Sumário. Estruturas de realização de sistemas discretos. estrutura directa tipo I de realização de sistemas IIR

Tamanho: px
Começar a partir da página:

Download "Sumário. Estruturas de realização de sistemas discretos. estrutura directa tipo I de realização de sistemas IIR"

Transcrição

1 Sumário Estruturs de reição de sistems discretos EEC - Processmeto e Aáise de Si, ª u FEUP, 3 de Deemro de 4 Itrodução represetção em digrm de ocos de equções às difereçs estrutur direct tipo I de reição de sistems IIR estrutur direct tipo II de reição de sistems IIR estruturs em csct pr reição de sistems IIR estruturs em preo pr reição de sistems IIR estruturs trsposts estruturs de reição de sistems FIR estruturs de reição de sistems FIR de fse ier Estruturs de reição de sistems discretos EEC - Processmeto e Aáise de Si, ª u FEUP, 3 de Deemro de 4 Itrodução como visto em us teriores, há três forms equivetes de crcterir um sistem discreto ier e ivrite em : respost impusio fução de trsferêci i.e. trsformd em d respost impusio equção ier às difereçs com coeficietes costtes Questão: quis dests são forms compets de crcterição? ssumiremos como pressuposto que idmos só com com sistems cusis, isto é, x pr <, e y pr < equção ier às difereçs exprime directmete o goritmo de impemetção de um sistem discreto e por isso é form que mis fciit idetificção direct d estrutur de reição ssocid, tipicmete, pr um ddo sistem discreto crcterido por um fução de trsferêci rcio, há um grde vriedde de estruturs de reição que impemetm esse sistem i.e. forecem mesm síd y pr um mesm etrd x se precisão uméric d represetção de coeficietes e vriáveis for ifiit; qudo est é fiit, o comportmeto ds diferetes estruturs pode diferir sigifictivmete o que justific o seu estudo

2 Estruturs de reição de sistems discretos Represetção em digrm de ocos d equção às difereçs EEC - Processmeto e Aáise de Si, ª u FEUP, 3 de Deemro de 4 um estrutur de reição de um sistem discreto cosiste iustrção, em digrm de ocos, de um goritmo computcio form mis ger, um equção ier às difereçs e com coeficietes costtes, trdu um goritmo recursivo de cácuo tipicmete, um estrutur de reição de um sistem discreto iterig etrds ctu e trsds, síds ctu e trsds e sequêcis itermédis reevtes, trvés de eemetos ásicos de mutipicção de sequêcis por coeficietes e de som de produtos prciis ou sequêcis iustrm-se s operções ásics de dição, mutipicção por um costte e trso: x x x +x x x x -m x-m 3 Estruturs de reição de sistems discretos Estrutur direct do tipo I pr reição de um sistem IIR EEC - Processmeto e Aáise de Si, ª u FEUP, 3 de Deemro de 4 equção às difereçs de um sistem LIT, cus e com respost impusio ifiit, pode ser express por: y OTA: est é um presetção especi d formução usumete presetd itertur: su fução de trsferêci é dd por: y x presetção dd cim à equção às difereçs é prticurmete coveiete porque permite ccur síd y, de form recursiv, como um comição ier ds síds teriores e ds etrds ctu e teriores: y y y + x y + v x 4

3 EEC - Processmeto e Aáise de Si, ª u FEUP, 3 de Deemro de 4 5 um ve que comição ier ds etrds pode ser utoomid um resutdo itermédio v, represetção em digrm de ocos dos cácuos impicdos i.e. do goritmo expressão terior resut fáci e directmete: QUESTÃO: qu é ordem de cácuo dos vários produtos prciis? x y x- y- v x v v y y + X X V [ ] X V V Y est estrutur correspode à estrutur direct do tipo I de reição de um sistem IIR e sei-se seguite ordem de cácuos prciis: Estruturs de reição de sistems discretos EEC - Processmeto e Aáise de Si, ª u FEUP, 3 de Deemro de 4 6 Estrutur direct do tipo II pr reição de um sistem IIR fução de trsferêci go pode ssim escrever-se: est útim form reve que Y é tmém ddo, em tertiv, por Y [ X] W, que se ssoci seguite ordem de cácuos: x w w + w y X X W W W Y X Y Estruturs de reição de sistems discretos

4 Estruturs de reição de sistems discretos represetção em digrm de ocos d sequêci terior de operções é seguite: x w y EEC - Processmeto e Aáise de Si, ª u FEUP, 3 de Deemro de w est estrutur correspode à estrutur direct do tipo II de reição de um sistem IIR e fcimete se verific que resut simpesmete de trocr ordem dos susistems em série estrutur direct do tipo I, o que, dd propriedde de comuttividde d represetção em, ão modific o sistem impemetdo. 7 Estruturs de reição de sistems discretos fcimete se cocui que estrutur terior possui dus cdeis de trso com o mesmo si, o que sugere um simpificção de iteresse prático óvio, o eimir-se est redudâci: EEC - Processmeto e Aáise de Si, ª u FEUP, 3 de Deemro de 4 x peo fcto do úmero de trsos dest estrutur ão exceder ordem d fução de trsferêci, di-se tmém que se trt de um estrutur cóic. QUESTÃO: ddos e quisquer, qu é o úmero míimo de trsos requeridos pr impemetr este sistem? R: AX, - y OTA: cosiderou-se est represetção que ; o cso de, gus dos coeficietes ou serão uos. 8

5 Estruturs de reição de sistems discretos em sítese s estruturs directs de reição possuem coeficietes mutipicdores iguis os d fução de trsferêci impemetd, EEC - Processmeto e Aáise de Si, ª u FEUP, 3 de Deemro de 4 um estrutur cóic tem ttos trsos uitários quto ordem d fução de trsferêci impemetd estrutur direct do tipo I impemet em primeiro ugr todos os eros do sistem e em seguid todos os seus poos, estrutur direct do tipo II impemet em primeiro ugr todos os poos do sistem e em seguid todos os seus eros, se em que teoricmete ordem de impemetção dos eros e poos ão fect fução de trsferêci go do sistem, há difereçs sigifictivs qudo se id com ritmétic fiit um ve que este cso, sequêci de operções codicio fortemete propgção e mpificção de erros de rredodmeto e outros, é possíve usr diferetes goritmos computciois pr impemetr o mesmo sistem discreto, idei que se reforçrá de seguid. 9 Estruturs de reição de sistems discretos exempo represetr s estruturs directs I e II que reim o sistem cus EEC - Processmeto e Aáise de Si, ª u FEUP, 3 de Deemro de 4 descrito por: R: Direct Tipo I Direct Tipo II x y x y

6 EEC - Processmeto e Aáise de Si, ª u FEUP, 3 de Deemro de 4 Estruturs em csct pr reição de sistems IIR s estruturs directs, vists teriormete, resutrm de expresso como um rão de poiómios em, cotudo, se se fctorirem os poiómios umerdor e deomidor, que cosiderremos serem de coeficietes reis, é possíve escrever: com + + e + +, os coeficietes f e c r represetm, respectivmete, eros e poos reis simpes. Os coeficietes g e g * represetm pres de eros compexos cojugdos e d s e d s * represetm pres de poos compexos cojugdos, prtir d expressão terior, é possíve estruturr reição de como um série i.e. csct de susistems de ª e ª ordem, sedo desejáve, prátic, orgir csct de modo miimir quer o úmero de operções ritmétics, quer o espço de memóri requerido pricipmete pr s cdeis de trso. r s s s r d d c g g f A Estruturs de reição de sistems discretos EEC - Processmeto e Aáise de Si, ª u FEUP, 3 de Deemro de 4 coveiêci terior codu frequetemete o uso de susistems de ª ordem cohecidos gíri por iquds, trvés d comição de pres de eros reis, de poos reis, de eros compexos cojugdos e de poos compexos cojugdos, fução de trsferêci go pode etão reduir-se um form modur, de coeficietes reis, de que se dão dois exempos: ou com s sedo o mior iteiro cotido em AX/, /. OTA : hvedo um úmero ímpr de eros reis, gus dos coeficietes será uo, d mesm form que hvedo um ímpr de poos reis, gum dos coeficietes será uo OTA : s diferetes possiiiddes de comição de poos e eros um susistem de ª ordem, ssim como s possíveis tertivs de sequecição destes susistems, codu que hj um úmero eevdo de diferetes reições com mesm fução de trsferêci go ver secção 6.3. do Oppeheim + + s + + s ~ ~ s s,...,,,, com ~ ~ Estruturs de reição de sistems discretos

7 Estruturs de reição de sistems discretos EEC - Processmeto e Aáise de Si, ª u FEUP, 3 de Deemro de 4 por su ve, cd susistem de ª ordem pode ser impemetdo com um estrutur direct do tipo I ou II, sedo prátic ormmete preferid est útim por miimir custos computciois e de memóri EXEPLO: iustr-se reição de um sistem IIR de 6ª ordem, estruturdo um csct de susistems de ª ordem: x OTA: est estrutur em csct pode cosumir mis operções de mutipicção do que um estrutur direct: de fcto, dmitido ímpr e, o primeiro cso o úmero de mutipicções é proporcio 5s5-/ e o segudo cso o úmero de mutipicções é proporcio -. Pr evitr est desvtgem ms tmém pr cotror diâmic do si csct o que é desejáve qudo se us ritmétic de vírgu fix, é comum reformur-se como sugerido o side terior y Estruturs de reição de sistems discretos Estruturs em preo pr reição de sistems IIR EEC - Processmeto e Aáise de Si, ª u FEUP, 3 de Deemro de 4 em tertiv à fctorição dos poiómios em umerdor e deomidor d fução de trsferêci rcio, é possíve tmém decompor em frcções prciis: p C + A c B e d d com + e p - o cso de cso cotrário o primeiro somtório ão existe est decomposição exprime um estrutur pre de susistems de trso e IIR de ª e ª ordem; o cso dos coeficietes e serem reis, grupdo pres de poos, é possíve escrever: p s C + + e e o que redu estrutur um preo de susistems de trso e IIR de ª ordem 4

8 Estruturs de reição de sistems discretos EXEPLO: represetr dus estruturs pres que reiem o sistem cus : EEC - Processmeto e Aáise de Si, ª u FEUP, 3 de Deemro de 4 x R: fução de trsferêci deste sistem pode decompor-se em: o que codu às dus estruturs pres seguites: y x y 5 Estruturs de reição de sistems discretos Estruturs trsposts EEC - Processmeto e Aáise de Si, ª u FEUP, 3 de Deemro de 4 se-se d teori dos dos digrms de fuxo que trsposição ão ter fução de trsferêci de um sistem; trsposição é coseguid ivertedo o fuxo de si em todos os rmos ms coservdo os seus fctores de trsmissão, covertedo os ós de derivção em ós de som e vice-vers, e trocdo etrd com síd como exempo, iustr-se estrutur trspost de um estrutur direct do tipo II vist teriormete: x w - - y x - v - v y 6

9 Estruturs de reição de sistems discretos Questão: deduir o sistem de equções às difereçs ssocido cd um ds estruturs teriores e idicr em que circustâcis são equivetes. EEC - Processmeto e Aáise de Si, ª u FEUP, 3 de Deemro de 4 R: pr codições iiciis us, os dois sistems seguites de equções às difereçs descrevem o mesmo sistem discreto: w x + w + w y w + w + w v x + y v x + y + v y x + v OTA: equto que estrutur direct do tipo II rei em primeiro ugr os poos do sistem e de seguid os seus eros, estrutur trspost do tipo II rei em primeiro ugr os eros do sistem e de seguid os seus poos, o que se poderá torr importte qudo se utii ritmétic de precisão fiit i.e. iteir. 7 Estruturs de reição de sistems discretos iustr-se tmém títuo de exempo, estrutur trspost de um estrutur direct do tipo I vist teriormete: EEC - Processmeto e Aáise de Si, ª u FEUP, 3 de Deemro de 4 em sítese: o pricípio d trsposição é picáve ququer um ds estruturs IIR teriormete vists: direct do tipo I, direct do tipo II, em csct e em preo. Este fcto efti idei de que há um eorme diversidde de estruturs que reim o mesmo sistem discreto, gums ds quis poderão rever-se mis iteresstes do poto de vist prático, soretudo devido os efeitos de propgção dos erros decorretes d represetção uméric fiit. x y x y 8

10 Estruturs de reição de sistems discretos Estruturs de reição de sistems FIR EEC - Processmeto e Aáise de Si, ª u FEUP, 3 de Deemro de 4 É cro que sedo os sistems FIR um prticurição dos sistems IIR o setido em que, pr sistems cusis, só há poos em, discussão terior é ssim geéric e portto tmém picáve sistems FIR. Cotudo, há estruturs específics pr os diversos tipos de fitros FIR. estrutur direct e trspost equção às difereçs pr um sistem FIR cus é: y h x o que trdu covoução ier discret etre s sequêcis h e x, estrutur de reição direct é tmém cohecid por fitro trsvers e represet-se seguir, ssim como su estrutur trspost: x - h - trspost x - h h- y h- - h- direct - - h y 9 Estruturs de reição de sistems discretos EEC - Processmeto e Aáise de Si, ª u FEUP, 3 de Deemro de 4 estrutur em csct estrutur em csct pr reição de sistems FIR deriv-se d fctorição do poiómio, que se supõe de coeficietes reis, em poiómios de ª ordem cujos coeficietes são tmém reis: s + + e em que s é o mior iteiro cotido em /. x - - OTA : se o úmero de eros reis for ímpr, um dos coeficietes será uo OTA : trsposição idividu de cd poiómio de ª ordem, ou de todo o digrm de ocos represetdo, costitui outrs tertivs possíveis de reição do sistem FIR - - s s s y

11 Estruturs de reição de sistems discretos Estruturs de reição de sistems FIR de fse ier EEC - Processmeto e Aáise de Si, ª u FEUP, 3 de Deemro de 4 á qutro tipos de sistems FIR de fse ier cosote ordem do sistem sej pr ou ímpr e respost impusio sej simétric ou ti-simétric. O iteresse de ququer um dos dois tipos de simetri existete respost impusio de um sistem FIR de fse ier reside possiiidde de permitir reduir, pr cerc de metde, o úmero de mutipicções d estrutur de reição ssocid. De fcto, pr um sistem FIR de fse ier do tipo si + equção e digrm seguites e do tipo 3 si - equção e digrm seguites, teremos: / + + y h x h x h x h x / + / h [ x ± x + + ] + h x Estruturs de reição de sistems discretos que correspode seguite estrutur eficiete de cácuo: EEC - Processmeto e Aáise de Si, ª u FEUP, 3 de Deemro de 4 x - y h h h-/- por um áise idêtic, cocui-se que pr um sistem FIR de fse ier do tipo si + equção e digrm seguites e do tipo 4 si - equção e digrm seguites, teremos: y / - ± ± ± - - h - - [ x ± x + + ] h-/

12 Estruturs de reição de sistems discretos que correspode seguite estrutur eficiete de cácuo: EEC - Processmeto e Aáise de Si, ª u FEUP, 3 de Deemro de 4 x - y - h h h/- OTA: dd reção recíproc-cojugd etre os vários eros de um sistem FIR de fse ier ver u 8 de PDS, é possíve reir estes sistems como um csct de susistem de ª, ª e 4ª ordem, cd um dees de fse tmém ier. - ± ± ± ± h/- 3

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear Geometri Alític e Álgebr Lier 8. Sistems Lieres Muitos problems ds ciêcis turis e sociis, como tmbém ds egehris e ds ciêcis físics, trtm de equções que relciom dois cojutos de vriáveis. Um equção do tipo,

Leia mais

UNIVERSIDADE FEDERAL DO CEARÁ DEPARTAMENTO DE ENGENHARIA AGRÍCOLA HIDRÁULICA APLICADA AD 0195 Prof.: Raimundo Nonato Távora Costa CONDUTOS LIVRES

UNIVERSIDADE FEDERAL DO CEARÁ DEPARTAMENTO DE ENGENHARIA AGRÍCOLA HIDRÁULICA APLICADA AD 0195 Prof.: Raimundo Nonato Távora Costa CONDUTOS LIVRES UNVERSDADE FEDERAL DO CEARÁ DEPARTAMENTO DE ENGENHARA AGRÍCOLA HDRÁULCA APLCADA AD 019 Prof.: Rimudo Noto Távor Cost CONDUTOS LVRES 01. Fudmetos: Os codutos livres e os codutos forçdos, embor tem potos

Leia mais

PROVA DE MATEMÁTICA - TURMAS DO

PROVA DE MATEMÁTICA - TURMAS DO PROVA DE MATEMÁTICA - TURMAS DO o ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - MARÇO DE 0. ELABORAÇÃO: PROFESSORES ADRIANO CARIBÉ E WALTER PORTO. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Questão 0. (UDESC SC)

Leia mais

FUNÇÃO EXPONENCIAL. a 1 para todo a não nulo. a. a. a a. a 1. Chamamos de Função Exponencial a função definida por: f( x) 3 x. f( x) 1 1. 1 f 2.

FUNÇÃO EXPONENCIAL. a 1 para todo a não nulo. a. a. a a. a 1. Chamamos de Função Exponencial a função definida por: f( x) 3 x. f( x) 1 1. 1 f 2. 49 FUNÇÃO EXPONENCIAL Professor Lur. Potêcis e sus proprieddes Cosidere os úmeros ( 0, ), mr, N e, y, br Defiição: vezes por......, ( ), ou sej, potêci é igul o úmero multiplicdo Proprieddes 0 pr todo

Leia mais

Elementos de Análise Financeira Fluxos de Caixa Séries Uniformes de Pagamento

Elementos de Análise Financeira Fluxos de Caixa Séries Uniformes de Pagamento Elemetos de Aálise Ficeir Fluxos de Cix Séries Uiformes de Pgmeto Fote: Cpítulo 4 - Zetgrf (999) Mtemátic Ficeir Objetiv 2ª. Ed. Editorção Editor Rio de Jeiro - RJ Séries de Pgmetos - Defiição Defiição:

Leia mais

Matemática 1 Professor Paulo Cesar Pfaltzgraff Ferreira. Sumário

Matemática 1 Professor Paulo Cesar Pfaltzgraff Ferreira. Sumário Mtemátic Professor Pulo Cesr Pfltgrff Ferreir i Sumário Uidde Revisão de Tópicos Fudmetis do Esio Médio... 0. Apresetção... 0. Simologi Mtemátic mis usul... 0. Cojutos Numéricos... 0. Operções com Números

Leia mais

Escola de Engenharia de Lorena - USP Cinética Química Capítulo 01 Introdução a Cinética

Escola de Engenharia de Lorena - USP Cinética Química Capítulo 01 Introdução a Cinética 1.1 - ITODUÇÃO O termo ciétic está relciodo movimeto qudo se pes ele prtir de seu coceito físico. tretto, s reções químics, ão há movimeto, ms sim mudçs de composição do meio reciol, o logo d reção. Termodiâmic

Leia mais

CAPÍTULO VI FUNÇÕES REAIS DE VARIÁVEL REAL. LIMITES E CONTINUIDADE

CAPÍTULO VI FUNÇÕES REAIS DE VARIÁVEL REAL. LIMITES E CONTINUIDADE 1. Itrodução CAPÍTULO VI FUNÇÕES REAIS DE VARIÁVEL REAL. LIMITES E CONTINUIDADE Ddo um qulquer cojuto A R, se por um certo processo se fz correspoder cd A um e um só y = f() R, diz-se que se defiiu um

Leia mais

APOSTILA DE CÁLCULO NUMÉRICO

APOSTILA DE CÁLCULO NUMÉRICO APOSTILA DE CÁLCULO NUMÉRICO Professor: Willim Wger Mtos Lir Moitor: Ricrdo Albuquerque Ferdes ERROS. Itrodução.. Modelgem e Resolução A utilizção de simuldores uméricos pr determição d solução de um problem

Leia mais

APOSTILA Cálculo Numérico Universidade Tecnológica Federal do Paraná

APOSTILA Cálculo Numérico Universidade Tecnológica Federal do Paraná APOSTIA Cálculo Numérico Uiversidde Tecológic Federl do Prá UTFPR uro Césr Glvão, Dr. e uiz Ferdo Nues, Dr. Ídices NOÇÕES BÁSICAS SOBRE ERROS...-. ERROS...-. ERROS ABSOUTOS E REATIVOS...-.. Erro Asoluto...-..

Leia mais

Professor Mauricio Lutz FUNÇÃO EXPONENCIAL

Professor Mauricio Lutz FUNÇÃO EXPONENCIAL Professor Muricio Lutz REVISÃO SOBRE POTENCIAÇÃO ) Expoete iteiro positivo FUNÇÃO EPONENCIAL Se é u uero rel e é iteiro, positivo, diferete de zero e ior que u, expressão represet o produto de ftores,

Leia mais

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO: Prov QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA 1 Cofir os cmpos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, coforme o que cost etiquet fixd

Leia mais

ESTABILIDADE. Pólos Zeros Estabilidade

ESTABILIDADE. Pólos Zeros Estabilidade ESTABILIDADE Pólo Zero Etbilidde Itrodução Um crcterític importte pr um item de cotrole é que ele ej etável. Se um etrd fiit é plicd o item de cotrole, etão íd deverá er fiit e ão ifiit, ito é, umetr em

Leia mais

Lista de Exercícios 01 Algoritmos Sequência Simples

Lista de Exercícios 01 Algoritmos Sequência Simples Uiversidde Federl do Prá UFPR Setor de Ciêcis Exts / Deprtmeto de Iformátic DIf Discipli: Algoritmos e Estrutur de Ddos I CI055 Professor: Dvid Meotti (meottid@gmil.com) List de Exercícios 0 Algoritmos

Leia mais

Levantamento de Dados. Escolha do Método Numérico Adequado

Levantamento de Dados. Escolha do Método Numérico Adequado UNIDADE I. Itrodução Estudreos este curso étodos uéricos pr resolução de proles que surge s diverss áres. A resolução de tis proles evolve váris fses que pode ser ssi estruturds: Prole Rel evteto de Ddos

Leia mais

SISTEMAS DE EQUAÇÕES LINEARES

SISTEMAS DE EQUAÇÕES LINEARES SISTEMAS DE EQUAÇÕES LINEARES Um problem fudmetl que ormlmete é ecotrdo descrição mtemátic de feômeos físicos é o d solução simultâe de um cojuto de equções. Trduzido pr liuem mtemátic, tis feômeos pssm

Leia mais

FUNDAMENTOS DE ROBÓTICA. Modelo Cinemático de Robôs Manipuladores

FUNDAMENTOS DE ROBÓTICA. Modelo Cinemático de Robôs Manipuladores FUNDMENTO DE ROBÓTI Mde iemátic de Rbôs Miudres Eem Obter s râmetrs de Devit - Hrteberg r miudr bi. Jut θ d α Pr. is d mr - UDE θ L L B 8 θ L d θ L D Eem Obter s râmetrs de Devit - Hrteberg r miudr bi.

Leia mais

Faculdade de Engenharia Investigação Operacional. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Investigação Operacional. Prof. Doutor Engº Jorge Nhambiu Programação Diâmica Aula 3: Programação Diâmica Programação Diâmica Determiística; e Programação Diâmica Probabilística. Programação Diâmica O que é a Programação Diâmica? A Programação Diâmica é uma técica

Leia mais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA Equções Epoeciis... Fução Epoecil..4 Logritmos: Proprieddes 6 Fução Logrítmic. Equções Logrítmics...5 Iequções Epoeciis e Logrítmics.8 Equções Epoeciis 0. (ITA/74)

Leia mais

COMENTÁRIO DA PROVA. I. Se a expansão decimal de x é infinita e periódica, então x é um número racional. é um número racional.

COMENTÁRIO DA PROVA. I. Se a expansão decimal de x é infinita e periódica, então x é um número racional. é um número racional. COMENTÁRIO DA PROVA Como já er esperdo, prov de Mtemátic presetou um bom úmero de questões com gru reltivmete lto de dificuldde, s quis crcterístic fudmetl foi mescl de dois ou mis tems em um mesm questão

Leia mais

Revisão para o Vestibular do Instituto Militar de Engenharia www.rumoaoita.com & Sistema Elite de Ensino

Revisão para o Vestibular do Instituto Militar de Engenharia www.rumoaoita.com & Sistema Elite de Ensino Revisão pr o Vestibulr do Istituto Militr de Egehri wwwrumooitcom Sistem Elite de Esio CÔNICAS (IME-8/8) Determie equção de um círculo que tgeci hipérbole potos em que est hipérbole é ecotrd pel ret os

Leia mais

Resolução dos Exercícios Propostos

Resolução dos Exercícios Propostos Mtemátic Ficeir: Aplicções à Aálise de Ivestimetos 4ª. Edição Resolução dos Exercícios Propostos Etre os méritos deste livro, que fzem dele um dos preferidos pelos estudtes e professores, está explicr

Leia mais

INTRODUÇÃO À AVALIAÇÃO ECONÓMICA DE INVESTIMENTOS

INTRODUÇÃO À AVALIAÇÃO ECONÓMICA DE INVESTIMENTOS UNIVERSIDADE TÉCNICA DE LISBOA INSTITUTO SUPERIOR TÉCNICO DEEC / Secção de Eergi Eergis Reováveis e Produção Descetrlizd INTRODUÇÃO À AVALIAÇÃO ECONÓMICA DE INVESTIMENTOS Rui M.G. Cstro (Com bse um texto

Leia mais

Método de Exaustão dos Antigos: O Princípio de Eudoxo-Arquimedes

Método de Exaustão dos Antigos: O Princípio de Eudoxo-Arquimedes Método de Exustão dos Atigos: O Pricípio de Eudoxo-Arquimedes Joquim Atóio P. Pito Aluo do Mestrdo em Esio d Mtemátic Número mecográfico: 03037007 Deprtmeto de Mtemátic Pur d Fculdde de Ciêcis d Uiversidde

Leia mais

b) Expressando cada termo em função de sua posição SEQUÊNCIAS c) Por propriedades dos termos Igualdade Lei de Formação a) Por fórmula de recorrência

b) Expressando cada termo em função de sua posição SEQUÊNCIAS c) Por propriedades dos termos Igualdade Lei de Formação a) Por fórmula de recorrência SEQUÊNCIAS Seqüêci ou sucessão é todo cojuto ordedo de úmeros que escrevemos etre prêteses e seprdos um um por vírguls ou poto e vírgul. Exemplos: (, 8, 6,,, 8,, 5) (,, 5, 7,,, 7, 9...) (4, 7, 0,, 6, 9...)

Leia mais

Séries de Potências AULA LIVRO

Séries de Potências AULA LIVRO LIVRO Séries de Potêcias META Apresetar os coceitos e as pricipais propriedades de Séries de Potêcias. Além disso, itroduziremos as primeiras maeiras de escrever uma fução dada como uma série de potêcias.

Leia mais

Apostila De Matemática GEOMETRIA: REVISÃO DO ENSINO FUNDAMENTAL, PRISMAS E PIRÂMIDES

Apostila De Matemática GEOMETRIA: REVISÃO DO ENSINO FUNDAMENTAL, PRISMAS E PIRÂMIDES posti De Mtemátic GEOMETRI: REVISÃO DO ENSINO FUNDMENTL, PRISMS E PIRÂMIDES posti de Mtemátic (por Sérgio Le Jr.) GEOMETRI 1. REVISÃO DO ENSINO FUNDMENTL 1. 1. Reções métrics de um triânguo retânguo. Pr

Leia mais

Definição: Seja a equação diferencial linear de ordem n e coeficientes variáveis:. x = +

Definição: Seja a equação diferencial linear de ordem n e coeficientes variáveis:. x = + Vléi Zum Medeios & Mihil Lemotov Resolução de Equções Difeeciis Liees po Séies Poto Odiáio (PO) e Poto Sigul (PS) Defiição: Sej equção difeecil lie de odem e coeficietes viáveis: ( ) ( ) b ( ) é dito poto

Leia mais

Lista 2 - Introdução à Probabilidade e Estatística

Lista 2 - Introdução à Probabilidade e Estatística UNIVERSIDADE FEDERAL DO ABC Lista - Itrodução à Probabilidade e Estatística Modelo Probabilístico experimeto. Que eveto represeta ( =1 E )? 1 Uma ura cotém 3 bolas, uma vermelha, uma verde e uma azul.

Leia mais

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou POLINÔMIOS Definição: Um polinômio de gru n é um função que pode ser escrit n form P() n n i 0... n i em que cd i é um número compleo (ou i 0 rel) tl que n é um número nturl e n 0. Os números i são denomindos

Leia mais

Capítulo V INTEGRAIS DE SUPERFÍCIE

Capítulo V INTEGRAIS DE SUPERFÍCIE Cpítulo V INTEAIS DE SUPEFÍCIE Cpítulo V Iters de Superfíce Cpítulo V Vmos flr sobre ters sobre superfíces o espço tr-dmesol Estes ters ocorrem em problems evolvedo fluídos e clor electrcdde metsmo mss

Leia mais

EXERCÍCIOS DE CÁLCULO

EXERCÍCIOS DE CÁLCULO Trcisio Prcio Pereir PhD i Mthemtics Exercícios de Cálculo. EXERCÍCIOS DE CÁLCULO Trcisio Prcio-Pereir Dep. de Mtemátic - Uiv. Estdul Vle do Acrú versão 2 Edição eletrôic Copyleft Trcisio Prcio Pereir

Leia mais

Matemática. Módulo 10. Equações Diferenciais. Por

Matemática. Módulo 10. Equações Diferenciais. Por Mtemátic Módulo Equções Difereciis Por George L. Ekol, BSc,MSc. Abril 7 Module Developmet Templte C. ESTRUTURA DO MÓDULO I. INTRODUÇÂO. TÍTULO DO MÓDULO Equções Difereciis. PRÉ-REQUISITOS PARA O CURSO

Leia mais

PROGRESSÃO GEOMÉTRICA

PROGRESSÃO GEOMÉTRICA Professor Muricio Lutz PROGREÃO GEOMÉTRICA DEFINIÇÃO Progressão geométric (P.G.) é um seüêci de úmeros ão ulos em ue cd termo posterior, prtir do segudo, é igul o terior multiplicdo por um úmero fixo,

Leia mais

PROVA DE MATEMÁTICA DA UNICAMP VESTIBULAR 2009 1 a e 2 a Fase RESOLUÇÃO: Professora Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UNICAMP VESTIBULAR 2009 1 a e 2 a Fase RESOLUÇÃO: Professora Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UNICAMP VESTIBULAR 9 e Fse Professor Mri Atôi Gouvei. FASE _ 9 9. N décd de 96,com redução do úmero de bleis de grde porte,como blei zul, s bleis mike tártic pssrm ser o lvo preferêci

Leia mais

NOTAS DE AULA. Cálculo Numérico. Universidade Tecnológica Federal do Paraná - UTFPR - Professores: Lauro Cesar Galvão Luiz Fernando Nunes

NOTAS DE AULA. Cálculo Numérico. Universidade Tecnológica Federal do Paraná - UTFPR - Professores: Lauro Cesar Galvão Luiz Fernando Nunes NOTAS DE AULA Cálculo Numérico Uiversidde Tecolóic Federl do Prá - UTFPR - Proessores: Luro Cesr Glvão Luiz Ferdo Nues Ídice Cálculo Numérico Luro / Nues ii Noções ásics sore Erros - Erros - Erros Asolutos

Leia mais

Amortização ótima por antecipação de pagamento de dívidas contraídas em empréstimos a juros compostos

Amortização ótima por antecipação de pagamento de dívidas contraídas em empréstimos a juros compostos XXVI ENEGEP - Fortlez, CE, Brsil, 9 de Outubro de 2006 Amortizção ótim por tecipção de pgmeto de dívids cotríds em empréstimos uros compostos Lucio Ndler Lis (UFPE) luciolis@ufpe.br Gertrudes Coelho Ndler

Leia mais

6.1: Séries de potências e a sua convergência

6.1: Séries de potências e a sua convergência 6 SÉRIES DE FUNÇÕES 6: Séries de potêcis e su covergêci Deiição : Um série de potêcis de orm é um série d ( ) ( ) ( ) ( ) () Um série de potêcis de é sempre covergete pr De cto, qudo, otemos série uméric,

Leia mais

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial º semestre de Engenhri Civil/Mecânic Cálculo Prof Olg (º sem de 05) Função Eponencil Definição: É tod função f: R R d form =, com R >0 e. Eemplos: = ; = ( ) ; = 3 ; = e Gráfico: ) Construir o gráfico d

Leia mais

Gabarito - Matemática Grupo G

Gabarito - Matemática Grupo G 1 QUESTÃO: (1,0 ponto) Avlidor Revisor Um resturnte cobr, no lmoço, té s 16 h, o preço fixo de R$ 1,00 por pesso. Após s 16h, esse vlor ci pr R$ 1,00. Em determindo di, 0 pessos lmoçrm no resturnte, sendo

Leia mais

CONJUNTOS NUMÉRICOS Símbolos Matemáticos

CONJUNTOS NUMÉRICOS Símbolos Matemáticos CONJUNTOS NUMÉRICOS Símolos Mtemáticos,,... vriáveis e prâmetros igul A, B,... conjuntos diferente pertence > mior que não pertence < menor que está contido mior ou igul não está contido menor ou igul

Leia mais

Matemática Fascículo 03 Álvaro Zimmermann Aranha

Matemática Fascículo 03 Álvaro Zimmermann Aranha Mtemátic Fscículo 03 Álvro Zimmerm Arh Ídice Progressão Aritmétic e Geométric Resumo Teórico... Exercícios...3 Dics...4 Resoluções...5 Progressão Aritmétic e Geométric Resumo teórico Progressão Aritmétic

Leia mais

Capítulo III. Circuitos Resistivos

Capítulo III. Circuitos Resistivos Cpítulo III Ciruitos esistivos. Itrodução Neste pítulo serão estudds s leis de Kirhhoff, utilizdo-se de iruitos resistivos que são mis filmete lisdos. O estudo desss leis é plido em seguid s deduções de

Leia mais

LISTA DE EXERCÍCIOS Questões de Vestibulares. e B = 2

LISTA DE EXERCÍCIOS Questões de Vestibulares. e B = 2 LISTA DE EXERCÍCIOS Questões de Vestiulres ) UFBA 9 Considere s mtries A e B Sendo-se que X é um mtri simétri e que AX B, determine -, sendo Y ( ij) X - R) ) UFBA 9 Dds s mtries A d Pode-se firmr: () se

Leia mais

MATEMÁTICA BÁSICA PROF ª. PAULA FRANCIS BENEVIDES

MATEMÁTICA BÁSICA PROF ª. PAULA FRANCIS BENEVIDES MATEMÁTICA BÁSICA PROF ª. PAULA FRANCIS BENEVIDES FRAÇÕES: Adição e Subtrção ) ) ) ) ) 6) Multiplicção 7 Divisão 7 7) ) = Número Misto 9) 0) Coversão de Número Decimis em Frção ) 0, = ), = ) 0, = TESTES:

Leia mais

ARA UMA EDUCAÇÃO P OBAL CIDADANIA GL CIDAC

ARA UMA EDUCAÇÃO P OBAL CIDADANIA GL CIDAC l o i c r e t I o t s e f i M M U R P O Ã Ç L C U B O ED L G I N D CID CIDC Este Mifesto foi relizdo com o poio ficeiro d Uião Europei, ms o coteúdo é pes d resposbilidde dos utores, e ão pode ser tomdo

Leia mais

Capítulo zero Glossário

Capítulo zero Glossário Cpítulo zero Glossário Esse cpítulo é formdo por tems idispesáveis à mtemátic que, certmete, você deve Ter estuddo de um ou outr form durte su vid escolr. Sempre que tiver dúvids o logo do restte do teto

Leia mais

Turno Disciplina Carga Horária Licenciatura Plena em

Turno Disciplina Carga Horária Licenciatura Plena em Curso Turo Discipli Crg Horári Licecitur Ple em Noturo Mtemátic Elemetr III 60h Mtemátic Aul Período Dt Coordedor.. 0 6/0/006 ª. feir Tempo Estrtégi Recurso Descrição (Produção) Descrição (Arte) :0 / :

Leia mais

Capítulo 5 Vigas sobre base elástica

Capítulo 5 Vigas sobre base elástica Cpítuo 5 Vigs sobre bse eástic Este cpítuo vi presentr s bses pr o estudo estático e eástico d fexão simpes de vigs suportds diretmente peo terreno (ue constitui, então, num poio eástico contínuo pr ests

Leia mais

Faculdade Campo Limpo Paulista Mestrado em Ciência da Computação Complexidade de Algoritmos Avaliação 2

Faculdade Campo Limpo Paulista Mestrado em Ciência da Computação Complexidade de Algoritmos Avaliação 2 Faculdade Campo Limpo Paulista Mestrado em Ciêcia da Computação Complexidade de Algoritmos Avaliação 2. (2,0): Resolva a seguite relação de recorrêcia. T() = T( ) + 3 T() = 3 Pelo método iterativo progressivo.

Leia mais

SIMULADO DE VERIFICAÇÃO 8º ANOS A E B 11/05

SIMULADO DE VERIFICAÇÃO 8º ANOS A E B 11/05 Educção ftil - Esio Fudmetl - Esio Médio Nome º SMULADO DE VERFCAÇÃO º ANOS A E B /0 NSTRUÇÕES A prov cost de 0 questões. Em cd teste, há ltertivs, sedo corret pes um. Não mrque dus ou mis ltertivs questão,

Leia mais

Cálculo II. Eliezer Batista Elisa Zunko Toma Márcio Rodolfo Fernandes Silvia Martini de Holanda Janesch

Cálculo II. Eliezer Batista Elisa Zunko Toma Márcio Rodolfo Fernandes Silvia Martini de Holanda Janesch Cálculo II Eliezer Btist Elis Zuko Tom Márcio Rodolfo Ferdes Silvi Mrtii de Hold Jesch ª Edição Floriópolis, Govero Federl Presidete d Repúblic: Dilm V Rousseff Miistro de Educção: Aloízio Mercdte Coordedor

Leia mais

1. VARIÁVEL ALEATÓRIA 2. DISTRIBUIÇÃO DE PROBABILIDADE

1. VARIÁVEL ALEATÓRIA 2. DISTRIBUIÇÃO DE PROBABILIDADE Vriáveis Aletóris 1. VARIÁVEL ALEATÓRIA Suponhmos um espço mostrl S e que cd ponto mostrl sej triuído um número. Fic, então, definid um função chmd vriável letóri 1, com vlores x i2. Assim, se o espço

Leia mais

Capitulo 6 Resolução de Exercícios

Capitulo 6 Resolução de Exercícios FORMULÁRIO Cojutos Equivaletes o Regime de Juros Simples./Vecimeto Comum. Descoto Racioal ou Por Detro C1 C2 Cm C1 C2 C...... 1 i 1 i 1 i 1 i 1 i 1 i 1 2 m 1 2 m C Ck 1 i 1 i k1 Descoto Por Fora ou Comercial

Leia mais

Análise de Variância com Dois Factores

Análise de Variância com Dois Factores Análise de Vriânci com Dois Fctores Modelo sem intercção Eemplo Neste eemplo, o testrmos hipótese de s três lojs terem volumes médios de vends iguis, estmos testr se o fctor Loj tem influênci no volume

Leia mais

Aula 2 - POT - Teoria dos Números - Fabio E. Brochero Martinez Carlos Gustavo T. de A. Moreira Nicolau C. Saldanha Eduardo Tengan

Aula 2 - POT - Teoria dos Números - Fabio E. Brochero Martinez Carlos Gustavo T. de A. Moreira Nicolau C. Saldanha Eduardo Tengan Aula - POT - Teoria dos Números - Nível III - Pricípios Fabio E. Brochero Martiez Carlos Gustavo T. de A. Moreira Nicolau C. Saldaha Eduardo Tega de Julho de 01 Pricípios Nesta aula apresetaremos algus

Leia mais

Programação Linear Introdução

Programação Linear Introdução Progrmção Liner Introdução Prof. Msc. Fernndo M. A. Nogueir EPD - Deprtmento de Engenhri de Produção FE - Fculdde de Engenhri UFJF - Universidde Federl de Juiz de For Progrmção Liner - Modelgem Progrmção

Leia mais

Vitamina A Vitamina B Vitamina C Alimento 1 50 30 20 Alimento 2 100 40 10 Alimento 3 40 20 30

Vitamina A Vitamina B Vitamina C Alimento 1 50 30 20 Alimento 2 100 40 10 Alimento 3 40 20 30 Motvção: O prole d det Itrodução os Sstes Leres U pesso e det ecesst dgerr drete s segutes qutddes de vts: g de vt A 6 g de vt B 4 g de vt C El deve suprr sus ecessddes prtr do cosuo de três letos dferetes

Leia mais

MÓDULO II POTENCIAÇÃO RADICIAÇÃO

MÓDULO II POTENCIAÇÃO RADICIAÇÃO MÓDULO II POTENCIAÇÃO E RADICIAÇÃO MÓDULO II POTENCIAÇÃO E RADICIAÇÃO O ódulo II é oposto por eeríios evolvedo poteição e rdiição Estos dividido-o e dus prtes pr elhor opreesão ª PARTE: POTENCIAÇÃO DEFINIÇÃO

Leia mais

9.1 Indutores e Indutância

9.1 Indutores e Indutância Cpítuo 9 Indutânci 9.1 Indutores e Indutânci Neste cpítuo, estudmos os indutores e sus indutâncis, cujs proprieddes decorrem diretmente d ei de indução de Frdy. Cpcitores: Recpitução Lembre-se que, no

Leia mais

ATERRAMENTO ELÉTRICO DE SISTEMAS (PROGRAMA)

ATERRAMENTO ELÉTRICO DE SISTEMAS (PROGRAMA) ATERRAMENTO ELÉTRICO DE SISTEMAS (PROGRAMA). INTRODUÇÃO AO SISTEMA DE ATERRAMENTO. MEDIÇÃO DA RESISTIVIDADE DO SOLO 3. ESTRATIFICAÇÃO DO SOLO 4. SISTEMAS DE ATERRAMENTO 5. TRATAMENTO QUÍMICO DO SOLO 6.

Leia mais

VII Equações Diferenciais Ordinárias de Primeira Ordem

VII Equações Diferenciais Ordinárias de Primeira Ordem VII Equações Difereciais Ordiárias de Primeira Ordem Itrodução As equações difereciais ordiárias são istrumetos esseciais para a modelação de muitos feómeos proveietes de várias áreas como a física, química,

Leia mais

Matemática Aplicada. A Mostre que a combinação dos movimentos N e S, em qualquer ordem, é nula, isto é,

Matemática Aplicada. A Mostre que a combinação dos movimentos N e S, em qualquer ordem, é nula, isto é, Mtemátic Aplicd Considere, no espço crtesino idimensionl, os movimentos unitários N, S, L e O definidos seguir, onde (, ) R é um ponto qulquer: N(, ) (, ) S(, ) (, ) L(, ) (, ) O(, ) (, ) Considere ind

Leia mais

Análise no Domínio do Tempo de Sistemas Discretos

Análise no Domínio do Tempo de Sistemas Discretos S 43 Siis e Sistes Aálise o Doíio do Tepo de Sistes Disretos Prof. Aluizio Fusto Ribeiro Arújo Depto. of Sistes de Coputção Cetro de Iforáti - UFP Cpítulo 3 Siis e Sistes g. d Coputção Itrodução Coteúdo

Leia mais

Aula 4: Autômatos Finitos 2. 4.1 Autômatos Finitos Não-Determinísticos

Aula 4: Autômatos Finitos 2. 4.1 Autômatos Finitos Não-Determinísticos Teori d Computção Primeiro Semestre, 25 Aul 4: Autômtos Finitos 2 DAINF-UTFPR Prof. Ricrdo Dutr d Silv 4. Autômtos Finitos Não-Determinísticos Autômtos Finitos Não-Determinísticos (NFA) são um generlizção

Leia mais

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 2 RADICIAÇÃO

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 2 RADICIAÇÃO INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA Professores: Griel Brião / Mrcello Amdeo Aluo(: Turm: ESTUDO DOS RADICAIS LISTA RADICIAÇÃO Deomi-se riz de ídice de um úmero rel, o úmero rel tl que

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA VICE-REITORIA DE ENSINO DE GRADUAÇÃO E CORPO DISCENTE COORDENAÇÃO DE EDUCAÇÃO A DISTÂNCIA MATEMÁTICA FINANCEIRA Rio de Jeiro / 007 TODOS OS DIREITOS RESERVADOS À UNIVERSIDADE CASTELO BRANCO UNIDADE I PROGRESSÕES

Leia mais

CINÉTICA QUÍMICA CINÉTICA QUÍMICA. Lei de Velocidade

CINÉTICA QUÍMICA CINÉTICA QUÍMICA. Lei de Velocidade CINÉTICA QUÍMICA Lei de Velocidde LEIS DE VELOCIDADE - DETERMINAÇÃO Os eperimentos em Cinétic Químic fornecem os vlores ds concentrções ds espécies em função do tempo. A lei de velocidde que govern um

Leia mais

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (II Determinntes) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Determinntes Índice 2 Determinntes 2

Leia mais

Medição da Resistividade do Solo

Medição da Resistividade do Solo Medição d Resistividde do Solo. trodução Serão esecificmete bordds, este cítulo, s crcterístics d rátic d medição d resistividde do solo de um locl virgem. Os métodos de medição são resultdos d álise de

Leia mais

Transporte de solvente através de membranas: estado estacionário

Transporte de solvente através de membranas: estado estacionário Trnsporte de solvente trvés de membrns: estdo estcionário Estudos experimentis mostrm que o fluxo de solvente (águ) em respost pressão hidráulic, em um meio homogêneo e poroso, é nálogo o fluxo difusivo

Leia mais

O poço de potencial infinito

O poço de potencial infinito O poço de potecial ifiito A U L A 14 Meta da aula Aplicar o formalismo quâtico ao caso de um potecial V(x) que tem a forma de um poço ifiito: o potecial é ifiito para x < a/ e para x > a/, e tem o valor

Leia mais

MAC122 Princípios de Desenvolvimento de Algoritmos EP no. 1

MAC122 Princípios de Desenvolvimento de Algoritmos EP no. 1 MAC122 Pricípios de Desevolvimeto de Algoritmos EP o. 1 Prof. Dr. Paulo Mirada 1 Istituto de Matemática e Estatística (IME) Uiversidade de São Paulo (USP) 1. Estrutura dos arquivos de images o formato

Leia mais

4. APLICAÇÃO DA PROTEÇÃO DIFERENCIAL À PROTEÇÃO DE TRANSFORMADORES DE POTÊNCIA

4. APLICAÇÃO DA PROTEÇÃO DIFERENCIAL À PROTEÇÃO DE TRANSFORMADORES DE POTÊNCIA lever Pereir 4. PLÇÃO D PROTEÇÃO DFEREL À PROTEÇÃO DE TRSFORMDORES DE POTÊ 4.. Prinípio ásio s orrentes primáris e seundáris de um trfo de potêni gurdm entre si um relção onheid em ondições de operção

Leia mais

Projecções Cotadas. Luís Miguel Cotrim Mateus, Assistente (2006)

Projecções Cotadas. Luís Miguel Cotrim Mateus, Assistente (2006) 1 Projecções Cotds Luís Miguel Cotrim Mteus, Assistente (2006) 2 Nestes pontmentos não se fz o desenvolvimento exustivo de tods s mtéris, focndo-se pens lguns items. Pelo indicdo, estes pontmentos não

Leia mais

SIDNEY DIAS COUTO LOGARITMOS CONCEITOS E APLICAÇÃO

SIDNEY DIAS COUTO LOGARITMOS CONCEITOS E APLICAÇÃO SIDNEY DIAS COUTO LOGARITMOS CONCEITOS E APLICAÇÃO LAVRAS MG 203 SIDNEY DIAS COUTO LOGARITMOS CONCEITOS E APLICAÇÃO Trblho de Coclusão de Curso presetdo à Uiversidde Federl de Lvrs, como prte ds eigêcis

Leia mais

INTRODUÇÃO A TEORIA DE CONJUNTOS

INTRODUÇÃO A TEORIA DE CONJUNTOS INTRODUÇÃO TEORI DE CONJUNTOS Professora Laura guiar Cojuto dmitiremos que um cojuto seja uma coleção de ojetos chamados elemetos e que cada elemeto é um dos compoetes do cojuto. Geralmete, para dar ome

Leia mais

Prova 3 Matemática ... GABARITO 1 NOME DO CANDIDATO:

Prova 3 Matemática ... GABARITO 1 NOME DO CANDIDATO: Prova 3 QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que costam da etiqueta fixada

Leia mais

Anexo VI Técnicas Básicas de Simulação do livro Apoio à Decisão em Manutenção na Gestão de Activos Físicos

Anexo VI Técnicas Básicas de Simulação do livro Apoio à Decisão em Manutenção na Gestão de Activos Físicos Aexo VI Técicas Básicas de Simulação do livro Apoio à Decisão em Mauteção a Gestão de Activos Físicos LIDEL, 1 Rui Assis rassis@rassis.com http://www.rassis.com ANEXO VI Técicas Básicas de Simulação Simular

Leia mais

Semelhança e áreas 1,5

Semelhança e áreas 1,5 A UA UL LA Semelhnç e áres Introdução N Aul 17, estudmos o Teorem de Tles e semelhnç de triângulos. Nest ul, vmos tornr mis gerl o conceito de semelhnç e ver como se comportm s áres de figurs semelhntes.

Leia mais

Associação de Resistores e Resistência Equivalente

Associação de Resistores e Resistência Equivalente Associção d sistors sistêci Equivlt. Itrodução A ális projto d circuitos rqurm m muitos csos dtrmição d rsistêci quivlt prtir d dois trmiis quisqur do circuito. Além disso, pod-s um séri d csos práticos

Leia mais

Matemática Financeira Introdução a Matemática Financeira e Comercial e suas aplicações.

Matemática Financeira Introdução a Matemática Financeira e Comercial e suas aplicações. Mtemátic Ficeir Itrodução Mtemátic Ficeir e Comercil e sus plicções. Rikey Pulo Pires Felix, Licecido em Mtemátic pel Uiversidde Estdul de Goiás, Pós Grdudo em Gestão Empresril pel Fculdde Motes Belos

Leia mais

Curso MIX. Matemática Financeira. Juros compostos com testes resolvidos. 1.1 Conceito. 1.2 Período de Capitalização

Curso MIX. Matemática Financeira. Juros compostos com testes resolvidos. 1.1 Conceito. 1.2 Período de Capitalização Curso MI Matemática Fiaceira Professor: Pacífico Referêcia: 07//00 Juros compostos com testes resolvidos. Coceito Como vimos, o regime de capitalização composta o juro de cada período é calculado tomado

Leia mais

O Teorema de Pitágoras

O Teorema de Pitágoras A UUL AL A O Teorem de Pitágors Com jud de um pr de esqudros, desene dois triânguos retânguos de mesmo tmno. Represente num dees tur retiv à ipotenus, omo mostr figur d direit: Pr pensr I II III Reortndo

Leia mais

ERROS ERRO DE ARREDONDAMENTO

ERROS ERRO DE ARREDONDAMENTO ERROS Seja o valor aproimado do valor eacto. O erro de deie-se por ε ε erro absoluto de Aálise N um érica 4 ERRO DE ARREDONDAENTO Seja o valor aproimado do valor eacto tedo eactamete k dígitos após o poto

Leia mais

COLÉGIO NAVAL 2016 (1º dia)

COLÉGIO NAVAL 2016 (1º dia) COLÉGIO NAVAL 016 (1º di) MATEMÁTICA PROVA AMARELA Nº 01 PROVA ROSA Nº 0 ( 5 40) 01) Sej S som dos vlores inteiros que stisfzem inequção 10 1 0. Sendo ssim, pode-se firmr que + ) S é um número divisíel

Leia mais

Transformadas de Laplace

Transformadas de Laplace Trformd de plce O MÉTODO O méodo de rformd de plce é um méodo muio úil pr reolver equçõe diferecii ordiári EDO. Com rformd de plce, pode-e coverer mui fuçõe comu, i como, eoidi e morecid, em equçõe lgébric

Leia mais

Unidade 8 - Polinômios

Unidade 8 - Polinômios Uidde 8 - Poliômios Situção problem Gru de um poliômio Vlor umérico de um poliômio Iguldde de poliômio Poliômio ulo Operções com poliômios Situção problem Em determids épocs do o, lgums ciddes brsileirs

Leia mais

UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS Departamento de Engenharia de Estruturas TABELAS DE LAJES. Libânio M.

UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS Departamento de Engenharia de Estruturas TABELAS DE LAJES. Libânio M. UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS Dertmento de Engenhri de Estruturs TABELAS DE LAJES Liânio M. Pinheiro São Cros, gosto de 007 RELAÇÃO DE TABELAS Te.1 Pré-dimensionmento: vores

Leia mais

somente um valor da variável y para cada valor de variável x.

somente um valor da variável y para cada valor de variável x. Notas de Aula: Revisão de fuções e geometria aalítica REVISÃO DE FUNÇÕES Fução como regra ou correspodêcia Defiição : Uma fução f é uma regra ou uma correspodêcia que faz associar um e somete um valor

Leia mais

Aula 7. Em outras palavras, x é equivalente a y se, ao aplicarmos x até a data n, o montante obtido for igual a y.

Aula 7. Em outras palavras, x é equivalente a y se, ao aplicarmos x até a data n, o montante obtido for igual a y. DEPARTAMENTO...: ENGENHARIA CURSO...: PRODUÇÃO DISCIPLINA...: ENGENHARIA ECONÔMICA / MATEMÁTICA FINANCEIRA PROFESSORES...: WILLIAM FRANCINI PERÍODO...: NOITE SEMESTRE/ANO: 2º/2008 Aula 7 CONTEÚDO RESUMIDO

Leia mais

a a 3,88965 $140 7 9% 7 $187 7 9% a 5, 03295

a a 3,88965 $140 7 9% 7 $187 7 9% a 5, 03295 Anuiddes equivlentes: $480 + $113 + $149 5 9% 5 VPL A (1, 09) $56, 37 A 5 9% 3,88965 5 9% 5 9% AE = = = = $14, 49 = 3,88965 AE B $140 $620 + $120 + 7 9% 7 VPL B (1, 09) $60, 54 = = = 5, 03295 7 9% 7 9%

Leia mais

COLÉGIO ANCHIETA-BA. ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA, MARIA ANTÔNIA C. GOUVEIA

COLÉGIO ANCHIETA-BA. ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA, MARIA ANTÔNIA C. GOUVEIA Questão 0. (UDESC) A AVALIAÇÃO DE MATEMÁTICA DA UNIDADE I-0 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA, MARIA ANTÔNIA C. GOUVEIA Um professor de matemática, após corrigir

Leia mais

CPV seu Pé Direito no INSPER

CPV seu Pé Direito no INSPER CPV seu Pé Direito o INSPE INSPE esolvida /ovembro/0 Prova A (Marrom) MATEMÁTICA 7. Cosidere o quadrilátero coveo ABCD mostrado a figura, em que AB = cm, AD = cm e m(^a) = 90º. 8. No plao cartesiao da

Leia mais

Matrizes e Vectores. Conceitos

Matrizes e Vectores. Conceitos Mtrizes e Vectores Coceitos Mtriz, Vector, Colu, Lih. Mtriz rigulr Iferior; Mtriz rigulr Superior; Mtriz Digol. Operções etre Mtrizes. Crcterístic de um mtriz; Crcterístic máxim de um mtriz. Mtriz Ivertível,

Leia mais

5- CÁLCULO APROXIMADO DE INTEGRAIS 5.1- INTEGRAÇÃO NUMÉRICA

5- CÁLCULO APROXIMADO DE INTEGRAIS 5.1- INTEGRAÇÃO NUMÉRICA 5- CÁLCULO APROXIMADO DE INTEGRAIS 5.- INTEGRAÇÃO NUMÉRICA Itegrar umericamete uma fução y f() um dado itervalo [a, b] é itegrar um poliômio P () que aproime f() o dado itervalo. Em particular, se y f()

Leia mais

CIRCUITOS SEQUÊNCIAIS

CIRCUITOS SEQUÊNCIAIS Coelh ho, J.P. @ Sistem mas Digita ais : Y20 07/08 CIRCUITOS SEQUÊNCIAIS O que é um circuito it sequêcial? Difereça etre circuito combiatório e sequecial... O elemeto básico e fudametal da lógica sequecial

Leia mais

1 Fórmulas de Newton-Cotes

1 Fórmulas de Newton-Cotes As nots de ul que se seguem são um compilção dos textos relciondos n bibliogrfi e não têm intenção de substitui o livro-texto, nem qulquer outr bibliogrfi. Integrção Numéric Exemplos de problems: ) Como

Leia mais

a taxa de juros i está expressa na forma unitária; o período de tempo n e a taxa de juros i devem estar na mesma unidade de tempo.

a taxa de juros i está expressa na forma unitária; o período de tempo n e a taxa de juros i devem estar na mesma unidade de tempo. UFSC CFM DEPARTAMENTO DE MATEMÁTICA MTM 5151 MATEMÁTICA FINACEIRA I PROF. FERNANDO GUERRA. UNIDADE 3 JUROS COMPOSTOS Capitalização composta. É aquela em que a taxa de juros icide sempre sobre o capital

Leia mais