gerador de sinais, fonte de alimentação

Leia mais

Notas sobre os instrumentos

Notas sobre os instrumentos 8 ircuitos de corrente alternada Notas sobre os instrumentos A. Precisão de alguns instrumentos: Antes de desperdiçar tempo querendo medir com mais precisão do que os instrumentos permitem, tenha presente

Leia mais

AMPLIFICADOR HD 1600 HD 2200 HD 2800 MANUAL DE INSTRUÇÕES INTRODUCÃO INSTRUÇÕES DE INSTALAÇÃO - 1 - 1 CANAL - CLASSE D - 2 Ohms

AMPLIFICADOR HD 1600 HD 2200 HD 2800 MANUAL DE INSTRUÇÕES INTRODUCÃO INSTRUÇÕES DE INSTALAÇÃO - 1 - 1 CANAL - CLASSE D - 2 Ohms INTRODUCÃO AMPLIFICADOR MANUAL DE INSTRUÇÕES HD 1600 HD 2200 HD 2800 Nós da HURRICANE agradecemos pela escolha dos nossos produtos. Nossos amplificadores são projetados para oferecer a mais alta performance.

Leia mais

EE531 - Turma S. Diodos. Laboratório de Eletrônica Básica I - Segundo Semestre de 2010

EE531 - Turma S. Diodos. Laboratório de Eletrônica Básica I - Segundo Semestre de 2010 EE531 - Turma S Diodos Laboratório de Eletrônica Básica I - Segundo Semestre de 2010 Professor: José Cândido Silveira Santos Filho Daniel Lins Mattos RA: 059915 Raquel Mayumi Kawamoto RA: 086003 Tiago

Leia mais

LABORATÓRIO DE ELETROTÉCNICA GERAL I EXPERIÊNCIA - ENERGIA, POTÊNCIA E FATOR DE POTÊNCIA

LABORATÓRIO DE ELETROTÉCNICA GERAL I EXPERIÊNCIA - ENERGIA, POTÊNCIA E FATOR DE POTÊNCIA LABORATÓRIO DE ELETROTÉCNICA GERAL I EXPERIÊNCIA - ENERGIA, POTÊNCIA E FATOR DE POTÊNCIA RELATÓRIO - NOTA... Grupo:............ Professor:...Data:... Objetivo:............ 1 - Considerações gerais A parte

Leia mais

Roteiro para experiências de laboratório. AULA 2: Osciloscópio e curvas do diodo. Alunos: 2-3-

Roteiro para experiências de laboratório. AULA 2: Osciloscópio e curvas do diodo. Alunos: 2-3- Campus SERRA COORDENADORIA DE AUTOMAÇÃO INDUSTRIAL Disciplinas: ELETRÔNICA BÁSICA e ELETRICIDADE GERAL Professores: Vinícius Secchin de Melo Wallas Gusmão Thomaz Roteiro para experiências de laboratório

Leia mais

Laboratório 6 Gerador de Funções e Osciloscópio

Laboratório 6 Gerador de Funções e Osciloscópio Laboratório 6 Gerador de Funções e Osciloscópio Objetivo Familiarizar-se com a utilização do gerador de funções e do osciloscópio. Material utilizado Gerador de funções Osciloscópio 1. Gerador de Funções

Leia mais

OSCILOSCÓPIO DIGITAL DIGITAL OSCILLOSCOPE

OSCILOSCÓPIO DIGITAL DIGITAL OSCILLOSCOPE OSCILOSCÓPIO DIGITAL DIGITAL OSCILLOSCOPE MVB DSO *Only illustrative image. Imagen meramente ilustrativa. Imagem meramente ilustrativa. INSTRUCTIONS MANUAL Manual de Instrucciones Manual de Instruções

Leia mais

V (t) = A sen 2π f t + A/3[sen 3 (2π f t)] + A/5[sen 5 ( 2π f t)] + A/7[sen 7 (2π f t)] + A/9[sen 9 (2π f t)]+

V (t) = A sen 2π f t + A/3[sen 3 (2π f t)] + A/5[sen 5 ( 2π f t)] + A/7[sen 7 (2π f t)] + A/9[sen 9 (2π f t)]+ Teoria de Fourier Domínio da Freqüência e Domínio do Tempo A teoria de Fourier estabelece que uma forma de onda periódica pode ser decomposta em harmônicos relacionados; senos ou cossenos em diferentes

Leia mais

ELETRICIDADE BÁSICA ROTEIRO DA EXPERIÊNCIA 05 OSCILOSCÓPIO

ELETRICIDADE BÁSICA ROTEIRO DA EXPERIÊNCIA 05 OSCILOSCÓPIO ELETRICIDADE BÁSICA ROTEIRO DA EXPERIÊNCIA 05 OSCILOSCÓPIO 1 Introdução O osciloscópio é basicamente um dispositivo de visualização gráfico que mostra sinais elétricos no tempo. O osciloscópio pode ser

Leia mais

Aparelhos de Laboratório de Electrónica

Aparelhos de Laboratório de Electrónica Aparelhos de Laboratório de Electrónica Este texto pretende fazer uma introdução sucinta às características fundamentais dos aparelhos utilizados no laboratório. As funcionalidades descritas são as existentes

Leia mais

INSTITUTO DE FÍSICA UNIVERSIDADE DE SÃO PAULO. Grupo:... (nomes completos) Prof(a).:... Diurno ( ) Noturno ( ) Experiência 8 LINHA DE TRANSMISSÃO

INSTITUTO DE FÍSICA UNIVERSIDADE DE SÃO PAULO. Grupo:... (nomes completos) Prof(a).:... Diurno ( ) Noturno ( ) Experiência 8 LINHA DE TRANSMISSÃO INSTITUTO DE FÍSICA UNIVERSIDADE DE SÃO PAULO Laboratório de Eletromagnetismo (4300373) Grupo:......... (nomes completos) Prof(a).:... Diurno ( ) Noturno ( ) Data : / / Experiência 8 LINHA DE TRANSMISSÃO

Leia mais

MANUAL DE INSTRUÇÕES DO OSCILOSCÓPIO MODELO OS-22

MANUAL DE INSTRUÇÕES DO OSCILOSCÓPIO MODELO OS-22 MANUAL DE INSTRUÇÕES DO OSCILOSCÓPIO MODELO OS-22 Leia atentamente as instruções contidas neste manual antes de Iniciar o uso do osciloscópio Tópicos que requerem atenção É de fundamental importância a

Leia mais

Manual de Operação do Century BR2014 Slim. O Conteúdo deste manual pode ser alterado sem aviso prévio.

Manual de Operação do Century BR2014 Slim. O Conteúdo deste manual pode ser alterado sem aviso prévio. Manual de Operação do Century BR2014 Slim O Conteúdo deste manual pode ser alterado sem aviso prévio. Parabéns pela aquisição da mais moderna tecnologia em receptores analógicos de sinais de TV via satélite.

Leia mais

Corrente Continua (DC) vs Corrente Alternada (AC)

Corrente Continua (DC) vs Corrente Alternada (AC) Introdução teórica aula 5: Osciloscópio e Gerador de Sinais Corrente Continua (DC) vs Corrente Alternada (AC) Ao final do século XIX o sistema de distribuição de energia Edison (Edison General Electric)

Leia mais

EXPERÊNCIA 4 - MODULAÇÃO EM FREQUÊNCIA

EXPERÊNCIA 4 - MODULAÇÃO EM FREQUÊNCIA EXPERÊNCIA 4 - MODULAÇÃO EM FREQUÊNCIA Modulação em freqüência ocorre quando uma informação em banda básica modula a freqüência ou alta freqüência de uma portadora com sua amplitude permanecendo constante.

Leia mais

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Introdução ao Laboratório Eletrônico: 6.071 Laboratório 2: Componentes Passivos. 3º Trimestre de 2002

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Introdução ao Laboratório Eletrônico: 6.071 Laboratório 2: Componentes Passivos. 3º Trimestre de 2002 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Introdução ao Laboratório Eletrônico: 6.071 Laboratório 2: Componentes Passivos 1 Exercícios Pré-Laboratório Semana 1 1.1 Filtro RC 3º Trimestre de 2002 Figura 1:

Leia mais

OSCILOSCÓPIO DIGITAL DIGITAL OSCILLOSCOPE

OSCILOSCÓPIO DIGITAL DIGITAL OSCILLOSCOPE OSCILOSCÓPIO DIGITAL DIGITAL OSCILLOSCOPE MO-2100D *Only illustrative image. Imagen meramente ilustrativa. Imagem meramente ilustrativa. INSTRUCTIONS MANUAL Manual de Instrucciones Manual de Instruções

Leia mais

1 Exercícios Pré-Laboratório

1 Exercícios Pré-Laboratório 1 MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.071: Introdução ao Laboratório de Eletrônica Laboratório 1: Equipamentos de Laboratório e Redes de Resistores 1 Exercícios Pré-Laboratório 2º Trimestre de 2002

Leia mais

Espaço SENAI. Missão do Sistema SENAI

Espaço SENAI. Missão do Sistema SENAI Sumário Introdução 5 Introdução ao osciloscópio 6 O painel do osciloscópio e a função dos seus controles 7 Controles de ajuste do traço ou ponto na tela 8 Brilho ou luminosidade (brightness ou intensity)

Leia mais

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS 3B SCIENTIFIC PHYSICS Osciloscópio didático U8481350 Instruções para o uso 01/08 CW/ALF Entradas: 1 Tensão anódica 2 Tensão catódica 3 Tensão de Wehnelt 4 Tensão de aquecimento (0) 5 Tensão de aquecimento

Leia mais

Laboratório de Física Experimental I

Laboratório de Física Experimental I Laboratório de Física Experimental I Centro Universitário de Vila Velha Multímetro e Fonte DC Laboratório de Física Prof. Rudson R. Alves 2012 2/10 Sumário Multímetro Minipa ET-1001...3 TERMINAIS (1)...3

Leia mais

Aula V Medição de Variáveis Mecânicas

Aula V Medição de Variáveis Mecânicas Aula V Medição de Variáveis Mecânicas Universidade Federal da Bahia Escola Politécnica Disciplina: Instrumentação e Automação Industrial I(ENGF99) Professor: Eduardo Simas(eduardo.simas@ufba.br) Sensores

Leia mais

MANUAL DE INSTRUÇÕES DO OSCILOSCÓPIO MODELO OS-11

MANUAL DE INSTRUÇÕES DO OSCILOSCÓPIO MODELO OS-11 MANUAL DE INSTRUÇÕES DO OSCILOSCÓPIO MODELO OS-11 ICEL - Instr. e Comp. Eletro. Ltda www.icel-manaus.com.br icel@icel-manaus.com.br Leia atentamente as instruções contidas neste manual antes de iniciar

Leia mais

ESCOLA SECUNDÁRIA ALFREDO DA SILVA CURSO PROFISSIONAL DE ELECTRÓNICA AUTOMAÇÃO E COMANDO DISCIPLINA: ELECTRICIDADE E ELECTRÓNICA

ESCOLA SECUNDÁRIA ALFREDO DA SILVA CURSO PROFISSIONAL DE ELECTRÓNICA AUTOMAÇÃO E COMANDO DISCIPLINA: ELECTRICIDADE E ELECTRÓNICA --------------------- O OSCILOSCÓPIO Definição: É um aparelho que nos permite: Visualizar as formas de onda das tensões aplicadas Medir frequências e períodos dessas ondas Medir desfasagens entre duas

Leia mais

PARA SUA SEGURANÇA 1- DISPLAY. - Indica aparelho em "espera" ( Stand - By) DISPLAY NORMAL- Indica o número do canal, frequência, etc.

PARA SUA SEGURANÇA 1- DISPLAY. - Indica aparelho em espera ( Stand - By) DISPLAY NORMAL- Indica o número do canal, frequência, etc. 1 Parabéns pela aquisição da mais moderna tecnologia em receptores de sinais de TV via satélite. Estamos certos de que o receptor Century USR 1900 lhe proporcionará a melhor imagem e também bons momentos

Leia mais

MEDIÇÃO DE GRANDEZAS ELÉCTRICAS UTILIZAÇÃO DO OSCILOSCÓPIO E DO MULTÍMETRO

MEDIÇÃO DE GRANDEZAS ELÉCTRICAS UTILIZAÇÃO DO OSCILOSCÓPIO E DO MULTÍMETRO TRABALHO PRÁTICO MEDIÇÃO DE GRANDEZAS ELÉCTRICAS UTILIZAÇÃO DO OSCILOSCÓPIO E DO MULTÍMETRO Objectivo Este trabalho tem como objectivo a familiarização com alguns dos equipamentos e técnicas de medida

Leia mais

MANUAIS DE INSTRUÇÃO

MANUAIS DE INSTRUÇÃO MANUAIS DE INSTRUÇÃO ESPECIFICAÇÕES O DIMMER RACK 12 CANAIS CBI é fabricado para cumprir com as especificações do mercado de iluminação profissional, iluminação cênica, decorativa, shows, eventos e iluminação

Leia mais

AC CIRCUIT (RL/RC/RLC)

AC CIRCUIT (RL/RC/RLC) AC CIRCUIT (RL/RC/RLC) Circuitos AC (RL/RC/RLC) M-1103A *Only illustrative image./imagen meramente ilustrativa./ Imagem meramente ilustrativa. EXPERIMENTS MANUAL Manual de Experimentos Manual de Experimentos

Leia mais

MANUAL DE INSTRUÇÕES DO OSCILOSCÓPIO OS-102

MANUAL DE INSTRUÇÕES DO OSCILOSCÓPIO OS-102 MANUAL DE INSTRUÇÕES DO OSCILOSCÓPIO OS-102 Leia atentamente as instruções contidas neste manual antes de iniciar o uso do osciloscópio ÍNDICE 1. INTRODUÇÃO...2 2. REGRAS DE SEGURANÇA...3 3. GERAL...5

Leia mais

VÍDEO PORTEIRO SENSE MEMORY PORT Manual de Instalação

VÍDEO PORTEIRO SENSE MEMORY PORT Manual de Instalação VÍDEO PORTEIRO SENSE MEMORY PORT Manual de Instalación Installation Manual HDL da Amazônia Indústria Eletrônica LTDA. Av. Abiurana, 1150 - Distrito Indústrial Manaus - AM - Cep: 69075-010 Tel: (11)4025-6500

Leia mais

4. Tarefa 16 Introdução ao Ruído. Objetivo: Método: Capacitações: Módulo Necessário: Análise de PCM e de links 53-170

4. Tarefa 16 Introdução ao Ruído. Objetivo: Método: Capacitações: Módulo Necessário: Análise de PCM e de links 53-170 4. Tarefa 16 Introdução ao Ruído Objetivo: Método: Ao final desta Tarefa você: Estará familiarizado com o conceito de ruído. Será capaz de descrever o efeito do Ruído em um sistema de comunicações digitais.

Leia mais

Kit de treinamento do osciloscópio do professor DSOXEDK

Kit de treinamento do osciloscópio do professor DSOXEDK Kit de treinamento do osciloscópio do professor DSOXEDK Guia de Laboratório e Tutorial para osciloscópios Agilent da série X-4000 s1 Avisos Agilent Technologies, Inc. 2008-2012 Os direitos autorais deste

Leia mais

Geradores de Funções/Arbitrários de dois canais Série 4060

Geradores de Funções/Arbitrários de dois canais Série 4060 Especificações Técnicas Geradores de Funções/Arbitrários de dois canais A de Geradores de Funções/Arbitrários são capazes de gerar formas de onda senoidais, quadradas, triangulares, pulsadas e arbitrárias

Leia mais

VR-B1802V VR-B1807U VR-D1809

VR-B1802V VR-B1807U VR-D1809 Manual em Português Rádio Móvel Voyager Modelos VR-B1802V VR-B1807U VR-D1809 Precauções Observe as precauções abaixo para evitar incêndio, lesão pessoal ou danos ao aparelho. Não tente configurar a unidade

Leia mais

ROTEIRO PARA LABORATÓRIO 1

ROTEIRO PARA LABORATÓRIO 1 1 Princípios de Eletricidade e Eletrônica Engenharia Ambiental Prof. Marcio Kimpara data: ROTEIRO PARA LABORATÓRIO 1 Resistores e Tensão Alternada Senoidal Objetivos: Familiarização com os osciloscópios

Leia mais

LEE 2006/07. Guia de Laboratório. Trabalho 3. Circuitos Dinâmicos. Resposta no Tempo

LEE 2006/07. Guia de Laboratório. Trabalho 3. Circuitos Dinâmicos. Resposta no Tempo Análise de Circuitos LEE 2006/07 Guia de Laboratório Trabalho 3 Circuitos Dinâmicos Resposta no Tempo INSTITUTO SUPERIOR TÉCNICO Departamento de Engenharia Electrotécnica e de Computadores Paulo Flores

Leia mais

Física Experimental III

Física Experimental III Instituto de Física Universidade Federal do Rio de Janeiro Física Experimental III Guia de Experiências Aulas 01_1 Aos alunos Este guia de experimentos de Física Experimental III corresponde à consolidação

Leia mais

Tópicos importantes sobre osciloscópios convencionais (analógicos com tubo de raios catódicos)

Tópicos importantes sobre osciloscópios convencionais (analógicos com tubo de raios catódicos) Apêndice 5.1 Tópicos importantes sobre osciloscópios convencionais (analógicos com tubo de raios catódicos) 1. Introdução Este apêndice deve ser usado em conjunto com o roteiro da aula 05. São fornecidas

Leia mais

MANUAL DE INSTRUÇÕES DA FONTE DIGITAL MODELO PS-3060D

MANUAL DE INSTRUÇÕES DA FONTE DIGITAL MODELO PS-3060D MANUAL DE INSTRUÇÕES DA FONTE DIGITAL MODELO PS-3060D Leia atentamente as instruções contidas neste manual antes de iniciar o uso do aparelho ÍNDICE 1. Introdução... 01 2. Especificações... 02 2.1. Gerais...

Leia mais

DEPARTAMENTO DE ENGENHARIA ELÉTRICA E CIÊNCIA DA COMPUTAÇÃO MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139

DEPARTAMENTO DE ENGENHARIA ELÉTRICA E CIÊNCIA DA COMPUTAÇÃO MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139 DEPARTAMENTO DE ENGENHARIA ELÉTRICA E CIÊNCIA DA COMPUTAÇÃO MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139 6.101 Laboratório de Introdução de Eletrônica Analógica Laboratório No.

Leia mais

MANUAL DE INSTALAÇÃO E OPERAÇÃO VÍDEO PORTEIRO RESIDENCIAL CÓDIGO: TH-VPR/6000

MANUAL DE INSTALAÇÃO E OPERAÇÃO VÍDEO PORTEIRO RESIDENCIAL CÓDIGO: TH-VPR/6000 MANUAL DE INSTALAÇÃO E OPERAÇÃO VÍDEO PORTEIRO RESIDENCIAL CÓDIGO: TH-VPR/6000 VÍDEO PORTEIRO RESIDENCIAL TH-VPR/6000 CARO CLIENTE, Parabéns você acaba de adquirir o mais novo VÍDEO PORTEIRO RESIDENCIAL

Leia mais

ELETROTÉCNICA ELM ROTEIRO DA AULA PRÁTICA 01 A LEI DE OHM e AS LEIS DE KIRCHHOFF

ELETROTÉCNICA ELM ROTEIRO DA AULA PRÁTICA 01 A LEI DE OHM e AS LEIS DE KIRCHHOFF ELETROTÉCNICA ELM ROTEIRO DA AULA PRÁTICA 01 A LEI DE OHM e AS LEIS DE KIRCHHOFF NOME: TURMA: DATA: / / OBJETIVOS: Ler o valor nominal de cada resistor através do código de cores. Conhecer os tipos de

Leia mais

ANÁLISE DE CIRCUITOS LABORATÓRIO O CONDENSADOR

ANÁLISE DE CIRCUITOS LABORATÓRIO O CONDENSADOR ANÁLISE DE CIRCUITOS LABORATÓRIO O CONDENSADOR Introdução ao uso do Osciloscópio. Ano Lectivo 20 / 20 Curso Grupo Classif. Rubrica Além do estudo do condensador, pretende-se com este trabalho obter uma

Leia mais

Seu manual do usuário ECHOSTAR TELEFONICA TV DIGITAL http://pt.yourpdfguides.com/dref/1117049

Seu manual do usuário ECHOSTAR TELEFONICA TV DIGITAL http://pt.yourpdfguides.com/dref/1117049 Você pode ler as recomendações contidas no guia do usuário, no guia de técnico ou no guia de instalação para ECHOSTAR TELEFONICA TV DIGITAL. Você vai encontrar as respostas a todas suas perguntas sobre

Leia mais

4 PARÂMETROS DINÂMICOS

4 PARÂMETROS DINÂMICOS 4 PARÂMETROS DINÂMICOS Nesta experiência iremos medir os parâmetros do amp op que podem prejudicar o desempenho dos circuitos em alta freqüência. Os dois parâmetros Produto Ganho-Largura de Banda GBP (também

Leia mais

MINISTÉRIO DA INDÚSTRIA, DO COMÉRCIO E DO TURISMO

MINISTÉRIO DA INDÚSTRIA, DO COMÉRCIO E DO TURISMO MINISTÉRIO DA INDÚSTRIA, DO COMÉRCIO E DO TURISMO INSTITUTO NACIONAL DE METROLOGIA, NORMALIZAÇÃO E QUALIDADE INDUSTRIAL - INMETRO Portaria n.º 115, de 29 de junho de 1998 O Presidente do Instituto Nacional

Leia mais

Desenvolvimento de Amperímetro Alicate Baseado em Magnetômetros GMR para Medição de Correntes Elétricas Contínuas

Desenvolvimento de Amperímetro Alicate Baseado em Magnetômetros GMR para Medição de Correntes Elétricas Contínuas Desenvolvimento de Amperímetro Alicate Baseado em Magnetômetros GMR para Medição de Correntes Elétricas Contínuas Alunos: Marcos Civiletti de Carvalho e Camila Schuina Orientador: Carlos Roberto Hall Barbosa

Leia mais

Guia do Instalador & MANUAL DO USUÁRIO. AlbaLED Cores Piscina

Guia do Instalador & MANUAL DO USUÁRIO. AlbaLED Cores Piscina Guia do Instalador & MANUAL DO USUÁRIO AlbaLED Cores Piscina Copyright G2N Automação Indústria e Comércio Ltda. 2009. AlbaLED Cores Piscina Este Guia do Instalador e Manual do Usuário foi publicado pela

Leia mais

Universidade Federal do Paraná Departamento de Física Laboratório de Física Moderna

Universidade Federal do Paraná Departamento de Física Laboratório de Física Moderna Universidade Federal do Paraná Departamento de Física Laboratório de Física Moderna Bloco 01: DIFRAÇÃO DE RAIOS-X Introdução Entende-se por raios-x, a região do espectro eletromagnético com comprimentos

Leia mais

Considerando a polaridade do ímã, as linhas de indução magnética criadas por ele e o sentido da corrente elétrica induzida no tubo condutor de cobre

Considerando a polaridade do ímã, as linhas de indução magnética criadas por ele e o sentido da corrente elétrica induzida no tubo condutor de cobre 1. Em uma aula de laboratório, os estudantes foram divididos em dois grupos. O grupo A fez experimentos com o objetivo de desenhar linhas de campo elétrico e magnético. Os desenhos feitos estão apresentados

Leia mais

CONSERVAÇÃO DA ENERGIA MECÂNICA

CONSERVAÇÃO DA ENERGIA MECÂNICA CONSERVAÇÃO DA ENERGIA MECÂNICA Material Utilizado: - um conjunto para experimentos com trilho de ar composto de: - um trilho de ar (PASCO SF-9214) - um gerador de fluxo de ar (PASCO SF-9216) - um carrinho

Leia mais

Tensão à entrada do osciloscópio. nº divisões no ecrã 30 V... 3 V... 1,5 div 10 V... 1 V... 0,5 div 0 V... 0 V... 0 div 30 V... 1 V...

Tensão à entrada do osciloscópio. nº divisões no ecrã 30 V... 3 V... 1,5 div 10 V... 1 V... 0,5 div 0 V... 0 V... 0 div 30 V... 1 V... 1 Considere o sinal periódico indicado na fig. 1: +30-10 -30 0 1 2 3 4 5 6 7 Fig. 1. a) Esboce a imagem que observaria num osciloscópio com ecrã de 10 10 divisões, utilizando uma ponta de prova atenuadora

Leia mais

Medidas elétricas em altas frequências

Medidas elétricas em altas frequências Medidas elétricas em altas frequências A grande maioria das medidas elétricas envolve o uso de cabos de ligação entre o ponto de medição e o instrumento de medida. Quando o comprimento de onda do sinal

Leia mais

Guia do usuário. Sistema sem-fio UHF UWS-21 / UWS-22

Guia do usuário. Sistema sem-fio UHF UWS-21 / UWS-22 Guia do usuário Sistema sem-fio UHF UWS-21 / UWS-22 Introdução O seu novo sistema sem-fio foi desenvolvido para lhe dar o melhor do mundo da sonorização: a liberdade de um sistema sem-fio, com excelente

Leia mais

DIAGRAMA DE BLOCOS DE UMA FONTE DE TENSÃO

DIAGRAMA DE BLOCOS DE UMA FONTE DE TENSÃO DIAGRAMA DE BLOCOS DE UMA FONTE DE TENSÃO Essa deficiência presente nos retificadores é resolvida pelo emprego de um filtro Essa deficiência presente nos retificadores é resolvida pelo emprego de um filtro

Leia mais

XXIX Olimpíada Internacional de Física

XXIX Olimpíada Internacional de Física XXIX Olimpíada Internacional de Física Reykjavík, Islândia Parte Experimental Segunda-feira, 6 de Julho de 1998 Lê isto primeiro: Duração: 5 H 1. Utiliza apenas a esferográfica que te foi dada. 2. Usa

Leia mais

PUPILOMETRO GR-4. w w w. m e l l o i n d u s t r i a l. c o m. b r

PUPILOMETRO GR-4. w w w. m e l l o i n d u s t r i a l. c o m. b r PUPILOMETRO GR-4 *O Pupilometro é um instrumento digital de precisão óptica usado para medir a distancia pupilar. *Este equipamento foi desenvolvido cientificamente integrando tecnologia, mecanismos, eletricidade

Leia mais

CORRENTE CONTÍNUA E CORRENTE ALTERNADA

CORRENTE CONTÍNUA E CORRENTE ALTERNADA CORRENTE CONTÍNUA E CORRENTE ALTERNADA Existem dois tipos de corrente elétrica: Corrente Contínua (CC) e Corrente Alternada (CA). A corrente contínua tem a característica de ser constante no tempo, com

Leia mais

Modo de Serviço TV Panasonic Modelo TC-29S10

Modo de Serviço TV Panasonic Modelo TC-29S10 Modo de Serviço TV Panasonic Modelo TC-29S10 A. SINTONIA AUTOMÁTICA Esta característica permite que todos os canais com sinal sejam sintonizados. Pressionado a tecla canal (UP ou DW) obteremos acesso somente

Leia mais

UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA CIRCUITOS ELÉTRICOS I - LABORATÓRIO OSCILOSCÓPIOS

UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA CIRCUITOS ELÉTRICOS I - LABORATÓRIO OSCILOSCÓPIOS UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA CIRCUITOS ELÉTRICOS I - LABORATÓRIO OSCILOSCÓPIOS Kleber César Alves Souza, elaboração. Paulo Zanelli Júnior, elaboração. Clóvis

Leia mais

Universidade Estadual de Mato Grosso do Sul

Universidade Estadual de Mato Grosso do Sul Universidade Estadual de Mato Grosso do Sul Curso: Licenciatura em Física Disciplina: Laboratório de Física Moderna Prof. Dr. Sandro Marcio Lima Prática: O experimento de Millikan 2007 1-Introdução ao

Leia mais

Mecânica e Ondas. Introdução ao Osciloscópio e ao Gerador de sinais

Mecânica e Ondas. Introdução ao Osciloscópio e ao Gerador de sinais Mecânica e Ondas Introdução ao Osciloscópio e ao Gerador de sinais 1. Osciloscópio O osciloscópio é um aparelho destinado à visualização e caracterização de sinais eléctricos, em particular tensões eléctricas

Leia mais

Atenção ainda não conecte a interface em seu computador, o software megadmx deve ser instalado antes, leia o capítulo 2.

Atenção ainda não conecte a interface em seu computador, o software megadmx deve ser instalado antes, leia o capítulo 2. Atenção ainda não conecte a interface em seu computador, o software megadmx deve ser instalado antes, leia o capítulo 2. Interface megadmx SA Firmware versão 1, 2 e 3 / software megadmx 2.000 (Windows/MAC

Leia mais

MANUAL DE INSTRUÇÕES Instructions Manual Manual de Instrucciones

MANUAL DE INSTRUÇÕES Instructions Manual Manual de Instrucciones OSCILOSCÓPIO DIGITAL PORTÁTIL Digital Portable Oscilloscope M-SCOPE 60 / 100 / 200 v M-SCOPE Handheld Digital Oscilloscope v s ns v mv v mv 10A ma COM V..C 600mA UN FUSED FUSED CAT III 300V CAT II 600V

Leia mais

Experimento 1 Medidas Elétricas

Experimento 1 Medidas Elétricas _ Procedimento 1 Medida de resistência Experimento 1 Medidas Elétricas Código de R teórico R/R teórico R R medida1 R medida2 *Desvio **Desvio cores rel. Desvio * Desvio = ValorMedido ValorTeórico

Leia mais

AOM-7694 MONITOR DE OBSERVAÇÃO COLORIDO TELA PLANA DE 7 POLEGADAS MANUAL DO PROPRIETÁRIO. Características do modelo AOM-7694: www.asaelectronics.

AOM-7694 MONITOR DE OBSERVAÇÃO COLORIDO TELA PLANA DE 7 POLEGADAS MANUAL DO PROPRIETÁRIO. Características do modelo AOM-7694: www.asaelectronics. MONITOR DE OBSERVAÇÃO COLORIDO TELA PLANA DE 7 POLEGADAS MANUAL DO PROPRIETÁRIO Características do modelo AOM-7694: Painel de LCD colorido padrão automotivo de alto desempenho de 7 polegadas Entrada A/V

Leia mais

R O B Ó T I C A. Sensor Smart. Ultrassom. Versão Hardware: 1.0 Versão Firmware: 1.0 REVISÃO 1211.13. www.robouno.com.br

R O B Ó T I C A. Sensor Smart. Ultrassom. Versão Hardware: 1.0 Versão Firmware: 1.0 REVISÃO 1211.13. www.robouno.com.br R O B Ó T I C A Sensor Smart Ultrassom Versão Hardware: 1.0 Versão Firmware: 1.0 REVISÃO 1211.13 Sensor Smart Ultrassom 1. Introdução Os sensores de ultrassom ou ultrassônicos são sensores que detectam

Leia mais

ASSOCIAÇÃO EDUCACIONAL DOM BOSCO CAPÍTULO 1 DIODOS RETIFICADORES

ASSOCIAÇÃO EDUCACIONAL DOM BOSCO CAPÍTULO 1 DIODOS RETIFICADORES INTRODUÇÃO CPÍTULO DIODOS RETIFICDORES O diodo é um dispositivo semi-condutor muito simples e é utilizado nas mais variadas aplicações. O uso mais freqüente do diodo é como retificador, convertendo uma

Leia mais

Sinais Senoidais. A unidade de freqüência no SI é o Hertz (Hz) e o tempo é dado em segundos (s).

Sinais Senoidais. A unidade de freqüência no SI é o Hertz (Hz) e o tempo é dado em segundos (s). Campus Serra COORDENADORIA DE AUTOMAÇÂO INDUSTRIAL Disciplina: ELETRÔNICA BÁSICA Professor: Vinícius Secchin de Melo Sinais Senoidais Os sinais senoidais são utilizados para se representar tensões ou correntes

Leia mais

Laboratório de. Eletrônica Analógica II

Laboratório de. Eletrônica Analógica II UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE ENGENHARIA ELÉTRICA Laboratório de Eletrônica Analógica II Professor Volney Coelho Vincence, 2014/1 Vincence Eletrônica

Leia mais

E.2 Instrumentos e técnicas de medida II

E.2 Instrumentos e técnicas de medida II E.2 Instrumentos e técnicas de medida II E.2.1 Preparação O osciloscópio é um elemento essencial na gama de instrumentos de medida utilizados em laboratórios de electrónica. A função essencial do osciloscópio

Leia mais

Eletricidade e Magnetismo - Lista de Exercícios IV CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA

Eletricidade e Magnetismo - Lista de Exercícios IV CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Eletricidade e Magnetismo - Lista de Exercícios IV CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Campo Magnético (Fundamentos de Física Vol.3 Halliday, Resnick e Walker, Cap.

Leia mais

Manual de operação TRUCK LASER EDIÇÃO 2004 MOP 0504

Manual de operação TRUCK LASER EDIÇÃO 2004 MOP 0504 Manual de operação TRUCK LASER EDIÇÃO 2004 MOP 0504 INTRODUÇÃO O aparelho TRUCK LASER, permite a aferição dos ângulos característicos de todas as rodas e/ou eixos de caminhões, ônibus e camionetes. CONSIDERAÇÕES

Leia mais

NX- USB MANUAL DO USUARIO V1.2

NX- USB MANUAL DO USUARIO V1.2 NX- USB MANUAL DO USUARIO V1.2 NEVEX Tecnologia Ltda Copyright 2014 - Todos os direitos Reservados Atualizado em: 24/09/2014 IMPORTANTE Máquinas de controle numérico são potencialmente perigosas. A Nevex

Leia mais

Força Magnética. www.soexatas.com Página 1

Força Magnética. www.soexatas.com Página 1 Força Magnética 1. (Fuvest 2014) Partículas com carga elétrica positiva penetram em uma câmara em vácuo, onde há, em todo seu interior, um campo elétrico de módulo E e um campo magnético de módulo B, ambos

Leia mais

Manual de Instruções SX-015-A

Manual de Instruções SX-015-A Manual de Instruções SX-015-A Tabela de conteúdos Características do Produto Desenho de Construção Civil Acessórios Lista Parâmetros técnicos Instrução de Operação Painel de Controle Salvaguardas importantes

Leia mais

Obtenha medidas de potência de um sinal de fluxo abaixo DOCSIS usando um analisador de espectro

Obtenha medidas de potência de um sinal de fluxo abaixo DOCSIS usando um analisador de espectro Obtenha medidas de potência de um sinal de fluxo abaixo DOCSIS usando um analisador de espectro Índice Introdução Pré-requisitos Requisitos Componentes Utilizados Negação Convenções Compreendendo o monte

Leia mais

SISTEMA DE TREINAMENTO MULTIFUNCIONAL MODELO: ED-2110. www.minipa.com.br USB CARACTERÍSTICAS ED-2110

SISTEMA DE TREINAMENTO MULTIFUNCIONAL MODELO: ED-2110. www.minipa.com.br USB CARACTERÍSTICAS ED-2110 SISTEMA DE TREINAMENTO MULTIFUNCIONAL MODELO: PROPOSTA TÉCNICA CARACTERÍSTICAS Display de LCD TFT Touch. Realiza experimentos sem necessidade de um sistema de medição a parte. Possibilidade de programação

Leia mais